
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2001

Using Types to Analyze and Optimize Object-
Oriented Programs
Amer Diwan
University of Colorado at Boulder

Kathryn S. McKinley
University of Massachusetts - Amherst

J. Eliot B. Moss
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Diwan, Amer; McKinley, Kathryn S.; and Moss, J. Eliot B., "Using Types to Analyze and Optimize Object-Oriented Programs" (2001).
Computer Science Department Faculty Publication Series. 17.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13601813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/17?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


Using Types to Analyze and Optimize
Object-Oriented Programs

AMER DIWAN
University of Colorado, Boulder
and
KATHRYN S. McKINLEY and J. ELIOT B. MOSS
University of Massachusetts, Amherst

Object-oriented programming languages provide many software engineering bene�ts, but these

often come at a performance cost. Object-oriented programs make extensive use of method in-

vocations and pointer dereferences, both of which are potentially costly on modern machines.

We show how to use types to produce e�ective, yet simple, techniques that reduce the costs of

these features in Modula-3, a statically typed, object-oriented language. Our compiler performs

type-based alias analysis to disambiguate memory references. It uses the results of the type-based

alias analysis to eliminate redundant memory references and to replace monomorphic method in-

vocation sites with direct calls. Using limit, static, and running time evaluation, we demonstrate

that these techniques are e�ective, and sometimes perfect for a set of Modula-3 benchmarks.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers; optimization

General Terms: Algorithms, Languages, Performance, Measurement

Additional Key Words and Phrases: Alias analysis, polymorphism, classes and objects, object

orientation, method invocation, redundancy elimination

1. INTRODUCTION

In object-oriented languages, programmers make extensive use of pointers, type hierar-
chies, and virtual method invocations to improve code reuse and correctness. These fea-
tures have a cost. For example, without alias analysis, the compiler must assume all pointer
dereferences are potential aliases and may not reorder them. Compilers need to reorder in-
structions to effectively exploit the underlying hardware, which may have multiple issue
functional units, and elaborate pipelines. An effective alias analysis disambiguates mem-
ory references, and enables the compiler to reorder pointer accesses.

Virtual method invocations are costly as well. Method invocations obscure which pro-
cedure is actually being invoked. In programs written in pure object-oriented languages,
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method look-up is costly in itself because method invocations are frequent [Chambers
1992]. However, in programs written in hybrid object-oriented languages, method invo-
cations are typically less frequent and therefore do not have a significant cost. However,
for all object-oriented languages, method invocations inhibit optimization. If analysis can
resolve method invocations to direct calls, the compiler can replace the method invocation
with a direct call, a tailored call, or an inlined call. The additional control-flow information
provides fodder for an optimizing compiler to improve performance.

To alleviate the performance degradation resulting from pointer dereferences and method
invocations, we present a range of type-based alias analyses (TBAA). TBAA uses pro-
gramming-language types. Our alias analysis techniques range from a simple inspection
of the type hierarchy to interprocedural flow-insensitive analysis. We determine the effec-
tiveness and usefulness of our alias analyses with respect to two optimizations: redundant
load elimination (RLE) and method resolution. RLE combines loop-invariant code motion
and common subexpression elimination of memory references. Method resolution re-
places monomorphic method invocations with direct calls. To better understand the impact
of TBAA on method resolution, we consider three different algorithms for method resolu-
tion and extend two of them with TBAA. These method resolution algorithms range from
a simple inspection of the type hierarchy to a new interprocedural flow-sensitive context-
insensitive analysis. While there are obvious interactions between pointer analysis and
method resolution, we pick a fixed order for the analyses: TBAA followed by method reso-
lution analysis. Previous work proposes a few of our alias analyses and method resolution
techniques, but our evaluation reveals new insights about these and our new algorithms.

We evaluate the effectiveness of TBAA for RLE and method resolution using static, dy-
namic, and limit analyses. This evaluation methodology is more thorough than most of
the previous work on alias analysis. Our results show that there is surprisingly little room
for improvement in TBAA for our benchmarks. For example, a better alias analysis would
perform better than TBAA for method resolution in at most three of our 10 benchmark pro-
grams. Although others have proposed using types in similar ways, we believe we are the
first to demonstrate their unanticipated effectiveness for important optimizations. We also
modify our analyses to work on incomplete programs and demonstrate that the effective-
ness of TBAA and RLE is not compromised, but that method resolution is not effective on
incomplete programs. We have implemented our analyses in a traditional optimizing com-
piler for Modula-3. The speed and simplicity of these analyses also makes them practical
for statically compiled Java programs. For Java programs that use dynamic class load-
ing, our modifications for incomplete programs are applicable, but will probably be less
effective.

The remainder of this paper is organized as follows. Section 2 gives a brief techni-
cal background on types. Section 3 describes our type-based alias analysis algorithms.
It discusses three progressively more precise alias analyses based on type declarations,
field declarations and other high-level properties, and flow-insensitive data-flow analysis.
Section 4 describes two uses of TBAA: RLE and method resolution. It also describes algo-
rithms for method resolution, the most aggressive of which use TBAA. Section 5 presents
our experimental methodology. Section 6 evaluates TBAA using static, dynamic, and upper
bound evaluation for each of RLE, method resolution, and inlining enabled by method res-
olution. Section 7 evaluates TBAA using our optimizations when the entire program is not
available for analysis. Section 8 considers how our techniques apply to other optimizations
and object-oriented languages, particularly C++ and Java. Section 9 discusses related work
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Table I. Kinds of Memory References

Notation Name Description

p.f Qualify Access field f of object p
pˆ Dereference Dereference pointer p
p[i] Subscript Array p with subscript i

in alias analysis and method resolution. Section 10 concludes.

2. BACKGROUND

We now present some assumptions and terminology that we will use in the rest of the paper.
All of our analyses assume the entire program is available unless otherwise stated. Section
2.1 describes what memory references look like in the language that we analyze, Modula-
3 [Nelson 1991]. Section 2.2 describes how method invocations give rise to polymorphism
in Modula-3 programs.

2.1 Memory Reference Basics

Table I lists the three kinds of memory references in Modula-3 programs, their names,
and a short description of each.1 Without loss of generality, we assume that all pointer
dereferences are explicit and that a variable declared to be of object or array type actu-
ally contains the object or array rather than a pointer to the object or array. Modula-3
has implicit pointer dereferences, but at the intermediate representation level all pointer
dereferences are explicit.

We call a non empty string of memory references, for example aˆ.b[i].c, an access
path (AP ) [Larus and Hilfinger 1988] and assume that object fields have different names.
We define:

Type(p): The static type of AP p.
Subtypes(T): The set of subtypes of type T, which includes T.
REF T: A pointer to an object of type T.

In Modula-3 and other type-safe languages, a variable of type REF T can legally point to
objects of type Subtypes(T). Each of our alias analyses refines the type of objects to which
an AP (memory reference) may refer.

2.2 Polymorphism through Subtyping

Statically typed object-oriented languages support polymorphism through subtyping. A
variable of type S where S is a subtype of T supports all the behavior of T and may extend
it. Thus, the program can use an object of type S whenever an object of type T is expected.
In particular, a variable with declared type REF T may point to objects that are subtypes
of T.

Consider the Modula-3 type hierarchy in Figure 1, which defines a type U, and V, a
subtype of U. V has all the behavior of U (in particular, the m method) but has a different
implementation of m (mV instead of mU). V also supports the n method, which U does not.
Invoking the m method on a variable with declared type REF U may invoke one of three
procedures:

1These types of memory references are, of course, not unique to Modula-3.
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TYPE U = OBJECT
f: U;

METHODS
m := mU;

END;
(* V is a subtype of U *)
TYPE V = U OBJECT

METHODS
n := nV;

OVERRIDES
m := mV;

END;

Fig. 1. A Modula-3 type hierarchy.

(1) mU, if the variable is currently a pointer to an object of type U;

(2) mV, if the variable is currently a pointer to an object of type V; or

(3) error, if variable is currently a pointer of type NULL.

In general, invoking a method on a variable of type REF U (the receiver) can call any
procedure that overrides that method in Subtypes(U). The NULL type, which contains a
single value NIL, is a subtype of all reference types in Modula-3 and overrides all methods
with an error procedure. While NULL is a type in Modula-3 and NIL is a value, we will
abuse these terms and use NULL to mean both the type and the value when it is clear from
the context.

A polymorphic method invocation site calls more than one user procedure at run time.
For example, consider invoking the print method on each element of a linked list in
a loop. If the list links objects of different types with different implementations of the
print method, then the print method invokes different procedures depending on the
type of the list element.

A monomorphic method invocation site always invokes the same user procedure (or
error), for all possible program executions. The receiver need not always be the same
type, but the method implementation must be the same. To continue the linked list example,
if the list links objects of only one type, then the print method will always invoke the
same procedure.

We will call a method invocation site run-time monomorphic if, over some set of pro-
gram runs, it always invokes the same method implementation. Thus a monomorphic site
will always be run-time monomorphic, but a run-time monomorphic site may be polymor-
phic because it may invoke a different method implementation in some execution not yet
considered. Whether a method invocation site is monomorphic is undecidable in general;
we will thus find a conservative estimate. A method invocation is resolved if it is identified
as being monomorphic. Section 4.2 gives algorithms for resolving monomorphic sites.

3. TYPE-BASED ALIAS ANALYSIS

This section describes type-based alias analyses (TBAA) in which the compiler has access
to the entire program except for the standard libraries. TBAA assumes a type-safe program-
ming language such as Modula-3 [Nelson 1991] or Java [Sun Microsystems Computer
Corporation 1995] that does not support arbitrary pointer type casting, which is supported

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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TYPE
T = OBJECT f, g: INTEGER; END;
S1 = T OBJECT ... END;
S2 = T OBJECT ... END;
S3 = T OBJECT ... END;

VAR
t: REF T;
s: REF S1;
u: REF S2;

Fig. 2. Type hierarchy example.

in C and C++. We first describe three progressively more powerful versions of TBAA and
then conclude with their complexity.

3.1 TBAA Using Type Declarations

To use type declarations to disambiguate memory references, we simply examine the de-
clared type of an access path AP , and then assume that AP may reference any object with
the same declared type or subtype. This version of TBAA we call T-TBAA. More formally,
given two AP s p and q, T-TBAA determines that they are aliases if and only if T-TBAA (p,
q) evaluates to true:

T-TBAA (p, q) = Subtypes(Type(p))\ Subtypes(Type(q)) 6= /0.

Consider the example in Figure 2. Since S1 is a subtype of T, variables of type REF T
can point to objects of type REF S1. Thus,

Subtypes(Type(tˆ)) \ Subtypes(Type(sˆ)) 6= /0
Subtypes(Type(tˆ)) \ Subtypes(Type(uˆ)) 6= /0
Subtypes(Type(sˆ)) \ Subtypes(Type(uˆ))= /0.

In other words, tˆ and sˆ may refer to the same location, and tˆ and uˆ may refer to
the same location, but sˆ and uˆ may not refer to the same location, since they have
incompatible types. Note that T-TBAA is not transitive.

3.2 Using Field Access Types

We next improve the precision of T-TBAA using the type declarations of fields and other
high-level information in the program. This version of TBAA we call TF-TBAA. The TF-
TBAA algorithm appears in Table II. Given AP 1 and AP 2, it returns true if AP 1 and
AP 2 may be aliases. It uses AddressTaken which returns true if the program ever takes the
address of its argument. For example, AddressTaken(p.f) is true if the program takes the
address of field f of an object that p can possibly refer. AddressTaken(q[i]) returns true
if the program takes the address of some element of an array that q can possibly refer. In
Modula-3, programs may take the addresses of memory locations in only two ways: via
the pass-by-reference parameter-passing mechanism, and via the WITH statement, which
creates a temporary name for an expression. Note, that unlike T-TBAA, which needs only
the type hierarchy, AddressTaken actually needs to look at all the instructions in the pro-
gram. For simplicity, we assume that aggregate accesses, such as assignments between two
records, have been broken down into accesses of each component.

The eight cases in Table II determine the following.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Table II. TF-TBAA (AP 1, AP 2) Algorithm

Case AP 1 AP 2 TF-TBAA(AP 1, AP 2)

1 p p true
2 p.f q.g (f = g) ^ TF-TBAA (p, q)
3 p.f qˆ AddressTaken (p.f) ^ T-TBAA (p.f, qˆ)
4 p[i] qˆ AddressTaken(p[i]) ^ T-TBAA (p[i], qˆ)
5 p.f q[i] false
6 p[i] q[j] TF-TBAA (p, q)
7 x y x = y
8 (otherwise) p q T-TBAA (p, q)

1: Identical AP s always alias each other.
2: Two qualified expressions may be aliases if they access the same field in potentially the

same object. Note that this case recursively uses TF-TBAA to more precisely handle the
aliasing of access paths such as a.x.g and a.y.g.

3-4: A pointer dereference may refer to the same location as a qualified or subscripted
expression only if their types are compatible and the program may take the address of
the qualified or subscripted expression.

5: In Modula-3, a subscripted expression cannot alias a qualified expression.
6: Two subscripted expressions are aliases if they may subscript the same array. TF-TBAA

ignores the actual subscripts. Note that this case recursively uses TF-TBAA to more
precisely handle the aliasing of access paths such as a.x[i] and a.y[j].

7: Two distinct variables are never aliases
8 (otherwise): For all other cases of AP s, including two pointer dereferences, TF-TBAA

uses T-TBAA to determine aliases.

The Java programming language will have similar rules though we will need additional
mechanisms to handle programs that use dynamic class loading and reflection. For C++
the rules must be more conservative to handle arbitrary pointer casts and pointer arithmetic.

3.3 Using Assignment

T-TBAA is conservative in the sense that it assumes that the program uses types in their full
generality. For instance, a program might use a list package capable of linking objects of
different types, and in fact link objects of only one type. We thus improve on T-TBAA by
examining the effects of explicit and implicit assignments to determine more accurately the
types of objects an AP may refer to in a flow-insensitive manner. We call this algorithm
TM-TBAA. Unlike T-TBAA, which always merges the declared type of an AP with all of
its subtypes, TM-TBAA only merges a type with a subtype when a statement assigns some
pointer to subtype S to a variable declared to be of type REF T. As an example, consider
applying T-TBAA to the following program using the type hierarchy in Figure 2:

VAR
t: REF T := NEW (T);
s: REF S1 := NEW (S1);

T-TBAA assumes that tˆ and sˆ may refer to the same location. By inspecting the code
however, it is obvious that t and s never point to the same location. TM-TBAA proves

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(* Step 1: put each type in its own set *)
for all pointer types REF T do
Group := Group [ ffTgg

(* Step 2: merge sets because of assignments *)
for each implicit and explicit pointer assignment a:=b do
let Type(a) be REF Ta and Type(b) be REF Tb;
if Ta 6= Tb then
let Ga, Gb 2 Group, such that Ta 2 Ga, Tb 2 Gb
Group := Group - fGag - fGbg + fGa [ Gbg

(* Step 3: Construct TypeRefsTable *)
for each type REF T do
let g 2 Group, T 2 g
TypeRefsTable(T) = g \ Subtypes(T)

Fig. 3. Selective type merging.

independence in this situation as follows: if the program never assigns a value of type REF
S1 to a location of type REF T (directly or indirectly), then tˆ and sˆ cannot possibly be
aliases. If there is any such assignment, TM-TBAA ignores the control flow and assumes
an alias. We call these assignments merges.

Figure 3 presents the algorithm to merge types selectively for complete programs. 2 The
algorithm produces a TypeRefsTable, which takes a declared type T as an argument and
returns all the types potentially referenced by an AP declared to be of type T. Given two
AP s p and q, TM-TBAA determines that they are aliases if and only if TM-TBAA (p,q)
evaluates to true:

TM-TBAA (p,q) = TypeRefsTable(Type(p)) \ TypeRefsTable(Type(q)) 6= /0

In Figure 3, each set T = fT1; : : : ;Tkg in Group represents an equivalence class of types
such that an AP with a declared type T 2 T may refer to any object of type U such that
U 2 T . For example, given the set T = fT1,T2g 2 Group, AP s with declared type T1
may refer to any object of type T1 or T2.

Step 1 initializes Group such that each declared type is in an independent set. Step 2
examines all the assignment statements and merges the type sets if the types of the left- and
right-hand sides are different.3 Step 2 does not consider the order of the instructions and
is therefore flow-insensitive. Step 3 then filters out infeasible aliases from Group, creating
asymmetry in the TM-TBAA relationship.4 For instance, an AP with declared type REF T
in Figure 2 may point to objects of type T or type S1, but an AP declared as REF S1 may
not point to objects of type T. The final result of Step 3 is the TypeRefsTable.

Figure 4 uses the type declarations in Figure 2 to illustrate how the selective merging
algorithm works. Step 1 initializes each declared type to be in a set of its own, as shown in
Figure 5(a) where each oval represents a set in Group. Figure 5(b) shows Group after Step
2 merges types T and S1, the types for the first assignment; and Figure 5(c) shows that the
second assignment causes Step 2 to merge S2 with T and S1. S3 remains in a set by itself.

2A more precise but slower formulation maintains a separate group for each type. In our experiments the differ-
ence between the two variations was insignificant.
3This step is similar to Steensgaard’s algorithm [Steensgaard 1996].
4Steensgaard’s algorithm [Steensgaard 1996] applied to user-defined types would not discover this asymmetry.
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VAR
s1: REF S1 := NEW (S1);
s2: REF S2 := NEW (S2);
s3: REF S3 := NEW (S3);
t: REF T;

BEGIN
t := s1; (* Statement 1 *)
t := s2; (* Statement 2 *)

END;

Type TypeRefsTable(Type)

T T, S1, S2
S1 S1
S2 S2
S3 S3

Step 3: TypeRefsTable

Fig. 4. Example to illustrate TM-TBAA.

(a) Step 1:

T

S1

S2

S3

T S1

S2

S3

T S1 S2

S3

(c) Step 2: After statement 2(b) Step 2: After statement 1

Fig. 5. Selective merging for Figure 4.

Step 3 of the merge algorithm then creates asymmetry for the subtype declarations in the
TypeRefsTable, as shown in Figure 4. Notice that TM-TBAA determines that AP s declared
to point to T may not point to objects of type S3, but T-TBAA assumes they may.

We obtain the final version of our TBAA algorithm TFM-TBAA by using TM-TBAA in-
stead of T-TBAA in the TF-TBAA algorithm of Table II.

3.4 Complexity of Analyses

The complexity of the slowest TBAA (TFM-TBAA) is dominated by Step 2 of TM-TBAA

(Figure 3). This step makes a single linear pass through the program and at each pointer
assignment unions two sets of types. The complexity of TBAA is thus O(n� jT j), where n
is the number of instructions in the program and jT j is the number of types in the program.
If we use a fast union-find data structure [Tarjan 1975] (instead of our current bit vector
set implementation) we can further reduce the complexity of this analysis to near-linear
time. The time to use the results of the TBAA may, of course, be more than near-linear. For
instance, computing all the may-alias pairs using TBAA, or any other points-to analysis,
takes O(e2

) steps, where e is the number of memory expressions in the program and each
step requires querying the results of the points-to analysis.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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1

2 3

4

2

4

3

1

0

t := a^.b

... := t^[i] ... := t^[j]... := a^.b^[i] ... := a^.b^[j]

Fig. 6. Eliminating loop-invariant memory loads.

4. USING TBAA

Most compiler analyses and optimizations can benefit from alias analysis. In this section,
we describe two optimizations, redundant load elimination (RLE) and method resolution,
that use TBAA.

4.1 Redundant Load Elimination

RLE combines variants of loop-invariant code motion and common subexpression elimina-
tion [Aho et al. 1986], but applies them to loads instead of computation. We expect RLE to
be a profitable optimization, since loads are expensive on modern machines and architects
expect they will only get more expensive [Hennessy and Patterson 1995].

Similar to register promotion [Cooper and Lu 1997], RLE hoists a memory reference out
of a loop if it is loop invariant and is executed on every iteration of the loop, leaving it up to
the back end to place the hoisted memory reference in a register. For example in Figure 6,
the access path aˆ.b is redundant on all paths, and loop-invariant code motion moves it
into the loop header. As shown in Figure 7, RLE also eliminates common subexpressions
of memory references. A memory expression at statement s is redundant if it is available
on every path to s. RLE therefore improves performance by enabling the replacement of
costly memory references with fast register references. Since RLE operates on memory
references, its effectiveness depends directly on the quality of the alias information and
back end. To enable RLE across calls, RLE is preceded by a mod-ref analysis that sum-
marizes the objects (in terms of types and fields) that are referenced and modified by each
call. For example, in order to hoist a memory reference out of a loop containing a call, RLE

needs to know whether the call may change the value of the memory reference. Note that
even though RLE uses interprocedural mod-ref information, it does not eliminate redundant
loads across procedure boundaries.

4.2 Resolving Method Invocations

This section describes techniques for resolving a method invocation site to a monomorphic
call which we then replace with a direct call or inline the called procedure. Many tech-
niques for method resolution do not use alias information [Fernandez 1995; Bacon and

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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... := t^[j]

2 3

4

2 3

4

1 1

t := a^.b
... := t^[i]

t := a^.b
... := t^[j]... := a^.b^[i] ... := a^.b^[j]

... := a^.b^[j]

Fig. 7. Eliminating redundant memory loads.

Sweeney 1996]. Here we describe three straightforward method resolution techniques that
do not use pointer analysis—type hierarchy analysis, intraprocedural type propagation, and
interprocedural type propagation—and then extend them to use TBAA to analyze pointer
dereferences. We use the type hierarchy of Figure 1 as a running example to illustrate the
strengths and limitations of the analyses.

4.2.1 Type Hierarchy Analysis. Our algorithm for type hierarchy analysis (THA) bounds
the set of procedures a method invocation may call by examining the type hierarchy decla-
rations for method overrides. For each type T and each method m declared or inherited in
T, type hierarchy analysis finds all overrides of m in the type hierarchy rooted at T. These
overrides are the procedures that may be called when m is invoked on a variable of type T.
Since NULL is a subtype of all object types in Modula-3 and it overrides all methods, type
hierarchy analysis can never narrow down the possibilities to just one; at best it determines
a method is one procedure or the error procedure. If type-hierarchy analysis is used for
unsafe languages, such as C++, it may ignore the NULL case.

4.2.2 Intraprocedural Type Propagation. Our algorithm for intraprocedural type prop-
agation analysis (TPA) for method resolution is flow-sensitive and uses data-flow analysis
to propagate sets of types from type events to method invocations within a procedure. We
first present the data-flow equations, and then show an example.

TPA is similar to reaching definitions. In our data-flow lattice, we use a power set of
the types; the initial type for a local variable is the empty set. TPA first identifies and
propagates sets of possible types for each variable. All non local variables and parameters
initially have the maximum set of types consistent with their declaration. 5 In the program,
type events create or change type information. The three distinguishing type events are
allocation (v  NEW (t)), implicit and explicit type discrimination operators (IsType (v,
T)), and assignment (v  u), which includes parameter bindings at calls. IsType is an
explicit type discrimination event that checks if v’s type is in Subtypes (T ). IsType has two
successors, and the appropriate one is picked based on whether or not IsType evaluates to
true. A statement s with a type event generates and kills types as follows:

5If a method can be shown to be invoked only via method calls, and not directly as a procedure, then its self ar-
gument’s types can be further restricted to types having this particular method code body as their implementation
of a method.
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1 p := NEW (V);
IF cond THEN

2 o := NEW (U);
3 o.m ();

ELSE
4 o := p;
5 o.m ();

END;
6 o.m ();

Fig. 8. Example to illustrate TPA.

GENTYPE (v NEW(t)) = hv;ftgi
GENTYPE (IsType(v;T )) = hv;TypeOf(v)\Subtypes(T )i for true

= hv;TypeOf(v)�Subtypes(T )i for false
GENTYPE (v u) = hv;TypeOf(u)i

KILLTYPE(v NEW(t)) = hv;TypeOf(v)i
KILLTYPE(v u) = hv;TypeOf(v)i

T denotes a set of types, t is a single type, and TypeOf returns the set of possible types of
a variable (for this program point, at this stage of the data-flow analysis). Note that there
are two cases for the IsType case: one for ISTYPE taking the true branch and the other
for it taking the false branch. The data-flow equations for a statement s are similar to the
equations for reaching definitions:

IN(s) =
S

p2PRED(s) OUT(p)

OUT(s) = GENTYPE(s)[ (IN(s)�KILLTYPE(s))

Our implementation of type propagation propagates types only to scalars; it assumes the
conservative worst case (the declared type) for the allocated types of record fields, object
fields, array references, and pointer accesses. To demonstrate how TPA works, consider the
example in Figure 8.

Statement 2 contains an allocation type event. TPA propagates the type U to o, and
thus determines that the method invocation in Statement 3 calls procedure mU. Statement
4 contains an assignment type event, and TPA propagates the type of p to o, and thus
determines that the method invocation in Statement 5 calls procedure mV. Finally, TPA

merges the types of o at the control-flow merge before Statement 6, yielding the type fU,
Vg for o, and thus cannot resolve o.m at Statement 6.

4.2.3 Interprocedural Type Propagation. Our algorithm for interprocedural type prop-
agation analysis (ITPA) for method resolution begins by using the results of TPA to build
a call graph. The call graph has an edge from a method invocation to each possible target
determined by TPA. The algorithm maintains a work list of procedures in depth-first order
that need analysis. The work list initially contains all procedures. A procedure needs anal-
ysis if new information becomes available about its parameters or about the return value of
one of its callees. When ITPA analyzes a procedure, it may put the callers and callees of the
procedure on the work list and update the call graph. In particular, analysis may eliminate
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some call graph edges if it refines the type of a method receiver. ITPA terminates when the
work list is empty.

ITPA also keeps track of which procedures are called only via method invocations (i.e.,
not called directly). For these procedures, it eliminates NULL as a possible type for the first
argument (self). (If self has a pointer of type NULL, then error is invoked instead
of this procedure.) ITPA propagates types only to scalars, and it assumes the declared type
for all data accessed through pointer traversal. It does not propagate side effects from calls
and assigns the declared type for any variable changed by the call. Variables potentially
changed by a call include variables declared in outer scopes, globals, parameters passed by
reference, and parameter aliases.

ITPA is context-insensitive: rather than analyzing for every combination of call site and
callee, ITPA merges the parameter types of all call sites of a procedure, and the return types
of all callees at a call site. This simplification yields a faster analysis (cubic instead of
exponential) but at the cost of some accuracy. Consider the following code:

PROCEDURE Caller1 () =
t := P (NEW (T));
t.m ();

PROCEDURE Caller2 () =
t := P (NEW (U);
t.m ();

PROCEDURE P (o: T): T =
RETURN o;

A context-sensitive analysis would analyze P separately for each of its call sites and thus
determine that the method invocation in Caller1 will call mT and that in Caller2 will
call mU. Our context-insensitive analysis instead merges the parameter types for each caller
of P and thus does not resolve the method invocations in Caller1 and Caller2. We
show in Section 6.2.2 that, for our benchmark suite, this loss in precision is not significant.

4.2.4 Using TBAA to Resolve Method Invocations. In this section, we extend TPA and
ITPA with TFM-TBAA to obtain TPA-TBAA and ITPA-TBAA, respectively. Whenever TPA-
TBAA or ITPA-TBAA encounter a pointer dereference, they invoke TFM-TBAA to get the set
of locations referenced by the pointer dereference. TFM-TBAA summarizes this set com-
pactly using type information (e.g., field f of object type O). TPA-TBAA or ITPA-TBAA then
propagates the types to or from the set of locations referenced by the pointer dereference.
Consider the following code segment:

v: T;
vˆ.f := <rhs>

For this example, TPA-TBAA propagates the types of <rhs> to the field f of all possible
objects pointed-to by v. In the worst case, this assignment propagates the type of the
<rhs> to field f of all subtypes of T plus other variables if the program ever takes the
address of an f field (see Section 3.2). Since TFM-TBAA computes may points to rather
than must points to information, the analysis assumes that the aliases of v.f may either
retain their old type or the new type from <rhs>. Such updates are called weak updates
in the pointer analysis literature.
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Table III. Summary of Analyses

Analysis Eliminates NULL Complexity

THA No O(NT � jMethodsj)
TPA Yes O(∑p np � vp)

ITPA Yes O(Np ∑p np � vp)

TPA-TBAA Yes O(∑p(np � (vp +NT �NF )))

ITPA-TBAA Yes O(Np ∑p(np � (vp +NT �NF )))

These analyses discover monomorphic uses of general data structures. Consider the
linked list package again. When a program links objects of a single type, ITPA-TBAA

resolves the invocation of the printmethod on the list elements. However, if the program
allocates two distinct linked lists of the same type, but one with elements of type T and the
other with type U, this analysis does not recognize that each list is homogeneous. It infers
the type fT, U, NULLg for the elements in both lists. (The type of an object-typed field
always includes NULL, since all fields in Modula-3 are initialized at allocation, and thus
the first assignment to every object-typed field is always of type NULL.)

4.2.5 Summary and Complexity of Analyses. Table III summarizes the analyses. Elim-
inates NULL indicates whether the analysis can eliminate NULL as a possible type. In the
Complexity column, np is the number of statements in procedure p, v p is the number of
variables in procedure p, NT is the number of types in the program, NF is the maximum
number of fields in any type, and N p is the number of procedures in the program. The
complexity for all analyses except for THA is in terms of bit vector steps. The complexity
of THA is for one invocation of THA; THA is invoked on demand. These algorithms are
simple and therefore fast, as shown in the Complexity column.

THA achieves it low time bound because it only examines types and method declarations.
TPA achieves its time bound because it is distributive, and furthermore rapid [Kam and
Ullman 1976]. It has the same complexity as reaching definitions for reducible programs;
Modula-3 programs are always reducible. TPA stores the possible types of a variable as
a set, enabling set union and intersection operations on bit vectors. The length of the bit
vectors equals the number of object types in the program, and rarely exceeds 64 in our
experience and thus fits entirely inside an integer.

Since ITPA may analyze each procedure multiple times due to recursion and because
information flows forward through parameters and backward from return values, it may be
substantially slower than TPA. In practice, we have found it to be quadratic in the number
of instructions, analyzing each procedure on average 2 to 4 times. Adding TBAA increases
the complexity because it propagates types not just to variables but also to aliases which
are represented by types and fields in types.

5. METHODOLOGY

In this section, we describe the metrics we used to evaluate TBAA (Section 5.1), our com-
piler framework (Section 5.2), the benchmark programs we used in the evaluation (Section
5.3), and finally, we discuss how we order the different analyses in the compiler (Section
5.4).
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5.1 Metrics

We evaluate TBAA with respect to RLE and method resolution using static and dynamic
metrics, and a limit analysis. The majority of previous work on alias analysis uses only
static properties, such as the size of the may alias and points-to sets [Banning 1979; Burke
et al. 1994; Hind et al. 1999; Chatterjee et al. 1999; Chase et al. 1990; Choi et al. 1993;
Cooper and Kennedy 1989; Deutsch 1994; Emami et al. 1994; Landi and Ryder 1991;
1992; Larus and Hilfinger 1988; Shapiro and Horwitz 1997b; Steensgaard 1996; Weihl
1980]. A few researchers recently have used dynamic evaluation such as measuring the
execution-time improvement due to an optimization that uses alias analysis [Hummel et al.
1994; Wilson and Lam 1995; Cooper and Lu 1997; Ghiya and Hendren 1998; Shapiro and
Horwitz 1997a]. Static, dynamic, and limit evaluation have the following strengths and
weaknesses.

Static Evaluation. Static properties, such as the size of the may-alias sets, enable com-
parisons between the precision of two similar analyses. Static properties have, however,
two main disadvantages. (1) They cannot tell us if the analysis is effective with respect to
its clients. For example, even if an alias analysis determines that there are very few aliases,
it may not be good enough for an optimization because it fails to disambiguate the key
aliases. (2) Static properties do not enable comparisons between the effectiveness of two
analyses with different strengths and weaknesses. For example, two pointer analyses may
report the same number of aliases, but the analyses may disambiguate different pointers
and thus enable different optimizations. The main advantage of static evaluation compared
to the other metrics discussed below is that it is independent of program runs and inputs.

Dynamic Evaluation. Using dynamic evaluation, such as execution-time improvement,
complements static metrics, since execution-time improvements measure the ultimate im-
pact of an analysis (for example, the performance improvement due to pointer analysis
and RLE). However, one of their disadvantages is that the results are specific to the given
program inputs and to particular uses (such as RLE or method resolution).

Limit Evaluation. Both static and dynamic evaluation have an additional significant
shortcoming: these properties do not tell us how much room for improvement there is in
the analysis being evaluated except in unusual cases, for example, when an alias analysis
disambiguates all memory references. For alias analysis, we would like to know if the
aliases really exist at run time, and if any imprecision in the alias analysis causes missed
opportunities for optimizations or other clients of the analysis. To detect such imprecision
and its impact, we also use a run-time limit analysis to determine missed optimization op-
portunities and their causes for a given program input. No previous work on alias analysis
uses this metric.

5.2 Compiler Framework

Figure 9 illustrates our compilation framework which is based on the SRC Modula-3 com-
piler [Kalsow and Muller 1995]. The front end reads a Modula-3 module and generates
a file containing a typed abstract syntax tree (AST) for the compiled module. The whole
program optimizer (WPO) reads in the ASTs for a collection of modules, analyzes and
transforms them, and then writes out the modified AST for each module and a file with
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Front end
adapter

Back end
adapter

Saved IR   Object codeM3 Front End

Whole Program
Optimizer

GCC Back End

Fig. 9. Compilation framework.

Table IV. Description of Benchmark Programs

Name Description

format Text formatter [Liskov and Guttag 1986]
dformat Text formatter [Liskov and Guttag 1986]
write-pickle Reads and writes an AST
k-tree Manages sequences using trees [Bates 1994]
slisp Small Lisp interpreter
dom System for building distributed applications [Nayeri et al. 1994]
postcard Graphical mail reader
m2tom3 Converts Modula-2 code to Modula-3
m3cg M3 v. 3.5.1 code generator + extensions
trestle Window system + small application

the corresponding low-level stack machine code. The stack representation is the input
language for a GCC [Stallman 1989] back end. WPO implements all optimizations and
analyses presented in this paper.

5.3 Benchmarks

Table IV describes our benchmarks, and Table V gives the number of non comment, non
blank lines of code, the number of object types in each benchmark, 6 and the number of
method invocations at compile time. For the non interactive programs, Table V also gives
the number of instructions executed, the percent of instructions that are memory loads from
the heap, the percent of instructions that are memory loads from the stack and global area
(other), and the number of method invocations executed at run time. None of these pro-
grams were written to be benchmarks, but other researchers have used several of them in
their studies [Fernandez 1995; Dean et al. 1996]. Table V contains the data on the original
programs (i.e., without the optimizations proposed here) but with GCC’s standard opti-
mizations turned on, which include register allocation and instruction scheduling. Due to a
compiler bug in GCC, we were unable to perform the standard optimizations on m2tom3,

6One of the benchmarks, k-tree, has object types in generic modules. We only count the number of static object
types and not the number of times an object type is instantiated.
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Table V. Statistics of Benchmark Programs

% Loads Method inv.
Name Lines # obj. types Instructions Heap Other Static Dynamic

format 395 10 1,879,195 10 17 37 47,064
dformat 602 12 1,442,541 9 19 95 30,775
write-pickle 654 12 1,614,437 13 16 19 21,251
k-tree 726 3 50,297,517 10 21 13 714,619
slisp 1,645 6 11,462,791 27 9 223 67,253
dom 6,186 70 (interactive) 222
postcard 8,214 41 (interactive) 293
m2tom3 10,574 43 50,894,990 8 28 1821 473,559
m3cg 16,475 99 5,636,004 8 21 1808 32,850
trestle 28,977 181 (interactive) 430

which explains its unusually large number of other loads. The numbers in Table V do not
include instructions or memory references from the standard libraries.

5.4 Ordering the Analyses

In this work, we start by building the call graph using type hierarchy analysis, apply the
alias analysis, apply method resolution analyses and related transformations, and finally
perform RLE. There are interactions between call graph building, method resolution, and
alias analysis, and this process could be iterative or the analyses could be combined. Ex-
ploring the interactions between these analyses is beyond the scope of this paper.

6. RESULTS

This section presents the results of evaluating TBAA using the metrics described in Section
5. Since we cannot get reproducible runs for the interactive benchmarks and our dynamic
and limit evaluations need multiple runs, we only present results using static metrics for the
interactive benchmarks. Section 6.1 presents results evaluating the effectiveness of TBAA

for RLE. Section 6.2 presents results evaluating the effectiveness of TBAA for method
resolution. Section 6.3 explores the cumulative impact of implementing RLE, method res-
olution, and inlining. Finally Section 6.4 summarizes our results.

6.1 Evaluation of TBAA Using RLE

Sections 6.1.1, 6.1.2, and 6.1.3 evaluate TBAA with respect to RLE using static, dynamic,
and limit evaluations respectively.

6.1.1 Static Evaluation. Table VI evaluates the relative importance of the three varia-
tions of TBAA: T-TBAA, TF-TBAA, and TFM-TBAA. The table contains the number of static
alias pairs determined by each analysis as a percent of all possible alias pairs. Since each
memory reference trivially aliases itself, we exclude these pairs from our calculations. In
the absence of an alias analysis, the compiler must assume that all possible alias pairs hold
(100%). The Intraprocedural columns gives the data for intraprocedural aliases— i.e., both
references in an alias pair must be in the same procedure. The Interprocedural columns
give the data when an alias pair may contain references in different procedures. Note, that
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Table VI. Static Alias Pairs as a Percent of All Possible Pairs

Intraprocedural Interprocedural
Program T-TBAA TF-TBAA TFM-TBAA T-TBAA TF-TBAA TFM-TBAA

format 31 27 27 11 8 8
dformat 24 16 16 19 11 11
write-pickle 24 13 13 11 4 4
k-tree 29 17 17 15 10 10
slisp 45 33 33 23 16 16
dom 39 25 25 9 7 7
postcard 39 15 15 6 1 1
m2tom3 41 23 23 3 1 1
m3cg 32 5 5 5 1 1
trestle 23 11 11 8 3 3

Table VII. Number of Redundant Loads Removed Statically

Program Loads T-TBAA (%) TF-TBAA (%) TFM-TBAA (%)

format 193 14.0 15.0 15.0
dformat 321 3.1 6.9 6.9
write-pickle 385 11.9 12.2 12.2
k-tree 1018 21.7 22.4 22.4
slisp 1066 3.4 3.5 3.5
dom 3773 8.7 11.2 11.2
postcard 4631 5.6 7.1 7.1
m2tom3 6444 5.7 6.1 6.1
m3cg 6765 7.7 9.1 9.1
trestle 12737 4.1 4.6 4.6

since TFM-TBAA is strictly more powerful than TF-TBAA, and TF-TBAA is strictly more
powerful than T-TBAA, static metrics are appropriate.

The table shows that TBAA based on field declarations (TF-TBAA) is much more precise
than the basic TBAA (T-TBAA), and that selective type merging offers little added preci-
sion. Selective type merging reduces the number of intraprocedural and interprocedural
alias pairs for postcard and reduces interprocedural aliases for m3cg, but these im-
provements are so small that they do not show up in the table. In the next two sections
we show, that even though our analysis does not disambiguate all intraprocedural memory
references (i.e., the intraprocedural aliases are greater than zero), it may be precise enough
for some applications.

Table VII evaluates our alias analyses using another static metric: the percent of access
paths that RLE removes statically in each of our benchmark programs for each variant of
TBAA. The first data column of Table VII (Loads) lists the number of static loads in each of
the benchmark programs. We only list those loads that are visible to RLE; once a program
is compiled to assembly code, it may have more loads than the ones visible to RLE. The
next three columns list the number of redundant loads removed by RLE as a percent of total
static loads using the three levels of TBAA. Even though RLE does not eliminate redundant
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Fig. 10. Impact of RLE.

loads across procedure boundaries, it does use interprocedural pointer alias information (in
the form of mod-ref information); thus, both intraprocedural and interprocedural aliases
affect this optimization.

By comparing Table VI and Table VII, we see that the reduction in alias pairs caused
by considering field declarations in TBAA translates into more optimization opportunities:
TF-TBAA finds more redundant loads than T-TBAA. The improved precision of selective
merges (TFM-TBAA) does not significantly decrease the number of alias pairs, nor increase
the number of redundant loads removed.

6.1.2 Dynamic Evaluation. This section measures simulated execution-time impact of
TBAA on RLE for our non interactive benchmarks. We measured execution times using a
detailed (and validated [Calder et al. 1995]) simulator [Emer et al. 1996] for an Alpha
21064 workstation with one difference: rather than simulating an 8K primary cache we
simulated a 32K primary cache to eliminate variations due to conflict misses that we ob-
served in an 8K direct mapped cache. Also, we measured only the execution time spent in
user code, since that is the only code that we analyze. Execution times are normalized with
respect to the execution time of the original program without RLE, but with all of GCC’s op-
timizations. (GCC eliminates redundant loads without any assignments to memory between
them.)

Figure 10 illustrates the simulated execution time impact of TBAA on RLE relative to
the original execution time for non interactive benchmarks. The graph has three bars for
each benchmark. Each bar represents the execution time due to RLE and a different alias
analysis: T-TBAA (types only), TF-TBAA (types and fields), and TFM-TBAA (types, fields,
and merges). Note that benchmark size increases from left to right on the graph.
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Fig. 11. Comparing TBAA to an upper bound.

TBAA enables RLE to improve program performance from 1% to 8%, and on average
3.6%. One of the benchmarks, m2tom3, performs slightly worse with TF-TBAA than with
T-TBAA because RLE does not consider register pressure. Note that the three largest bench-
marks benefit the most from RLE. Since RLE is just one of many optimizations that benefits
from TBAA, the full impact of TBAA on execution time should be higher. Also, contrary to
what the data in Table VI and Table VII suggest, the three variants of TBAA have roughly
the same performance as far as RLE is concerned. These results make two important
points. First, a more precise alias analysis is not necessarily better; it all depends on how
the alias analysis is used. Second, static metrics such as alias pairs are insufficient by
themselves for evaluating alias analyses.

6.1.3 Limit Evaluation:How Much Precision Does TBAA Lose in Order to Achieve its
Fast Time Bound.. The speedups for RLE are not impressive, and it is easy to contrive
examples where TBAA fails to disambiguate memory references while many other alias
analyses succeed. To discover how effective RLE is, Figure 11 compares heap loads that
are redundant at run time before and after applying RLE. A redundant load occurs when two
consecutive loads of the same address load the same value in the same procedure activation.
We measure these loads using ATOM [Srivastava and Eustace 1994], a binary rewriting tool
for the Alpha. We instrument every load in an executable, recording its address and value.
If the most recent previous load of an address is redundant with the current load, we mark
it as redundant. (We describe this process in more detail elsewhere [Diwan 1996].) In
Figure 11, the bars labeled “Redundant originally” give the fraction of heap references
(loads) that are redundant in the original program, and the bars labeled “Redundant after
optimizations” give the fraction of heap references that are redundant after TFM-TBAA and
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RLE (this fraction is with respect to the original number of heap references). The number
above each bar gives the height of that bar. These results are specific to program inputs.

Figure 11 shows that our optimizations eliminate between 35% and 88% of the redun-
dant loads in these programs. Moreover, for 5 of the 7 benchmark programs, only 5%
or fewer of the remaining loads are redundant. However, slisp and ktree still have
many redundant loads. To understand the source of all the remaining redundant loads, we
manually classified them as follows:

(1) Hidden loads: RLE could not eliminate a redundant expression because it was im-
plicit in our high-level (AST) intermediate representation. For example, the subscript
expression for a Modula-3 open array involves an implicit memory reference to the
dope vector. While it is relatively straightforward to expose the hidden loads, it would
either lower the level of our intermediate representation or force us to use a multi level
intermediate representation.

(2) No PRE: RLE did not eliminate a redundant expression because it was only partially
redundant, i.e., redundant along some paths but not along others. Partial redundancy
elimination (PRE) would catch these.

(3) No copy propagation: RLE did not eliminate a redundant expression because it con-
sisted of multiple smaller expressions and our optimizer does not do copy propagation
(recall that RLE eliminates textually identical expressions).

(4) Alias failure: RLE did not eliminate a redundant load because of an alias that TBAA

could not disambiguate.
(5) Rest: we do not know the reason why RLE did not eliminate the redundant loads, since

we did not determine the reason for the entire list of redundant expressions (it is labor
intensive).

The first category results from a limitation of representation, not TBAA or RLE. Cate-
gories 2 and 3 are limitations in our implementation of RLE, rather than TBAA. The fourth
category, alias failure, corresponds to limitations of TBAA. The fifth category may be a
limitation of RLE or TBAA or the representation. Each bar in Figure 12 breaks down the
Redundant after Optimizations bar from Figure 11 into the above five categories. Note that
Figure 12 uses a different scale from Figure 11 to make it easier to read. The “alias failure”
segment is empty for all the programs and thus not included.

Figure 12 illustrates that Hidden loads (dope vector accesses to index open arrays) is
the most significant source of the remaining redundant loads. Although, we we did not
encounter a single situation when optimization failed because of inadequacies in our alias
analysis, there could be some in Rest. On average, these loads are less than 2.5% of the
remaining loads. Thus, for RLE on these programs and their inputs, there is little room for
improvement in our simple and fast alias analysis.

6.2 Evaluation of TBAA Using Method Resolution

This section uses static, dynamic, and limit metrics to evaluate the effectiveness of TBAA

for method resolution. The bar graphs in this section combine dynamic numbers, repre-
sented by the height of the bars, with the corresponding static numbers, written above each
bar. Note that we use site to refer to static measurements, e.g., the number of resolved
method invocation sites, and invocations to distinguish dynamic measurements, e.g., the
number of method invocations occurring at resolved sites over a run of a program. In
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Fig. 12. Source of redundant loads after optimizations.

these results, we use only the most aggressive version of TBAA: TFM-TBAA. Section 6.3
comments on the results we obtain when we use TF-TBAA.

6.2.1 Static and Dynamic Evaluation. Figures 13 through 22 illustrate the percent of
method invocations resolved by each analysis for each of the benchmark programs. The
graphs have one bar for each level of analysis. The With NULL regions in the bars corre-
spond to the percentage of method invocations at run time that analysis resolves to exactly
one procedure. The Ignoring NULL corresponds to method invocations that analysis re-
solves to one user procedure or error. We obtained these numbers by doing static anal-
yses using each of our method resolution techniques and then scaling the results with the
method invocation frequency from a single run of the benchmark; thus, we are also able to
provide these numbers for the interactive benchmarks. The pair above the bar is the number
of static call sites (With NULL, Ignoring NULL). The Ignoring NULL component of the
pair includes the With NULL component: it is the total number of method resolutions we
would resolve if we ignored NULL. The pair includes all method invocation sites including
ones that may not execute in this execution.

The figures illustrate that type-hierarchy analysis resolves many method invocations for
most of the benchmark programs. In addition, the other analyses benefit different bench-
marks (though the benefit is not always visible in the dynamic number but rather in the
static pairs). TPA resolves very few additional method invocations compared with type
hierarchy analysis but removes NULL possibilities. Thus, type propagation is useful for
languages that have well-defined semantics for the NULL case (such as Modula-3 and Java)
but is less useful for other languages (such as C++). TPA-TBAA improves over TPA for two
benchmarks, dom and trestle.
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Fig. 13. format: Resolved method invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA 

Pe
rc

en
ta

ge
 o

f 
to

ta
l m

et
ho

d 
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,92) (13,92) (13,92) (47,92) (47,92)

Fig. 14. dformat: Resolved method invocations.
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Fig. 15. write-pickle: Resolved method invocations.
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Fig. 16. k-tree: Resolved method invocations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

THA TPA TP-TBAA ITPA ITP-TBAA 

Pe
rc

en
ta

ge
 o

f 
to

ta
l m

et
ho

d 
in

vo
ca

tio
ns

Ignoring NULL
With NULL

(0,218) (1,218) (1,218) (65,218) (65,218)

Fig. 17. slisp: Resolved method invocations.
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Fig. 18. dom: Resolved method invocations.

ITPA also eliminates the NULL possibility in several of the benchmarks, and resolves
additional method invocations (over TPA) in dom, m3cg, and trestle. ITPA-TBAA resolves
additional method invocations (over ITPA) in several of the benchmark programs (dom,
postcard, m3cg, and trestle) though its benefit is visible only in the dynamic numbers for
dom and m3cg. Other runs may display more benefit from TBAA. The bottom line is that
while THA resolves most of the method invocations, other resolution techniques, particu-
larly ones that involve TBAA, are also useful for some benchmark programs, particularly
dom and m3cg.

To judge the execution-time impact of the analyses, we ran our non interactive bench-
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Fig. 19. postcard: Resolved method invocations.
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Fig. 20. m2tom3: Resolved method invocations.
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Fig. 21. m3cg: Resolved method invocations.
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Fig. 22. trestle: Resolved method invocations.

marks7 before and after resolution of method invocations on an Alpha 21064 simulator
(see Section 6.1.2). In the first experiment, the compiler replaced method invocations that
resolved to exactly one user procedure with direct calls. These are the method invocations
that make up the With NULL region in Figures 13 through 22. The compiler did not con-
vert method invocations that resolved to one user procedure or error, since that would
be inconsistent with Modula-3 language semantics. We found that the execution time im-
provement averaged less than 2% for the benchmarks even when the compiler inlined the
frequently executed resolved method invocations.

In the second experiment, the compiler replaced method invocations that resolved to one
user procedure or error with direct calls. Ignoring the error possibility is inconsistent
with Modula-3 semantics, but it facilitates comparison with languages such as C++. We
found that resolving the method invocations improved performance by 0 to 11%, with an
arithmetic mean of 4.6%.

These results show that unlike pure dynamically typed object-oriented languages, the
direct cost of method invocations here is small. The main cost of method invocations is
indirect: method invocations obscure control flow and thus inhibit compiler optimizations.

6.2.2 Limit Evaluation. Programs introduce potential polymorphism by merging con-
trol and data as follows:

—Control merges:

7Because trestle, postcard, and dom are interactive, we did not include them in this experiment.
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Table VIII. Cause of Information Loss

Source Solution

Data merge More powerful alias analysis
Control merge Context-sensitive analysis
Unavailable Analyze libraries

—after a conditional statement
—at a call site with multiple targets due to the returns
—at a procedure with multiple callers
—at the return of a procedure with multiple return statements

—Data merges:
—at assignments through potential aliases (includes heap allocated data, pointers, and

array references)

If a merge results in the loss of type information and the affected variable is later used
to invoke a method, then that merge is the reason analysis failed to resolve the method
invocation. The method invocation may actually be polymorphic, or the analysis may not
be powerful enough to resolve it. For each method invocation that our analyses do not
resolve, our cause assignment algorithm finds the first merge that results in the loss of type
information for the receiver of the method invocation. The analyzer finds the merge by
following use-def chains [Aho et al. 1986] to the point where information is lost.

We use this information to expose the reason when our analyses fail. The reason suggests
which analyses or transformations may be effective on the unresolved method invocations.
For example, if a control merge obscures a type, a context-sensitive analysis may prevent
this loss of information. The cause analysis identifies three sources of information loss:
data merge, control merge, and code unavailable. Code unavailable means that a method
could not be resolved due to the unavailability of library code. Table VIII suggests tech-
niques that may prevent the loss of information for each of the three causes of information
loss.

Now we address the following questions for the most aggressive version of our method
resolution analysis, ITPA-TBAA using TFM-TBAA:

(1) How does our analysis compare to a perfect analysis that resolves all monomorphic
method invocations?

(2) What transformations could convert the remaining polymorphic method invocations
to direct calls?

Figure 23 answers the first question. Each bar gives the run-time data for one bench-
mark program. The height of a bar corresponds to the percentage of (dynamic) method
invocations that always call the same procedure in a run of the benchmark. Each bar
has two regions: the “Resolved” region corresponds to the method invocations from sites
resolved by analysis, and the “Unresolved” region corresponds to invocations from unre-
solved monomorphic method sites. The pair above each bar gives the number of static
method invocation sites corresponding to the two regions. Note that the numbers above the
bar only include those method sites that are executed in our runs. The “Unresolved” region
is an upper bound on the truly monomorphic method invocations (i.e., across all possible
runs of the programs) that are unresolved by our analyses, and thus on how much better an
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Fig. 23. Monomorphic method invocations.
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Fig. 24. Monomorphic method invocations that are unresolved.
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Fig. 25. Polymorphic method invocations.

oracle could do compared to our analyses. It is an upper bound, since method invocations
may actually be polymorphic on a different program execution or across executions.

Figure 23 shows, that for all benchmarks except k-tree, m3cg and trestle, our analysis re-
solves the vast majority of monomorphic method invocations; the analyses perform almost
as well as the oracle. For the benchmarks where our analyses are less effective, Figure 24
suggests which analyses may be successful in resolving these method invocations.

Each bar in Figure 24 breaks down an unresolved region in Figure 23 into three regions,
one for each cause of analysis failure. The number above each bar is the number of static
method invocation sites represented by the bar. For m3cg, the figure indicates that a more
powerful alias analysis may be successful in resolving more method invocations. On in-
spection of the source code of m3cg, we found that an analysis would have to discover
the semantics of a stack in order to do better than our alias analysis, which is unlikely.
For trestle and k-tree, the primary cause of analysis failure is control merges, and thus a
context-sensitive analysis may be effective in resolving more method invocations. Note,
that like the experiments for RLE, these experiments also suggest that there is little or no
room for improvement in TBAA as far as method resolution analyses and our benchmarks
are concerned.

Figure 25 addresses the second question: what transformations will be effective in con-
verting the polymorphic method invocations to direct calls? Figure 25 presents data for the
method invocation sites that call more than one procedure in a run of the benchmark and
thus cannot be resolved by analysis alone. These method invocations are a lower bound
on the polymorphic method invocations, since in another run of the benchmark additional
method invocations may be polymorphic, although relative execution frequencies may also
change. The number above each bar is the number of static method invocation sites corre-
sponding to the method invocations represented by the bar.
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Fig. 26. Cumulative impact of optimizations.

Figure 25 illustrates that most run-time polymorphic method invocations arise because
more than one type of object is stored in a heap slot. Two techniques, explicit type test
[Calder and Grunwald 1994; Hölzle and Ungar 1994] and cloning or splitting combined
with aggressive alias analysis, may be able to resolve these method invocations. Merges in
control are another important cause of the run-time polymorphism, especially for trestle,
and can be resolved by code splitting and cloning [Chambers and Ungar 1989; 1991; Hall
1991].

While the static number of run-time polymorphic sites in the benchmarks is usually
small, they are executed relatively frequently. For example, of the 30 method invocation
sites executed in a run of format, only 4 sites are polymorphic, but they comprise more
than 80% of the total method invocations executed. Across all the benchmarks, polymor-
phic sites are called 26 times more than monomorphic sites. Thus these Modula-3 pro-
grams have relatively few polymorphic method invocation sites, but they are executed very
frequently. This observation has implication for optimizations: the number of method in-
vocation sites where transformation is needed is small, and thus hopefully the code growth
induced by transformations such as cloning will be small.

6.3 Cumulative Results

In the previous section we evaluated TBAA with respect to two optimizations: RLE and
method resolution. However, these two optimizations are synergistic: method resolution
can create new opportunities for RLE, especially if resolved methods are inlined. In this
section, we explore this synergy to better understand the full impact of using TBAA for
these optimizations.

6.3.1 Cumulative Execution Time Results. Figure 26 shows the individual and cumu-
lative impact of method invocation resolution (Minv), RLE, and inlining. We present the
“base+inlining” column separately so that we can isolate the benefit of inlining resolved
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Table IX. Analysis Time in Seconds for Interprocedural Type Propagation and TFM-TBAA

Time in seconds
Program Our optimizations TBAA Build
format 0.2 0.06 17.1
dformat 0.5 0.09 15.4
write-pickle 0.3 0.12 20.0
k-tree 1.1 0.26 23.7
slisp 3.1 0.93 24.0
dom 8.9 1.29 94.4
postcard 10.2 1.80 65.2
m2tom3 32.7 1.44 273.4
m3cg 58.4 6.29 321.9
trestle 43.2 8.10 420.5

method invocations from the benefit of inlining ordinary calls (which does not use any of
our analyses). “Minv+RLE+Inlining” should be compared to the “Base+Inlining” bar
and not to the original running time. In these experiments, we inlined all direct call sites
or resolved method invocation sites that contributed more than 0.8% of the total number
of calls in the run. We ran our analyses in the following order: TFM-TBAA, ITPA-TBAA,
inlining, and RLE.

This graph shows that our optimizations together have a significant impact on the speed
of our benchmark programs. In particular, the Minv+Rle+inlining bars show that our two
sets of optimizations improve program performance over “Base+Inlining” by as much as
18% with an arithmetic mean of 8%. On comparing the bars, we see that the benefit of
combining inlining with our method invocation resolution and RLE is synergistic, i.e., the
performance improvement is greater than the sum of the improvements from the three
individual optimizations.

In two cases, we observe unexpected slowdown due to the optimizations: write-pickle
and slisp. For slisp, method resolution and RLE give significant improvement (9%), but do-
ing inlining on top of these optimizations actually slows down the program compared to the
“base.” When we investigated further we found that the vast majority of the slowdown was
due to increased data-cache misses in the inlined version (there was also a small slowdown
due to increased instruction-cache misses). We speculate that these misses are caused by
inlining a large method, which increased the register pressure and eventually resulted in
more data-cache misses. We observed similar behavior with write-pickle. Our inliner only
considers the frequency of execution when inlining; it should probably consider the size of
the procedure as well.

6.3.2 Cumulative Analysis and Optimization Time. Table IX gives the analysis time
for our most aggressive combination of analyses: ITPA-TBAA using TFM-TBAA. The first
data column (Our optimizations) column gives the time to perform RLE, method resolu-
tion, and TBAA. The second data column (TBAA) gives the approximate time to perform
just TBAA. Since part of TFM-TBAA happens on demand when a client requests alias infor-
mation, we cannot easily separate the TFM-TBAA time from the method resolution time.

In our experiments, we found that TFM-TBAA and TF-TBAA enabled the same optimiza-
tions. Because of our implementation of TFM-TBAA and TF-TBAA, we incur much of the
overhead of the merging even when we use TF-TBAA. Thus, the analysis times for TF-
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TBAA are almost identical to TFM-TBAA. The second data column, which gives the total
time spent in TBAA, gives a sense for how much maximum improvement we can expect in
analysis time if we had implemented TBAA differently so that we did not incur the overhead
of merging when we did not need it. The last column (Time to build) gives the total amount
of time to generate an executable of each program starting from the Modula-3 sources on a
350MHz Alpha 21164 workstation. This time does not include any optimizations or analy-
ses described in this paper. TBAA and the optimizations that depend on it increase the total
compilation time by only a small percent (up to 15%). However, we should to point out
that the Modula-3 compiler is a relatively slow compiler.

6.4 Summary of Results

This section evaluated TBAA using the following different metrics:

(1) Static alias pairs.
(2) Number of opportunities exposed by TBAA for RLE.
(3) Number of method invocations resolved.
(4) Simulated execution-time improvement due to RLE and method resolution.
(5) An upper-bound for TBAA with respect to RLE and method resolution. RLE, method

resolution, and inlining.
(6) Analysis time.

Each of these metrics exposes different information about TBAA. The first metric, static
alias pairs, tells us two things. (1) For our benchmark programs, TFM-TBAA offers little
or no improvement in precision over TF-TBAA. (2) TF-TBAA is potentially a much better
alias analysis than T-TBAA. Even though TF-TBAA offers little performance improvement
over T-TBAA for RLE, it should probably be the algorithm of choice, since it does gives
more precise results without much added complexity, which may be important for other
optimizations that use alias analysis.

The second metric, number of opportunities exposed by TBAA for RLE, reveals that TF-
TBAA enables many more opportunities for RLE than T-TBAA. The third metric, number of
method invocations resolved, reveals that on some programs our techniques resolve the vast
majority of method invocations but on several programs (most notably m3cg and trestle)
our analyses fail to resolve the majority of method invocations.

The fourth metric, execution-time improvement, indicates how much an optimization or
analysis really matters to the bottom line: performance. Our experiments find that the
majority of the execution-time improvement due to RLE comes from T-TBAA. TF-TBAA

improves performance only slightly. The results also illustrate that the execution-time
improvement resulting from TBAA and RLE or method resolution is relatively small: on
average 3.6% improvement for RLE and 4.6% for method resolution.

If we had used only execution-time improvements to evaluate our analysis we might
conclude that T-TBAA is the algorithm of choice. However, the number of opportunities
metric tells us that TF-TBAA is indeed significantly better than T-TBAA. Perhaps with
different benchmark inputs TF-TBAA would improve performance significantly more than
T-TBAA. If we had used only the execution-time improvement metric or the number of
method invocations resolved metric, we might conclude that TBAA is a very imprecise
alias analysis. However, upper-bound analysis reveals that TBAA in fact performs about
as well as any alias analysis could perform with respect to RLE and method resolution and
our benchmark programs.
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To summarize, each metric reveals different information about TBAA. For this reason,
we feel that static, dynamic, and limit metrics should all be used together in a thorough
evaluation of an alias analysis, or any compiler analysis for that matter.

7. ANALYZING INCOMPLETE PROGRAMS

In this section, we describe modifications to our alias analysis and method invocation res-
olution to produce conservative analyses when the entire program is not available, such as
during separate compilation or for Java programs that load classes dynamically. We evalu-
ate the modified analyses by comparing the performance of RLE and method resolution to
their performance using the original algorithms.

7.1 Alias Analysis for Incomplete Programs

All prior pointer alias analyses for the heap are whole-program analyses, i.e., the compiler
assumes it is analyzing the entire program, including libraries, making a closed-world
assumption. Many situations arise, however, in which the entire program is not available:
for instance, during separate compilation, or compiling libraries without all their potential
clients, or compiling incomplete programs.

In unsafe languages such as C++, alias analyses must assume that unavailable code
may affect all pointers in arbitrary ways (though if all code is written in ANSI C++ an
alias analysis can make better assumptions about pointers in unavailable code). For type-
safe languages such as Modula-3 and Java, the compiler can use type-safety and a type-
based alias analysis to make stronger type-safe assumptions about unavailable code. It can
assume that unavailable code will not violate the type system of the language. For example,
consider the following procedure declaration using the types declared in Figure 2.

PROCEDURE f (p: REF S1; q: REF S2) = ...

In an unsafe language, if some of the callers of f are not available for analysis, the compiler
must assume that p and q may point to the same object. For a type-safe language, a type-
based analysis can safely assume that p and q cannot point to the same object since they
have incompatible types.

Two components of TBAA rely on properties other than the type system of the language:
AddressTaken and type merging. Since unavailable code may pass to available code the ad-
dress of a qualified expression or subscript expression we revise AddressTaken as follows.

AddressTaken (p) is true:

(1) if the program ever takes p’s address (for instance to pass it by reference or as part of
a WITH), or

(2) if f is a pass-by-reference formal and p and f have the same type.

Since Modula-3 requires the types of pass-by-reference formals and actuals to be identical,
the second clause needs to check only for type equality, not type compatibility. Note that
this new definition of AddressTaken considers instructions in the program for available
code (1) and considers only the type system for unavailable code (2).

Since unavailable code may cause merges of types, we make TFM-TBAA more conser-
vative at merges. We merge any two types (related by the subtype relation) to which the
program has access, since unavailable code may assign them. Since Modula-3 uses struc-
tural type equivalence, unavailable code can access most types because it can construct its
own copy of the types. Exceptions to this ability are Branded types in Modula-3. These
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Fig. 27. Simulated execution time using open- and closed-world assumptions

types essentially observe name equivalence and may not be “reconstructed” by unavailable
code.

Figure 27 compares the simulated running time improvement resulting from RLE when
assuming that the entire program is available (closed world) and assuming it is not available
(open world). The open-world assumption has an insignificant impact on the effectiveness
of TBAA with respect to RLE. This result however reflects the results of Table VII, since
TFM-TBAA, which is most affected by the open-world assumption, does not enable any
additional opportunities for RLE over TF-TBAA. With respect to the static metrics, we
found that they were the same for the open-world and closed-world assumptions with one
difference: M3CG had about 80 more alias pairs (interprocedurally) with the open-world
assumption than with the closed-world assumption. These additional alias pairs did not
reduce the effectiveness of RLE.

We also need to modify method resolution analyses if the entire program is not available
for analysis. If some of the assignments and type hierarchy are unavailable for analy-
sis, only intraprocedural type propagation (along with the open-world version of TBAA) is
applicable. Type propagation must start with the assumption that on entry to each proce-
dure all non local variables and aggregate locations may have a type that type propagation
knows nothing about. However, given the assignments and conditional statements within
the procedure, intraprocedural type propagation may still be able to resolve some method
invocations.

Figure 28 compares the percent of dynamic method invocations out of all method in-
vocations that our analysis can resolve assuming the entire program is available (closed
world) and assuming some portion is unavailable (open world). The open-world assump-
tion dramatically limits the number of method calls that our analysis resolves.
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Fig. 28. Percent of resolved method invocations with open- and closed-world assumptions.

8. APPLICABILITY TO OTHER OPTIMIZATIONS AND LANGUAGES

This paper has demonstrated that TBAA works for two specific optimizations that both can
benefit from locally precise information. We believe this property will make it effective for
other scalar optimizations such as dead-code elimination, constant propagation, schedul-
ing, and register allocation. This speculation needs further testing of course.

The analyses described here are language independent, but their usefulness depends on
both language and programming style. TBAA, of course, depends greatly on type-safety in
programs. Thus it is unlikely to be useful for arbitrary C or C++ code. However, if the
C++ code is written in a type-safe style, TBAA can be applied to it. To our knowledge, at
least two groups of people have applied our ideas to languages other than Modula-3 and
found them to be effective: Reinig [1998] in their DEC C++ compiler and Nystrom et al.
[1999] in their Java optimizer. We discuss these further in related work.

While Java programs are type safe, they introduce a different set of challenges for TBAA

and associated optimizations. In particular, the exception model, memory model, and
threads severely limit the extent to which an optimization can reorganize code [Nystrom
et al. 1999].

The effectiveness of our method resolution analyses depends on programming style and
type-safety as well. For example, some C++ programming styles discourage the use of
virtual functions unless necessary;8 in essence, this style encourages the programmer to
attempt type-hierarchy analysis manually. In such situations, the impact of method res-
olution analyses will be limited compared to Modula-3 programs, where all methods are
virtual. We expect that our results will carry over to other statically typed object-oriented
languages such as C++ if the programs are written using only virtual methods. However,
the execution-time improvement due to our analyses in C++ programs may be greater if

8Only virtual functions may be overridden in subtypes.
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these programs use multiple inheritance. Since there are no static types in dynamically-
typed languages, our results will not directly apply to them.

9. RELATED WORK

In this section, we distinguish our work from others that address alias analysis, method
resolution, and compiler optimization evaluation. For alias analyses, we focus on those
papers that present algorithms similar to ours or evaluate alias analyses using more than
static metrics.

9.1 Alias Analysis

Alias analysis must consider an unbounded number of paths through an unbounded col-
lection of data, and is therefore harder than traditional data-flow analyses. The literature
contains many algorithms for alias analysis [Banning 1979; Burke et al. 1994; Hind et al.
1999; Chatterjee et al. 1999; Chase et al. 1990; Choi et al. 1993; Cooper and Kennedy
1989; Deutsch 1994; Emami et al. 1994; Landi and Ryder 1991; 1992; Larus and Hil-
finger 1988; Shapiro and Horwitz 1997b; Steensgaard 1996; Weihl 1980; Hummel et al.
1994; Cooper and Lu 1997; Larus and Hilfinger 1988; Wilson and Lam 1995]. The key
differences between the algorithms stem from how they approximate the unbounded con-
trol paths and data. The approximation determines the precision and efficiency of the
algorithm, and these alias analyses range from precise exponential time algorithms to less
precise nearly linear-time algorithms.

Our work differs from previous work in three ways: (1) It is type-based instead of
instruction-based. (2) We evaluate our alias analyses with respect to two optimizations,
RLE and method resolution, rather than using static measurements as used by most work
on alias analysis [Banning 1979; Burke et al. 1994; Hind et al. 1999; Chatterjee et al.
1999; Chase et al. 1990; Choi et al. 1993; Cooper and Kennedy 1989; Deutsch 1994;
Emami et al. 1994; Landi and Ryder 1991; 1992; Larus and Hilfinger 1988; Shapiro and
Horwitz 1997b; Steensgaard 1996; Weihl 1980]. (3) For both our optimizations that bene-
fit from alias analysis, we use a limit study to demonstrate that TBAA is close to perfect for
our benchmarks and optimizations. Our limit studies are similar to those of Wall [1991],
which assumes a “perfect alias analysis” to find an upper bound on instruction-level paral-
lelism. Wall [1991] does not evaluate an existing alias analysis as we do, but just gives the
potential of a perfect alias analysis for instruction-level parallelism.

Aho et al. [1986] and Chase et al. [1990] were among the first to write that using pro-
gramming language types could improve alias analysis, but did not present algorithms that
did so and did not evaluate it. Our alias analysis is most similar to those of Rinard and
Diniz [1996], Steensgaard [1996], and Ruf [1995; 1997].

Rinard and Diniz [1996] use type equality to disambiguate memory references. The
type system they use is a subset of C++ that does not have inheritance and is thus weaker
than Modula-3’s or Java’s type systems. Steensgaard [1996] presents an instruction-based
alias algorithm that uses non standard types, not programming language types, to obtain
a nearly linear-time alias analysis. His type inference algorithm is similar to our selective
type merging; however, he does not use programming language types, and in particular in-
heritance, to prune the merge sets as we do. In terms of precision, Steensgaard’s algorithm
is not directly comparable to TBAA, and there are many examples where Steensgaard does
better or worse than TBAA.
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Ruf [1995] compares a context-sensitive alias analysis to a context-insensitive one and
finds, for his benchmarks, that they are comparable in precision. Both algorithms are flow-
sensitive and are fairly simple versions of context-insensitive and -sensitive algorithms in
that they do not consider any shape information (such as Chase et al. [1990]). Both algo-
rithms considered by Ruf are more precise than TBAA, since they are flow-sensitive and
also support strong updates. Ruf finds that there is little difference for his benchmarks
between context-sensitive and context-insensitive versions of his analyses. Our work sug-
gests that the point of diminishing return for pointer analyses may come even earlier for
many applications than Ruf’s context-insensitive analysis.

Ruf [1997] shows how to use programming language types and non standard types (such
as those of Steensgaard [1996]) to partition data-flow analyses: each partition represents
code that can be analyzed independently, and thus a different analysis can be used on
each partition. In Ruf’s first algorithm, he uses only dependences between programming
language types; thus the kind of type information he uses is similar to T-TBAA. Ruf uses his
scheme to partition programs for alias analyses, but does not use programming language
types in the analysis. Ruf’s second algorithm does not use programming language types;
instead it uses non standard types (e.g., those of Steensgaard [1996]).

Wilson and Lam [1995] present a context- and flow-sensitive pointer analysis for C
programs. This analysis handles the entire C language and is thus quite complex. Wilson
and Lam introduce the use of partial-transfer functions for pointer analysis, which allow
even their context-sensitive analysis to reuse prior analyses of procedures. Wilson and
Lam evaluate their algorithm using static metrics and one dynamic metric: the speedup
due to automatic parallelization of two C programs which could previously not be fully
parallelized because of how they used pointers. This analysis is much more powerful than
any TBAA but is not always practical even for modestly sized programs [Wilson 1997].

Cooper and Lu [1997] describe and evaluate register promotion, an optimization that
moves memory references out of loops and into registers. Register promotion, when it
includes the extension for pointer-based loads, is similar to the loop-invariant code motion
part of RLE except that promotion also hoists stores out of loops and not just loads. They
evaluate register promotion with two alias analyses: a trivial analysis and a flow-sensitive
alias analysis. Their flow-sensitive analysis is similar to the context-insensitive analysis of
Ruf [1995]. They used the number of instructions executed as their performance metric and
found that the more powerful alias analysis did not significantly improve performance. We
observe more performance improvement due to RLE, which may be because we measure
object-oriented programs as opposed to the C programs used by Cooper and Lu. Calder
et al. [1994] show that C programs typically execute a smaller percentage of loads and
stores than C++ programs.

Debray et al. [1998] describe an alias analysis for executable code. They evaluate their
algorithm by measuring the percentage of loads eliminated using loop-invariant code mo-
tion and PRE of loads. They do not present execution time improvements or a limit study
for their alias analysis.

Shapiro and Horwitz [1997a] evaluate the impact of four flow-insensitive alias analyses
on a range of applications. The four alias analyses are naive, Steensgaard [1996], Anderson
[1994], and their own alias analysis [Shapiro and Horwitz 1997b], whose precision is ap-
proximately between Steensgaard’s and Anderson’s. With the exception of “naive,” which
is weaker than TBAA, the other analyses are incomparable with TBAA. It is easy to contrive
examples that show the superiority of one over the other. For instance, unlike TF-TBAA
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or TFM-TBAA, Shapiro and Horwitz’s algorithms do not separate fields in their analyses.
Shapiro and Horwitz compare the pointer analyses by counting optimization opportunities
rather than the performance impact of the optimizations.

Ghiya and Hendren [1998] use their pointer analysis, called connection analysis, to im-
prove scalar optimizations, particularly loop-invariant removal, location-invariant removal,
and common-subexpression elimination, and present running time improvements. The
combination of loop-invariant removal and common-subexpression elimination is similar
to RLE. Connection analysis is a very weak pointer analysis, but since it is flow-sensitive,
in some cases it may be more powerful than TBAA. Their paper evaluates connection anal-
ysis by measuring the number of opportunities for their optimizations and by measuring
the running time performance improvement that results. They do not present a limit study.

Lucassen and Gifford [1988] use a type-based analysis to discover expression scheduling
constraints. One key difference between our work and theirs is our focus on experimental
evaluation of type-based analyses.

Since the first publication of some of our algorithms [Diwan et al. 1998], two groups
have applied TBAA to other languages. Reinig [1998] describes how to use TBAA in the
DEC GEM C and C++ compilers. Reinig applies and uses TBAA intraprocedurally and
assumes that the code is compliant with the ANSI standard (TBAA may be turned off if
the code violates the ANSI standard). Reinig shows that TBAA, combined with other op-
timizations in GEM, yields small improvements in the generated code at an insignificant
cost. We think that one of the reasons that they observe less benefit than we do is because
the type system in our language (Modula-3) is much richer than the type system in the
language of Reinig’s experiments (C), and thus we have better information than type-safe
C programs.

Nystrom et al. [1999] apply the “incomplete program” version of TBAA to Java pro-
grams in a bytecode-to-bytecode optimizer and use it for intraprocedural PRE of memory
references. PRE of memory references is more powerful than RLE in that it can eliminate
not just fully redundant memory references but also partially redundant ones. They ap-
ply their optimization only intraprocedurally (and using only intraprocedural information)
since any call can potentially result in a thread switch. They get execution time improve-
ments of up to 9% (but usually much less—average 1%) for their programs. They find that
Java’s exception model significantly hinders their ability to optimize Java programs.

9.2 Other Related Work on Method Invocation Resolution

Fernandez [1995] and Dean et al. [1995] evaluate type hierarchy analysis for Modula-3
and Cecil respectively. They find that type hierarchy analysis is a worthwhile technique
that resolves many method invocations. Our work confirms these results. In addition to
type hierarchy analysis, we evaluate a range of other techniques.

Chambers et al. [1996] describe and evaluate a range of transformations and analyses for
resolving method invocations in object-oriented languages. Their paper combines many of
the ideas in other papers discussed in this Related Works section; it also serves as an ex-
cellent overview of the area. Specifically, Chambers et al. describe class hierarchy analysis
and an analysis similar to TPA (called intraprocedural class analysis). They do not evaluate
these algorithms using a limit study and do not study the impact of pointer analyses on
method resolution.

Palsberg and Schwartzbach [1991], Agesen and Hölzle [1995], and Plevyak and Chien
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[1994] describe type inference9 for dynamically typed object-oriented languages. Agesen
and Hölzle’s and Plevyak and Chien’s analyses are more powerful than ours, since they are
context-sensitive (polyvariant). They are also more complex and expensive. Polyvariant
analyses can be used in conjunction with transformations to resolve polymorphic method
invocations. Chambers [1992], Calder and Grunwald [1994], Hölzle and Ungar [1994],
Dean et al. [1994], and Grove et al. [1995] describe transformations for converting poly-
morphic method invocations to direct calls, which we did not perform. Plevyak and Chien
discuss reasons for loss of type information, but do not present any results. We present
detailed data, giving reasons for loss of type information.

In work done concurrently with ours, Bacon and Sweeney [1996] and Aigner and Hölzle
[1996] evaluate techniques for resolving method invocations in C++ programs. Bacon and
Sweeney evaluate three fast analyses, including type hierarchy analysis and rapid type
analysis (RTA), for resolving method invocations in C++ programs. Bacon and Sweeney
also use a limit study to evaluate their analyses. Bacon and Sweeney evaluate flow-
insensitive analyses. Aigner and Hölzle evaluate type feedback and type hierarchy analysis
and find that they are both effective at resolving method invocations. Our analysis is flow-
sensitive and uses alias analysis, and is thus more precise.

Driesen and Hölzle [1996] report on the direct cost of virtual function calls in C++
programs. They find, that in “all virtual” versions of programs, the median direct overhead
of virtual functions is 13.7%. These numbers are somewhat higher than what we observe
for Modula-3 programs, and may be caused by C++’s multiple inheritance, which makes
virtual function calls more expensive.

Shivers [1991] describes and classifies a range of analyses to discover control flow
in Scheme programs. Our interprocedural type propagation and 0CFA are both context-
insensitive. However, Shivers’s analysis is optimistic with respect to the call graph while
ours is pessimistic. While Shivers focuses on powerful (and slow) analyses—0CFA is the
least powerful analysis he considers—we focus on simple and fast analyses. Interprocedu-
ral type propagation is the most complicated analysis we consider.

Pande and Ryder’s [1995] algorithm performs pointer analysis at the same time as
method invocation analysis. Plevyak and Chien’s [1994] type inference algorithm also
does some pointer analysis. Both algorithms are flow-sensitive and at least somewhat
context-sensitive and are thus more powerful than TBAA but much slower. On a SPARC-
10, Pande and Ryder’s algorithm can take 23 minutes to analyze programs that are less than
1000 lines of code (median 36 seconds). Our most aggressive analysis takes 43 seconds
to analyze 28,977 lines of code on a DEC 3000/400 (median 6 seconds, with a number
of larger benchmarks than theirs). Subsequent work [Chatterjee and Ryder 1997a; 1997b;
Chatterjee et al. 1999] improves the scalability of their analyses. We show, that for our
benchmarks and optimizations, our simple analyses are effective, and that there is little
to be gained by more powerful analyses. This result originates in part from Modula-3’s
language semantics, which restricts aliasing; a more powerful alias analysis may be more
useful for C++ than for Modula-3, but to our knowledge this need has not yet been demon-
strated for significant applications.

DeFouw et al. [1998] describe a parameterized framework that integrates a range of
analyses for method resolution. This framework can encompass fast and simple analyses

9“Method resolution” and “type inference” are terms that have been used to describe the same kinds of analysis
in object-oriented languages.
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such as RTA [Bacon and Sweeney 1996], Steensgaard-like analyses [Steensgaard 1996],
and 0-CFA [Shivers 1991] (which, as discussed above, is a more precise version of ITPA).
DeFouw et al. use this framework to evaluate a range of analyses, including those just men-
tioned and some new analysis opportunities that their framework exposes. For their evalu-
ation they use several static and dynamic metrics, including number of method invocations
resolved and execution speedup. They do not use any limit study for their evaluation. They
find that for Java programs there is little or no difference between the different analyses.
However, for Cecil programs there is a significant difference between the analyses for the
small programs and modest difference between the larger programs. Even on the larger
programs, they get most of their benefit from the simpler analysis. Our results support
theirs: for many applications, a fast and simple alias analysis may be sufficient.

A key difference between our work and that of all others is that we present results that
give the reason when analysis fails, and place upper bounds on how well more powerful
analyses or transformations can possibly do.

9.3 Evaluating Optimizations

Larus and Chandra [1993] introduce a technique, compiler auditing, that uses studies to
test compiler optimizations. This technique is very similar to our limit studies, and in
particular their method of auditing redundant loads and stores is similar to the oracle we
use to evaluate TBAA and RLE. One difference is that Larus and Chandra are pessimistic
about procedure calls whereas we are optimistic.

10. CONCLUSIONS

We described and evaluated three algorithms that use programming language types to dis-
ambiguate memory references. The first analysis, T-TBAA, uses type compatibility to de-
termine aliases. The second, TF-TBAA, extends the first by using additional high-level
information such as field names and types. The third, TFM-TBAA, extends the second with
a flow-insensitive analysis. We show that the algorithm that uses only type compatibility
gives the vast majority of performance improvement though the other two analyses improve
on it with respect to the static metrics (and thus may yield greater performance improve-
ments for other programs or runs). We evaluated these pointer analyses with respect to two
clients of pointer analysis: redundant load elimination (RLE) and method resolution.

TBAA with RLE produces modest performance improvements, but TBAA is precise for
our benchmarks; a more precise analysis could only enable RLE to eliminate on average an
additional 2.5% of redundant references, and at most 6%. Because TBAA relies on type-
safety, it can be conservative in the face of incomplete, type-safe programs without losing
effectiveness. Our results show, that as far as RLE is concerned, TBAA performs just as
well with an open-world assumption as with a closed-world assumption.

TBAA with method resolution is quite effective. On average, our analyses resolve more
than 92% of the method invocation sites that are amenable to analysis. Applying method
resolution and inlining improves the running time of the benchmark programs by up to
11%. Combined with RLE, the improvements are even higher. For method invocations that
are unresolved by our analyses, we determine the reason for analysis failure. We find that
for the most part TBAA is precise for method resolution, but for some programs, a more
precise alias analysis may be justified. Finally, TBAA with method resolution performs
much worse with the open-world assumption than with the closed-world assumption.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



38 � Amer Diwan et al.

In summary, we have shown that simple, fast type-based analyses are an effective tool for
optimizing object-oriented programs, and for a selection of optimizations, they are close
to perfect.
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