
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Schweik Open Source Project Science, Technology and Society Initiative

12-2007

Identifying Success and Abandonment of Free/
Libre and Open Source (FLOSS) Commons: A
Preliminary Classification of Sourceforge.net
projects
Charles M. Schweik
University of Massachusetts - Amherst

Robert English
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/opensource

Part of the Political Science Commons, and the Science and Technology Studies Commons

This Research, creative, or professional activities is brought to you for free and open access by the Science, Technology and Society Initiative at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Schweik Open Source Project by an authorized administrator of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Schweik, Charles M. and English, Robert, "Identifying Success and Abandonment of Free/Libre and Open Source (FLOSS)
Commons: A Preliminary Classification of Sourceforge.net projects" (2007). Schweik Open Source Project. 2.
Retrieved from https://scholarworks.umass.edu/opensource/2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13601717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/opensource?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/sts?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/opensource?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/386?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/opensource/2?utm_source=scholarworks.umass.edu%2Fopensource%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Identifying Success and Abandonment of FLOSS Commons:
A Classification of Sourceforge.net Projects

Robert English
 Center for Public Policy and Administration,

University of Massachusetts,
Amherst, MA USA

renglish@pubpol.umass.edu

Charles M. Schweik

Department of Natural Resources Conservation
and Center for Public Policy and

Administration, University of Massachusetts,
Amherst, MA USA

cschweik@pubpol.umass.edu

Abstract

Free/Libre and Open Source Software (FLOSS)

projects are a form of commons where individuals work
collectively to produce software that is a public, rather
than a private, good. The famous phrase “Tragedy of the
Commons” describes a situation where a natural
resource commons, such as a pasture, or a water supply,
gets depleted because of overuse. The tragedy in FLOSS
commons is distinctly different -- it occurs when collective
action is abandoned before a software product is
produced or reaches its full potential. This paper builds
on previous work about defining success in FLOSS
projects by taking a collective action perspective. We first
report the results of interviews with FLOSS developers
regarding our ideas about success and failure in FLOSS
projects. Building on those interviews and previous work,
we then describe our criteria for defining success or
abandonment in FLOSS commons. Finally, we discuss the
results and validation of a classification of nearly all
projects hosted on Sourceforge.net as of August 2006.

1. Introduction

Free/Libre and Open Source Software projects
(FLOSS) are recognized as Internet-based commons
[1,13,15]. Since 1968, when the famous article “Tragedy
of the Commons” by Garrett Hardin was published in the
journal Science, there has been significant interest in
understanding how to manage commons appropriately.
Hardin's work, and much of the work that followed,
focused on commons management in the natural
environment. And in these commons, the “tragedy”
Hardin described was over-harvesting and destruction of
the resource, whether it be water, fish stock, forests, or our
atmosphere. In FLOSS commons the “tragedy” is
different; what developers hope to avoid is project

abandonment and a “dead” project. In order for FLOSS
projects to be successful, the collective action involved
(or attempts at collective action in the case of projects
with one participant) must be sustained at least until a
software product has been produced. Discovering how
FLOSS projects sustain collective action to produce useful
software may have important implications for improving
our understanding of FLOSS software development as
well as computer-mediated collective action more
generally [14,15].

In recent years, scholars have investigated different
approaches to measuring the success and failure of
FLOSS projects. For example, studies [2,3,7,11,16]
measured FLOSS project “life” or “death” by monitoring
project activity measures such as: (1) the release trajectory
(e.g., movement from alpha to beta to stable release); (2)
changes in version number; (3) changes in lines of code;
(4) the number of “commits” or check-ins to a central
storage repository, and (5) activity or vitality scores
measured on collaborative platforms such as SF and
Freshmeat.net. Weiss assessed project popularity using
web search engines [17]. And most recently, Crowston,
Howison and Annabi reviewed traditional models used to
measure information systems success and then adapted
them to FLOSS [4]. They collected data from
Sourceforge.net (SF) and measured community size, bug-
fixing time and the popularity of projects.

In this paper, we are trying to build on these studies by
defining success and abandonment of FLOSS commons
from the perspective of successful collective action. The
paper is organized as follows. First, we describe
interviews we conducted with FLOSS developers to get
feedback on our ideas about defining success. Next, we
define a six-stage classification system of FLOSS
commons based on information gained from these
interviews, as well as previous literature and our own
earlier work studying FLOSS. We follow this with a
description of our efforts in building a dataset which
combines much of the August 2006 data available from

Lorenzo
Text Box
Important Notice: This PDF contains the final version of this article, that was published in the December 2007 issue of Upgrade (vol VIII, no. 6). The previous one, edited by UPGRADE, is an obsolete version.

the FLOSSmole project (described below) and data we
gathered ourselves through automated data mining of the
SF website. This section then describes how we
operationalized our proposed success/abandonment
classes using this dataset. The “Results” section discusses
our preliminary classification of nearly all projects hosted
on SF as of August 2006, and the “Validation” section
explains how we verified the results. We conclude the
paper with some next steps.

2. FLOSS Developer Opinions on Success
and Failure

We conducted eight interviews [18] with FLOSS
developers between January and May of 2006 in part to
get opinions about definitions of success and failure. We
stratified our sampling by categories of projects with <5,
5-10, 11-25 and >25 developers and interviewed
developers from two projects in each category. Interviews
were conducted over the phone, digitally recorded,
transcribed and analyzed.

We asked interviewees how they would define success
in a FLOSS project. Interviewees responded with five
distinct views. One defined success in terms of the
vibrancy of the project’s developer community. Three
defined FLOSS success as widely used software. Two
others defined success as creating value for users. One
developer cited achieving personal goals, and the last
interviewee felt his project was successful because it
created technology that percolated through other projects
even though his project never produced a useful
standalone product.

Immediately after asking interviewees about success,
we asked how they would define failure in a FLOSS
project. Interestingly, all eight developers said that failure
had to do with a lack of users and two indicated that a lack
of users leads to project abandonment. In a probing
question that followed, we asked if defining a failed
project as one that was abandoned before producing a
release seemed reasonable. Four interviewees flatly
agreed, three agreed with reservations and one disagreed.
Two of those with reservations raised concerns about the
quality of the release. For example, one project might not
make its first release until it had a very stable, well
functioning application while another project might
release something that was nearly useless. Another
interviewee had concerns about how much time could pass
before a project was declared abandoned. One developer
argued that a project that was abandoned before producing
a release could be successful from the developer’s point of
view if he had improved his programming skills by
participating. The dissenting developer felt that project
source code would often be incorporated into other

FLOSS projects and would not be a failure even if no
release had been made.

So, how do these responses inform working definitions
of success and abandonment? Because we view FLOSS
projects as efforts in collective action with the goal of
producing public good software, defining success in terms
of producing a useful software product makes sense, and
our interviewees seem to agree. Six of the eight
interviewees suggested that success involves producing
something useful for users. Since the real tragedy for a
FLOSS project involves a failure to sustain collective
action to produce, maintain or improve the software,
defining failure in terms of project abandonment makes
sense, and generally, our interviewees agreed. Treating the
first release as a milestone or transition point between
what we refer to as the “Initiation Stage” and the project
“Growth Stage” [13, 18] emerges logically from this line
of thinking. All in all, these interviews supported our
initial thinking about project success and abandonment.

3. A Success/Abandonment Classification
System for FLOSS Commons

After conducting the interviews and considering the
results, we developed a six-class system for describing
success and abandonment of FLOSS projects across two
longitudinal stages of Initiation and Growth (Table 1). In
previous work [13, 18] we defined “Initiation” as the start
of the project to its first public release, and “Growth” as
the period after this release.

Therefore, a project is classified as (1) Success in the
Initiation Stage (SI) when it has produced “a first public
release.” This can be easily measured for projects hosted
at SF because SF lists all a project’s releases. A project
that is successful in the initiation phase automatically
becomes an indeterminate project in the growth phase.

Projects are classified as (2) Abandonment in the
Initiation Stage (AI) when the project is abandoned before
producing a first public release. We define abandonment
as few forum posts, few emails to email lists, no code
commits or few other signs of project activity over a one-
year period. Preliminary data we have analyzed from SF
indicates that projects in Initiation that have not had a
release for a year are generally abandoned (see the
discussion of the “test sample” below)

A project is considered a (3) Success in the Growth
Stage (SG) when it exhibits “three releases of a software
product that performs a useful computing task for at least
a few users (it has to be downloaded and used).” We
decided that the time between the first release and the last
release must be at least six months because a “growth
stage” implies a meaningful time span. As mentioned
above, we can easily measure the number of releases and
the time between them since SF tracks this information.

Measuring “a useful computing task” is harder and clearly
more subjective. Acquiring the number of downloads
recorded on project websites is probably the easiest
measure, with the assumption that many downloads
captures the concept of utility.

A project is considered (4) Abandoned in the Growth
Stage (AG) when it appears to be abandoned without
having produced three releases or when it produced three
releases but failed to produce a useful software product.

We classify a project as (5) Indeterminate in the
Initiation Stage (II) when it has yet to reveal a first public
release but shows significant developer activity.

Finally, projects are assigned (6) Indeterminate in the
Growth Stage (IG) when they have not produced three
releases but show development activity or when they have
produced three releases over less than six months and
show development activity.

4. Operationalizing the Classification System

As a first step in operationalizing our definitions for
FLOSS success and abandonment, we conducted a
random test sample of sixty projects hosted on SF using
April 2005 FLOSSmole data [5]. The FLOSSmole project
is itself an open source-like project where researchers and
others collaborate to collect and analyze data about
FLOSS. The data is collected by automated “crawling” or
“spidering” of SF and other open source hosting sites. We
decided to conduct this test sample from the FLOSSmole
database to look for problems with our classification
scheme and to get some idea about the number of projects
likely to fall within each of the classes. Following the
logic used in our FLOSS developer interviews and
knowing we wanted to study projects with larger numbers
of developers because of their more interesting collective
action issues, we stratified by number of developers into
categories of <10, 10-25 and >25 developers. We
randomly sampled twenty projects from each category for
a total of sixty projects. We chose 20 projects because it
was a reasonable undertaking given time constraints. For
these sixty sampled projects, we manually compiled data
on project registration, last release date, number of
downloads, project website URL and forum/email/
postings among other data. From this data, we made a
judgment about whether the software was “useful” and
whether the project was abandoned. We classified the
projects as SI, AI, SG or AG based on this information.
No indeterminate cases were found in this sample.

Perhaps the most important information we acquired
from the test sample is that the vast majority of projects
that have not had a release for a year are abandoned. All
27 projects in the sample that (1) had not provided a
release in over a year and (2) had less than three releases
were abandoned. This finding suggested that we could

produce a relatively simple but approximately accurate
classification by using a project’s failure to release within
a year as a proxy for abandonment.

Naturally, operationalizing the definitions for success
and abandonment had much to do with the availability of
data. We chose to use the August 2006 data spidered from
SF because it was the latest data available at the time. This
data has a total of 119,590 projects, but 235 of these
projects were missing essential data leaving 119,355
projects. Although FLOSSmole had most of the data we
needed for operationalizing our classification, they did not
have data on the number of releases and the dates of the
first and last release. Consequently, we spidered SF
ourselves between September and October 2006 to fill in
this data gap. 8,422 projects had missing data or had been
deleted from SF (SF occasionally purges defunct projects)
between the August 2006 and the time we collected our
data leaving valid data for 110,933 projects. Based on our
definitions described earlier, and the added information
we gained from the test sample, we undertook a
classification of these SF projects as described in Table 1.

Table 1: Six FLOSS success/abandonment

classes and their methods of operationalization
Class/

Abbreviation
Definition(D)/Operationalization(O)

Success,
Initiation (SI)

D: Developers have produced a first
release.
O: At least 1 release (Note: all projects in
the growth stage are SI)

Abandonment,
Initiation (AI)

D: Developers have not produced a first
release and the project is abandoned
O: 0 releases AND >=1 year since SF
project registration

Success,
Growth (SG)

D: Project has achieved three meaningful
releases of the software and the software is
deemed useful for at least a few users.
O: 3 releases AND >= 6 months between
releases AND does not meet the download
criteria for abandonment detailed in the
TG description below.

Abandonment,
Growth (AG)

D: Project appears to be abandoned before
producing 3 releases of a useful product or
has produced three or more releases in less
than 6 months and is abandoned.
O: 1 or 2 releases and >=1 year since the
last release at the time of data collection
OR < 11 downloads during a time period
greater than 6 months starting from the
date of the first release and ending at the
data collection date OR 3 or more releases
in less than 6 months and >= 1 year since
the last release.

Indeterminate D: Project has no public release but has

Class/
Abbreviation

Definition(D)/Operationalization(O)

Initiation (II) significant developer activity
O: 0 releases and < 1 year since project
registration

Indeterminate
Growth (IG)

D: Project has not yet produced three
releases but shows development activity or
has produced 3 releases or more in less
than 6 months and shows development
activity.
O: 1 or 2 releases and < 1 year since the
last release OR 3 releases and < 6 months
between releases and < 1 year since the
last release

5. Results

Table 2 provides the number of SF projects classified
by the two longitudinal stages: Initation and Growth. It
also reports projects that could not be classified. Table 3
summarizes our results of the success and abandonment
classification of all projects on SF. As Table 3 column 3
shows, potential classification errors stem primarily from
two sources:

Source 1 Error- using one year without a release as a
proxy for abandonment.

Source 2 Error - using the number of downloads per
month as a proxy for the software being useful.

Table 2: Sourceforge.net projects organized by

longitudinal stage (as of August 2006)
Stage # of Projects (% of Total classified)

Initiation Stage 50,662 (47)

Growth Stage 57,085 (53)

Not classified 3,186*

Total classified 107,747

* These are valid projects, but could not be classified
because they have 0 releases & downloads on SF but have

other websites that may be used for these functions.

Table 3: Preliminary classification of all FLOSS
projects on Sourceforge.net (as of August 2006)
Class # of Projects

(%of Total)
Possible Classification Errors

(other than errors in the SF data)
AI 37,320 (35) The project is not abandoned but >

1 year old

SG 15,782 (15) The software is not used in spite of
not meeting the download criteria
for abandonment

AG 30,592 (28) The project is not abandoned; OR

Class # of Projects
(%of Total)

Possible Classification Errors
(other than errors in the SF data)

The project produced useful
software even though it met the
download critera for abandonment

II 13,342 (12) No classification errors (by
definition)

IG 10,711 (10) No classification errors (by
definition)

Total 107,747

Note: SI is not listed because these successes are Growth
Stage projects. Including SI would double count.

6. Validation of Results

To test the validity of the results in Table 3, we took a
random sample of three hundred classified projects, and
checked each projects' classification results by manually
reviewing SF pages. Table 4 lists validation results.

Table 4: FOSS Project Classification
Validation Results

Original
Class
(# of
cases)

Correct In-
correct

Deleted/
Missing

Data

Error
Rate %

AI
(106)

77 10 19 11.5

AG
(101)

93 8 0 7.9

SG
(93)

92 0 1 0

Totals 262 18 20 6.4

Of the 106 projects originally classified AI, 77 were

correctly classified, ten were incorrectly classified,
eighteen were deleted from SF and one had missing
information and could not be validated, resulting in the
highest classification error rate of 11.5%. The ten
misclassifications did not list a release for a year after they
were registered, but did show some developer activity in
the year before our data were collected (Source 1 error).
Regarding the eighteen deleted projects, it is highly likely
that most if not all of these were classified correctly, given
SF regularly purges inactive projects; however, it is
possible that some were active and were moved to other
hosting platforms by the project developers.
Consequently, we keep 11.5% as the error rate for AI.

Of the 101 cases that were originally assigned to the
AG class, eight were active and incorrectly classified for
an error rate of 7.9%. Finally, of the 93 cases that were
classified as SG, 92 were classified correctly and one
could not be validated because of missing data on SF.

These validation results show that the classification
varies from what we would consider “reasonably
accurate” (AI) to “extremely accurate” (SG). This gives a
high-level of confidence that future analysis based on this
classification will produce meaningful results.

7. Conclusion

We intend to use this classification as a dependent
variable for quantitative models that investigate factors
that lead to success and abandonment in FLOSS in the
stages of Initiation and Growth. We expect influential
factors to be different between these two stages [13, 18].

The validation results give us confidence that this
classification is reasonably accurate, despite the
shortcomings described in Section 5. We are publishing
these definitions and results in the spirit of “release early
and often” and because defining and classifying success in
FLOSS projects is important to many FLOSS research
projects. In the near future, we plan to release the data we
collected and our classifications on the FLOSSmole site.
We hope that in the tradition of open source collaboration
other researchers will build on this work by correcting any
perceived “bugs” in our approach and collecting
additional data to improve classification accuracy.

8. Acknowledgments

Support for this study was provided by a grant from
the U.S. National Science Foundation (NSFIIS 0447623).
However, the findings, recommendations, and opinions
expressed are those of the authors and do not necessarily
reflect the views of the funding agency. Thanks go to
Megan Conklin, Kevin Crowston and the FLOSSmole
project (http://ossmole .sourceforge.net/) for making their
Sourceforge data available, and for their assistance. We
are also grateful to Thomas Folz-Donahue for
programming work building our FLOSS project database.

9. References

[1] Bollier, D., Silent Theft: The Private Plunder of Our
Common Wealth, Routledge, London, 2002.

[2] A Capiluppi, P. Lago, and M Morisio,. “Evidences in the
Evolution of OS projects through Changelog Analyses,” In J.
Feller, B. Fitzgerald, S. Hissam, and K. Lakhani (eds.) Taking
Stock of the Bazaar: Proceedings of the 3rd Workshop on Open

Source Software Engineering, 12 Dec. 2006;
http://opensource.ucc.ie/ icse2003.

[3] K. Crowston, H. Annabi, and J. Howison, “Defining Open
Source Project Success,” In Proceedings of the 24th Int.l
Conference on Information Systems, ICIS, Seattle, 2003.

[4] K. Crowston, J. Howison, H. Annabi, “Information Systems
Success In Free And Open Source Software Development:
Theory And Measures,” Software Process Improvement and
Practice, v 11, n 2, March/April, 2006, pp. 123-148.

 [5] FLOSSmole, “sfProjectInfo06-Apr-2005,” 16 June 2005;
http://sourceforge.net/project/showfiles.php?group_id=119453
&package_id=132043/.

[7] S. Hissam, C. B. Weinstock, D. Plaksoh, and J. Asundi,.
Perspectives on Open Source Software. Technical report
CMU/SEI-2001-TR-019, Carnegie Mellon University. 10 Jan.
2007,http://www.sei.cmu.edu/publications/documents/01.reports
/01tr019.html.

[11] M. Robles, G. Gonzalez,- J.M. Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino,
“Studying the Evolution of Libre Software Projects Using
Publically Available Data,” In J. Feller, B. Fitzgerald, S.
Hissam, and K. Lakhani (eds.) Taking Stock of the Bazaar:
Proceedings of the 3rd Workshop on Open Source Software
Engineering, 12 Dec. 2006. http://opensource.ucc.ie/icse2003.

[13] C. Schweik, “An Institutional Analysis Approach to
Studying Libre Software ‘Commons’”, Upgrade: The European
Journal for the Informatics Professional, 10 Jan. 2007,
http://www.upgrade-cepis.org/issues/2005/3/up6-3Schweik.pdf.

[14] C. Schweik, T. Evans and J. Grove, “Open Source and
Open Content: A Framework for Global Collaboration,” in
Social-Ecological Research. Ecology and Society 10 (1): 33. 10
Jan. 2007, http://www.ecologyandsociety.org/vol10/iss1/ art33/.

[15]C. Schweik, “Free / Open Source Software as a Framework
for Scientific Collaboration,” In Hess, Charlotte, and Elinor
Ostrom, eds. Understanding Knowledge as a Commons: From
Theory to Practice, MIT Press, Cambridge, Mass, 2007.

[16] K. J. Stewart, and T. Ammeter, “An Exploratory Study of
Factors Influencing the Level of Vitality and Popularity of Open
Source Projects,” In L. Applegate, R. Galliers, and J.I. DeGross
(eds.) Proceedings of the 23rd International Conference on
Information Systems, Barcelona, 2002, pp. 853-57.

[17] D. Weiss, “Measuring Success of Open Source Projects
Using Web Search Engines,” Proceedings of the First
International Conference on Open Source Systems, Genova,
11th-15th July 2005. Marco Scotto and Giancarlo Succi (Eds.),
Genoa, 2005, pp. 93-99

[18] C. Schweik and R. English, “"Tragedy of the FOSS
Commons? Investigating the Institutional Designs of Free/Libre
and Open Source Software Projects," FirstMonday. 28 Feb.
2007, http://www.firstmonday.org/issues/issue12_2/schweik/.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	12-2007

	Identifying Success and Abandonment of Free/Libre and Open Source (FLOSS) Commons: A Preliminary Classification of Sourceforge.net projects
	Charles M. Schweik
	Robert English

	Final_English_Schweik_Upgrade_Submitted_Nov_2007.rtf

