University of Massachusetts Amherst ScholarWorks@UMass Amherst

Cranberry Station Extension meetings

Cranberry Station Outreach and Public Service Activities

2008

Research Update Meeting 2008 - Pathological Highlights from 2007

Frank Caruso UMass Cranberry Station, fcaruso@umext.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension Part of the <u>Horticulture Commons</u>

Recommended Citation

Caruso, Frank, "Research Update Meeting 2008 - Pathological Highlights from 2007" (2008). *Cranberry Station Extension meetings*. 50. Retrieved from https://scholarworks.umass.edu/cranberry_extension/50

This Article is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Station Extension meetings by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Pathological highlights from 2007

Frank L. Caruso UMass Cranberry Station

Projects to discuss

- Fruit rot fungicide trial
- Upright dieback
- Smolder dodder trial
- Proanthocyanidins and their role in fruit rot resistance
- New bed establishment strategies

Fruit rot fungicide trial

- Bravo @ 5.5 pt/a
- Unregistered sterol inhibitor @ 5.7 oz/a
- Indar @ 2 oz/a
- Indar @ 4 oz/a

- Abound @ 12.8 oz/a
- Abound @ 15.4 oz/a
- Abound @ 15.4 oz/a
 + Indar @ 4 oz/a
- Untreated check

Fruit rot trial – 2007

Upright and runner dieback

- Occurs in all cranberry-growing areas
- Affects both vegetative and fruiting uprights
- Causes death of the upright from the growing point downward
- Can expand into the runner
- Most cultivars appear to be susceptible

"Affects both vegetative and fruiting uprights"

- Fruiting uprights
- Phomopsis 84%*
- Colletotrichum 2%*
- Epicoccum 18%
- Cladosporium 12%

- Vegetative uprights
- Phomopsis 2%*
- Colletotrichum 2%*
- Epicoccum 22%
- Alternaria 10%
- Cladosporium 6%

Percent recovery of fungi isolated from diseased uprights (N=7)

Percent recovery of fungi isolated from diseased uprights (N=3)

2002

Looking for sites in 2008

- Compare vegetative and fruiting uprights for the presence of *Phomopsis* and other fungal pathogens
- Determine whether *Fusicoccum* is still cultured at a high incidence from symptomatic uprights
- Will perform pathogenicity studies with *Fusicoccum* isolates from uprights
- Call me if you have upright dieback!

Smolder trials - 2007

Grant from IR-4 Biopesticide Program to perform demonstration trials
Duplicate trials done in Wisconsin by Dr. Jed Colquoun

Objectives in IR-4 proposal

- Test multiple applications of the granular (G) formulation
- Test multiple applications of the wettable powder (WP) formulation
- Test scattered single applications for G
- Test scattered single applications for WP

Multiple applications

- One application of G or WP
- Two applications of G or WP at 14 day intervals
- Three applications of G or WP at 14 day intervals
- Untreated

Scattered applications

Trt	Wk 1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6
1	X					
2		Х				
3			Х			
4				Х		
5					Х	
6						Х

Experimental protocols

- Four sites with both trials set up in same or different beds
- Smolder not applied until significant dodder growth above the vine canopy (biofix for both MA and WI)
- Applications made by researchers
- Vines watered briefly before and after applications
- Coordination with growers with fungicide applications (7 day interval)

Evaluation of efficacy

- Digital images taken of dodder coverage at the time of first application
- Digital images taken at regular intervals
- Digital images analyzed by Sigma Scan for differences in dodder coverage
- Collect dodder seed prior to cranberry harvest
- Isolation of pathogenic fungi from infected dodder

Diseased dodder

Perfectly healthy uninfected dodder

Results

 No infection of the dodder in any of the trials in the four sites

Similar experiences in the trials in Wisconsin

• What happened?

Possible reasons for failure

- Fungus (Alternaria destruens) had lost its virulence and the active ingredient had no potency
- Formulation of the product resulted in loss of virulence of the fungus

Next steps

- Culture Alternaria from the G and WP material used in 2007 trials
- Get fungus to sporulate
- Inoculate dodder seedlings with Alternaria conidia
- Evaluate infection of dodder seedlings
- No 2008 field trials planned

Proanthocyanidins

- Found in bilberry, cranberry, black currant, grape, chokeberry, plus other plants
- Have antioxidant activity
- Possess anti-mutagenic activity plus can confer other beneficial properties in the human body
- Class of isoflavonoids which have been shown to have antifungal properties

Do proanthocyanidins have a role in resistance to cranberry diseases?

- Prepare extracts from green and red berries, leaves, roots (HyRed, Ben Lear, Bugle, wild selection)
- Obtain comparative profiles of phytochemicals in these extracts
- Purify certain fractions that show particular activity
- Assay extracts (crude, purified) for antifungal activity against fungal pathogens causing fruit rot, leaf spot, root rot

Fungi to be screened for inhibition in an *in vitro* assay

- Fruit rot: Coleophoma empetri, Fusicoccum putrefaciens, Phomopsis vaccinii, Physalospora vaccinii
- Leaf spot: Colletotrichum acutatum, Phyllosticta vaccinii
- Root rot: Phytophthora cinnamomi

Many beds will be renovated in the next several years

- Stevens, Ben Lear
- HyRed, Grygleski
- Crimson Queen, Mullica Queen, Demoranville
- Other new hybrids?

Early Rot – Phyllosticta vaccinii

Leaf spotting leading to defoliation

Stem lesion with fruiting bodies

Develop guidelines (BMPs) for disease management in newly-planted beds

- Fungicides effective formulations, rates, timing, numbers of applications
- Are dormant fungicide applications helpful in reducing inoculum?
- Proper irrigation schedules
- Optimal nutritional programs
- Observe disease susceptibility of the new hybrid releases
- Determine which fungal genera are most important pathogens in each area
- Do vines need to be treated with sterilants before planting?

The Checkerboard

Plots are 80 x 36 ft

Compendium of Blueberry, Cranberry and Lingonberry Diseases, 2nd edition

Frank Caruso, UMass Annemiek Schilder, Michigan State Jim Polashock, USDA/ARS/Rutgers Anne Averill, UMass

Thanks to:

 Tassinari Cranberries • Ridge Hill Cranberry Co. Willows Cranberries Mann Farms, Inc. Mario Rezendes • A.D. Makepeace Co.

