View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarWorks@UMass Amherst

University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Computer Science Department Faculty Publication

) Computer Science
Series

1996

Improving the Accuracy of Petri Net-based
Analysis of Concurrent Programs

A.T. Chamillard
University of Massachusetts - Amherst

Lori A. Clarke
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty pubs

b Part of the Computer Sciences Commons

Recommended Citation

Chamillard, A. T. and Clarke, Lori A., "Improving the Accuracy of Petri Net-based Analysis of Concurrent Programs” (1996).
Computer Science Department Faculty Publication Series. 23.
Retrieved from https://scholarworks.umass.edu/cs_faculty pubs/23

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Ambherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,

please contact scholarworks@library.umass.edu.

https://core.ac.uk/display/13601821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/23?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Improving the Accuracy of Petri Net-based Analysis
of Concurrent Programs”

A. T. Chamillard
Lori A. Clarke

email: {chamillalclarke} @cs.umass.edu
Department of Computer Science
University of Massachusetts, Amherst
Ambherst, MA 01003

Abstract

Spuriousresultsare an inherentproblem of most static

analysis methods. These methadsan effort to produce
conservative results, overestimate the executable
behaviorof a program. Infeasible pathsand imprecise
aliasresolutionare the two causesof suchinaccuracies.
In this paperwe presentan approachfor improving the

accuracy of Petri net-based analysis of concurrent
programs by including additional program state
information in the Petmet. We presenempiricalresults
that demonstratdhe improvementsin accuracyand, in

somecasesthe reductionin the searchspacethat result

from applying this approach to concurrent Ada programs.

1 Introduction

Developersof concurrentsoftware need cost-effective
analysismethodsto acquireconfidencein the reliability
of that software. Analysis of concurrentprogramsis
difficult because,in many cases, the patterns of
communicationamongthe various parts of the program
are complicated and the number of possible
communicationss large. One classof methodsthat can
be usedfor analysisof concurrentprogramsis static
analysis,which usescompile-timeinformation to prove
properties about a program.

* This work was supportedn part by the AdvancedResearch
ProjectsAgency through Rome Laboratory contract F-30602-
94-C-0137.

In general,we would like any static analysismethod
to beconservativefor a given property, the analysisust
not overlook caseswherethe propertyfails to hold. To
ensureconservativenessnethodstypically use program
representationghat overestimatethe behavior of the
programbeinganalyzed. As a result,thesemethodsmay
producespuriousresults-- thatis, reportthat a property
fails when in fact the casesin which it fails do not
correspondto actual program behaviors. Usually, an
analysis method produces a spurious result as a
consequenceof considering paths that can never be
executedin the program (commonly called infeasible
pathg or of consideringaliasingthat can never occurin
the program. For an example of an infeasible path,
considerthe programin Figurel. In the caller2task,the
paththroughthe true branchof the first conditionaland
the false branchof the secondconditionalis infeasible,
assumingthe value of BranchConddoes not change
between the two conditionals. Infeasible paths are
naturalphenomenaf the internalrepresentations/e use
for analysis and are usually not indicatvea fault in the
code.

This paperpresentsan approachfor improving the
accuracyof Petri net-basedstatic analysis methodsby
eliminating some infeasible paths from consideration.
We conjecturea scenarioin which an analystsubmitsa
programand property to a static analysistool and then
examines the anomaly report that results from the
analysis. Sincesomeof the reportedanomaliesmight be
spurious, due to considerationof infeasible paths or
imprecisealiasresolution the analystmustexamineeach
anomalyto determinef it is a spuriousresultor not. If a
large numberof the resultsare spurious,weedingthese
out might overwhelm the analyst, causing results that
actuallydo correspondo erroneouprogrambehaviorto
be discarded. If the number of spurious results is
extremelylarge, the analystmay lose confidencein the
analysis tool altogether and forego using it.

It hasbeenour experiencethat, after looking at an
anomaly report, an analyst easily recognizescertain
infeasiblepathsthat arethe causeof at leastsomeof the

task body callerl is
begi n

accepter.entry?2;
end cal |l erl;

begi n

end accepter;

task body accepter is

accept entryl;
accept entry2;

task body caller2 is
BranchCond : bool ean;
begi n

if BranchCond t hen
accepter.entryl;
el se
nul | ;
end if;

if BranchCond t hen
nul | ;
el se
accepter.entry?2;
end if;
end cal |l er2;

Figurel. Example Program

spuriousresults. Early experiencewith static analysis
tools indicatedhat analystddentified impossiblepairs of
statementsafter examining anomaly reports. Using
information about these impossible pairs to recognize
spuriousresultswas shownto be intractablefor analyses
basedon controlflow graphrepresentationsf a program
[GMO76]. The approachpresentedin this paper for
improving accuracyis basedon a Petri net model of a
concurrentprogram. We describehow certainkinds of
infeasiblepathinformationcanbe effectively capturedn
this modelimprovingthe accuracyof the analysisresults
without degrading the performance of the analysis.
Thus,the basicideais thatan analystwould applythe
static analysis method to the Petri net model of the
program. Through examinationof the anomalyreport,
certaininfeasible pathsthat are causingspuriousresults
to be reportedbecomeapparent. The analyst,using our
approachrefinesthe Petrinetmodelof the programwith
this informationandreapplieshe analysis. Of course,if
the analystknew of infeasible pathsbefore running the
initial analysis,that information could be incorporated
immediately. In our experiencehowever,analystsdo
not tend to think about infeasible paths until after
examining an anomaly report wifomeobviousspurious
results. The newanomalyreporttypically containsfewer
spurious results than the previous report, since the
additionalinformation should have eliminatedthe cause
of some inaccuracies. Frequently,the new report is
significantly smallersince additional,as yet undetected,
spurious results are eliminated as well. This smaller
reportmay not be so overwhelmingto evaluate perhaps
allowing the analyst to recognize additional spurious
resultsmore easily. The effectis an iterative processn
which the analyst examinesan anomaly report, adds
additionalinformationto the analysis,and reappliesthe

analysis repeatedly until the desired accuracy is achieved

Our approachallows the analystto include selected
control and/ordatainformationin the Petri net model of
the program. The basicideais to introduceinformation
about the statesthat the program being analyzedcan

enter during execution;this information may be in the
form of sequencesf programstatement®r in the form
of variablevalues. Petrinetsare usedbecausencluding
additionalprogramstateinformationin the netandusing
that information to control the transitionsin the netis
relatively straightforward. We hypothesizethat, by
including additional program state information in the
Petri net, we can generate a more accuratenateof the
programstatespace. Analysisof this moreaccuratestate
space considers fewer infeasible paths, potentially
reducingthe numberof spuriousresultsreportedby the
analysis and increasing the value of the analysis results.
The following section describessome of the major
methodghathave beemsedto perform staticanalysisof
concurrentprograms, Section 3 describesthe program
representationsve useto analyzeconcurrentprograms
with our approach,and Section 4 explains how we
represent certain state information to improve the
accuracyof thoserepresentationsSection5 presentour
empirical results,and Section6 offers someconclusions
based on those results and some pointers to future work.

2 Related Work

Numerous methods for static analysis of concurrent
programshave beerproposed. In this sectionwe survey
the major methods and describe accuracy-improving
approacheghat have beensuggestedfor reducing the
number of infeasible paths considered by these methods.
Reachability analysis checks whether a selected
property,often called the property of interest can occur
in a concurrentprogram by consideringall reachable
states of the program being analyzed. The set of
reachable program states daageneratedisinga variety
of program representations,including flow graphs
[Tay83a,YTF+89] andPetrinets[Pet77,SC88,DCN95].
Theoreticalresults[Tay83b] imply that, in general,the
time and space requirements for this method are
exponential. Severalapproachefhave beerproposedio
reduce the number of infeasible paths consideredby

reachability analysis. One proposed approachis to
combinereachabilityanalysiswith symbolicexecutionto
pruneinfeasiblepathsfrom the estimatedreachablestate
space[YT88]. Symbolic execution, however, is an
expensive method that can not be guaranteedto
determine feasibility. Our approach entails

straightforward extensions of the Petri net representation.

Other proposed approachesuse program variable
valueinformationto excludesomeinfeasiblepathsfrom
consideration[BDF92, DBD+94]. These approaches
assumethat, if a variable value is to be modeled,that
valueis alwaysstaticallydeterminable. This assumption
seemsoverly restrictive in general. In contrast, our
variable value techniqueaccountsfor regionsin which
the value is not statically determinable,but can only
improve accuracy in regions in which the value is
determinable. Additionally, the effect of modeling
selectedvariablevaluesis not quantifiedin [BDF92] or
[DBD+94], while Section5 below compareghe sizesof
reachabilitygraphsgeneratedvith and without modeling
of selected variable values.

Symbolic model checking methods [BCM+90]
representthe program state space symbolically rather
than explicitly. With this method, the programto be
analyzedis modeled using Binary Decision Diagrams
(BDDs), and the property of interestis specifiedby a
formula. A fixed point algorithm is usedto determine
whether the property formula is valid in the program
model. BecausecheckingBooleansatisfiability is NP-
complete,determiningthe validity of the formulain the
programmodelcanrequireexponentiatime in the worst
case. In addition, the BDD representationgan require
exponentialspacein the worst case. Note that these
representationare structuredto symbolically capturethe
entire program state, so this method is alre@slyccurate
as possible given only compile-time information. In
contrast, our approachonly adds information as it is
needed, thereby limiting the size of the program
representation.

The Constrained Expression method [ABC+91]
avoids representingthe state space of the program
altogether. Selectedprogram behavior and a set of
necessaryconditions for the property of interest are
expresseds a systemof inequalities,and integer linear
programmingtechniquesare usedto determinewhether
the necessargonditionscanbe satisfiedby the program.
In the worst case,solving the systemof inequalitiescan
require exponentialtime. Including information about
certain program variable values [Cor93] in the set of
inequalitieshasbeenproposedas one way to efficiently
provide accurateresults. This approachis more limited
than the approach we propose here.

Data flow analysisis anothermethodthat has been
appliedto concurrentprograms. This method employs
polynomial-timealgorithmsto provea rangeof program

properties [TO80, RS90, MR91, CK93, DC94].
Infeasiblesynchronizatioreventscan be excludedfrom
consideratiorby identifying programstatementshat can
not executeconcurrently[MR93]. An approachsimilar
to the approachdescribednhere,is being exploredwhere
the numberof infeasible pathsis reducedby including
selectedinformation about program paths and program
variable values [DC94]. This approachencodesthe
information with the property, whereasour approach
encodes the information in the program representation.
An advantageof our approachand that describedin
[DC94] is that they provide a flexible means for
incrementally including additional program state
information to improve the accuracyof the analysis.
After examining the anomalkgportfrom ananalysisrun,
an analyst can specify additional information to be

included to improve the accuracy of the results as needed.

In addition, the analystcan choosewhetherto represent
this additional information in terms of control or data
information, dependingon which representatioris best
suited to the situation at hand.

3 Program Representations

BecauseAda is oneof the few commonlyusedlanguages
supportingconcurrencywe useAda examplego explain
our static analysismethod and our accuracy-improving
approach. The approachhowever,is applicableto any
language using rendezvous-stylecommunication, and
could be extendedo mostothercommunicatiorstylesas
well. In Ada programs,potentially concurrentactivities
occurin taskd. Ada taskstypically communicatewith
each other using a rendezvous In a rendezvousithe
calling taskmakesan entry call on a specificentryin the
calledtask;the calling taskthensuspend&xecutionuntil
the called task terminatesthe rendezvous. The called
task executes any statements contained ia¢hept body
for the entry, then terminates the rendezvousand
continues execution.

Our static analysismethod builds upon a variety of
internal representationsf a concurrentAda programto
capture information about the program. First, we
represeneachtaskwith a TaskInteractionGraph(TIG)
[LC89], which abstractssequentialregions of control
flow into singlenodes. The nodesin the TIG for a task
areconnectedy edgesepresentingossibleinteractions
(entry calls/acceptshetweenthat task and other tasksin
the program. We then combine the geTIGs for all the
tasks in a program inta Petrinet[DCN95] to modelthe
systemas a whole. Finally, we use the Petri net to
generatea reachabilitygraphto representan estimateof
all stateghe programcanenterwhenstartedin theinitial

1concurrentactivities in Ada programs can also occur in
procedures; for simplicity, we call them tasks in this paper.

program state. Petri nets and reachability graphs are
centralto the techniquesve usefor improving accuracy,

so these representations are described more fully below.

Petri Nets

Petri netshave beerproposedasa naturaland powerful
model of informationflow in a system[Pet77]. A Petri
netcanberepresenteésa 5-tuple(P, T, I, O, M0). Pis
the setof placesin the Petrinet, wherea placecanhold
zero or more tokens. If a plabeldsoneor moretokens,
the placeis saidto bemarked T is the setof transitions
in the Petrinet. Tokensaremovedbetweerplacesin the
net by the firing of transitions. A transitioncanonly be

callerl

accepter

terminationpointsfor a taskarerepresentedavith double
circles. For example,the caller2 task could potentially
terminateat place 6 (by taking the false branchof the
first conditionalandthetrue branchof the second)place
7 (by taking the true branch of both conditionals),or
place8 (by takingthe true branchof the first conditional
andthe false branchof the second). We use TIG-based
Petri Nets (TPNs) becausat hasbeenshownthat TPNs
substantiallyreduce the size of the Petri net, thereby
increasing the size of the programs that can be
successfullyanalyzed DCN95]. Although this example
is small,in generalPetri netscan be extremelycomplex
and are not usually visualized.

caller2

Figure2. Petri Net

fired if it is enabled for a transitionto be enabled,each
of theinput placesfor the transitionmustcontainat least
onetoken. | is a function mappingplacesin P to inputs
of transitionsin T. When a transitionfires, a token is
removedfrom eachof the placesthat are inputs to the
transition,anda tokenis depositedn eachof the output
places of the transition; O &functionmappingplacesin

P to outputsof transitionsin T. MO is a list of all the
places in the net that are initially marked.

Petri nets appearto be a valuablerepresentatiorfor

modeling concurrentsoftware [SC88]. In our analysis
method,we usea Petrinetrepresentatiogeneratedrom

the set of TIGs for the concurrent program. Each place in

the Petri netorresponds$o a sequentialegionof codein
one of the tasksin the program, and each transition
representsa possible interaction (entry call/accept)
betweentwo tasksin the program. For an examplePetri
net, basedon the TIGs generatedfor the program in
Figure 1, see Figure 2. In Figure 2, the places
representinga task's statesare displayedin a column
under the task nansndeachtransition,which represents
an inter-task communication,is displayedbetweenthe
two interactingtask®. Placesthat representpotential

2Becauseof the optimized representatiorusedin a TIG, two
transitionsare usedto representthe interaction betweenthe

A Petrinetis calledsafeif eachplacein the Petrinet
can contain at most one token. Safetyis a desirable
property,becausesafePetrinetsareguaranteedo havea
finite numberof reachablestates. It hasbeenshownthat
TPNs are safe [Cha95].

Reachability Graphs

Often, developersvant to determinewhetheror not the
concurrent program being analyzed could potentially
entera statein which a specifiedpropertyis violated; for
instancejs it possiblefor the programto entera statein
which it deadlocks. One method for answeringsuch
guestionds to enumerateall possibleprogramstatesand
checkthe property at eachstate. A reachability graph
can be used to represent the program state space.

A reachabilitygraphfor a Petrinet consistof a setof
nodes, N = {5}, and a set of arcs, A = {h Nodesin the
reachability graph correspondto markings of the Petri

net; the root node of the reachability graph corresponds to

the initial marking (M0O) of the Petri net. An arc goes

accepterand caller2 tasksfor the entry2 entry. Transition 2
representshe interactionoccurringafter caller2takesthe false
branchin the first conditional and transition 3 representshe
interactionoccurring after caller2 takesthe true branchin the
first conditional.

from n; to nj if andonly if the marking of the Petri net
can changefrom n; to n; with the firing of a single
transition. Although in actuality several interactions,
represented by fired transitions, can take place
concurrently, we can capture all possible execution
sequencesy firing a singletransitionat a time; we use
this approach,becausethe resulting graph is greatly
simplified. We note that only markingsreachablefrom
the initial marking by some sequentialcombination of
transitionfirings are includedin the reachabilitygraph.
It is helpful to observethat a marking of a Petri net

complicated conditions or when interactions between
certainprogramstatementsre easily recognizedby the
analyst. The secondtechnique, representingvariable
values, eliminates some infeasible paths by modeling
variable values. This technique is suitable when
conditionalsare controlledby a small numberof boolean
or enumeratedariables. We would expectan analystto
select the technique that seems most appropriate or
natural for the problem at hand.

For eithertechniquejt is importantthatthe enhanced
Petrinet continueto be anaccuraterepresentatiorf the

simply represents the states of all the tasks being modelegrogram under analysis; in other words, adding the

by the Petri net; we therefore consider nodesin the
reachabilitygraphas statesthe programcan reachwhen
startedfrom the initial programstate. Figure 3 provides
the reachabilitygraphfor the Petrinetin Figure2. Each
nodein the figure is annotatedwith the Petri net places
that are marked in the corresponding program state.

Figure3. Reachability Graph

4 Improving Accuracy

In this section we examiran approackfor improvingthe
accuracyof staticanalysiswithout addingsignificantly to
the cost of such analysis. To improve accuracy,we
include additionalprogramstateinformationin the Petri
net. Although we describethe approachin terms of
TPNSs, the approachis also applicableto other Petri net
representations,such as those from [SC88]. The
reachabilitygraphgeneratedrom this enhancedPetrinet
representatiorprovidesa more accurateestimateof the
programstatespacethanthe original reachabilitygraph.
Analysis of the revisedreachabilitygraphis thus more
accurate andthe numberof spuriousresultsreportedby
the analysisshouldbe lessthanor, in the worst case the
sameas the numberof spuriousresultsreportedfor the
original reachabilitygraph. Sincewe proposea scenario
where an analyst introduces additional information in
responseo discoveringspuriousresultsin the anomaly
report, we would expectthe numberof suchresultsto
decrease. The increasein cost to gain this accuracy
improvement includes the cost of incorporating the
additionalprogramstateinformationin the Petri net and
the cost of analyzing the resulting reachability graph.
Our approachcanincorporateadditionalcontrol flow
or data flow information in the Petri net. The first
technique, enforcing impossibairs, retainsinformation
about past program statesto eliminate some infeasible
pathsfrom considerationby the analysis;this technique
may be suitable when conditionals are controlled by

additional control or data information must not hide

errorsthatwould have beerexposedhroughanalysisof

the original Petri net. Although not presentechere, to

ensure our techniquesare error-preservingwe have
verified that the new Petri net is still an accurate
representationf the program. Sincethe new Petrinetis

actually a more accuraterepresentatiorthanthe original

Petri net, it can be shownthat the only program states
removedfrom the reachability graph are thosethat are
reached through infeasible paths.

Enforcing Impossible Pairs

Impossible pairs [GMO76] are pairs of program
statementsthat can not both execute in the same
execution of the program. In the mid-seventies,
impossiblepairswere recognizedas an intuitive concept
that developerscould potentially exploit to improve the
accuracy of their results. It was demonstratedin
[GMO76], however,that decidingwhetheror not a path
exists that doesnot include any impossiblepairs is an
NP-completeproblem. Ratherthanexplicitly solvingthe
above problem to improve accuracy, we implicitly
remove some infeasible paths from considerationby
adding information about impossible pairs to the Petri
net.

In this paper,we use a less restrictive definition of
impossiblepairs than the one given in [GMO76], since
we believe our definition more accuratelycapturesthe
restrictionthat an analystwould wantto include. In our
definition, executingthe first memberof the impossible
pair inhibits execution of the second member, but
executingthe secondmemberof the impossiblepair has
no impacton the executabilityof the first membe#. In
an extensionof our technique we also accountfor cases
in which the seconthemberof animpossiblepair should
only be disabled temporarily; this can occur if the
condition that causeghe secondmemberto be disabled

30f course, using our definition an analyst could
representwo statements andb asanimpossiblepair as
describedin [GMO76] by specifying two impossible
pairs, [a,b] and [b,a].

can subsequentlychange. Finally, we restrict our
attention here to casesin which the impossible pair
consists of two interaction (entry call or accept)
statementssincethe majority of concurrencyanalysisis
concerned with communication events.

We observethat statementsn an impossiblepair are
conceptuallydifferentfrom statementshat Can'tHappen
Together (CHT) [MR93].Impossiblepairsidentification
is concerned with identifying invalid sequencesof
statementswhereas CHT analysis is concernedwith

identifying statements that can not execute concurrently.

The techniquedescribedbelow involves representing
additional program state information to eliminate
infeasible paths that contain both members of an
impossiblepair. For an exampleof whenthis technique
is useful, considerthe programin Figure 1, and assume
for the moment that the conditions in the if statemangs
much more complicatedthan the value of a boolean
variable. If the conditionin the first conditionalin the
caller2taskevaluatego true, leadingto the entry call on
entrylin the first conditional,the call on entry2 in the
secondconditionalis impossiblebecausehe truth value
of the condition doesnot change. Note that, similar to
symbolic model checking,we could try to encodethe
possiblevaluesof the complicatedconditionin the Petri

callerl accepter

we assumeéhatthesearerelatively easyfor an analystto

manually identify after examiningthe anomaly report.

We would expectthat after discoveringseveralspurious
resultsin the report, the analystwould introducespecific
impossiblepair information to improve the accuracyof

theresults. In any case for this presentatiorwe assume
that some method has been used to recognize the

impossiblepairsandthe regionsre-enablingthem, so our

discussiorbelow focuseson including information about
these impossible pairs in our Petri net.

To simplify our explanation,we assumea single
impossible pair in the program but note thattéehnique
can be extendedto multiple impossible pairs [Cha95].
Also note that, using the same basic technique,more
complicatedflow constraintshanimpossiblepairs could
be incorporatedgiven Petri net representationsf those
constraints.

To illustrate the ideaspresentechere,we modify the
Petri net given in Figure 2. Transition 1, which

correspondsto the accepter.entrylstatementin the

caller2 task, is the first memberof the impossiblepair.

Transitions 2 and 3, which correspond to the

accepter.entryXtatementin the caller2 task, represent
the second member of tiapossiblepair. Theenhanced
Petri net is shown in Figuee

Enabled

Disabled

Figure4. Petri Net With Impossible Pairs Represented

net. For general boolean expressions,however, the
encodingof the conditionin the Petri net could be quite
large. Insteadwe useinformationaboutthis impossible
pair to improve the accuracyof the Petri net and the
corresponding reachability graph.

There are three distinct activities associatedwith
enforcing impossible pairs: recognizingthe impossible
pairs in a program, recognizing which regionsin the
program re-enablesecond membersof the impossible
pairs, and including information about the impossible
pairsin the Petri net. Although sophisticatednethods,
such as symbolic evaluation[CR81], could be usedto
recognizeimpossiblepairsandregionsre-enablingthem,

In general,to include impossiblepair information in
our Petrinetwe addtwo new placesthat control firing of

the transitions corresponding to the second member of the

impossible pair in the program, and also add duplicaites
the transitionscorrespondingo the first memberof the
impossiblepair. Thefirst new place,calledthe Enabled
placefor the secondnmember is usedto enableexecution
of the secondmember;the secondnew place,calledthe
Disabledplacefor the secondmember,is usedto inhibit
execution of the second member. Becauseestrictour
attention here to impossible pairs of interaction
statementsthe first memberand secondmemberof the
impossible pair are each representedby one or more

transitionsin the Petri net. We connectthe Enabled
placeasaninputto all transitionsthat correspondo the
taskstatementor the secondnemberwhich ensureghe
statementcan only execute when the Enabled place
containsa token (transitions2 and 3 in Figure4) . We
also connectthe Enabledplace as an output of these
transitions, which lets theaskstatemenexecutemultiple
times. Since executing the first member of the
impossible pair prohibits the second member from
executing, we must ensure that firing the transition
correspondingo the first memberof the impossiblepair
results in an unmarked Enabled place and a marked
Disabledplacefor the secondmemberof the impossible
pair. Becausethe secondmembermay be enabledor
disabledbeforeexecutingthe first member,we copy the
transition corresponding to the first member, includitlg
inputs and outputs of the transition. We then use the
original transition(transition1 in Figure4) to changethe
secondmemberfrom enabledto disabledwhen the first
member is executed and the duplicate transition
(transition 5 in Figure 4) to keep the secondmember
disabledif it is alreadydisabledwhenthe first memberis
executed; we call thesksabling transitions

To ensurethat the second memberis enabled or
disabled (but not both), we have connectedthe new
placesto the netsuchthat exactly one of the Enabled
place/Disabledplace pair for the second member is
markedat any giventime. The Enabledplaceis initially
marked,andthe Disabledplaceis initially unmarkedsee
Figure4).

In an extensionof the techniquedescribedabove,we

In our example the Petri net without impossiblepair
informationis shownin Figure 2, andthe corresponding
reachabilitygraphis shownin Figure 3. Node 4 in the
reachability graph representsa deadlockof the callerl
task. The transition fired to enterthis node, however,
representsn interactionthatis not possible becausdhe
true branchis traversedin the first conditional in the
caller2 task to reach node 2, and the condition is not
changedbefore the secondconditional. Therefore,an
analysisresultthat reportsdeadlockfor this programis a
spurious result, since the program can not actually
executethe path requiredto reachthe deadlockedhode.
Using the technique for impossibppairsdescribedabove,
we add impossiblepairs information to the Petri net as
shownin Figure 4; the correspondingeachabilitygraph
is shownin Figure 5. Note that in Figure 5 we have
retained the reachability graph node numbering from
Figure 3 to facilitate comparison. For this examplethe
spurious result has been removed by the additional
information included, and thus analysisof the resulting
graph can yield more accurate results.

1 1,3,6,9

2 1,4,7,10
2,5,7,10

Figure5. Reachability Graph With Impossible Pairs
Represented

also consider the possibility that the second member of anRepresenting Variable Values

impossiblepair shouldonly be disabledtemporarily. For
example,if the first memberof an impossible pair is
containedwithin a loop andthe conditionis changedat
the endof theloop, the secondnemberof the impossible
pair should bee-enabledat the endof theloop. Because
the statement changing such a condition typically not
be aninteractionstatementthis statementis contained
within the TIG region correspondingto a placein the
Petri net; we call this regionra-enablingregion, sinceit
re-enablesexecutionof a statement. To re-enablethe
secondmember,we modify transitionsinto the place
correspondingto the re-enablingregion. Becausethe
statemento be re-enabledmay be enabledor disabled
before we reachthe transitionto be modified, we copy
the transition, including all inputs and outputs of the
transition. We thenusethe original transitionto change
the statemenfrom disabledto enabledandthe duplicate
transition to keep the secondmemberenabledif it is
already enabledye call thesere-enablingtransitions In
our example program the second member of the
impossiblepair is never re-enabled,so thesetransition
modificationsare not requiredfor the Petrinetin Figure
4.

When we include representationof impossible pairs
information in our Petri net, weliminatesomeinfeasible
paths from consideration by explicitly representing
information aboutpathsin the programexecution. We
can also implicitly eliminate some infeasible paths by
representingthe values of selected variables in the

program. This technique is applicable when conditions in

the program conditionals are relatively simple and

include a small number of boolean or enumerated
variableswhosevaluescanbe staticallydeterminedn at

least some regions of the program. As with the

impossiblepairs technique,we modify the Petri net to

captureadditionalinformation aboutthe programstates.
In this case however the stateinformationis in the form

of variable values. We can use this additional
information to exclude interactionsthat are infeasible
basedon thosevalues,therebyexcludingsomeinfeasible
paths from our analysis.

For an example of when this techniqueis useful,
consideragainthe programin Figure 1 and assumethat
BranchCondis setto true at the beginning of caller2.
Thus, caller2 makes the entry call on entry1, butihtey

call on entry2 is impossible, basedon the value of
BranchCond. If we modifthe correspondindetrinetto
include information about values of the variable
BranchCond, we can improve the accuracy of the
reachabilityanalysisby eliminating consideratiorof the
entry call on entry2.

There are four activities to be consideredwhen we
representvariable valuesin a Petri net: recognizingthe
interactions that are controlled by specific variable
values,recognizingthe regionsthat changethe variable's
value (and how they change it), building the
representatiorfor the variable,and connectingit to the
existing Petri net. We believe that this is often
straightforwardin practice,particularly when a boolean
variable is used to control communication in the
program. For thesecases,an analystshould easily be
able to identify such controlling variables and could
specify thosevariablesfor inclusionin the Petri net. In
this paper,we assumethe first two actions have been
accomplishedandfocus on the actualrepresentatiorand
inclusion of the variable value information.

We represent variablein the programfor which we
want to maintain value information with a variable
subnet This subnetcontainstwo kinds of places:value
placesandoperationplaces. The subnetincludesa value
place for each possiblevalue of the variable, plus an
"Unknown" place to accountfor those occasionson
which we can not statically determine the variable's
value. To simplify the presentation,we describe a
variable subnetfor a booleanvariable. The variable
subnetfor a Booleanvariablewould havea "True" place,
a "False" place, and an "Unknown" place. When the
"Unknown" place ismarked,the variablecouldbetrue or
false; basedon the connectionsdescribedbelow, both
possibilities are consideredduring generation of the
reachabilitygraph. The "Unknown" placeis markedin
the initial marking of the Petrinet. The variablesubnet
alsoincludesoperationplacesfor the valid operationson

AssignFalseAssignFalse’

a variable of the given type; for example,the valid

operationson a boolean variable are "Assign True",
"Assign False", and "Not". For each operation, we
connectthe correspondingoperationplaceto transitions
betweenthe appropriatevalue places. For example the
Boolean variable subnet contains a transition with

"Assign True" and "False" as inputs and "True" as an
output. The variable subnetis effectively a finite state
machinefor the variable, with transitions betweenthe
stateqvalues)of the variablecontrolledby operationson
the variable.

To make the resulting subnetsafe, we modify the
Petrinetto ensurethe operationplacescannevercontain
more than one token, using transformationssimilar to
thosedescribedoy PetersorjPet81]. For everyoperation
placefor the variable,we add an operationprime place,
yielding two placesfor each possibleoperationon the
variable. For eachtransitionwith an operationplaceas
an output, we add the correspondingoperation prime
placeasaninput. For eachtransitionwith an operation
place as an input, we add the correspondingoperation
prime place as an output. This transformationyields a
safesubnetwith the additionalpropertythat only one of
the operation place/operatignime placepair for a given
operationcan be markedat any given time. If noneof
the regionscorrespondingo markedplacesin the initial
marking of the original Petri net modify the modeled
variable, all operationprime placesare markedin the
initial marking of thePetrinet; otherwise the appropriate
operation places are marked, with the corresponding
operationprime placesleft unmarked. We alsonotethat,
sinceit is possiblefor the programto exit a regionin
which the value of a variableis statically determinable
into a region in which the value is not statically
determinablewe needto provide an "Assign Unknown"
operationas well. The resulting variable subnetfor a
Booleanvariableis asshownin Figure 6, but the subnet
shownhasnot yet beenconnectedo the Petri net for a
program.

AssignTrue AssignTrue' AssignUnknown AssignUnknown' Not Not'

Figure6. Boolean Variable Subnet

To use the additional information provided by the
variable subnet, we need to connect the variablmeto
the Petri net. Figuré illustrates theevisionsto the Petri
net using the exampleshownin Figures1l and 2. The
variablesubnetfor the BranchCondvariableis abstracted
to facilitate understanding.In Figure7, a T, F, or U on
an arc representsa connectionto the True, False, or
Unknownvalue placein the BranchCondSubnet. Also,
connections between transitions and operation prime
placesare as describedbelow, but are omitted from this
figure for clarity.

callerl

1(®

accepter

3(2)

modifyingregions If we assignBranchCondthe value
true initially in the caller2 task then the corresponding
place (place 6 in Figure 7) correspondgdo a modifying
region. Foreachof theseregions,we addthe appropriate
operation place as an output and the corresponding
operation prime place as an input of all transitions
leading into the modifying region; this initiates
modification of the variableon entry into the modifying
region. We also add the operationprime place as an
input and output of all transitionsexiting the modifying
region; becausethe operation prime place will not be

BranchCond

Subnet

2Q

Figure7. Petri Net With Variable Subnet Added

A variable subnetis connectedo the Petri net for a
programin two cases:at transitions controlled by the
variable and at transitionsleadinginto or out of places
correspondingto regionsthat modify the value of the
variable. In thefirst case,a transitionis controlledby a
variable if the transition can only occur if the variabées
acertainvalue. In this casewe copythetransition. The
appropriatevalue place for the variableis connectedas
aninputto the original transition(transitions1, 2,and 3
in Figure7), andthe samevalueplaceis connectedhsan
output of the transition to preservethe value of the
variable. We addthe Unknown value placeas an input
and outputfor the duplicatedtransition (transitions5, 6,
and 7 in Figurd) to represent the fact thtte interaction
may be possiblein the casewherethe variable'svalueis
currently undetermined. In addition, we aalioperation
prime places fothe variableasinputsandoutputsfor the
original and duplicatetransitionsto ensureany required
modificationsto the variablehave beerompletedbefore
we usethe variable'svalue. In this manner,we exclude
all markings from the reachability graph that include
firing this transitionwhenthe variabledoesnot havethe
required value, thereby improving the accuracyof the
analysis.

In the secondcase,to effect changedo the variable
values,we needto accountfor regionsfrom the program
(placesin the Petrinet) in which the variableis changed
(by assignment,for instance); we call these regions

markeduntil the operationon the variableis completed,
this ensuresthe modification is complete before the
programexits the modifying region. Sincethe operation
prime places have already been adutelansitionsl and
5 asdescribedabove,no further changesare requiredin

Figure?.

Note that a single region can potentially modify a
givenvariablein severaldifferentways. To simplify the
descriptionwe assumea simpler modelhere,in which a
single region modifies a given variable in one specific
way. Notethat more complicatedmodelingcanbe used
to handlethe moregeneralcase. Also notethat sincethe
region representedoy place 6 in the Petri net would
containBr anchCond : = true, inourinitial marking
the AssignTrue place is marked (and the AssignTrue'
place is unmarked).

Using a variablesubnetas describedaboveyields the
Petri net shown in Figure 7. The corresponding
reachability graph is shown in Figure 8, where the
reachabilitygraph nodesare annotatedwith the marked
Petri net placesas well asthe markedvalue, operation,
and operationprime placesin the BranchCondSubnet.
Again we see that the spurious result is no longer
reported.

Information about variable values could also be
incorporatedusing an FSM, with statesof the FSM
representingvariable valuesand transitionsin the FSM
representingperationson the variable. While the FSM

1,3,6,

Unknown,

AssignTrue,

AssignFalse_Prime,
AssignUnknown_Prime, Not_Prime

1,3,6,

True,

AssignTrue_Prime, AssignFalse_Prime,
AssignUnknown_Prime, Not_Prime

1,4,7,

True,

AssignTrue_Prime, AssignFalse_Prime,
AssignUnknown_Prime, Not_Prime

2,5,7,

True,

AssignTrue_Prime, AssignFalse_Prime,
AssignUnknown_Prime, Not_Prime

HHH

Figure8. Reachability Graph Using Variable Subnet

would certainlybe easierto understandhanFigure6, the
difficulty comeswhen incorporatingthe FSM into the
model. An FSM cannot be "connected'to the Petri net
asour variablesubnetsare,sothe FSM would needto be
used during reachability graph generation, potentially
slowing down the generation process significantly.
Representingariableswith variablesubnetgprovidesthe
sameaccuracyimprovementsaswould be providedwith
FSMs, while retainin@ standardPetrinetasthe program
model.

Choosing Between the Two Techniques

The two techniquesdescribedabove give the analyst
flexibility when determining what kind of additional
informationto includeto improve analysisaccuracy. In
general, we expect the analyst to choose whichever
techniqueappearanore naturalgiven the programbeing
analyzed and the property of interest.

The impossible pairs technique seems particularly
attractive when static information about the impossible
pairsin the programis readily availableand transitions
correspond to members of a singlgossiblepair. If the
control flow decisionsin the programare complicated,
theimpossiblepairstechniquemay be more suitablethan
the variable values technique. The impossible pairs
techniquewill tend to be expensivefor programsfor
which the Petri net contains transitions that affect
multiple membersof impossiblepairs, sincethe number
of thesetransitionsgrows exponentiallyin the numberof
impossible pairs affected.

In the variable valuestechnique efficient algorithms
for recognizingthe regionsthat affect a variable'svalue
are available. An analystmay also be able to easily
identify thosevariablesthat are usedin the programto

controlcommunications.If the controlflow decisionson
those variables are not extremely complicated,
recognizing the transitions controlled by the variable
values and making the appropriate connections is
relatively straightforward. The additional information
added to the Petri netlmsedon the variabletype,sothe
variablesubnetfor a variablewith relatively few values
(such as a boolean variable), used in relatively few
locations, does not increase the Petri net size
significantly. Limitations of this techniqueinclude the
requirementto be able to statically determinevariable
values to gain accuracyimprovement,the difficulties
determining the proper connectionsto account for
complicatedconditions,andthe rapid growth of the size
of thevariablesubnetasthe numberof possiblevaluesof
the represented variable grows.

5 Empirical Results

We haverun experimenton a small setof programsto
gather information about how the application of our
approach affects the sizes of the Petri nets and
reachabilitygraphsfor theseexamples. We hypothesize
that our accuracy-improving approach can improve
analysis accuracy without significantly impacting
performance.

In eachof the techniquespresentedthe size of the
Petrinetis increasedy the placesandtransitionsadded
to model the additional semanticinformation. On one
hand, we expect the size of the reachability grapirdo
asthe size of the Petri net grows, sincethe upperbound
on the sizeof the reachabilitygraphis exponentiain the
numberof Petrinetplaces. On the otherhand,we would
expectthe additionalmodelingin the Petrinetto remove
some infeasible paths from consideration, thereby
reducingthe size of the reachabilitygraph. We perform
the experimentsto acquire preliminary indications of
which scenario is more common and also to gain
experience applying the approach.

Whenever the approachis applied, the resulting
reachability graph more accurately represents the
programstatespace. However,this doesnot necessarily
guaranteethat the number of spurious results in the
anomaly report will be reduced. For instance,if the
states removed from the reachability graph are

independent of the property being checked, the number of

spuriousresultsin the anomalyreportwill staythe same.
For that reasonwe considerour accuracyimprovements
as improvements in the reachability graph as a
representatiorof the programstatespace ratherthanas
reductionsin the number of spurious results in the
anomalyreport. While we expectthat improving the
accuracyof the reachabilitygraphwill commonlyreduce
the numberof spuriousresults,whetheror not this occurs
in practice depends on the property being checked.

To perform the experimentsbelow we modified an
existingtool set. Toolsto convertan Ada programto a
TIG and a set of TIGs to a Petri net were already
available. We developeda generaltool to generatethe
reachabilitygraphfrom a Petrinet,andalsobuilt several
specializedtools to include impossiblepair information
and variable subnets in the Petri net.

For the experimentsgdescribedhere, we usedvarious
sizesof the readers/writergroblem and the gas station
problem. The notationrwXY indicatesaninstanceof the
readers/writersproblem with X readersand Y writers.
The codefor readers/writerprogramsis fairly standard,
with a Booleanvariable WriterPresentusedto track the
presenceof a writer. The notationgasXY indicatesan
instanceof the standardyasstationproblem[HL85] with

resultingvariable subnetand manually connectit to the
original Petri net by recognizing interactionsthat are
controlled by the variable value and also identifying
regions in which an operation is performed on the
variable. This activity could be automatedby scanning
for the variablenamein branchesand selectguardsand
by collecting information about operations on the
variable for each region.

The effects of usingthesetechniquedor the sample
programscan be found in Table 1. In the table, NA
meansthat no additional information is includedin the
Petri net for the program. Imp specifiesa Petri net that
includes information about impossible pairs and Var
specifiesa Petri net that includesone or more variable
subnets.

Petri Net Reachability Graph
Program Refinement Places Transitions Nodes Arcs
rw2l NA 17 48 41 119
Imp 25 183 31 71
Var 28 105 52 94
rw22 NA 20 66 175 692
Imp 28 306 98 276
Var 31 138 166 348
rw23 NA 23 84 609 3,031
Imp 31 429 248 794
Var 34 171 426 978
rw32 NA 23 81 579 2,884
Imp 31 336 308 1,097
Var 34 168 502 1,295
rw25 NA 29 120 6,229 43,571
Imp 37 675 1,320 4,888
Var 40 237 2,330 5,908
rws2 NA 29 111 5,811 40,660
Imp 33 638 2,972 14,955
Var 40 228 4,678 16,665
gas31 NA 39 75 493 987
Imp 45 111 931 1,773
Var 87 224 559 885
gasb51 NA 59 163 9,746 26,785
Imp 64 463 22,841 57,655

Tablel. Effects of Approach on Petri Nets and Reachability Graphs

X customers and Y pumps.

For the impossible pair technique,identifying the
impossiblepairs in the programto be analyzedis done
manually. Once we have identified which regions
correspond to impossible pairs, we provide this
information toa tool thatscanghe transitionsin the Petri
net and automatically modifies the transitions as
described in the previous section.

When we use the variable subnet technique, we
provide the nameof the variableto be modeledto the
Petri net toolset. The toolset then automatically
generatesa variable subnetwith the appropriatevalue
and operationplaces. Currently, we only automatically
build Boolean variable subnets. We then take the

For the Imp versionof the Petrinetfor readers/writers
problems,we model the impossiblepairs resulting from
whether or not a writer ipresent. Thesepairswereeasy
to recognizegiven the simple guardsin the control task.
Including this information improvesthe accuracyof the
analysisby eliminating consideratiorof someinfeasible
pathsthrough the programand reducesthe size of the
reachability graph as well.

For the Imp version of the gasstation problems,we
useimpossiblepairsto reflectthe fact thatif a customer
entersan empty pump queue,then that customergets
their change before any other customer. Including
information aboutimpossiblepairs in gas3land gas51

yields reachability graphswith approximatelytwice as
many nodes and arcs as the original reachability graph.

Includingimpossiblepairsinformationin the Petrinet
can causean increasein the reachability graph size
becauseave encodenot just the currentprogramstate,but
alsoinformationaboutthe pathleadingto that state. For
example, consider the state in which customerl and
customer2 have both pre-paidthe operator. Without
impossiblepairs information, this stateis representedy
a single node in the reachabilgyaph. Whenwe include
impossible pairs information, the reachability graph
containsone node for this statein which customerl
enteredthe (empty) queue first, one node in which
customer2 enteredthe (empty) queuefirst, and onestate
in which neitherenteredan empty queue. In suchcases,
the improvement in accuracy comes at the costlafger
reachability graph to be analyzed.

For the Var versionof readers/writersywe modelthe
WriterPresentvariable that is includedin the guardsof
the main selectstatement. Selectingthis variableto be
modeled and recognizing the appropriate connection
points for the variable subnet were straightforward
becauseof the basicoperationson the variable and the
simplicity of the guardscontaining the variable. We
observethat, for instancesof readers/writerdarger than
rw21, the techniqueyields two benefits:it improvesthe
accuracyof the analysisby eliminating consideratiorof
someinfeasiblepathsthroughthe programandit reduces
the size of the reachability graph. For rw21, this
techniqueincreasesthe size of the reachability graph.
This occurs because tife possibleinterleavingsof firing
transitions that change the variable value and firing
transitionsthatareindependentf the variablevalue. As
the problemis scaled,the affect of theseinterleavings
seems to decrease,and we see reduction in the
reachability graph size instead of growth.

For the Var version of gas31, we implemanariable
subnet for each element of the customer queue, in
addition to the counter for the number of active
customers. Because our tools don't currently
automaticallybuild subnetsfor enumeratedr subrange
types, we manually built the subnetsfor this version.
Modeling the customer queue and number of active
customersyields a slight increasein the number of
reachability graph nodes, so simply checking for a
property at eachnodewould take somewhationger. In
addition, we note that manually building the variable
subnetswas tedious. Although building the subnetfor
each queue elementis straightforward, the difficulty
comesin recognizingwhere the gas31code movesthe
gueueforward and representinghat movementwith the
subnets.In anycasethe analysisis moreaccuratesince
usingthe variable subnetsensureghat changeis always
givento the correctcustomer. Developingthe model of

the customergueuewassufficiently time-consuminghat
we did not attempt this for the gas51 program.

For the readers/writergproblem, the impossible pairs
and variable value techniquesimplicitty model the
"same" information (the value of the WriterPresent
variable). It is thereforevalid to directly comparethe
sizesof theresultingreachabilitygraphs(sincethey have
the sameaccuracy)andto notethatthe impossiblepairs
techniqueis more effective at reducingthe size of the
graph. On the other hand, the Imp Petri nets contain
many more transitionsthan the Var Petri netsfor this
problem,so it may take longerto actually generatethe
(smaller)Imp reachabilitygraphs. With bothtechniques,
the accuracyof the reachabilitygraphis improved;the
reduction in size is a beneficial side effect.

For the gas station problem, our impossible pairs
resultsare not comparableto the Var version, sincewe
are not capturingthe sameinformation in our Petri net.
The Var version capturesa significant amountof state
information for only a slight increasein reachability
graph size, but manually adding the required variable
value modelingwas difficult. The Imp versioncaptures
lessinformationthanthe Var version,andyields a large
increasein reachability graph size, but including the
modeling was straightforward.

Table 2 lists several properties of each program
considered. Entries is the numbenoiqueentriesin the
programand Entry Calls is the total numberof calls on
thoseentries. Variablesprovidesthe numberof variables
modeledin the Var version of the Petri net, with the
numberof possiblevariable values(including unknown)
following in parentheses. For instance, for the Var
versionof the gas31Petri net,we model3 variableswith
4 possiblevaluesand 1 variablewith 5 possiblevalues.
ImpossiblePairsprovidesthe numberof impossiblepairs
modeledin the Imp version of the Petri net. For the
readers/writergprograms,the numbersof variablesand
impossiblepairs modeledstay constantasthe problemis
scaled. This occursbecausehe additional modelingis
appliedto the control task,which doesnot changeasthe
problemis scaled. For the gas station problems,the

) Entry) Impossible
Program Entries Calls Variables Pairs
rw21 4 6 1(3) 7
rw22 4 8 1(3) 7
rw23 4 10 1(3) 7
rw32 4 10 1(3) 7
rw25 4 14 1(3) 7
rwb2 4 14 1(3) 7
gas31 10 17 3(4),1(5) 6
gas51 14 27 - 20

Table2. Program Properties

number of impossible pairs modeled grows as the
problemis scaledbecauséhe modelingis appliedin the
operator task, which grows as the problem size grows.

6 Conclusions

Static analysiscan be usedto answerquestionsabout
propertiesof concurrentprograms,although often with
the inclusion of spuriousresults. We haveidentified an
approachthat can be usedto improve the accuracyof
Petri net-basedanalysis of concurrent programs. In
several cases thate examinedthe approachreducedhe
sizeof thereachabilitygraphfor the systemaswell. The
impossible pairs technique retains additional program
state information in the form of the impossible pair
transitionsthat are currently enabledand disabled,and
the variable subnettechniqueretainsadditional program
state information in the form of the current values of
selected variables.

The cost of using the above techniquescan vary
considerablyfrom programto program. To effectively
use variable subnets,we must first recognize which
variables affect the control flow of the program and
identify the regions in which those variables are
modified. We mustalsodeterminehow the represented
valuesshouldbe connectedto the transitionsof the Petri
net to accuratelyreflect how the values influence the
interactionsof the program. The difficulty of doing this
rangesfrom very easy(for control flow decisionsbased
on a Booleanvariable'svalue only, for example)to very
difficult (for control flow decisions containing
complicated conditions). Alternatively, we can
sometimes account for complicated conditions by
including impossible pairs information instead. The
complexity of addingthe information for the impossible
pairsis linearin the numberof original transitionsin the
Petri net; the difficulty comesin recognizingthe regions
of the program that represent impossible pairs.
Ultimately, the decision about which techniqueto use
will fall on the analyst. For some programs, the
impossiblepairsmay be easilyrecognizedoy the analyst,
whereasfor other programs,representingkey variables
that control communicationsn the programmay seem
more straightforward.

In severalof the programsexaminedthe reachability
graphsize or complexitywasreducedas a side effect of
the improvedaccuracy. Staticanalysismodelsgenerally
include infeasibleas well as feasible pathsthrough the
program;the statespacewhich needsto be searchedor
the propertyis thereforelarger than the actual possible
state spaceof the program. Becauseour goal was to
improve accuracy by eliminating impossible program
statesfrom the reachability graph, it is reasonableto
expecta smaller reachability graph to result. On the
otherhand,in somecasesour modelingof the additional

stateinformationleadsto larger graphs,becauseve add

possibleinterleavingsbetweenactivities on our variable

subnetsor Enabled/Disabledmpossiblepair placesand

the original Petri net. In all cases,the generated
reachability graph represents more accurately the

possiblestatesof the programbecauseof the additional

information modeled.

We have examined how to incorporate accuracy-
improving semanticdnformationinto Petrinets. It is not
as easy to modify the semanticsof other internal
representations that acemmonlyusedfor analysissuch
as control flow graphsbstracsyntaxtrees,andprogram
dependencygraphs. A complementaryand somewhat
similar approachis exploredin [DC94], but insteadof
modifying the internal representation,the approach
incorporatesthe additional semanticconstraintsin the
analysis algorithms. Similarly, information about
impossiblepairsor variablevaluescould be incorporated
in thereachabilitygraphgeneratioralgorithmratherthan
in the Petri net representatiorof the program. It is not
clear how this would affect the size of the resulting
reachability graph, but the added complexity in the
algorithm might lead to a significant increase in
reachability graph generationtime. It is too early to
determinewhen one approachmight be superiorto the
other.

Because of various limitations, we have only
demonstratedhe viability of our approachon a small
sampleof programs. It is doubtful, however,that these
programsare representativeof the populationof "real”
concurrentprograms. To more accuratelyquantify how
well thesetechniquesvork in general,more experiments
needto be run on a larger sampleof programs. Our
future plansinclude performing a seriesof experiments
using this approachon a wider range of programsizes
and complexities.

For the programsexaminedhere, we have manually
detectedvariablesand impossiblepairs to model, then
addedthem to the Petri net using partially automated
tools. More supportcould be provided to the analyst
through automaticrecognition of variablesthat control
interactionpatternsin the program;thesevariablescould
then be automatically included in the Petri net or
recommended as useful variables to model.
Automatically detectingimpossiblepairsin the program
may not be feasibleexceptin simple casesbut further
automating the process of modeling variables and
impossible pairs is a potential area for future research.

It would also be interesting to make the tool
interactiveto determinethe effectson analysisaccuracy
of representingother user-suppliednformation. If the
analysis yields spurious results that are not easily
eliminated using thabovetechniquesit maybe possible
to include additionalinformation from the userto refine
the Petri netto improve accuracy. Other constraintson

the control flow, suchassequencesf certainstatements
that can never occuror must always occur, can be
modeledwith subnetsand attachedappropriately. More
generally,any constraintsthat can be expressedvith a
subnetcould be usedto improvethe accuracyof analysis
results,aslong asthe analystor an enhancedool could
determinehow to attachthe subnetappropriately. To
ensureconservativenesghe modificationswould needto
be error-preserving,at least for the property being
checked.

The results above support our hypothesis that
modeling specifickinds of programstateinformation in
the Petri net canlead to cost-effectiveimprovementsn
the accuracyof the correspondingeachabilitygraph,and
for someprogramsreducethe size of the reachablestate
spaceas well. Furtherwork needsto be doneto more
accuratelyquantify the benefitsof thesetechniquesand
thetools shouldbe mademorerobustto allow additional
investigationof theseand othertechniquedor improving
static analysis accuracy.

References

[ABC+91] GeorgeS. Avrunin, Ugo A. Buy, JamesC.
Corbett, Laura K. Dillon, and Jack C.
Wileden. Automatedanalysisof concurrent
systems with the constrained expression
toolset. IEEE Transactionson Software
Engineering 17(11):1204-1222,November
1991.
[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan,
D.L. Dill, andL.J. Hwang. Symbolic model
checking : 1020 states and beyond. In
Proceedings of the Fifth Annual IEEE
Symposiunon Logic in Computer Science
pages 428-439, 1990.
[BDF92] Gianfranco Balbo, SusannaDonatelli, and
Giuliana Franceschinis. Understanding
parallel program behaviorthrough petri net
models. Journal of Parallel and Distributed
Computing 15(3):171-187, July 1992.
[Cha95] A.T. Chamillard. Improving static analysis
accuracy on concurrent Ada programs:
Complexity results and empirical findings.
Technical Report TR 95-49, University of
Massachusetts, Amherst, 1995.

[CK93]

[CR81]

[Cor93]

[DBD+94]

[DCY4]

[DCNY5]

[GMO76]

[HL85]

S.C. Cheungand J. Kramer. Tractableflow
analysisfor anomalydetectionin distributed
programs.In Proceedingsof the Software
Engineering Conferencd 993.

Lori A. Clarke and Debra J. Richardson.
Symbolic evaluation methods -
implementations and applications. In
Computer Program Testing pages65-102.
Chandrasekaran and Radicchi, editors,
North-Holland Publishing Company, 1981.

Jame<C. Corbett.ldenticaltasksand counter
variablesin an integer programmingbased
approachto verification. In Proceedingsof
the Seventh International Workshop on
Software Specification and Design pages
100-109, Los Alamitos, California,
December 1993.

S. Duri, U. Buy, R. Devarapalli,and S.M.
Shatz. Application and experimental
evaluationof state spacereduction methods
for deadlock analysis in Ada. ACM
Transactionson Software Engineering and
Methodology 3(4):340-380, October 1994.

MatthewB. DwyerandLori A. Clarke. Data
flow analysis for verifying properties of
concurrentprograms. In Proceedingsof the
Second ACM SIGSOFT Symposium on
Foundationsof SoftwareEngineering pages
62-75, New Orleans, Louisiana, December
1994,

MatthewB. Dwyer, Lori A. Clarke,andKari
A. Nies. A compactpetri net representation
for concurrentprograms.In Proceedingsof
the Seventeentinternational Conferenceon
Software Engineering Seattle, Washington,
April 1995.

Harold N. Gabow, Shachindra N.

Maheshwariand Leon J. Osterweil.On two

problemsin the generationof program test
paths. IEEE Transactions on Software
Engineering SE-2(3):227-231, September
1976.

D. Helmbold and D.C. Luckham. Debugging
Ada tasking programs. IEEE Software
pages 47-57, March 1985.

[LC89]

[MR91]

[MR93]

[Pet77]

[Pet81]

[RS90]

[SC88]

[Tay83a]

[Tay83b]

[TO80]

DouglasL. Long andLori A. Clarke. Task
interactiongraphsfor concurrencyanalysis.
In Proceedingsof the 11th International
Conferenceon SoftwareEngineering pages
44-52, Pittsburgh PA, May 1989.

StephenP. Masticolaand BarbaraG. Ryder.

A modelof Ada programgfor staticdeadlock
detectionin polynomialtime. In Proceedings
of the Workshopon Parallel and Distributed

Debugging pages 97-107, May 1991.

StephenP. Masticolaand BarbaraG. Ryder.
Non-concurrencyanalysis. In Proceedings
of the ACM Symposiumon Principles and
Practices of Parallel Programming
(PPOPP) 1993.

JamesL. Peterson. Petri nets. Computing
Surveys9(3):223-252, September 1977.

Jamed.. Peterson.Petri Net Theoryandthe
Modeling of SystemsPrentice-Hall, 1981.

John H. Reif and Scott A. Smolka. Data
flow analysisof distributed communicating
processeslnternational Journal of Parallel
Programming 19(1):1-30, 1990.

S.M. Shatzand W.K. Cheng. A petri net
framework for automatedstatic analysis of
Ada tasking behavior. The Journal of
Systems and Software 8(5):343-359,
December 1988.

Richard N. Taylor. A general-purpose
algorithm for analyzing concurreptograms.

Communicationsf the ACM, 26(5):362-376,

May 1983.

Richard Taylor. Complexity of analyzingthe
synchronization structure of concurrent
programsActa Informatica 19:57-84, 1983.

Richard N. Taylor and Leon J. Osterweil.

Anomaly detectionin concurrentsoftwareby

static dataflow analysis.IEEE Transaction
on Software Engineering SE-6(3):265-277,
May 1980.

[YT88]

[YTF+89]

Michal Young and Richard N. Taylor.
Combining static concurrencyanalysiswith
symbolic execution. I[EEE Transactionson
Software Engineering 14(10):1499-1511,
October 1988.

Michal Young, Richard N. Taylor, Kari
Forester, and Debra Brodbeck. Integrated
concurrency analysis in a software
developmenenvironmentin Proceedingsof
the ACM SIGSOFT89 Third Symposiunon
Testing, Analysis and Verification (TAV3),
pages 200-209, 1989.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1996

	Improving the Accuracy of Petri Net-based Analysis of Concurrent Programs
	A. T. Chamillard
	Lori A. Clarke
	Recommended Citation

	tmp.1273076164.pdf.1Qrti

