University of Massachusetts Amherst ScholarWorks@UMass Amherst

Cranberry Station Extension meetings

Cranberry Station Outreach and Public Service Activities

2006

Research Update Meeting 2006 - OSC Nitrogen Rate and Pruning Intensity 2006

Hilary A. Sandler University of Massachusetts - Amherst, hsandler@umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension Part of the <u>Horticulture Commons</u>

Recommended Citation

Sandler, Hilary A., "Research Update Meeting 2006 - OSC Nitrogen Rate and Pruning Intensity 2006" (2006). *Cranberry Station Extension meetings*. 76. Retrieved from https://scholarworks.umass.edu/cranberry_extension/76

This Article is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Station Extension meetings by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Nitrogen Rate and Pruning Intensity

Research sponsored and supported by Ocean Spray Cranberries, Inc.

<u>Grower Cooperators:</u> Decas Cranberry Company Gilmore Cranberry Company

Objectives

Evaluate interaction of N rate and pruning intensity on vine biomass and cranberry productivity

Develop recommendations for weed control in plantings of new varieties

Treatments

4 N levels
0, 50, 100, and 150 lb/A

4 Pruning intensities
 None, low, medium, and high

2 sites 'Stevens'

Treatments

Spring pruning
Nitrogen: 4 equal doses
Each combination replicated 3x
Plots are 270 ft² or 300 ft²
Study initiated in 2003

ONE REPLICATE			
Pruning Intensity			
LOW	HIGH	MED	NONE
0 N	50 N	150 N	50 N
150 N	100 N	50 N	0 N
100 N	150 N	0 N	100 N
50 N	0 N	100 N	150 N

CARVER SITE 2004

CARVER SITE 2004

150 LB/N NO PRUNE 100 LB/N LOW PRUNE

100 LB/N HI PRUNE

ROCHESTER SITE 2005

150 LB/N NO PRUNE

100 LB/N MED PRUNE

Data Collected

Spring pruning weights
 Vine samples
 Upright density evaluation

Harvest samples

Spring Weights - Y2 across N

Spring Wt - Y2 across Pruning

Flowering Upright Density – 2 yr

Flowering Upright Density – Y2

Runner Biomass / m2

Marketable Yield - Year 1

P=0.006 All pruning trmts combined

Marketable Yield - Year 2

Economic Analysis

Cost of N fertilizer Fruit yield (\$32 / bbl) Prunings harvested Cost to buy ST vines (\$1500 / ton) Net Income = Yield + Vine Savings - Fertilizer Costs Y1, Y2 & both years combined

Preliminary Economics (2 yr data only)

Low - N rate / pruning combinations had highest economic returns overall

High - N rates consistently had lowest income, irrespective of pruning intensity

Other Highlights (2 yr data only)

Each 50 - N increment > 50 lb/A gave ~ 14% increase vine biomass (spring harvest)

 #, biomass, and % Uf decreased with increasing N rate
 Unaffected by pruning intensity

Other Highlights (2 yr data)

 Marketable yield declined with increasing N rate, esp. > 50 lb
 Unaffected by pruning intensity

 Runner #, biomass increased with increasing N rate
 Unaffected by pruning intensity

Notes

Mean vine biomass (spring)
Low = 0.12 ton / A
Medium = 0.26 ton / A
High = 0.51 ton / A
2005 data being processed
Continue project in 2006

Questions ??