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In: Models of Information Processing in the Basal Ganglia, J. C. Houk, J. Davis and D.
Beiser (Eds.), Cambridge, MA: MIT Press, 1995, pp. 215-232.

Adaptive Critics and the Basal Ganglia

Andrew G. Barto
Department of Computer Science

University of Massachusetts, Amherst MA 01003

One of the most active areas of research in artificial intelligence is the study of learning
methods by which “embedded agents” can improve performance while acting in complex
dynamic environments. An agent, or decision maker, is embedded in an environment
when it receives information from, and acts on, that environment in an ongoing closed-loop
interaction. An embedded agent has to make decisions under time pressure and uncertainty
and has to learn without the help of an ever-present knowledgeable teacher. Although the
novelty of this emphasis may be inconspicuous to a biologist, animals being the prototypical
embedded agents, this emphasis is a significant departure from the more traditional focus in
artificial intelligence on reasoning within circumscribed domains removed from the flow of
real-world events. One consequence of the embedded agent view is the increasing interest in
the learning paradigm called reinforcement learning (RL). Unlike the more widely studied
supervised learning systems, which learn from a set of examples of correct input/output
behavior, RL systems adjust their behavior with the goal of maximizing the frequency
and/or magnitude of the reinforcing events they encounter over time.

While the core ideas of modern RL come from theories of animal classical and instru-
mental conditioning (although the specific term “reinforcement learning” is not used by
psychologists), the influence of concepts from artificial intelligence and control theory has
produced a collection of computationally powerful learning architectures. Despite similar-
ities between some of these architectures and the structure and function of certain brain
regions, relatively little effort has been made to relate these architectures to the nervous
system (but see Houk 1992, Klopf 1982, Wickens 1990, and Werbos 1987). In this article I
describe the RL system called the actor-critic architecture, giving enough detail so that it
can be related to basal-ganglionic circuits and dopamine neurons. Specifically, I focus on
a component of this architecture called the adaptive critic, whose behavior seems remark-
ably similar to that of the dopamine neurons projecting to the stiatum and frontal cortex
(Schultz, this workshop). In a companian article in this volume, Houk, Adams, and Barto
(1994) present a hypothesis about how the actor-critic architecture might be implemented
by the circuits of the basal ganglia and associated brain structures. My explanation of the
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adaptive critic largely follows that of Sutton (1984, 1988).

The adaptive critic is a device that learns to anticipate reinforcing events in a way
that makes it a useful conjunct to another component, the actor , that adjusts behavior to
maximize the frequency and/or magnitude of reinforcing events. The adaptive critic also
forms the basis of the temporal difference model of classical, or Pavlovian, conditioning
(Sutton and Barto 1987, 1990) which extends the Rescorla-Wagner model (Rescoral and
Wagner 1975) to take into account some of the fine temporal structure of conditioning.
The learning rule used by the adaptive critic is due to Sutton, who was developing it as
part of his Ph.D. dissertation (Sutton 1984) when it was used in the pole-balancing system
of Barto, Sutton, and Anderson (1983). Sutton (1988) developed this class of learning
algorithms further, calling them temporal difference (TD) methods.

This line of research work began with the exploration of Klopf’s (1972, 1982) idea of
generalized reinforcement which emphasized the importance of sequentiality in a neuronal
model of learning. An earlier precursor, however, is the technique used by Samuel (1959)
in his learning program for the game of checkers. Current research on the adaptive critic
focuses on its relationship to an optimization technique known as dynamic programming
used for solving control problems. This connection follows the research of Werbos (1977,
1987) and Watkins (1989). Barto, Sutton, and Watkins (1990) and Barto, Bradtke, and
Singh (1994) provide detailed accounts of this perspective. A remarkable demonstration
of the power of the actor-critic architecture is provided by Tesauro’s (1992) backgammon
playing program, which used an actor-critic architecture to learn how to play world-class
backgammon.

Reinforcement Learning

Following the basic idea of Thorndike’s “Law of Effect” (Thorndike 1911), the simplest RL
algorithms are based on the commonsense idea that if an action is followed by a satisfactory
state of affairs, or an improvement in the state of affairs, then the tendency to produce
that action is strengthened, i.e., reinforced. Although this is often called “trial-and-error”
learning, I prefer to call it learning based on the “generate-and-test” procedure: alterna-
tives are generated, evaluated by testing them, and behavior is directed toward the better
alternatives. The reason for my preference is that it is too easy to confuse trial-and-error
learning with supervised learning.

For example, an artificial neural network trained using the well-known supervised learn-
ing method of error backpropagation (e.g., Rumelhart, Hinton, and Williams 1986) pro-
duces an output, receives an error vector, and adjusts the network’s weights to reduce the
magnitude of the error. This is a kind of trial-and-error learning, but it differs from the
kind of learning Thorndike had in mind. Error vectors in supervised learning are derived
from standards of correctness: the ‘target’ responses of supervised learning. In contrast, RL
emphasizes response-dependent feedback that evaluates the learner’s performance by pro-
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cesses that do not necessarily have access to standards of correctness. Evaluative feedback
tells the learner whether or not, and possibly by how much, its behavior has improved; or
it provides a measure of the ‘goodness’ of the behavior; or it just provides an indication of
success or failure. Evaluative feedback does not directly tell the learner what it should have
done, and although it is sometimes the magnitude of an error vector, it does not include
directional information telling the learner how to change its behavior, as does the error
vector of supervised learning. Although evaluative feedback is often called reinforcement
feedback, it need not involve pleasure or pain.

Instead of trying to match a standard of correctness, an RL system tries to maximize
the goodness of behavior as indicated by evaluative feedback.1 To do this, the system
has to probe the environment—perform some form of exploration—to obtain information
about how to change its behavior. It has to actively try alternatives, compare the resulting
evaluations, and use some kind of selection mechanism to guide behavior toward the better
althernatives. I discuss the distinction between reinforcement and supervised learning in
more detail elsewhere (Barto 1991, 1992).

To actually build an RL system, one has to be more precise about the objective of
learning. What does evaluative feedback evaluate? If the learning system’s life consisted
of nothing but a series of discrete trials, each consisting of a discrete action followed by an
evaluation of that, and only that, action, the situation would be simple. But actions can
have delayed as well as immediate consequences, and evaluative feedback generally evaluates
the consequences of all of the system’s past behavior. How can an RL system deal with
complex tangles of actions and their consequences occuring throughout time? This has
been called the temporal credit assignment problem. The concept of an adaptive critic is
one way to approach this problem: the critic learns to provide useful immediate evaluative
feedback based on predictions of future reinforcement. According to this approach, RL is
not only the process of improving behavior according to given evaluative feedback; it also
includes learning to improve evaluative feedback.

The Actor-Critic Architecture

The actor-critic architecture is usually viewed within the framework of control theory. Fig-
ure 1A is a variation of the classical control system block diagram. A controller provides
control signals to a controlled system. The behavior of the controlled system is influenced
by disturbances, and feedback from the controlled system to the controller provides infor-
mation on which the control signals can depend. The controller inputs labeled ‘context’
provide information pertinent control task’s objective. You might think of the context
signals as specifying a ‘motivational state’ that implies certain control goals.

1Klopf’s (1972, 1982) theory of heterostasis, in contrast to homeostasis, emphasizes the significance of
the difference between seeking to match and seeking to maximize.

3



Controller Controlled
System

Control
Signals

Context
Disturbances

Feedback

Actor

(Control signals)

Context Disturbances

Feedback

Critic

Reinforcement 
Signal

Actions Environment
(Controlled System)(Controller)

A

B

Figure 1: The Actor-Critic Architecture as a Controller. A: A Basic Control
Loop. A controller provides control signals to a controlled system,
whose behavior is influenced by disturbances. Feedback from the
controlled system to the controller provides information on which
the control signals can depend. The context inputs provide infor-
mation pertinent to the control task’s objective. B: The actor-critic
architecture. A critic provides the controller with a reinforcement
signal evaluating its success in achieving the control objectives.
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Figure 1B extends the block diagram of Figure 1A to the actor-critic architecture.
Another feedback loop is added for providing evaluative feedback to the controller, now
called the actor. The critic produces evaluative feedback, or reinforcement feedback, by
observing the consequences of the actor’s behavior of the controlled system, now called the
environment. The critic also needs to know the motivational context of the task because its
evaluations will be different depending on what the actor should be trying to do. The critic
is an abstraction of the process that supplies evaluative feedback to the learning mechanism
responsible for adjusting the actor’s behavior. In most artificial RL systems, the critic’s
output at any time is a number that scores the actor’s immediately preceding action: the
higher the number, the better the action.

The actor-critic architecture is an abstract learning system, and care must be taken
in relating it to animals and their nervous systems. It can help us in thinking about
animal reinforcement learning, but it also can be misleading if it is taken too literally.
Specifically, it is deceptive to identify the actor with an animal and the environment with
the animal’s environment. It is better to think of the actor-critic architecture as a model
of any reinforcement learning component, or subsystem, of an animal. There are probably
many such subsystems, only some of them directly controlling the animal’s overt motor
behavior.

Figure 2 elaborates the actor-critic architecture emphasize this point. Think of the
shaded box in this figure as an animal. The actor is not the same as the entire animal, and
its actions are not necessarily motor commmands. Furthermore, the critic (perhaps one
of many) is in the animal. I have split the environment box of Figure 1 into an internal
and external environment to emphasize that the critic evaluates the actor’s behavior on
the basis of both its internal and external consequences. The internal environment can
contain other actor-critic architectures, some of which do generate overt external behavior.
In suggesting how the actor-critic architecture might be related to the basal ganglia, Houk,
Adams, and Barto (1994) suggest that the actions of the relevant actor are the signals
influencing frontal cortex. Both the frontal cortex and cerebellum are components of this
actor’s internal environment.

Figure 3 shows the critic in more detail. It consists of a fixed and an adaptive critic.
We think of the fixed critic as assigning a numerical primary reinforcement value, rt, to the
sensory input (both internal and external) received by the critic at each time instant t; rt
summarizes the strength of that input’s primary reinforcing effect, i.e., the reinforcing effect
that is wired in by the evolutionary process, not learned through experience. Although
in animals this reinforcing effect depends on motivational state, we simplify things by
assuming a fixed motivational state (so Figure 3 does not show the context input to the
critic). The adaptive critic assigns a different reinforcement value to the sensory input via
an adaptive process. The output of the critic at t is the effective reinforcement signal sent
to the actor. We label it r̂t.
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Figure 2: A Hypothetical Animal. The shaded box represents an animal,
emphasizing that it is misleading to identify the actor with an entire
animal and the critic with an external agent.

Figure 3: Elaboration of the Critic. It contains fixed and adaptive components.
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Imminence Weighting

The basic objective of the actor-critic architecture is to learn to act so as to produce sensory
input for which the primary reinforcement value is maximized. But because behavior con-
tinues over time, producing sensory input over time, the learning system has to maximize
some measure of the entire time course of its input. This measure has to take into account
the fact that actions can have long-term as well as short-term consequences on reinforce-
ment, and that sometimes it is better to forgo short-term reward in order to achieve more
reward later. Most RL researchers have adopted a measure based on the theory of optimal
control. Although mathematical simplicity is its main advantage, this measure has some
plausibility for animal learning as demonstrated by the TD model of classical conditioning
(Sutton and Barto 1987, 1990). According to this measure, the objective of learning is
to act at each time instant so as to maximize a weighted sum of all future primary rein-
forcement values. It is plausible to weight immediate primary reinforcement more strongly
than slightly delayed primary reinforcement, which should be more strongly weighted than
long-delayed reinforcement. Sutton and Barto (1990) call this imminence weighting and
suggest that the adaptive critic attempts to predict the imminence-weighted sum of future
primary reinforcement.

Figure 4 (from Sutton and Barto 1990) illustrates the idea of imminence weighting
for the particlar time course of primary reinforcement shown in Panel A. One can think
of this as a sequence of unconditioned stimuli (hence its labeling as US/λ, where λ is a
normalization factor that we do not discuss here). Figure 4B shows a particular imminence
weighting function, which specifies how the weight given to primary reinforcement falls
off with delay with respect to a particular time t. Figure 4C shows how the primary
reinforcement signal is transformed by the imminence weighting function applied at time t
to give reduced weight to delayed primary reinforcement. The quantity the adaptive critic
is trying to predict at time t is the area under this curve. To obtain the correct predictions
for other times, this weighting function is slid along the time axis to that its base starts
at the time in question, the primary reinforcement signal is reweighted according to the
new position, and the new area is calculated. An example for another time, t′, is shown
in Figures 4D and 4E. By repeating this process for every time, one obtains the sequence
of correct predictions shown in Figure 4F. If the adaptive critic is correctly predicting the
imminence-weighted sum of future primary reinforcement for the primary reinforcement
signal of Figure 4A, its predictions should look like Figure 4F.

The simplest way to explain how it is possible to predict an imminence-weighted sum
of future primary reinforcement is to adopt a discrete-time model of the learning process.
Consequently, suppose t takes on only the integer values 0, 1, 2, . . ., and think of the time
interval from any time step t to t+ 1 as a small interval of real time. I make the additional
assumption, again for simplicity, that at minimum it takes one time step for an action
to influence primary reinforcement. This is the basic delay through the environment and
the critic. Hence, by the immediate primary reinforcement for an action taken at time t,
I mean rt+1, and by the immediate effective reinforcement, I mean r̂t+1. Of course, this
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Figure 4: Imminence Weighting (reprinted from Sutton and Barto 1990). A:
A primary reinforcement signal representing a sequence of uncon-
ditioned stimuli (USs). B: An imminence weighting function. C:
Primary reinforcement weighted by the imminence weighting func-
tion. The correct prediction at time t is the area under this curve.
D and E: Imminence weighting for time t′. F: The correct predic-
tions at each time. The heights at times t and t′ equal the total
areas in C and E.
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minumum delay can be different for different actor-critic systems in the nervous system.

Using a discrete-time version of imminence weighting, the objective of the actor is to
learn to perform the action at each time step t that maximizes a weighted sum of the
primary reinforcement values for time step t + 1 and all future times, where the weights
decrease with decreasing imminence of the primary reinforcement value:

α1rt+1 + α2rt+2 + α3rt+3 + · · · , (1)

with α1 > α2 > α3 > . . .. Typically, these weights are defined in terms of a discount factor,
γ, with 0 ≤ γ < 1, as follows:

αi = γi−1,

for i = 1, 2, . . .. Then the imminence-weighted sum of Equation 1 is

rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
i=1

γi−1rt+i.

The discount factor determines how strongly future primary reinforcement should in-
fluence current actions. When γ = 0, the imminence-weighted sum is just the immediate
primary reinforcement rt+1 (because 00 = 1). In this case, the desired actions maximize
only the immediate primary reinforcment. As γ increases toward one, future primary re-
inforcement becomes more significant. Here we think of γ as being fixed close to one, so
that the long-term consequences of actions are important and the adaptive critic plays an
essential role in learning.

If actions were reinforced by immediate primary reinforcement only, learning would
depend only on the short-term consequences of actions. This learning objective, which
has been called a tactical objective (Werbos 1987), ignores the long-term consequences of
actions. Since immediate primary reinforcement is usually lacking entirely (formalized by
letting rt = 0 for those times when there is no primary reinforcement), a purely tactical
learning system cannot learn how to manipulate its environment in order to bring about
future primary reinforcement. Even worse, acting only to attain immediate primary re-
inforcement can disrupt, or even preclude, attaining better primary reinforcement in the
future. A strategic objective (Werbos, 1987), on the other hand, takes into account long-
term as well as short-term consequences.

How tradeoffs between consequences at different times are handled is determined by
exactly how one defines the strategic objective, imminence weighting by means of a discount
factor being one definition. With discounting, any amount of primary reinforcement that is
delayed by one time step is worth a fraction (γ) of that same amount of undelayed primary
reinforcement. As γ increases toward one, the delay makes less and less difference, and the
objective of learning becomes more strategic.

The idea of the adaptive critic is that it should learn how to provide an effective reinforce-
ment signal so that when the actor learns according to the tactical objective of maximizing
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immediate effective reinforcement, it is actually learning according to the strategic objec-
tive of maximizing a long-term measure of behavior. Here, the long-term measure is the
imminence-weighted sum of future primary reinforcement. In order to do this, the adap-
tive critic has to predict the imminence-weighted sum of future primary reinforcement, and
these predictions are essential in forming the effective reinforcement, as discussed below.
Because effective reinforcement incorporates these predictions, the actor only needs to per-
form tactical learning with respect to the effective reinforcement signal: it is geared so that
the action at time t is always reinforced by the immediate effective reinforcement r̂t+1.

An Input’s Value

We call the imminence-weighted sum of the primary reinforcement values from t + 1 into
the future the value of the sensory input (internal and external) at time t. Let Vt denote
this value; that is,

Vt =
∞∑
i=1

γi−1rt+i. (2)

The objective of learning, then, is to learn to influence the environnment so that the sensory
inputs received by the learning system have the highest possible values. The job of the
adaptive critic is to estimate these values and use them to determine the immediate effective
reinforcement.

For the sake of brevity, I have to disregard a lot of important technical details about how
this is even possible, but let me give some hints about these details. Because an estimate
of an input’s value is a prediction of the future, how can these estimates be made? Doesn’t
an input’s value depend on the course of action the learning system will take in the future?
Indeed, doesn’t it depend on all kinds of unpredictable aspects of the environment? First,
prediction is possible if one assumes that environmental situations tend to recur, so that
a prediction is really a kind of recollection of what happened in the same situation, or in
similar situations, in the past. The critic’s sensory input must be rich enough to allow the
detection of situations having the same or similar futures (formalized as states of a dynamic
system). Second, for much of our discussion, we assume that the learning system’s policy
of acting stays fixed throughout the prediction process. This does not mean that the actor
always produces the same action, but that it always responds the same way whenever the
same situation recurs: its response rule, or policy, is fixed. Of course, because the whole
point of RL is to change this response rule, this is only a subproblem of the entire RL
problem. Finally, when the sensory input cannot resolve all the unpredictable aspects of
the environment (i.e., when what appears to be a previously sensed situation is followed
by a different course of events), probability theory is invoked. By the value of an input we
really mean the expected imminence-weighted sum of future primary reinforcement values:
the average over all the possible future scenarios.

So the adaptive critic is supposed to estimate the values of sensory inputs so it can
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compute a suitable effective reinforcement, r̂t. Let the critic’s estimate of Vt by denoted Pt;
it is a prediction of the imminence-weighted sum of future primary reinforcement. Then
from Equation 2 we would like the following to be true:

Pt ≈ Vt = rt+1 + γrt+2 + γ2rt+3 + · · · , (3)

where ≈ means ‘approximately equal’.

Learning to Predict

It is relatively easy to devise a supervised learning system for learning to predict the future
values of specific signals. For example, suppose we wanted to have a prediction at any time
t of the primary reinforcement signal at t+ 1; that is, suppose we want Pt = rt+1 for all t.
This is a one-step-ahead prediction problem, and the usual kind of error-driven supervised
learning system (e.g., Rumelhart et al. 1986) can be used to solve it. This system would
need, at each time t during learning, an error between its actual prediction, Pt, and the
prediction target (the quantity being predicted), rt+1. It can obtain this error simply by
computing Pt, waiting one time step while remembering Pt, then observing the actual rt+1.
It also has to remember for one time step the sensory input on which the prediction was
based in order to update its prediction function.

For example, suppose Pt is the output of a simple linear connectionist unit:

Pt =
m∑
i=1

vitx
i
t,

where vit and xit, for i = 1, . . . ,m, are respectively the connection weights and input ac-
tivations at time t. Then the standard delta learning rule for one-step-ahead prediction
is

vit+1 = vit + η[rt+1 − Pt]xit, (4)

where η > 0 is the learning rate. If we think of this update equation being applied at time
t+1, then Pt is the remembered prediction, xit is the remembered input activation, and rt+1

is the currently observed primary reinforcement value.

This is perhaps clearer if we rewrite the learning rule as it would appear if it were
applied at time t instead of t+ 1:

vit = vit−1 + η[rt − Pt−1]xit−1. (5)

This form, equivalent to Equation 4, makes it clear that the previous prediction and the pre-
vious input activations have to be remembered as well as the previous connection weights.
Following Klopf (1972, 1982), we say that input activity at t − 1 (i.e., xit−1 6= 0) makes
the connection weight vi eligible for modification at t. In neural terms, eligibility would be
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a synaptically local memory for storing information about the past activity of the presy-
naptic fiber. Houk, Adams, and Barto (1994) postulate that this notion of eligibility is
implemented by a period of high receptivity of spiny neuron synapses to the reinforcing
effects of dopamine.

Of course, for this learning rule to work there must be information in the input stream
that is predictively useful. If one wanted to predict more than one time step into the future,
the procedure would be essentially the same except that it would need to remember the
predictions and the input activations for the entire time interval until the actual predicted
value becomes available. Consequently, for a prediction interval of k time steps, the proce-
dure would need to keep in memory k past predictions and k past input activations. Any
kind of eligibility mechanism for this situation would have to be much more complicated
than the simple period of receptivity mentioned above. One of the advantages of the adap-
tive critic is that it can learn to predict many time steps into the future without the need
for a more complicated eligibility mechanism.

The Adaptive Critic Learning Rule

The adaptive critic learning rule begins with the one-step-ahead prediction method de-
scribed in the previous section. However, for the critic the prediction targets are the values
of inputs, which involve all future primary reinforcement, not just the primary reinforce-
ment at the next time step. Extending the one-step-ahead method to this situation in the
most obvious way would require an infinite amount of storage and the weights could not
be updated until an infinite amount of time had passed.

The adaptive critic learning rule rests on noting that correct predictions must satisfy a
certain consistency condition which relates the predictions at adjacent time steps. More-
over, it is true that any predictions that satisfy this consistency condition for all time steps
must be correct. (This is a result from the theory of optimal control that is not particularly
obvious.) Suppose that the predictions at any two adjacent time steps, say steps t− 1 and
t, are correct. This means that

Pt−1 = rt + γrt+1 + γ2rt+2 + · · · (6)

Pt = rt+1 + γrt+2 + γ2rt+3 + · · · . (7)

Now notice that we can rewrite Pt−1 as follows:

Pt−1 = rt + γ(rt+1 + γrt+2 + · · ·).

But this is exactly the same as
Pt−1 = rt + γPt.

This is the consistency condition that is satisfied by the correct predictions. The error
by which any two adjacent predictions fail to satisfy this condition is called the temporal
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difference error (or TD error) by Sutton (1988):

rt + γPt − Pt−1. (8)

The adaptive critic uses the TD error to update its weights. The term temporal difference
comes from the fact that this error essentially depends on the difference between the critic’s
predictions at adjacent time steps.

The adaptive critic therefore adjusts its weights according to the following modification
of the the one-step-ahead learning rule of Equation 5:

vit = vit−1 + η[rt + γPt − Pt−1]xit−1. (9)

This rule adjusts the weights to decrease the magnitude of the TD error. Note that if γ = 0
this is equal to the one-step-ahead learning rule (Equation 5).

In analogy with the one-step-ahead learning rule (Equation 5), we can think of rt + γPt
as the prediction target: it is the quantity that each Pt−1 should match. The adaptive
critic is therefore trying to predict the next primary reinforcement, rt, plus its own next
prediction (discounted), γPt. On the surface it is not clear that this would work: it is
like the blind leading the blind. How can an incorrect prediction be improved by moving
it toward another incorrect prediction? The key observation, however, is that the target
rt+γPt tends to be more accurate than the prediction Pt−1 because it includes the additional
data provided by rt. It is more like the blind being led by the slightly less blind. Although
this method is very simple computationally, it actually converges to the correct predictions
under fairly general conditions.

Effective Reinforcement

The output of the adaptive critic at time t is the effective reinforcement r̂t, which reinforces
the action made at t − 1. For the actor-critic architectures with which we have the most
experience, the effective reinforcement is same as the TD error:

r̂t = rt + γPt − Pt−1. (10)

Effective reinforcement is therefore the sum of the primary reinforcement, rt, and the term
γPt−Pt−1, which corresponds to secondary reinforcement . To understand why this makes
sense, one has to consider how the learning rule of the actor works.

The Actor Learning Rule

The basic idea of the actor learning rule is that if an action produced in response to a sensory
input has the expected consequences, then that response tendency remains unchanged. On
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the other hand, if its consequences are better (worse) than expected, the response tendency
is strengthened (weakened) (cf. the Rescorla-Wagner model; Rescorla and Wagner 1972).
When the TD error equals zero, the consequences are as they were predicted by the critic,
and no learning should occur. When the TD error is positive (negative), consequences
are better (worse) than predicted so that the response tendency should be strengthened
(weakened).

Suppose the actor makes decisions by comparing the activities of a collection of linear
connectionist units, where there is one unit for each possible action. The action selected is
the one whose unit has the most vigorous activity. Let at denote the activity at time t of
the unit corresponding to action a and suppose that

at =
m∑
i=1

witx
i
t,

where wit and xit, for i = 1, . . . ,m, are respectively the weights and input activations at
time t. The following learning rule for this unit is applied only if action a was selected for
execution at time t− 1:

wit = wit−1 + ζr̂tx
i
t−1. (11)

where ζ > 0 is the learning rate. The weights of the units for the unselected actions remain
unchanged.

Due to the definition of the effective reiforcement r̂t (Equation 10), this rule it is almost
indentical to the adaptive critic learning rule (Equation 9). It possibly has a different
learning rate and, more importantly, it applies only to the weights for the action a that
was selected at t− 1.

Neural Implementation

Figure 5 illustrates how the actor-critic architecture could be implemented by a neural
network. Both the actor units and the predictor unit use the same learning rule and
the same modulatory signal, r̂t, as a factor in updating their synaptic weights. All the
modifiable synapses require local memory to implement the necessary eligibility mechanism.
The only difference between these units is that the actor units compete with each other
so that only one unit wins the competition, and the learning rule applies only to the
winning unit. This could be implemented by suitable lateral inhibition and a slightly
different eligibility mechanism for the actor units. Whereas the eligibility mechnanism of
the predictor unit remembers only past presynaptic activity, the eligibility mechanism of
an actor unit would have to remember past conjunctions of pre- and postsynaptic activity
in such a way that if it were not selected, none of its synapses could become eligible for
modification. Consequently, the modifiable synapses of the prediction unit must use a
two-factor learning rule, whereas those of the actor units must use a three-factor learning
rule. Finally, some mechanism is required to compute the secondary reinforcement signal
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Figure 5: Network Implementation of the Actor-Critic Architecture. Both
the actor units and the predictor unit use the same learning rule
and the same modulatory signal, r̂t, as a factor in updating their
synaptic weights. All the modifiable synapes require local memory
to implement the necesary eligibility mechanism. The actor units
compete with each other to determine the action, and the learning
rule is applied only to the winning actor unit.

γPt − Pt−1. This could be accomplished by a kind of neural differentiator that is shown
by the box in Figure 5. Houk, Adams, and Barto (1994) elaborate this basic network
in relation to the circuitry and intracellular chemistry of the basal ganglia and dopamine
neurons.

The Case of Terminal Primary Reinforcement

Most relevant to animal learning experiments are cases in which a sequence of actions has
to be accomplished before a primary reinforcing event occurs (e.g., a monkey reaching,
picking up a food morsel, and transferring it to its mouth as in Schultz, et al. 1993 and
Schultz 1993). In this case, during each trial rt = 0 for all t except when the food is actually
tasted, at which time, say T , it is some positive number, say one; so that rT = 1. Suppose
that the discount factor γ is very nearly one so that we can effectively ignore it, and further
suppose that the adaptive critic starts out by producing Pt = 0 throughout the first trial.

Then until the first occurrence of the terminal primary reinforcing event at time T of
some trial (due to the accidental execution of the right action sequence), all the TD errors,
and hence all the effective reinforcements, are zero. At time T of this first successful trial,
the TD error and the effective reinforcement are 1. This positive effective reinforcement
causes the actor to increase its tendency to produce the immediately preceding response,
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and the positive TD error causes the adaptive critic to adjust its weights so that when the
stimulus at time T − 1 of this successful trial recurs in a later trial, the critic will predict
that the immediately following stimulus will have positive value. That is, PT−1 will be
greater than zero at time T − 1 of a trial in which the stimulus at T − 1 is the same (or
similar) to the stimulus at T − 1 of the first successful trial.

Now things become more complicated but also more closely related to the observed
responses of dopamine neurons. Consider the next successful trial. In addition to the
events of the first successful trial happening again, so that the actor’s response tendency
and the critic’s prediction become stronger, the fact that PT−1 is positive has two additional
consequences:

1. The TD error and the effective reinforcement at time T −1 will now be positive. This
quantity is

rT−1 + γPT−1 − PT−2,

and since both rT−1 and PT−2 are zero,2 this equals γPT−1 > 0. Just as the positive
TD error at time T of the first successful trial caused the critic to make a positive
prediction at time T − 1 of later trials, this positive TD error at T − 2 will cause the
critic to make a positive prediction at time T − 2 of later trials. Also, as effective
reinforcement, this positive quantity causes the actor to increase its tendency to
produce the response it made at T − 2 of this successful trial.

2. The TD error and the effective reinforcement at time T will decrease. This quantity
is

rT + γPT − PT−1.

rT is still 1 since this is a successful trial; PT is still zero because it is predicting that
zero primary reinforcement occurs after the trial;3 and PT−1, which is positive, is
being subtracted. Thus, the TD error and effective reinforcement at time T will be
smaller than in earlier trials.

With continued successful trials, which become increasingly likely due to the actor’s
changing response rule, the TD errors and effective reinforcements propagate backward in
time: the activity transfers from later to earlier times within trials. Learning stops when
these quantities all become zero, which happens only when the adaptive critic correctly
predicts the values of all stimuli, i.e., when all expectations are met by actual events (which

2Actually, PT−2 might not be zero because it might have increased in intervening unsuccessful trials in
which the animal made a mistake only on the last move. But it will be small enough so that the TD error
at T − 1 will still be positive.

3Actually, PT might be nonzero because it is really predicting the imminence-weighted sum of future
primary reinforcement, which includes primary reinforcement obtained in later successful trials. However,
it is only with considerable experience that PT takes on significant positive value due to the presumably
long duration of the inter-trial interval.
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requires certain assumptions about the regularity of the environment and the richness of
the sensory input), and the actor always produces the correct actions.

Conclusion

The actor-critic architecture implements one approach to learning when actions have de-
layed consequences. It has a well-developed theoretical basis, works well in practice, and
makes strong contact with animal learning through the TD model of classical conditioning.
The adaptive critic computes an effective reinforcement signal such that the action-selection
subsystem achieves long-term goals while learning only on the basis of immediate effective
reinforcement. The TD error used by the adaptive critic’s learning mechanism is the same
as the effective reinforcement supplied to the action-selection subsystem. When primary
reinforcement occurs only after a sequence of correct actions, the adaptive critic’s activity
parallels that observed in dopamine neurons during similar animal learning experiments.
This suggests the hypothesis that the activity of dopamine neurons plays the dual roles of
TD error and effective reinforcment in a neural implementation of the actor-critic architec-
ture. Houk, Adams, and Barto (1994) explore this hypothesis in more detail.
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