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Quantifying the Benefits of Resource Multiplexing in
On-Demand Data Centers ∗

Abhishek Chandra, Pawan Goyal† and Prashant Shenoy

Department of Computer Science † IBM Almaden Research Center
University of Massachusetts Amherst San Jose, CA
{abhishek,shenoy}@cs.umass.edu goyalp@us.ibm.com

ABSTRACT
On-demand data centers host multiple applications on server farms
by dynamically provisioning resources in response to workload vari-
ations. The efficiency of such dynamic provisioning on the required
server farm capacity is dependent on several factors — the gran-
ularity and frequency of reallocation, the number of applications
being hosted, the amount of resource overprovisioning and the ac-
curacy of workload prediction. In this paper, we quantify the ef-
fect of these factors on the multiplexing benefits achievable in an
on-demand data center. Using traces of real e-commerce work-
loads, we demonstrate that the ability to allocate fractional server
resources at fine time-scales of tens of seconds to a few minutes
can increase the multiplexing benefits by 162-188% over coarse-
grained reallocation. Our results also show that these benefits in-
crease in the presence of large number of hosted applications as
a result of high level of multiplexing. In addition, we demon-
strate that such fine-grained multiplexing is achievable even in the
presence of real-world (inaccurate) workload predictors and allows
overprovisioning slack of nearly 35-70% over coarse-grained mul-
tiplexing.

1. INTRODUCTION
Internet data centers host multiple applications on a shared hard-
ware platform, such as a server farm, and provide client applica-
tions with computing and storage resources. In such environments,
customers pay for data center resources and in turn are provided
guarantees on resource availability and performance. Since typical
data center applications service Internet users, the workload seen
by such applications can often vary in an unpredictable fashion (as
exemplified by flash crowd scenarios [2]). Due to such large vari-
ations in loads, it is difficult to estimate workload requirements in
advance, and hence worst-case resource provisioning is either in-
feasible or extremely inefficient.

In order to handle such workload variations, many data centers have

∗This research was supported in part by NSF grants CCR-9984030
and EIA-0080119.

started employing self-managing techniques for resource alloca-
tion [4, 10, 12]. These techniques dynamically reallocate resources
among hosted applications based on their short-term demand esti-
mates. The goal is to meet the application requirements on demand
and adapt to their changing resource needs. The main advantages
of on-demand resource allocation are that (i) it achieves better re-
source utilization by extracting multiplexing gains, and (ii) it makes
the system more robust to unanticipated workload increases.

Several techniques have been proposed to dynamically provision
resources to applications in on-demand data centers [4, 5, 8, 18,
20, 21]. A common characteristic of these techniques is that they
use past workload measurements to predict changes in an applica-
tion’s resource needs and reallocate resources based on these pre-
dictions. However, these techniques differ drastically in how fre-
quently resources are reallocated and by how much. For instance,
some techniques allocate full servers to applications at a time [4,
18], while others share server resources among multiple applica-
tions leading to finer control over server resources [16, 21]. Sim-
ilarly, these techniques also differ in the time granularity at which
they perform reallocation. For instance, security and privacy con-
siderations may require OS re-installation and disk scrubbing on a
server prior to its reallocation, resulting in allocation time-scales of
tens of minutes [4]. Other schemes reduce the time-scale of real-
location by maintaining a ready pool of servers in energy-saving
mode [14], or using techniques like remote booting [17] and fast
reallocation [10].

These dynamic allocation schemes also need to estimate future
workload requirements for reallocation. The accuracy of such pre-
diction is critically dependent on the frequency of allocation as well
as the variability of the workload itself. On-demand data centers
also differ in several other aspects such as their size (the number
of servers and resources available) and the number of customers
or applications they support. In addition, many data centers per-
form overprovisioning of resources to handle unexpected overload
conditions and to prevent the system from running at full capacity.
Different data centers provide different degrees of over-allocation
based on resource management costs and customer service guaran-
tees.

Several questions need to be answered to understand how various
design parameters impact the multiplexing benefits and capacity
requirements in on-demand data centers.

1. Should data center resources be allocated to applications at
a granularity of entire machines or is the ability to allocate
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Figure 1: A metric for comparing optimal resource allocation
to practical approaches. An optimal approach can reallocate
resources infinitely often and in infinitesimally small amounts;
a practical approach uses a finite time and space granularity,
∆t and ∆s, respectively.

fractional servers desirable?

2. Should resources be provisioned over time scales of seconds,
minutes, or hours so as to extract the best multiplexing gains?

3. Do the achievable multiplexing gains increase with the num-
ber of hosted customers, and if so, by how much?

4. How do overprovisioning and workload prediction accuracy
affect the resource allocation?

To answer these questions, in this paper, we conduct a study to
understand the impact of these factors on the effective capacity of
on-demand data centers. Using traces of real e-commerce work-
loads, we demonstrate that the ability to allocate fractional server
resources and at fine time-scales of seconds to a few minutes can
increase the multiplexing benefits by about 162–188% over coarse-
grained reallocation. Our results also show that these benefits in-
crease in the presence of large number of hosted applications as a
result of high level of multiplexing. In addition, we demonstrate
that such fine-grained multiplexing is more efficient even in the
presence of inaccurate workload prediction, and allows overprovi-
sioning slack of nearly 35-70% over coarse-grained multiplexing.
A parallel effort [3] has also studied similar issues; our study dif-
fers from it in several respects and a detailed comparison of the two
efforts is presented in Section 4.

The rest of this paper is structured as follows. In Section 2, we
quantify the impact of resource multiplexing granularity in on-demand
data centers using real e-commerce workloads. We characterize
the resource usage efficiency of existing data center architectures
in Section 3, and examine related work in Section 4. Finally, we
present our conclusions and ongoing work in Section 5.

2. BENEFITS OF RESOURCE MULTIPLEX-
ING

In this section, we present a study based on real web workloads that
quantifies the potential multiplexing benefits of dynamic resource
allocation based on various factors described above.

2.1 Optimal Allocation and Performance Met-
rics

Workload Duration Number Avg Request Peak
Requests size bit-rate

Ecommerce1 24 hrs 1,194,137 3.95 KB 458.1 KB/s
Ecommerce2 24 hrs 1,674,672 3.85 KB 1631.0 KB/s
Ecommerce3 24 hrs 251,352 7.24 KB 1346.9 KB/s

Table 1: Workload characteristics

We first define the notion of optimal allocation and define a met-
ric that quantifies the efficiency of an allocation scheme. Figure 1
depicts a hypothetical resource allocation scenario in a data cen-
ter. The lower curve in the figure shows the resource demand of
an application. An optimal provisioning scheme will allocate re-
sources exactly as demanded using infinitesimally small resource
units and time quanta. Thus, the lower curve also represents the
optimal resource allocation. In contrast, any practical provisioning
scheme will allocate resources over a finite time period using fi-
nite resource units (e.g, one server). This allocation should be such
that the resources allocated in any period are sufficient to handle
the peak requirements in that period. Figure 1 shows two such al-
locations, one coarse-grained and the other fine-grained. Observe
that, depending on the granularity, there is some amount of over-
allocation, since the allocation can be changed only once every ∆t

time units and the allocation must always be a multiple of the al-
location granularity ∆s. We refer to the units ∆s and ∆t as the
spatial and temporal allocation granularity respectively.

Let Ri
opt(t) and Ri

pract(t) denote the amount of resources allo-
cated to application i at time t using the optimal and a practical allo-
cation scheme respectively. Then the total resource allocation in the
system at time t for these schemes are Ropt(t) =

∑

i
Ri

opt(t) and
Rpract(t) =

∑

i
Ri

pract(t) respectively. Using these quantities,
we define the metric capacity overhead to quantify the resource us-
age efficiency of an allocation scheme. The capacity overhead ρ is
defined to be the percentage increase in the resource requirement
of a practical scheme when compared to the optimal.

ρ =

(

Rpract − Ropt

Ropt

)

· 100,

where, Rpract = maxt Rpract(t) is the peak resource require-
ment of the practical scheme (this is essentially the total capac-
ity required to host this set of applications). Similarly, Ropt =
maxt Ropt(t) is the peak capacity requirement of the optimal scheme.
For an allocation curve in Figure 1, R corresponds to the peak value
of the curve.

Intuitively, ρ measures the additional capacity required by a prac-
tical scheme to host the same set of applications as the optimal
scheme. For instance, a ρ value of 50 corresponds to a requirement
of 150 servers when the optimal requirement is 100 servers. Thus,
the smaller the value of ρ, the more efficient is a scheme in terms
of its resource usage.

2.2 Effect of Allocation Granularity
To quantify the metric defined above for different allocation granu-
larities, we conduct a study using web traces from three e-commerce
sites hosted in a large commercial data center. The characteristics
of these traces are summarized in Table 1. While these traces con-
tain the arrival time and size of each request, the CPU processing
time of a request was not available. Since for static web requests,
CPU usage is highly correlated with the request size, we use request
size as a proxy metric for CPU usage.
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Figure 2: Effect of allocation granularity on the capacity overhead for a 3 customer system.
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Figure 3: Statistical multiplexing of resources in data centers with large number of customers.

We systematically vary the spatial (∆s) and temporal (∆t) allo-
cation granularity for this workload mix and compute the value of
ρ for each combination. We use a granularity of 1 second and 1
byte/sec to approximate the optimal allocation scheme. We express
the spatial granularity ∆s as a fraction of the peak requirement
of the optimal scheme Ropt. Thus, if the optimal peak capacity
requirement is 100 servers, then a spatial granularity of 0.01 indi-
cates that resources are allocated 1 server at a time. Initially, we
assume each resource allocation scheme to be clairvoyant, i.e., it
allocates resources based on exact knowledge of future workload
requirements. This assumption eliminates the impact of inaccu-
racies introduced by workload predictors. The impact of inaccu-
racies introduced by real-world workload predictors is studied in
Section 2.4.

Figure 2 shows the values of capacity overhead ρ for different ∆t

and ∆s values. Figure 2(a) shows that the coarser the spatial and
temporal allocation granularity, the greater the capacity overhead
ρ (indicating larger over-allocations at coarser allocation granulari-
ties). Next, we examine the effect of varying ∆t and ∆s in isolation
on the capacity overhead (see Figures 2(b) and 2(c)).

Figure 2(b) shows that there is a monotonic increase in the value
of ρ with ∆t. ρ is relatively small for fine time allocations and
increases with increasing ∆t. For instance, with ∆s = 0.02, real-
locating resources once every 10 sec, 10 min, 1 hour and 10 hours
yields ρ values of 28%, 52%, 68% and 98% respectively. In addi-
tion, we find that there are ranges of ∆t values within which the

ρ values are nearly constant. These ranges are 10 sec-1 min, 2-
5 mins, 10-15 mins and 30-120 mins respectively. These results
argue in favor of having a small ∆t value in the range of a few
seconds to a few minutes.

In contrast, when the ∆s value is varied (see Figure 2(c)), we find
that ρ is nearly constant until a certain granularity after which it
increases steadily with increasing ∆s. For instance, with ∆t = 1
minute, ρ is nearly constant at 26% until ∆s = 0.005, and in-
creases to 35%, 40%, 60% and 100% with ∆s values of 0.05, 0.1,
0.2 and 0.5, respectively. Further, ∆s values close to the total re-
source requirement yield very large capacity overheads regardless
of the ∆t value. This result implies that while the spatial granular-
ity need not be very fine-grained, it should still be sufficiently small
in order to extract high multiplexing gains.

2.3 Effect of Number of Customers
The above results are for a data center with three customers. In
practice, a data center will typically host applications from tens or
hundreds of customers. To understand the impact of hosting a large
number of applications on the capacity overhead, we synthesize a
larger number of traces from the three original traces by replication
and time-shifting. For instance, to generate 30 traces, we repli-
cate each of the original traces ten times and then time-shift each
of the replicated traces by a random duration between ten minutes
and three hours1. Figures 3(a) and (b) plot the capacity overhead ρ

1We use a time-shift range of 10 minutes to 3 hours to incorporate
time-zone effects that might arise in real web workloads.
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Figure 5: Effect of overprovisioning on resource multiplexing

obtained for different spatial and temporal allocation granularities
in a 30-customer system. Like before, ρ increases with increasing
∆s and ∆t values. However, the magnitude of the overallocation
is substantially larger when multiplexing a larger number of do-
mains, indicating the need for finer allocation granularities to ex-
tract the potential multiplexing gains. This result is also depicted
in Figure 3(c) which plots the capacity overhead as the number of
customers in the system is varied. Using a fixed ∆s value of 0.02,
the figure plots ρ for ∆t values of seconds, minutes and hours with
varying number of customers. The figure demonstrates that (i) for a
given allocation granularity, the amount of consumption overhead
grows with the number of customers, and (ii) the difference be-
tween ρ values of fine-grain and coarse-grain allocations (say 10
second and 1 hour) also grows with the number of customers. Thus,
the benefits of fine-grain allocations are magnified in data centers
hosting a large number of customers.

2.4 Effect of Prediction Inaccuracy and Over-
provisioning

Thus far, our study has made two idealized assumptions: (i) re-
source allocators are assumed to be clairvoyant, i.e, they can pre-
dict the exact resource requirement for the next allocation interval,
and (ii) the allocation is exact, leaving for no “headroom”. These
assumptions do not hold in real systems. Real workload predictors
will be inaccurate, and since even good predictors will be unable
to predict sudden, unanticipated workload variations, data centers
overprovision resources to leave some “headroom” for such events.
Consequently, we study the effects of prediction inaccuracies and
overprovisioning.

In general, any dynamic allocation scheme estimates future work-

load requirements using a prediction algorithm. The prediction al-
gorithm can introduce inaccuracies in its estimates, which in turn
impacts the achievable resource utilization. Note that the need for
prediction at very fine time-scales (in the order of seconds) can be
avoided by employing work-conserving schedulers in the underly-
ing OS (which automatically allocate unused resources to needy
applications). Consequently, workload prediction is necessary only
for coarser time-scales ranging from minutes to hours, for which
reasonably accurate predictors exist [22]. Nevertheless, we still
consider the effect of prediction inaccuracies across all time-scales.

First, we look at the effect that prediction inaccuracies can have on
resource allocation. Instead of using specific prediction algorithms
for our study, we characterize a generic prediction algorithm by
its prediction accuracy. We define a predictor to have a predic-
tion accuracy δ if its 95-percentile prediction error is bounded by
(±δ · σx), where σx is the standard deviation of the workload be-
ing predicted. By characterizing the prediction accuracy as a ratio
of the standard deviation of the workload, we intend to capture the
effect of the workload variability on the prediction errors. The in-
tuition behind doing this is that a predictor is expected to be less
accurate for a more variable and bursty workload, so that its pre-
diction accuracy would depend on the variability of the workload
itself.

For a predictor with an accuracy δ, the worst-case allocation would
happen if it always predicted the maximum resource requirement
within its accuracy, so that it would always allocate (δ · σx) more
resources than the actual requirement. In Figure 4, we show the
effect of the prediction accuracy using such a worst-case allocation
on the multiplexing benefits for different time-scale granularities
with three customers. The interesting observation from the figure
is that even using a very inaccurate predictor at fine time scales
gives better resource multiplexing benefits than using an accurate
predictor at coarse time-scales.

Even under the assumption of a clairvoyant predictor, most data
centers overprovision their resources, i.e., they allocate resources
in excess of the estimated requirement. This is done in order to
handle unforeseen loads and to absorb prediction errors. In addi-
tion, overprovisioning is also done to prevent the system from run-
ning close to full capacity, and to provide some “head room” for
overload protection. In such a scenario, a dynamic resource alloca-
tion scheme would allocate a certain amount of extra resource over
the estimated requirement. Figure 5 plots the effect of varying the
amount of over-allocation on the capacity overhead ρ. This figure
indicates that the capacity overhead increases drastically as we in-
crease the excess allocated capacity or “head room”. But the key
observation from the figure is that for the same multiplexing gains,
allocation at fine time-scales of about 10 sec allows nearly 35-70%
more head room than that allowed by coarse-grained allocation at
the granularity of 1-10 hours.

These results show that it is possible to extract the multiplexing
benefits at fine granularities despite prediction inaccuracies and re-
source overprovisioning.

3. PERFORMANCE OF DATA CENTER AR-
CHITECTURES

In this section, we quantify the benefits of some common on-demand
architectures, which are essentially point solutions in the design
space considered in our study.



Data Center Optimal Num Dedicated Fast Shared
Configuration reqmt customers Architecture Reallocation Architecture

(Num ∆s ∆t Num ∆s ∆t Num ∆s ∆t Num
servers) (Ropt) (sec) servers (Ropt) (sec) servers (Ropt) (sec) servers

Small 20 3 0.05 1800 34 0.05 300 31 0.005 10 25
Medium 100 15 0.01 1800 388 0.01 300 304 0.001 10 148

Large 1000 30 0.001 1800 5017 0.001 300 3759 0.0001 10 1739

Table 2: Resource requirements of data center architectures and reallocation techniques for different data center configurations.

Dedicated Architecture: A dedicated architecture [4, 18] multi-
plexes a pool of servers among multiple customers. This is achieved
by partitioning the server pool among customers and increasing or
decreasing the number of servers assigned to a customer based on
its predicted workload. This architecture allocates resources at a
granularity of entire machines. Thus, the spatial granularity ∆s for
these architectures is inversely proportional to the total resource re-
quirement of the hosted customers. For instance, a dedicated archi-
tecture would have a ∆s value of 0.01 when the optimal capacity
requirement is 100 servers. Reallocation of a server in this archi-
tecture may involve: (1) deallocation of the server from another
customer, (2) disk scrubbing to prevent data leaks, (3) a fresh OS
and application installation, and (4) application startup. Perform-
ing these operations can take time on the order of several minutes.
Hence, the temporal granularity ∆t of such an architecture could
be considered to be about 30 minutes.

Fast Reinstallations and Reserve Pools: Recent efforts have
recognized the need to reduce server allocation times in the dedi-
cated architecture and have proposed several techniques to reduce
these reallocation overheads. For instance, the OS and application
installation time can be reduced by using remote boot images [17],
fast application switching [10], and by maintaining a reserve pool
of idle servers in energy-saving mode [14]. While these techniques
have the same spatial granularity as above, they reduce the ∆t val-
ues to an order of about 5 minutes.

Shared Architecture: A shared architecture hosts multiple ap-
plications on each server and multiplexes the server resources among
these applications [21]. A shared architecture, by its very nature,
allocates fractional server resources to applications. Thus, it uses
small ∆s values corresponding to about 10% of a server capac-
ity. Further, it employs resource management mechanisms such
as proportional share schedulers [15] or resource containers [6] to
enforce these allocations at fine time-scales. The allocation of an
application can be modified by reconfiguring scheduler parameters
such as weights or shares, and the work-conserving nature of the
underlying scheduler can also be exploited to achieve resource re-
allocation at time-scales of a few seconds [16]. The main limitation
of a shared architecture is its low degree of security and isolation
as compared to the dedicated architecture.

Having described some of the data center architectures and reallo-
cation mechanisms commonly deployed, we now quantify the po-
tential capacity requirements of these architectures on data centers
with different configurations. In Table 2, we describe three data
center configurations corresponding to a small, a medium-size and
a large data center. These configurations correspond to different
number of customers and total optimal resource requirements of
these customers. For each of these configurations, the table shows
the allocation granularity for the various architectures and alloca-
tion techniques described above. Finally, the table shows the num-
ber of servers that would be required by each architecture corre-

sponding to these configurations.

The results in Table 2 indicate that the excess capacity requirement
is low for a small data center configuration for all the architectures.
For the medium and large configurations, even though the require-
ment of a shared architecture is much greater than the optimal re-
quirement, it is still respectively about 162% and 188% less com-
pared to that for a dedicated architecture. Fast reallocation tech-
niques reduce this overhead to about 105% and 116% respectively.
Thus, these results show that sharing fractional resources between
applications at the time-granularity of a few seconds to a few min-
utes is desirable.

4. RELATED WORK
A concurrent study [3] has examined similar questions about the
potential gains in resource usage in utility computing models. While
this study compares different utility computing environments such
as a large multiprocessor server and a cluster of small servers, we
compare different data center architectures with varying degree of
allocation granularity applied within the same data center environ-
ment. Although this study uses a larger data set compared to ours,
its results agree with our results in showing that existing data cen-
ters are grossly under-utilized and some utility models can achieve
high multiplexing gains. The two studies also examine a different
set of issues. For instance, while this study has considered the ef-
fect of workload affinity on allocation, we have examined factors
such as the number of hosted customers, workload prediction accu-
racy and the amount of overprovisioning.

In the previous section, we broadly classified data center architec-
tures as dedicated and shared. However, other architectures have
been proposed that have aspects of both these architectures. Moore
et al. [14] have proposes an hierarchical architecture that allocates
virtual clusters to a group of applications. Servers can be reallo-
cated among these clusters, and the applications within each cluster
could be managed by a shared resource manager such as MUSE [8].
Another architecture is described in [19] that makes use of virtual
clusters to allocate resources across globally distributed data cen-
ters. As these architectures incorporate some aspects of both dedi-
cated and shared architectures, we believe their multiplexing gains
would lie somewhere between those achievable by purely dedicated
and shared architectures.

Prediction accuracy could be important for the dynamic resource
allocation techniques as well. Prediction and workload characteri-
zation techniques have been proposed that work well for online pre-
diction at coarse time-granularities of several minutes to hours [11,
22]. With shared architectures, it is possible to exploit the work-
conserving nature of underlying schedulers to preclude the need
for accurate prediction at time-scales of a few seconds.

Recently, several dynamic resource allocation techniques have been
proposed for data centers that use modeling techniques to achieve



resource guarantees [1, 7, 9, 13]. These techniques use measure-
ment and prediction techniques to reallocate resources among ap-
plications based on their varying workload.

5. CONCLUSIONS AND ONGOING WORK
In this paper, we quantified the multiplexing benefits achievable
in on-demand data centers. We used real web workloads to study
the effect of various factors on these benefits. These factors in-
clude the granularity and frequency of reallocation, the number of
customers being hosted, the amount of resource overprovisioning
and workload prediction accuracy. Our results demonstrated that
fine-grained multiplexing at short time-scales of the order of sec-
onds to a few minutes combined with fractional server allocation
leads to substantial multiplexing gains over coarse-grained reallo-
cation. Our results also demonstrated that these gains increase with
increasing number of hosted applications as a result of high level of
multiplexing. In addition, we demonstrated that such fine-grained
multiplexing is more efficient even in the presence of inaccurate
workload prediction, and allows overprovisioning slack of nearly
35-70% over coarse-grained multiplexing for similar multiplexing
gains.

As part of ongoing work, we are exploring several other issues re-
lated to resource multiplexing in data centers. These issues include
the effect of application affinity on server allocation and applica-
tion placement. For instance, certain application components may
need to be placed together or different applications might need to be
placed separately due to security concerns, leading to constraints on
allocation granularity. Another important issue is the impact of ad-
ditional resource allocation on application performance. We have
assumed a linear relation between the amount of resource alloca-
tion and the performance of an application. Such an assumption
may not hold because adding more resources could lead to perfor-
mance penalties such as more communication costs for distributed
applications, loss of cache affinity, load balancing overhead, etc.
Finally, the cost of reallocation includes not only the cost of per-
forming the actual allocation, but also that of computing the allo-
cations. This computation cost can add to the reallocation cost and
constrain the time granularity of allocation. We intend to address
some of these issues in addition to refining our existing results by
incorporating more sophisticated models of prediction accuracies
and reallocation overhead.
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