Provided by ScholarWorks@UMass Amherst

University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Schweik Open Source Project Science, Technology and Society Initiative

12-2007

Identitying Success and Abandonment of Free/
Libre and Open Source (FLOSS) Commons: A
Preliminary Classification of Sourceforge.net
projects

Charles M. Schweik
University of Massachusetts - Amherst

Robert English
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/opensource

b Part of the Political Science Commons, and the Science and Technology Studies Commons

Schweik, Charles M. and English, Robert, "Identifying Success and Abandonment of Free/Libre and Open Source (FLOSS)
Commons: A Preliminary Classification of Sourceforge.net projects’ (2007). Schweik Open Source Project. 2.
Retrieved from https://scholarworks.umass.edu/opensource/2

This Research, creative, or professional activities is brought to you for free and open access by the Science, Technology and Society Initiative at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Schweik Open Source Project by an authorized administrator of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

https://core.ac.uk/display/13601717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/opensource?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/sts?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/opensource?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/386?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/opensource/2?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Important Notice: This PDF contains the final version of this article, that was published in the December 2007
issue of Upgrade (vol VIII, no. 6). The previous one, edited by UPGRADE, is an obsolete version.

| dentifying Success and Abandonment of FLOSS Commons:
A Classification of Sourceforge.net Projects

Robert English Charles M. Schweik
Center for Public Policy and Administration, = Department of Natural Resources Conserva
University of Massachusetts, and Center for Public Policy and
Amherst, MA USA Administration, University of Massachusetts,
renglish@pubpol.umass.edu Ambherst, MA USA

cschweik@pubpol.umass.edu

abandonment and a “dead” project. In order for FEOS
Abstract projects to be successful, the collective actiomlived
(or attempts at collective action in the case dfjguts

Free/Libre and Open Source Software (FLOSS) with one participant) must be sustained gt Iea$'l_| an
projects are a form of commons where individualskwo software product has been produced. Discovering ho

collectively to produce software that is a publiather FLOSS projects sustain collective action to produseful

than a private, good. The famous phrase “Tragedshef software may have important implications for impray
Commons” d’escribes a situation where a natural OYr understanding of FLOSS software development as

resource commons, such as a pasture, or a watgslgup well as computer-mediated collective action more
gets depleted because of overuse. The tragedy GSEL ger|1erally [14,15]. hol h . . d diff
commons is distinctly different -- it occurs whefiective n recent years, sc olars have Investigate niere
action is abandoned before a software product is approaches.to measuring the success and failure of
produced or reaches its full potential. This pajberilds FLOSS dprlglj_%:tssé For e>§?fmf)le, “dstud;]?sb [2’3’7.’11’16]
on previous work about defining success in FLOSsMeasured = project 'ﬁ or 1ear: Iyrr_10n|ttg
projects by taking a collective action perspecthi&e first project activity measures such as: (1) the releagectory

report the results of interviews with FLOSS devetep (e.g., movement from alpha to beta to stable reje48)

regarding our ideas about success and failure irOEIS cza;lr?es In vt;arsm? Pumbelrt; 53) chﬁngl((es_, n :mesodtar;]t
projects. Building on those interviews and previausk, (4) the num er of “commits=or check-ins o a cantr
we then describe our criteria for defining success storage repository, and (5) activity or vitality oses

abandonment in FLOSS commons. Finally, we distiess t measured on collaborative platforms such as SF and
results and validation of a classification of neardll Freshmeat.net. Weiss assessed project popularity us

projects hosted on Sourceforge.net as of Augus.200 web_search engines [17.]' And mo_sF recently, Cromsto
Howison and Annabi reviewed traditional models used

. measure information systems success and then adapte

1. Introduction them to FLOSS [4]. They collected data from
Sourceforge.net (SF) and measured community simg, b
Free/Libre and Open Source Software projects fixing time and the popularity of projects.

(FLOSS) are recognized as Internet-based commons |n this paper, we are trying to build on these igtsidy
[1,13,15]. Since 1968, when the famous article gBdy defining success and abandonment of FLOSS commons
of the Commons” by Garrett Hardin was publisheth® from the perspective of successful collective actibhe
journal Science, there has been significant inteles paper is organized as follows. First, we describe
understanding how to manage commons appropriately.interviews we conducted with FLOSS developers tb ge
Hardin's work, and much of the work that followed, feedback on our ideas about defining success. Net,
focused on commons management in the naturaldefine a six-stage classification system of FLOSS

environment. And in these commons, the ‘“tragedy” commons based on information gained from these
Hardin described was over-harvesting and destmiatio interviews, as well as previous literature and oum

the resource, whether it be water, fish stock,dtseor our earlier work studying FLOSS. We follow this with a
atmosphere. In FLOSS commons the ‘tragedy” is description of our efforts in building a datasetiaih
different; what developers hope to avoid is project combines much of the August 2006 data availablenfro

Lorenzo
Text Box
Important Notice: This PDF contains the final version of this article, that was published in the December 2007 issue of Upgrade (vol VIII, no. 6). The previous one, edited by UPGRADE, is an obsolete version.

the FLOSSmole project (described below) and data weFLOSS projects and would not be a failure evenaf n

gathered ourselves through automated data minirtgeof release had been made.

SF website. This section then describes how we So, how do these responses inform working defingio

operationalized our proposed success/abandonmenbf success and abandonment? Because we view FLOSS

classes using this dataset. The “Results” sectisrudses projects as efforts in collective action with theay of

our preliminary classification of nearly all profedosted producing public good software, defining succesterms

on SF as of August 2006, and the “Validation” smtti of producing a useful software product makes sesmse,

explains how we verified the results. We conclude t our interviewees seem to agree. Six of the eight

paper with some next steps. interviewees suggested that success involves piogluc
something useful for users. Since the real tragedya

2. FLOSS Developer Opinions on Success FLOSS project involves a failure to sustain collect

and Failure action to produce, maintain or improve the software

defining failure in terms of project abandonmentkes

sense, and generally, our interviewees agreedtifigethe

first release as a milestone or transition pointwben

what we refer to as the “Initiation Stage” and greject

“Growth Stage” [13, 18] emerges logically from thiise

of thinking. All in all, these interviews supporteslr

initial thinking about project success and abandamm

We conducted eight interviews [18] with FLOSS
developers between January and May of 2006 in tpart
get opinions about definitions of success and ifailiWe
stratified our sampling by categories of projectthw5,
5-10, 11-25 and >25 developers and interviewed
developers from two projects in each category.riftevs
were conducted over the phone, digitally recorded, .
transcribed and analyzed. 3. A SuccesyAbandonment Classification

We asked interviewees how they would define successSystem for FL OSS Commons
in a FLOSS project. Interviewees responded withe fiv
distinct views. One defined success in terms of the After conducting the interviews and considering the
vibrancy of the project’s developer community. Tdre results, we developed a six-class system for daagri
defined FLOSS success as widely used software. Twosuccess and abandonment of FLOSS projects acrass tw
others defined success as creating value for u€are. longitudinal stages of Initiation and Growth (Talilg In
developer cited achieving personal goals, and #st | previous work [13, 18] we defined “Initiation” alset start
interviewee felt his project was successful becaiise of the project to its first public release, and 6Gth” as
created technology that percolated through othejepts the period after this release.
even though his project never produced a useful Therefore, a project is classified @9 Success in the
standalone product. Initiation Stage(SI) when it has produced “a first public

Immediately after asking interviewees about sugcess release.” This can be easily measured for projecssed
we asked how they would define failure in a FLOSS at SF because SF lists all a project’s releasegrofect
project. Interestingly, all eight developers sdidttfailure that is successful in the initiation phase autocaditi
had to do with a lack of users and two indicated ¢hlack becomes an indeterminate project in the growth@has
of users leads to project abandonment. In a probing Projects are classified a®) Abandonment in the
qguestion that followed, we asked if defining a ddil Initiation Stage(Al) when the project is abandoned before
project as one that was abandoned before produxing producing a first public release. We define abanaent
release seemed reasonable. Four interviewees flatlyas few forum posts, few emails to email lists, male
agreed, three agreed with reservations and ongrdisa. commits or few other signs of project activity oxeone-
Two of those with reservations raised concerns atimi year period. Preliminary data we have analyzed f&fn
quality of the release. For example, one projeghtnnot indicates that projects in Initiation that have mad a
make its first release until it had a very stahisll release for a year are generally abandoned (see the
functioning application while another project might discussion of the “test sample” below)
release something that was nearly useless. Another A project is considered a (Juccess in the Growth
interviewee had concerns about how much time cpas$ Stage(SG) when it exhibits “three releases of a sofewar
before a project was declared abandoned. One gmrelo product that performs a useful computing task fdeast
argued that a project that was abandoned beforupimg a few users (it has to be downloaded and used).” We
a release could be successful from the developeitd of decided that the time between the first releasetlamdast
view if he had improved his programming skills by release must be at least six months because a thlgrow
participating. The dissenting developer felt thabjgct stage” implies a meaningful time span. As mentioned
source code would often be incorporated into otherabove, we can easily measure the number of releasks

the time between them since SF tracks this infdonat

Measuring “a useful computing task” is harder aleddy produce a relatively simple but approximately aaterr
more subjective. Acquiring the number of downloads classification by using a project’s failure to eee within
recorded on project websites is probably the emsiesa year as a proxy for abandonment.
measure, with the assumption that many downloads Naturally, operationalizing the definitions for sess
captures the concept of utility. and abandonment had much to do with the availghofit

A project is considered (4)bandoned in the Growth data. We chose to use the August 2006 data spidiened
Stage (AG) when it appears to be abandoned without SF because it was the latest data available dintiee This
having produced three releases or when it prodtiues data has a total of 119,590 projects, but 235 ebe¢h
releases but failed to produce a useful softwaneymt. projects were missing essential data leaving 110,35

We classify a project as (S)ndeterminate in the projects. Although FLOSSmole had most of the datga w
Initiation Stage(ll) when it has yet to reveal a first public needed for operationalizing our classificationytdel not
release but shows significant developer activity. have data on the number of releases and the diathes o

Finally, projects are assigned (B)determinate in the first and last release. Consequently, we spideréd S
Growth Stage(lG) when they have not produced three ourselves between September and October 2004 fa fil
releases but show development activity or when treese this data gap. 8,422 projects had missing datedbeen
produced three releases over less than six momttls a deleted from SF (SF occasionally purges defungepts)

show development activity. between the August 2006 and the time we collectad o
data leaving valid data for 110,933 projects. Basedur

4. Operationalizing the Classification System definitions described earlier, and the added in&dirom
we gained from the test sample, we undertook a

As a first step in operationalizing our definitiofar classification of these SF projects as describéthivle 1.

FLOSS success and abandonment, we conducted a

random test sample of sixty projects hosted on Sikgu Table 1: Six FLOSS success/abandonment

April 2005 FLOSSmole data [5]. The FLOSSmole projec _classes and their methods of operationalization

is itself an open source-like project where redsans and Class/ Definition(D)/Operationalization(O)

others collaborate to collect and analyze data tabouAbPreviation :

FLOSS. The data is collected by automated “crawlorg ~ [SUCCESS, D: Developers have produced a first

“spidering” of SF and other open source hostingssitwe [Initiation (SI) release. _ ,

decided to conduct this test sample from the FLOG&m O: At least 1 release (Note: all projectsin

database to look for problems with our classifimati the growth stage are SI) .
scheme and to get some idea about the number jeicso ~ {AbandonmentD: Developers have not produced a first

likely to fall within each of the classes. Follogithe [nitiation (Al) release and the project is abandoned
logic used in our FLOSS developer interviews and O: 0 releases AND >=1 year since SF
knowing we wanted to study projects with larger bens project registration

of developers because of their more interestintective ~ [Success, D: Project has achieved three meaningful
action issues, we stratified by number of develspeto [Growth (SG) [releases of the software and the softwg
categories of <10, 10-25 and >25 developers. We deemed useful for at least a few users.
randomly sampled twenty projects from each catefmry O: 3 releases AND >= 6 months betwgen
a total of sixty projects. We chose 20 projectsabse it releases AND doesohmeet the downlog
was a reasonable undertaking given time constrafifus criteria for abandonment detailed in thg
these sixty sampled projects, we manually compilath TG description below.

on project registration, last release date, number |AbandonmentD: Project appears to be abandoned bg
downloads, project website URL and forum/email/ [Growth (AG) |producing 3 releases of a useful produ

postings among other data. From this data, we naade has produced three or more releases ir
judgment about whether the software was “usefuldl an than 6 months and is abandoned.
whether the project was abandoned. We classified th O: 1 or 2 releases and >=1 year since the
projects as Sl, Al, SG or AG based on this infoiorat last release at the time of data collectign
No indeterminate cases were found in this sample. OR < 11 downloads during a time periqd

Perhaps the most important information we acquired greater than 6 months starting from the
from the test sample is that the vast majority xfjgcts date of the first release and ending at the
that have not had a release for a year are abaddéiie data collection date OR 3 or more reled
27 projects in the sample that (1) had not provided in less than 6 months and >= 1 year sirnce
release in over a year and (2) had less than teteases the last release.

were abandoned. This finding suggested that wedcoul |Indeterminate| D: Project has no public releasehhst

Class/ Definition(D)/Operationalization(O)
Abbreviation
Initiation (1) |significant developer activity

—

O: 0 releases and < 1 year since proje
registration

D: Project has not yet produced three
releases but shows development activi
has produced 3 releases or more in les
than 6 months and shows development
activity.

O: 1 or 2 releases and < 1 year since t
last release OR 3 releases and < 6 mo
between releases and < 1 year since th
last release

Indeterminate
Growth (IG)

%)

ne
hths
e

5. Results

Table 2 provides the number of SF projects claskifi
by the two longitudinal stages: Initation and Growit
also reports projects that could not be classifieable 3
summarizes our results of the success and abandbnme
classification of all projects on SF. As Table 3uoon 3
shows, potential classification errors stem prifgariom
two sources:

Source 1 Error- using one year without a releasa as

Class [# of Project{ Possible Classification Errorsji
(%of Total)| (other than errors in the SF data)

The project produced useful
software even though it met the
download critera for abandonment

Il 13,342 (12)No classification errors (k
definition)

IG 10,711 (10)No classification errors (k
definition)

Total 107,747

Note: Sl is not listed because these successé&arareh

Stage projects. Including SI would double count.

6. Validation of Results

To test the validity of the results in Table 3, twek a
random sample of three hundred classified projeats,
checked each projects' classification results byuaby
reviewing SF pages. Table 4 lists validation result

Table 4: FOSS Project Classification
Validation Results

proxy for abandonment. —
Source 2 Error - using the number of downloads per Oglgmal Correct In- i Ii/le_let_ed/ RErtroz/
month as a proxy for the software being useful. ass correc ISSing ate
(# of Data
Table 2: Sourceforge.net projects organized by cases)
longitudinal stage (as of August 2006) Al 77 10 19 11.5
Stage # of Projects (% of Total classified) (106)
Initiation Stage 50,662 (47)
AG 93 8 0 7.9
Growth Stage 57,085 (53) (101)
Not classified 3,186 SG 92 0 1 0
Total classified 107,747 (93)
* These are valid projects, but could not be clasifi Totals 262 18 20 6.4

because they have 0 releases & downloads on Skalsg
other websites that may be used for these functior]

S

Table 3: Preliminary classification of all FLOSS
projects on Sourceforge.net (as of August 2006)
Class [# of Projecty Possible Classification ErrorsJi
(%o0f Total)| (other than errors in the SF data)
37,320 (35)[The project is not abandoned buf >
1 year old

Al

SG 15,782 (15)The software is not used in spite|of
not meeting the download criteria

for abandonment

AG 30,592 (28)The project is not abandoned; OR

Of the 106 projects originally classified Al, 77 nge
correctly classified, ten were incorrectly clagsifi
eighteen were deleted from SF and one had missing
information and could not be validated, resultingthe
highest classification error rate of 11.5%. The ten
misclassifications did not list a release for aryadter they
were registered, but did show some developer &ctini
the year before our data were collected (Sourcedr)e
Regarding the eighteen deleted projects, it islitikely
that most if not all of these were classified cotlse given
SF regularly purges inactive projects; however,isit
possible that some were active and were movedher ot
hosting platforms by the project developers.
Consequently, we keep 11.5% as the error rate for A

Of the 101 cases that were originally assignechéo t
AG class, eight were active and incorrectly clasdiffor
an error rate of 7.9%. Finally, of the 93 casegd there
classified as SG, 92 were classified correctly angé
could not be validated because of missing dataFon S

These validation results show that the classificati
varies from what we would consider “reasonably
accurate” (Al) to “extremely accurate” (SG). Thises a
high-level of confidence that future analysis basadhis
classification will produce meaningful results.

7. Conclusion

Source Software Engineering, 12 Dec.

http://opensource.ucc.ie/ icse2003.

2006;

[3] K. Crowston, H. Annabi, and J. Howison, “Defiigi Open
Source Project Success,” IRroceedings of the 24th Intl
Conference on Information Systen@lS, Seattle, 2003.

[4] K. Crowston, J. Howison, H. Annabi, “InformaticSystems
Success In Free And Open Source Software Develdpmen
Theory And Measures,Software Process Improvement and
Practice v 11, n 2, March/April, 2006, pp. 123-148.

[5] FLOSSmole, “sfProjectinfo06-Apr-2005,” 16 Ju®05;
http://sourceforge.net/project/showfiles.php?gradpl119453
&package_id=132043/.

We intend to use this classification as a dependent

variable for quantitative models that investigasetérs

[7]1 S. Hissam, C. B. Weinstock, D. Plaksoh, andAgundi,.

that lead to success and abandonment in FLOSSein th Perspectives on Open Source Software. Technicabrrep

stages of Initiation and Growth. We expect inflignt
factors to be different between these two stagés1a].

The validation results give us confidence that this
despite ther11] M. Robles, G. Gonzalez,- J.M. Barahona, J. tQeo-

classification is reasonably accurate,
shortcomings described in Section 5. We are puhblish
these definitions and results in the spirit of éase early
and often” and because defining and classifyingssg in

CMU/SEI-2001-TR-019Carnegie Mellon University. 10 Jan.
2007 http://www.sei.cmu.edu/publications/documedisrfeports
/01tr019.html.

Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino
“Studying the Evolution of Libre Software Projectdsing
Publically Available Data,” In J. Feller, B. Fitagéd, S.

FLOSS projects is important to many FLOSS researchHissam, and K. Lakhani (edsTjaking Stock of the Bazaar:

projects. In the near future, we plan to releasediita we
collected and our classifications on the FLOSSnsitie.
We hope that in the tradition of open source caliabon
other researchers will build on this work by cotimeg any
perceived “bugs” in our approach and collecting
additional data to improve classification accuracy.

8. Acknowledgments

Support for this study was provided by a grant from
the U.S. National Science Foundation (NSFIIS 048j62
However, the findings, recommendations, and opmion
expressed are those of the authors and do notswides
reflect the views of the funding agency. Thankstgo
Megan Conklin, Kevin Crowston and the FLOSSmole
project (http://ossmole .sourceforge.net/) for mgkiheir
Sourceforge data available, and for their assistaié¢e
are also grateful to Thomas Folz-Donahue for
programming work building our FLOSS project databas

9. References

[1] Bollier, D., Silent Theft: The Private Plunder of Our
Common WealthRoutledge, London, 2002.

[2] A Capiluppi, P. Lago, and M Morisio,. “Evidersen the
Evolution of OS projects through Changelog Analysés J.
Feller, B. Fitzgerald, S. Hissam, and K. Lakhards(¢Taking
Stock of the Bazaar: Proceedings of the 3rd Wonsio Open

Proceedings of the 3rd Workshop on Open Sourcev8wt
Engineering,12 Dec. 2006. http://opensource.ucc.ie/icse2003.

[13] C. Schweik, “An Institutional Analysis Approacto
Studying Libre Software ‘Commons’')pgrade: The European
Journal for the Informatics Professionall0 Jan. 2007,
http://www.upgrade-cepis.org/issues/2005/3/up6-3&ik pdf.

[14] C. Schweik, T. Evans and J. Grove, “Open Seusod
Open Content: A Framework for Global Collaboratiom

Social-Ecological Research. Ecology and Socidty(1): 33. 10
Jan. 2007, http://www.ecologyandsociety.org/vold€lly art33/.

[15]C. Schweik, “Free / Open Source Software asaamnEwork
for Scientific Collaboration,” In Hess, Charlottand Elinor
Ostrom, edsUnderstanding Knowledge as a Commons: From
Theory to PracticeMIT Press, Cambridge, Mass, 2007.

[16] K. J. Stewart, and T. Ammeter, “An Exploratdsyudy of
Factors Influencing the Level of Vitality and Poarity of Open
Source Projects,” In L. Applegate, R. Galliers, dnd DeGross
(eds.) Proceedings of the 23rd International Conference on
Information System$arcelona, 2002, pp. 853-57.

[17] D. Weiss, “Measuring Success of Open Sourcgeets
Using Web Search Enginestoceedings of the First
International Conference on Open Source Systemze
11th-15th July 2008Marco Scotto and Giancarlo Succi (Eds.),
Genoa, 2005, pp. 93-99

[18] C. Schweik and R. English, “'Tragedy of the F®
Commons? Investigating the Institutional Design&afe/Libre
and Open Source Software ProjecErstMonday 28 Feb.
2007, http://www.firstmonday.org/issues/issuel?2 2/schyeik

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	12-2007

	Identifying Success and Abandonment of Free/Libre and Open Source (FLOSS) Commons: A Preliminary Classification of Sourceforge.net projects
	Charles M. Schweik
	Robert English

	Final_English_Schweik_Upgrade_Submitted_Nov_2007.rtf

