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Abstract piler to reorder statements that do pointer accesses.

This paper evaluates three alias analyses based on program-DeSIOIte its importance, few commercial or research com-

ming language types. The first analysis uses type COmpatp_i!ers implemgnt nop—trivial alias analysis. Three_reasons
bility to determine aliases. The second extends the first b lias analysis is not implemented are: (1) Many alias anal-

using additional high-level information such as field namesYS€S are prohibitively slow and thus impractical for produc-

The third extends the second with a flow-insensitive analylio" Use- (2) The alias analyses in the literature require the

sis. Although other researchers suggests using types to di€ntire program (or some representation of it), which inhibits

ambiguate memory references, none evaluates its effectivéeparate compilation and compiling Iibrgries. (3) Most alias
ness. We perform both static and dynamic evaluations 0flnalyses have been evaluated only statically, and thus we do

type-based alias analyses for Modula-3, a statically-typed©t know the effectiveness of these algorithms with respect to

type-safe language. The static analysis reveals that type contEfe optlmlzanolns that _useftheml_. To adldress thhese Iconcerns,
patibility alone yields a very imprecise alias analysis, but thé!'S Paper explores using fast alias analyses that rely on pro-
other two analyses significantly improve alias precision. weldramming Ianguag.e_t.ypes. Wh”e prloryvork [1, 6] mentions
use redundant load eliminatior(E) to demonstrate the ef- using type compatibility for alias analysis, none evaluates the

fectiveness of the three alias algorithms in terms of the oppor'-dea pr presents thg details of an algorithm. i
tunities for optimization, the impact on simulated execution ThiS paper describes and evaluates three fast alias analy-

times, and to compute an upper bound on what a perfect aliai€S based on programming language types. The first analy-
analysis would yield. We show modest dynamic improve-SiS (TypeDec)_ uses type compatibility tp determine alla_ses.
ments for RLE), and more surprisingly, that on average our ' "€ secondRieldTypeDec) uses other high-level properties,
alias analysis is within 2.5% of a perfect alias analysis withSUch as field names to improve on the first. The thBd/t
respect torLE on 8 Modula-3 programs. These results il- FieldTypeRefsimproves the second by incorporating a flow-

lustrate that to explore thoroughly the effectiveness of aliadNSensitive pass to include the effects of variable assignments
analyses, researchers need static, dynamic, and upper-boufid references. This pass is similar to Steensgaard's algo-
analysis. In addition, we show that for type-safe IanguageéIthm [32].

like Modula-3 and Java, a fast and simple alias analysis may We statically evaluate our alias algorithms using the num-
be sufficient for many applications. er of alias pairs (the traditional method). We also evaluate

TBAA based on its static and dynamic effects on an optimiza-
1 Introduction tion. In addition, we evaluateBsaa with respect to an upper

. . . . bound on the same optimization. Each of the evaluation met-
To exploit memory systems, multiple functional units, and . . . .
rics reveals different strengths and weaknesses in our alias

the multi-issue capabilities of modern uniprocessors, compil- : . : .
. ; : algorithms, and we believe this range of metrics, and espe-
ers must reorder instructions. For programs that use pointers

. . . . ; y cially upper-bound analysis, is necessary to understand the

the compiler’s alias analysis dramatically affects its ability to y upp aly : y

! ) . . effectiveness of any alias analysis.
reorder instructions, and ultimately performance. Alias anal- Our static evaluation reveals that the simplest tvoe-based
ysis disambiguates memory references, enabling the com-. L . ) P yp
alias analysis is very imprecise, but that for our Modula-3
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tories, Inc., Hewlett-Packard, and Digital Equipment. itgih S. McKinley

is supported by an NSF CAREER Award CCR-9624209. Amer Diwaaw Ve also e_V3|u_atEBAA by measuring the static a.nd. Sim'
also supported by the Air Force Materiel Command and ARPAdwam-  ulated run-time impact on an intraprocedural optimization

ber: F30602-95-C-0098. that depends on alias analysiedundant load elimination
(RLE). RLE combines loop invariant code motion and com-
mon subexpression elimination of memory referencea.A

In the ACM SIGPLAN Conference on Programming Language Desig ~ andRLE combine to improve simulated program performance

and Implementation, June 1998, Montreal, Quebec, Canadd,06— modestly, by an average of 4%, and up to 8% on a DEC Alpha

117. 3000-500 [12] for 8 Modula-3 benchmarks.




We also comparg&BAA to an upper bound that represents TYPE
T=0BJECTf, g: T; END;

the best any alias analysis algorithm could hope to defa: S1=T OBJECT ... END:
This comparison shows that a perfect alias analysis could at S2 =T OBJECT ... END:
most eliminate an average of 2.5% more heap loads. In addi- S3=TOBJECT ... END;
tion, we modifyTBAA for incomplete programs and demon- VAR

strate, usin@LE, that it performs as well as it does on com- tT

plete programs. These results arghA’s fast time complex- 3 22

ity suggest thatrBAA is a practical and promising analysis

for scalar optimization of type-safe programs. Figure 1: Type Hierarchy Example
The remainder of this paper is organized as follows. Sec-

tion 2 describes our type-based alias analysis algorithms.

Section 3 presents our evaluation methodology, and uses 22 TBAA Using Type Declarations

to evaluaterBAA. Section 4 extends and evaluat@s\A for ] ) )
incomplete programs. Section 5 discusses related work if© Use type declarations to disambiguate memory references,

alias analysis. Section 6 concludes. we simply examine the declared type of an access @dath
and then assume théP may reference any object with the
2 Type-Based AliasAnalysis same declared type or subtype. We call this versioreafa,

: . . . , TypeDecl More formally, given twoAPs p andq, Type-
Th'_s section de§crlbes type-based alias "_’malyBBSAO n Decl(p, g) determines they may be aliases if and only if:
which the compiler has access to the entire program except

for the standard librariesTBAA assumes a type-safe pro- Subtypeg Type (p)) N Subtypeg Type(q)) # 0.

gramming language such as Modula-3 [25] or Java [33] thaEonsider the example in Figure 1. Singé is a subtype of

does not support arbitrary pointer type casting (fhegtureis T, objects of typel can reference objects of tyjg1. Thus,
supported in C and C++). We begin with our terminology,

and then discuss using type declarations, object field and ar-  SubtypegType(t )) N SubtypegType(s)) # 0
ray access semantics, and modifications to the set of possible ~ SubtypegType(t )) N SubtypegType (u)) # 0
types via variable assignments to disambiguate memory ac-  SubtypegType(s)) N SubtypegType(u)) = 0

cesses. In other words,t ands may reference the same location,

2.1 Memory Reference Basics andt andu may reference the same location, lsuandu
may not reference the same location since they have different

Table 1 lists the three kinds of memory references in MOdU|a'types. Note thalypeDeclis not transitive.

3 programs, their names, and a short description.
Table 2:FieldTypeDec{ AP 1, AP 2) Algorithm

Table 1: Kinds of Memory References
Case| AP1 [ AP 2 | FieldTypeDecAP 1, AP2) |

[ Notation | Name | Description | 1 P ) true
p.f Qualify Access field of objectp 2 p.f q.g (f =g) A FieldTypeDecl(p, q)
p° Dereference| Dereference pointgy 3 p.f q AddressTakeng.f ) A
pli] Subscript Array p with subscript TypeDecl(p.f ,q")
4 p° qli] AddressTakemi] ) A
. TypeDecl(p™, qli] )
We call a non-empty string of memory references, for exam- 5 i all false
plea”.bJi].c , anaccess patli.47) [22]. Without loss of 6 pli] qlil FieldTypeDecl(p, q)
generality, we assume that distinct object fields have different |7 P q TypeDecl(p, q)

names. We also define:
2.3 Using Field Access Types

We next improve the precision dfypeDeclusing the type
declarations of fields and other high level information in the
program. We call this version of type-based alias analysis
gieIdTypeDecI It distinguishes accesses suchtds and

t.g ,f # g,thatTypeDeclmisses. Thd-ieldTypeDechl-
gorithm appears in Table 2. GivefiP1 and AP2, it returns

Type (p): The static type ofAP p.
SubtypeqT): The set of subtypes of type
which includesT.

In Modula-3 and other type-safe languages, an object of typ
T can legally access objects of ty@ibtypeqT). Each of

our alias analyses refines the type of objects to whici&n . .
(memory reference) may refer. If twaPs may have the true if AP1 and AP2 may be aliases. It usesddressTaken

same type, then the analyses determines they may access m@ch returns true if the program ever takes th_e addr_ess of
same location its argument. For exampl&ddressTaken(p.f ) is true if
' the program takes the address of fiélaf an object in the
I These types of memory references are, of course, not uriedula-  S€t TypeDecl (p). AddressTaken(q[i] ) returns true if the
3. program takes the address of some element of an arrg'g of




type. In Modula-3, programs may take the addresses of men{* Step 1: put each type in its own set *)

ory locations in only two ways: via the pass-by-referencefor all pointer typesT do

parameter passing mechanism, and viaWi@H statement, ~ Group := Group H{{T}}

which creates a temporary name for an expression. For sim-

plicity we assume that aggregate accesses, such as assighStep 2: merge sets because of assignments *)
ments between two records, have been broken down into aéor all implicit and explicit pointer assignment&.=b , do

cesses of each component.
The seven cases in Table 2 determine the following.

1:
2

Identical.4Ps always alias each other.

the same field in potentially the same object.
3-4:
as a qualified or subscripted expression only if their

types are compatible and the program may take the ad-

dress of the qualified or subscripted expression.

qualified expression.

Two subscripted expressions are aliases if they may su
script the same arrayieldTypeDeclignores the actual
subscripts.

For all other cases ofl Ps, including two pointer deref-
erences,FieldTypeDecl uses TypeDecl to determine
aliases.

Java programs would have similar rules. For C++ pro-
grams, the rules must be more conservative to handle arb
trary pointer casts and pointer arithmetic.

2.4 Using Assignment
TypeDeclis conservative in the sense that it assumes that th

Ta = Type(a);

if Ta # Tb then

let Ga, Gb e Group, such thafa € Ga, Tb € Gb
Group := Group {Ga} - {Gb} + {Gau Gb}

Tb := Type (b);

Two qualified expressions may be aliases if they access

(* Step 3: ConstrucfypeRefsTable*)

A pointer dereference may reference the same locatiof! all typest do

letg € Group,t €9
TypeRefsTabldt ) = g N Subtypest)

Figure 2: Selective Type Merging

In Modula-3, a subscripted expression cannot alias a

b-

type T (directly or indirectly), thert ands cannot possibly
be aliases. Notice that if there is any such assignnm@&t,
TypeRefsassumes thad Ps of typeT may be aliased talPs
of typeS1. We call these assignmentgerges

Figure 2 presents the algorithm to selectively merge
types? This algorithm produces dypeRefsTablewhich
takes a declared typ€ as an argument and returns all the
types potentially referenced by atiP declared to be of type
. Given two AP p andq, SMTypeRefs(p,q) determines
they may be aliases if and only if:

TypeRefsTabléType (p))

e N TypeRefsTabléType(q)) # 0

program uses types in their full generality. For instance, pro-

grams often use list packages that support linking objects of? Figure 2, each sef = {71, ..

different types to link objects of only one type. We thus im-
prove onTypeDeclby examining the effects of explicit and

implicit assignments to determine more accurately the type§

of objects andP may reference in a flow-insensitive manner.
We call this algorithmSMTypeRefqSelectively Merge Type
Referencés Unlike TypeDec|which always merges the de-
clared type of andP with all of its subtypesSMTypeRefs
only merges a type with a subtype when a statement assig
some reference of subtyj&to a reference of typ&. As an
example, consider applyin§ypeDeclto the following pro-
gram given the type hierarchy in Figure 1:

VAR
t: T:= NEW (T);
s: S1:=NEW (S1);

Since TypeDeclonly considers declared types, it assume

semantically correct for objects of tygeto reference objects
of type S1. By inspecting the code however, it is obvious

s
thatt ands may reference the same location because it is[u

., T} in Group represents
an equivalence class of types such thatid@with a declared
typeT € S may reference any objects of tyfie € S. For
xample, given the sét = {T1,T2} € Group, APs with
declared typd 1 may reference any object of tygd or T2.
Step 1 initializesGroup , such that each declared type is
in an independent set and &P declared with typd is thus
assumed to reference only objects of tyheStep 2 exam-
ines all the assignment statements and merges the type sets
if the types of the left and right hand sides are differént.
Step 2 does not consider the order of the instructions and is
thereforeflow insensitive Step 3 then filters out infeasible
aliases fronGroup , creatingasymmetryn the SMTypeRefs
relationshipt For instance, adP with declared typ€T in
Figure 1 may reference objects of typeor type S1, but an
AP declared a$§1 may not reference objects of tyfie The
final result of Step 3 is th@ypeRefsTable
Figure 3 uses the the type declarations in Figure 1 to il-
strate how the selective merging algorithm works. The

2A more precise but slower formulation maintains a separateyfor

thatt ands never reference the same location since there igach type. In our experiments, the difference between thesaiations was

no explicit or implicit assignment between the tweM Type-

Refsproves independence in this situation as follows: if the

program never assigns an object of tyfkto a reference of

3

insignificant.

3Step 2 is similar to Steensgaard’s algorithm [32].

41f we took Steensgaard’s algorithm [32] and applied it torudfined
types, it would not discover this asymmetry.



VAR portional to the number of types in the program. The time to

sl: S1:= NEW (S1); .
2 S2 = NEW (S2). usethe results of the@BAaA may, of course, be more than lin-

$3: S3:= NEW (S3); ear time. For instance, computing all theay-aliaspairs us-
tT ing TBAA (or any otherpoints-toanalysis) take®)(€?) time,
BEGIN wheree is the number of memory expressions in the program.

t:=sl; (* Statement 1 *)
t:=s2; (* Statement 2 *)
END;

3 Evaluation

This section evaluates type-based alias analysis using static
and dynamic metrics, andianit analysis. We first review the
strengths and weaknesses of static and dynamic metrics, and
thus motivate our limit analysis.

Static Evaluation. The majority of previous work on
alias analysis [2, 4, 6, 7, 9, 15, 20, 21, 22, 30, 32, 35] mea-
suresstatic propertiessuch as the sizes of tmeay aliasand
points-tosets. Static properties enable comparisons between
the precision of two alias analyses using the size of their static
points-to sets; the smaller the set the more precise the analy-
sis. Static properties have, however, two main disadvantages.
(1) Static properties cannot tell us if the analysis is effective
with respect to its clients. For example, even if the alias sets
Figure 4: Selective Merging for Figure 3 are small, the analysis may not differentiate the pointers that
will enable optimizations to improve performance or increase
the effectiveness of other analyses. (2) Static properties do

VARdeclarations declare and initialize variables to newly al-not ?nable c_;(:]n;pf?nsons betwer(]a nGﬁgcnveEessf two ;’;\Ilas

located objects of their declared types. Step 1 thus initial 2NAYSES _W't ! eren_t strengths and weaknesses. For exam-
9ple, the size of the points-to sets of two analyses may be the

ure 4(a) where each oval represents a seBioup . Fig- same, but the analyses may disambiguate different pointers.

ure 4(b) showGroup after Step 2 merges typdsandS1 A static analysis that compares the resulting number of opti-
the types for the first assignment; and Figure 4(c) shows thdfZation c_)pportunm_es remedies some of this problem.

the second assignment causes Step 2 to n&2geith T and Dynamic Evaluation. A few researchers recently eval-
S1. S3 remains in a set by itself. Step 3 of the merge algo-Uated alias analyses by measuring thecution-time im-
rithm then creates asymmetry for the subtype declarations iRfovementdue to an optimization that uses alias analysis
the TypeRefsTablgas shown in Table 3. Notic8MTypeRefs [19; 36, 8, 17]. Using run-time improvements complements
determines4Ps declared to be of typ& may not reference static metrics, since run-time improvements directly measure

objects of typeS3, but TypeDeclmust assume they may. the impa_lct_ of fche alias analysis on its cIi_ent; (usually com-
piler optimizations). However, one of their disadvantages is

Figure 3: Example to lllustrat8 MTypeRefs

(a) Initialized sets in Group (b) Sets after statement 1 (c) Sets after statement 2

DOUG
oG
O

izes each declared type in a set of its own, as shown in Fi

Table 3: TypeRefsTabldor Figure 3 that the results are specific to the given program inputs.
Limit Evaluation. Both static and dynamic evaluation
| Type | TypeRefsTablgType) | have an additional significant shortcoming: these properties
T T,S1,S2 do not tell us how much room for improvement there is in
S1 S1 the alias analysis (except in the unusual case of an alias anal-
S2 S2 ysis that disambiguates all memory references). We would
S3 S3 like to know if the aliases really exist at run-time, and if any

imprecision in the alias analysis causes missed opportunities
for optimizations or other clients of the analysis. To detect
imprecision and its impact, we also use a run-time limit anal-
ysis to determine missed optimization opportunities and their
causes for a given program input. No previous work on alias

_ analysis uses this metric.

2.5 Complexity The remainder of this section is organized as follows. Sec-
The complexity of this type-based alias analysisAA) is  tions 3.1 and 3.2 describe our experimental framework and
dominated by step 2 &MTypeRefs This step makes a sin- benchmark programs. Section 3.3 presents the static alias
gle linear pass through the program and at each pointer apairs for our analyses. Section 3.4 presents the simulated
signment unions two sets of types. The complexity BAA run-time improvements due to our alias analysis for redun-
is thusO(n) bit-vector steps, where is the number of in- dant load elimination. Section 3.5 evaluates the room for im-
structions in the program. Each bit-vector step takes time proprovement in our analysis.

We obtain the final version of oBAA algorithm SMField-
TypeRefqFields+Selectively Merge Type Refererydasus-
ing SMTypeRefsfor TypeDeclin the FieldTypeDeclalgo-
rithm in Table 2.

4



Table 4: Description of Benchmark Programs

[ Name | Lines | Instructions | % Heap loads | % Other loads | Description
format [23] 395 1,879,195 10 17 | Text formatter
dformat [23] 602 1,442,541 9 19 | Text formatter
write-pickle 654 1,614,437 13 16 | Reads and writes an AST
k-tree[3] 726 50,297,517 10 21 | Manages sequences using trees
slisp 1,645 11,462,791 27 9 | Small lisp interpreter
pp 2,328 45,779,402 11 19 | Pretty printer for Modula-3 programs
dom [24] 6,186 System for building distributed applications
postcard 8,214 Graphical mail reader
m2tom3 10,574 50,894,990 8 28 | Converts Modula-2 code to Modula-3
m3cg 16,475 5,636,004 8 21 | M3v. 3.5.1 code generator + extensions

3.3 Static Evaluation

ihole Program Table 5 evaluates the relative importance of the theea:

Front end Back end TypeDecl TBAA using only type declarationg=ieldType-

adame\ /adamef Decl: TBAA using TypeDecland field declarations; ar@iVI-
FieldTypeRefs TBAA using FieldTypeDecland assignment

M3 _ ol FrontEnd *_, saved IR f cec BackEnd_s. Obiectcode  Statements. ThReferencesolumn gives the total number of
heap memory references in the source of the benchmark pro-

grams. For each of the analyses, the table contains the num-

ber of local ( Alias) and global G Alias) alias pairs. Local

alias pairs are heap memory references within the same pro-

cedure that may alias each other, and global alias pairs are

heap memory references not necessarily within the same pro-

cedure that may alias each other. Since each memory refer-

ence trivially aliases itself, we exclude this pair. Note that

Figure 5 illustrates our compilation framework. The front SinceSMFieldTypeRefss strictly more powerful tharfrield-

end reads a Modula-3 module and generates a file contaifyPeDec/ andFieldTypeDecis strictly more powerful than

ing a typed abstract syntax tree(r) for the compiled mod-  T¥peDec/we can use static metrics to compare the three.

ule. Thewhole program optimizefwpo) reads in theasTs From the table, we see th@gpeDeclperforms a lot worse

for a collection of modules, analyzes and transforms themthan FieldTypeDegl and that flow-insensitive merging us-

and then it writes out the modifiessT for each module and  INg SMFieldTypeRefoffers little improvement ovefield-

a file with the corresponding low-level stack machine code.TypeDecl SMFieldTypeRefsmproves local and global alias

The stack representation is the input language for a back erigirs onpostcard , and the number of global aliases for

based orecc. wpoimplements all optimizations and analy- M3cg. On average, each heap reference may alias 4.7 other

Figure 5: Compilation Framework

3.1 Environment

ses presented in this paper. intraprocedural references usiigpeDec| 3.4 references us-
ing FieldTypeDecgl and 3.4 references usirgMFieldType-
3.2 Benchmarks Refs The range is from 0.3 to 20.8 references 8MField-

. , , TypeRefs On average, each heap reference may alias 54.1
For each benchmark in our suite, Table 4 gives the NUMginer interprocedural references usifigneDec] 12.7 refer-

ber of non-comment, non-blank lines of code. For the nonyceg usingFieldTypeDegl and 12.7 references usirgM-
interactive programs, Table 4 also gives the number of iNge 7y peRefs The range is from 2 to 27.7 references for
structions executed, the percent of |nstruct|0r_1$ that are mensrjejdTypeRefs The number of interprocedural aliases is
ory loads from the heap, and the percent of instructions thafy ¢ higher than the number of intraprocedural aliases, sug-
are memory loads from the stack and global are#d).  gegiing thatreaa is probably too imprecise for interproce-
None of these programs were written to be benchmarksy rg| optimizations. In the next two sections, we show that
but other researchers have used several of them in Previolen though our analysis does not disambiguate all intrapro-

studies [16, 10]. Table 4 contains the data for the origi-ceqyral memory references (i.e., the local aliases are greater
nal programsi(e., without the optimizations proposed here) 41 zero), it may be precise enough for some applications.
but with ccC’s standard optimizations turned on, which in-

clude register allocation and instruction scheduling (excepg-4 Optimization Results

for m2tom3). Due to a compiler bug iscc, we were unable  This section measures the static and simulated execution-time
to perform the standard optimizationsim2tom3, which ex-  impact of TBAA on redundant load eliminatiorR(E). We
plains its unusually large number ofher loads The num-  first describe our implementation ef_Lg, and then show its
bers in Table 4 do not include instructions or memory refer-impact on execution time. Section 3.5 then describes a limit
ences from the standard libraries. analysis that demonstrates that with respeatitg, there is



Table 5: Alias Pairs

TypeDecl FieldTypeDecl SMFieldTypeRefs
Program References| L Alias | GAlias | LAlias | GAlias | L Alias | G Alias
format 75 221 450 133 206 133 206
dformat 156 554 2665 293 1286 293 1286
write-pickle 171 383 2089 235 507 235 507
slisp 230 122 2322 74 464 74 464
pp 444 1626 10830 719 3811 719 3811
k-tree 612 2731 24344 1328 9655 1328 9655
dom 800 932 29550 589 21802 589 21802
m2tom3 904 19036 47856 18824 25048 18826 25048
postcard 1038 4208 30890 1623 5278 1615 5262
m3cg 4515 16521 | 1409449 6154 | 121476 6153 | 120525

is available on every path ®. RLE therefore improves per-
formance by enabling the replacement of costly memory ref-
erences with fast register references. SiRce operates on
memory references its effectiveness depends directly on the
quality of the alias information (and also on the back end). To
enablerLE across callsRLE is preceded by a mod-ref analy-
sis which summarizes the access paths that are referenced and
modified by each call. For example, in order to hoist a mem-
ory reference out of a loop containing a catBAA needs

to know whether the call changes the value of the memory
reference. Note that even thoughE uses interprocedural
mod-ref information, it does not eliminate redundant loads
across procedure boundaries.

3.4.2 Impact of TBAA on RLE

Table 6 gives the number of access paths tha removes
statically in each of our benchmark programs for each variant
of TBAA: TypeDec| FieldTypeDecland SMFieldTypeRefs
=) By comparing Table 6 and Table 5, we see that the differ-
Figure 7: Eliminating Redundant Memory Loads ences between the number of local alias pairs is the strongest
indicator of optimization opportunities fakLE. In partic-
ular, the big differences between the number of alias pairs
for TypeDecland FieldTypeDeclresult in an increase in the
little or no room for improvement irrBAA. number of redundant loads found I®.E. In contrast, the
3.4.1 Redundant Load Elimination reductions in the number of alias pairs betwdgaldType-
Redundant load eliminatiom(E) combines variants of loop Decl and SMFieldTypeRefsioes not change _the number of
invariant code motion (similar to register promotion [8]) and redundant loads found byLE. (These reductions are how-
common subexpression elimination [1], which most optimiz-ever smaller than the others.)
ing compilers performRLE differs from classic loop invari-
ant code motion and common subexpression elimination in
that it eliminates redundant loads instead of redundant com- [ _Program | TypeDecl | FieldTypeDecl | SMFieldTypeRefs]

Table 6: Number of Redundant Loads Removed Statically

putation. We expeatLE to be a profitable optimization since format 27 29 29
loads are expensive on modern machines and architects ex_dformat 10 22 22
h ill only get more expensive [18] write-pickle 10 adl ar
pect they will only g p - k-tree 221 228 228
RLE hoists memory references out of loops if the reference [ m2tom3 369 396 396

is loop invariant and is executed on every iteration of the loop, | slisp 36 37 37
leaving it up to the back end to place the hoisted memory ref- | m3cg 524 613 613

erence in a register. For example in Figure 6, the access path

a.b” isredundant on all paths, and loop invariant code mo- We also measured execution times using a detailed (and
tion moves it into the loop header. As shown in Figure 7,validated [5]) simulator for an Alpha 21064 workstation with
RLE also replaces redundant memory expressions by simplene difference: rather than simulating an 8K primary cache
variable references, which the back end may place in a regve simulated a 32K primary cache to eliminate variations due
ister. A memory expression at statemernis redundant if it to conflict misses that we observed in an 8K direct mapped
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Figure 8: Impact oRLE

cache. Also, we only measured the execution time spe
user code since that is the only code that we were ab
analyze. Execution times are normalized with respect t
execution time of the original program withorit E, but with
all of ccCs optimizations. ¢cc eliminates redundant loa
without any assignments to memory between them.)

Figure 8 illustrates the simulated execution time impac
TBAA on RLE relative to the original execution time. T!
graph has three bars for each non-interactive benchr
Each bar represents the execution time durlie and a dif-
ferent alias analysisTypeDecl(types only),FieldTypeDec
(types and fields), an@MField TypeReftypes, fields, an
merges).

TBAA enablesRLE to improve program performance fro
1% to 8%, and on average 4%. SirREE is just one of man
optimizations that benefits from alias analysis, the full imj
of alias analysis on execution time should be higher. 2
contrary to what the data in Table 5 and Table 6 sugges
three variants of BAA have roughly the same performaras
far asRLE is concerned These results make two import:

@ Redundant originally B Redundant after optimizations

Fraction of original heap references

format dformat slisp pp Kiree m3cg m2tom3 write-pickle

Figure 9: ComparingBAA to an Upper Bound
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Figure 10: Source of Redundant Loads after Optimizations

these loads usingTOM[31], a binary rewriting tool for the

Alpha. We instrument every load in an executable, record-
ing its address and value. If the most recent previous load
of an address is redundant with the current load, we mark it

points. First, a more precise alias analyses is not necessés redundant. (Elsewhere we describe this process in more
ily better; it all depends on how the alias analysis is useddetail [13].) In Figure 9, the black bars give the fraction of
Second, static metrics, such as alias pairs are insufficient bjeap references that are redundant in the original program.

themselves for evaluating alias analyses.
3.5 Comparing TBAA to an Upper Bound

The white bars give the fraction of heap references that are
redundant afterBaA andRLE (this fraction is with respect
to the original number of heap references). These results are

How much precision doegsAA lose in order to achieve its  gpecific to program inputs.

fast time bound™ is easy to contrive examples whersaa

Figure 9 shows that our optimizations eliminate between

fails to disambiguate memory references while many othes7o, and 87% of the redundant loads in these programs.
alias analyses succeed. This section demonstrates, usinQ\fyreover, for 6 of the 8 benchmark programs, only 5%
limit study, that forRLE and our benchmark programs, there or fewer of the remaining loads are redundant. However,
is little to be gained from an alias analysis that is more precisg|isp  andktree still have many redundant loads. To un-

thanTBAA.

derstand the source of all the remaining redundant loads, we

Figure 9 compares heap loads that are redundant at Uhanually classified them as follows:

time before and after applying RLE. A redundant load is

when two consecutive loads of the same address load thel. Encapsulation: RLE could not eliminate a redundant
same value in the same procedure activation. We measure expression because it was implicit in our high-level



(AsT) intermediate representation. For example, the The second metriciun-time improvementindicates the
subscript expression for an open array involves an imhow much an optimization or analysis really matters to the
plicit memory reference to the dope vector. bottom line: performance. Our experiments find that the ma-

2. Conditional: RLE did not eliminate a redundant expres- jority of the run-time improvement comes froifypeDecl
sion because it was only partially redundasmt, redun-  FieldTypeDeclimproves performance only slightly. The re-

dant along some paths but not along others. Partial results also illustrate that the run-time improvement due to our
dundancy elimination would catch these. analysis and optimization is relatively small: on average 4%

improvement. If run-time improvement is the only metric
Wye use, then we might conclude thi®AA is a very impre-
cise alias analysis. Howevarpper-bound analysigeveals
that TBAA in fact performs about as well as any alias anal-
ysis could perform with respect ®LE and our benchmarks

3. Breakup: RLE did not eliminate a redundant expression
because it consisted of multiple smaller expressions an
our optimizer does not do copy propagation.

4. Aliasfailure: TBAA did not disambiguate two memory
references. programs,

5. Rest: we don'tknow the reason witgLE did not elimi- The third metric, number of opportunities exposed by
nate the redundant loads since we did not determine theg , o for RLE, reveals thatFieldTypeDeclenables many
reason for the entire list of redundant expressions (which,, ;.o opportunities forLE than TypeDec! However, our
is labor intensive). run-time measurements find tha&tieldTypeDeclis only

slightly better thanTypeDecl If we had used only run-time

improvements to evaluate our analysis we might conclude
that TypeDeclis the algorithm of choice. However, tineim-

ber of opportunitiesnetric tells us thaFieldTypeDeclis in-

deed significantly better thafypeDecl Perhaps with differ-
ent benchmark input&ieldTypeDeclimay improve perfor-
mance significantly more thafypeDecl

Finally, theupper-bound analysis faRLE usingTBAA re-

The first category is due to a limitation of representation,
not TBAA or RLE. Categories 2 and 3 are limitations in our
implementation oRLE, rather tharmBaA. The fourth cate-
gory, alias failure, corresponds to limitations afsaA. The
fifth category may be a limitation &fLE or TBAA or the rep-
resentation. Each bar in Figure 10 breaks downReelun-
dant after Optimizationlar from Figure 9 into the above five

categories. veals that a more precise alias analysisHoe would yield
Figure 10 illustrates thaEncapsulatior{dope vector ac- oy - i .
é?w benefits: there is little or no room for improvement in

cesses to index open arrays) is the most significant source ith

the remaining redundant loads. Figure 10 also shows that WTeBAA wit respect IRLE. . . .

did not encounter a single situation when optimization failed To summarize, the four metrics tell us dlfferent informa-
due to inadequacies in our alias analysis. Those redundaj?n about the different I_evels afgAA. For this reason, we
loads that could be due to failed analysis are categorized el thatall of Fhese metrlc_s should b_e used together in a thor-
Rest and on average, are less than 2.5% of the remainin ugh _evaluatlon_ of an alias analysis (or for that matter any
loads. Thus, foRLE on these programs and their inputs, ompiler analysis).

there is not much room for improvement in our simple and3.7 Cumulative Results

fast alias analysis. Figure 11 shows the cumulative impact of two sets of op-

3.6 Summary of Results timizations: method invocation resolution [14] plus inlin-
This section evaluatetsaa using four different metrics: ing (Minv + Inlining) and RLE. Method resolution uses
TBAA (and other analyses) to help resolve method invoca-
¢ Number of static alias pairs. tions on object fields and array elements. While we expected
¢ Run-time improvement due to an optimization that usegnethod resolution and inlining to expose more opportunities
TBAA (RLE). for RLE, they did not. On studying the interactions Rife

with method invocations and inlining using limit analysis, we
found that inlining exposes more redundant expressions but
they are usually conditional (Section 3.5). Thus, while partial

Each of these four metrics exposes different informatioryédundancy elimination can eliminate these redundant loads,
aboutTBAA. The first metric,number of static alias pairs ~RLE cannot. We plan to implement and evaluate partial re-
tells us two things. (1) For our benchmark prograrg#/- dundancy elimination of memory expressions in future work.
FieldTypeRefsoffers little or no precision oveFieldType- .
Decl (2) FieldTypeDeclis potentially a much better alias 4 Analyzing Incomplete Programs
analysis thanTypeDecl Even thoughFieldTypeDeclof- Most prior pointer alias analyses for the heap are whole-
fers little performance improvement ovéypeDeclfor RLE, program analyses, i.e., the compiler assumes it is analyzing
FieldTypeDeclshould probably be the algorithm of choice the entire program, including libraries, makinglased world
since it does gives more precise results (without much addedssumption Many situations arise when the entire program
complexity) which may be important for other optimizations is not available: for instance, during separate compilation, or
that use alias analysis. compiling libraries without all their potential clients, or com-

Number of opportunities exposed bgAA for RLE.
An upper-bound forBAA with respect taRLE.
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which it has access since unavailable code may assign them.
piling incomplete programs Since Modula-3 uses structural type equivalence, unavailable
In unsafe languages such as C++, alias analyses must code can access most types because it can construct its own

sume that unavailable code may affect all pointers in arbitrangPPY Of the types. Exceptions to this ability aBeanded
ways. For type-safe languages like Modula-3 and Java, th&/Pes in Modula-3. These types essennaII},/ observe name
compiler can use type-safety and a type-based alias anaWnguwalence and may not be “reconstructed” by unavailable
to make stronger type-safety assumptions about unavailabf®de:

code. It can assume that unavailable code will not violate Figure 12 compares the simulated run-time improvement
the type system of the language. For example, consider thdue to redundant load elimination usimgAA when assum-
following procedure declaration using the types declared iing that the entire program is available (closed world) and

Figure 1. assuming it is not available (open world). Notice that in our
experiments, the open-world assumption has an insignificant
PROCEDURE f (p: S1;q: S2) = ... impact on the effectiveness oBAA with respect tORLE.

This result however reflects the results in Table 6, siGké
In an unsafe language, if some of the callersf ofre not  FieldTypeRefswhich is most affected by the open world as-
available for analysis, the compiler must assume ghahd  sumption, does not enable any additional opportunities for
g are aliases. For a type-safe language, a type-based analysise over FieldTypeDecl With respect to the static metrics,
can safely assume thatandq are not aliases since they have we found that they were the same for the open-world and
incompatible types. closed-world assumptions with one difference: M3CG had

Two components of BAA rely on properties other than the about 80 more alias pairs (interprocedurally) with the open-

type system of the languagéddressTakerand type merg-  world assumption than with the closed world assumption.
ing. Since unavailable code may pass the address of a quattowever, the additional alias pairs did not reduce the effec-
ified expression or subscript expression to available code wgveness oRLE.
reviseAddressTakers follows.

5 Related Work

AddressTakelfp) is true:
1. if the program ever takes’s address (for instance to Alias analysis must consider an unbounded num_ber of paths
pass it by reference or as part oféTH), or through an unbounded collection of data, and is therefore
harder than traditional data-flow analyses. The literature con-
tains many algorithms for alias analysis [2, 4, 6, 7, 9, 15, 19,
8, 20, 21, 22, 30, 32, 35, 36]. The key differences between
Since Modula-3 requires the types of pass-by-referencéhe algorithms stem from where and how they approximate
formals and actuals to be identical, the second clause neetfse unbounded control paths and data. The approximation
to check only for typeequality, not typecompatibility Note  determines the precision and efficiency of the algorithm, and
that this new definition ofAddressTakertonsiders instruc- these alias analyses range from precise exponential time al-
tions in the program for available code (1) and considers onlgorithms to less precise nearly linear time algorithms.
the type system for unavailable code (2). Our work differs from previous work in two ways: (1) It
Since unavailable code may cause merges of types, wis type-based instead of instruction-based. (2) We evaluate
make SMFieldTypeRefamore conservative at merges. We our alias algorithm with respect to an optimization, redun-
merge any two types (related by the subtype relation) tadant load elimination, and its upper bound, rather than us-
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2. if f is a pass-by-reference formal apcandf have the
same type.



ing static measurements as used by most work on alias anal- Since we ignore control flow, our algorithm achieves a
ysis [2, 4, 6, 7, 9, 15, 20, 21, 22, 30, 32, 35]. Our upperO(Instructionsx Typeg time complexity that is asymptot-
bound measurement is similar to Wall's [34], which assumescally as fast as the fastest existing alias analysis [32].
a “perfect alias analysis” to find an upper bound on instruc- .
tion level parallelism. Wall [34] does not evaluate an existing6 Conclusions
alias analysis as we do, but just gives the potential of a perfedthis paper describes and evaluates three algorithms that use
alias analysis for instruction level parallelism. programming language types to disambiguate memory refer-
Aho, et al.[1] and Chasegt al. [6] were among the firstto  ences. The first analysis uses type compatibility to determine
notice that using programming language types could improvaliases. The second extends the first by using additional high-
alias analysis, but did not present algorithms that did so. Oulevel information such as field names and types. The third,
alias algorithm is most similar to those of Rinard and Diniz TBAA, extends the second with a flow-insensitive analysis.
[26], Steensgaard [32], and Ruf [27, 28]. We show that the algorithm that uses only type compatibility
Rinard and Diniz use type equality to disambiguate memis very imprecise whereas the other two analyses are much
ory references. The type system they use is a subset #fetter at disambiguating memory references in the same pro-
C++ that does not have inheritance and is thus weaker thagedure. We also evaluatBAA with respect to redundant
Modula-3's or Java’s type systems. Steensgaard uses &@ad elimination RLE), one of its many potential clients. Our
instruction-based alias algorithm which uses non-standartgsults show tharBAA and RLE improve program perfor-
types, not programming language types, to obtain a fast alia®ance by up to 8%, and on average 4%. We demonstrate that
analysis. His type inference algorithm is similar to our selec-With respect tRLE and these benchmark programsaa is
tive type merging; however, he does not use programmind€ry precise; a more precise analysis could only enabke
language types, and in particular inheritance, to prune thé&0 eliminate on average an additional 2.5% of redundant ref-
merge sets as we do. Ruf shows how to use programmingrences, and at most 6%. BecauseaA relies on type-safety,
language types to partition data-flow analyses: each partitioft can be conservative in the face of incomplete, type-safe pro-
represents code that can be analyzed independently and thgams without losing effectiveness. Our results show that as
a different analysis can be used on each partition [28]. Rufar asRLE is concernedTBAA performs just as well with an
uses his scheme to partition programs for alias analyses, b@Pen-world assumption as with a closed-world assumption.
does not use the programming language types in the analysis. TBAA achieves its fast time bound and accuracy because
Ruf [27] compares a context sensitive alias analysis to a corff type safety, and our results confirm a common (but to our
text insensitive alias analysis and finds, for his benchmarkghowledge, untested) belief that type safety can be used to
that they are comparable in precision. Our work supports higmprove program performance. Taken together, these results
in that we also find that a simple alias analysis can yield verpuggest that type-based alias analysis can be effective, and
precise results. that a thorough evaluation of alias analyses with respect to
Cooper and Lu [8] describe and evaluate register promotheir clients is necessary to understand their strengths and
tion, an optimization that moves memory references out ofveaknesses.
Iopps and_into registers. 'I_'h_ey evalugte register promqt_iorpeferenceS
with two alias analyses: a trivial analysis and a flow-sensitive
alias analysis. They used the number of instructions execute
as their performance metric and found that the more powerful
alias analysis did not significantly improve performance. Our

results support theirs: for many applications a fast and simple Record of the Sixth Annual ACM SIGACT/SIGPLAN

alias an.aIyS|s may bg sufficient. . Symposium on Principles of Programming Languagesges
Shapiro and Horwitz [29] evaluate the impact of three flow 29-41, San Antonio, Texas, January 1979.

insensitive alias analyses on a range of optimizations. They, 3] Rodney M. Bates. K-trees. Personal communication
evaluate their algorithms by counting optimization opportuni- November 1994, ' ’

tlﬁs rtathelir tlhan anylof.the metrlcsfthzit we .l:se' They find t.hat[4] Michael Burke, Paul R. Carini, Jong-Deok Choi, and Mieha
¢ I.en sora 'f"‘s ana ys.ls may run as.er WI. a more_preCI_Se Hind. Efficient flow-insensitive alias analysis in the prese
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ilarly, Ghiya and Hendren [17] use pointer analysis to im- Research Center, Yorktown Heights, NY, September 1994.
prove Scala.lr optimizations, and pres_ent run-time improve- [5] Brad Calder, Dirk Grunwald, and Joel Emer. A system level
ments. This work was concurrent with ours, They do not perspective on branch architecture performance2@in

present a limit study. International Symposium on Microarchitectygages
Debrayet al. [11] describe an alias analysis for executable 199-206, November 1995.
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