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Abstract
This paper evaluates three alias analyses based on program-
ming language types. The first analysis uses type compati-
bility to determine aliases. The second extends the first by
using additional high-level information such as field names.
The third extends the second with a flow-insensitive analy-
sis. Although other researchers suggests using types to dis-
ambiguate memory references, none evaluates its effective-
ness. We perform both static and dynamic evaluations of
type-based alias analyses for Modula-3, a statically-typed
type-safe language. The static analysis reveals that type com-
patibility alone yields a very imprecise alias analysis, but the
other two analyses significantly improve alias precision. We
use redundant load elimination (RLE) to demonstrate the ef-
fectiveness of the three alias algorithms in terms of the oppor-
tunities for optimization, the impact on simulated execution
times, and to compute an upper bound on what a perfect alias
analysis would yield. We show modest dynamic improve-
ments for (RLE), and more surprisingly, that on average our
alias analysis is within 2.5% of a perfect alias analysis with
respect toRLE on 8 Modula-3 programs. These results il-
lustrate that to explore thoroughly the effectiveness of alias
analyses, researchers need static, dynamic, and upper-bound
analysis. In addition, we show that for type-safe languages
like Modula-3 and Java, a fast and simple alias analysis may
be sufficient for many applications.

1 Introduction
To exploit memory systems, multiple functional units, and
the multi-issue capabilities of modern uniprocessors, compil-
ers must reorder instructions. For programs that use pointers,
the compiler’s alias analysis dramatically affects its ability to
reorder instructions, and ultimately performance. Alias anal-
ysis disambiguates memory references, enabling the com-�The authors can be reached electronically via Internet addressesdi-
wan@cs.stanford.edu, fmckinley,mossg@cs.umass.edu. This work
was supported by the National Science Foundation under grants CCR-
9211272 and CCR-9525767 and by gifts from Sun Microsystems Labora-
tories, Inc., Hewlett-Packard, and Digital Equipment. Kathryn S. McKinley
is supported by an NSF CAREER Award CCR-9624209. Amer Diwan was
also supported by the Air Force Materiel Command and ARPA award num-
ber: F30602-95-C-0098.

In the ACM SIGPLAN Conference on Programming Language Design
and Implementation, June 1998, Montreal, Quebec, Canada, pp. 106–
117.

piler to reorder statements that do pointer accesses.
Despite its importance, few commercial or research com-

pilers implement non-trivial alias analysis. Three reasons
alias analysis is not implemented are: (1) Many alias anal-
yses are prohibitively slow and thus impractical for produc-
tion use. (2) The alias analyses in the literature require the
entire program (or some representation of it), which inhibits
separate compilation and compiling libraries. (3) Most alias
analyses have been evaluated only statically, and thus we do
not know the effectiveness of these algorithms with respect to
the optimizations that use them. To address these concerns,
this paper explores using fast alias analyses that rely on pro-
gramming language types. While prior work [1, 6] mentions
using type compatibility for alias analysis, none evaluates the
idea or presents the details of an algorithm.

This paper describes and evaluates three fast alias analy-
ses based on programming language types. The first analy-
sis (TypeDecl) uses type compatibility to determine aliases.
The second (FieldTypeDecl) uses other high-level properties,
such as field names to improve on the first. The third (SM-
FieldTypeRefs) improves the second by incorporating a flow-
insensitive pass to include the effects of variable assignments
and references. This pass is similar to Steensgaard’s algo-
rithm [32].

We statically evaluate our alias algorithms using the num-
ber of alias pairs (the traditional method). We also evaluate
TBAA based on its static and dynamic effects on an optimiza-
tion. In addition, we evaluateTBAA with respect to an upper
bound on the same optimization. Each of the evaluation met-
rics reveals different strengths and weaknesses in our alias
algorithms, and we believe this range of metrics, and espe-
cially upper-bound analysis, is necessary to understand the
effectiveness of any alias analysis.

Our static evaluation reveals that the simplest type-based
alias analysis is very imprecise, but that for our Modula-3
benchmarks, the other two alias analyses significantly reduce
the number of intraprocedural aliases of a reference to on av-
erage 3.4 references (ranging from .3 to 20.8). We find that
TBAA is much less effective for interprocedural aliases.

We also evaluateTBAA by measuring the static and sim-
ulated run-time impact on an intraprocedural optimization
that depends on alias analysis:redundant load elimination
(RLE). RLE combines loop invariant code motion and com-
mon subexpression elimination of memory references.TBAA

andRLE combine to improve simulated program performance
modestly, by an average of 4%, and up to 8% on a DEC Alpha
3000-500 [12] for 8 Modula-3 benchmarks.



We also compareTBAA to an upper bound that represents
the best any alias analysis algorithm could hope to do forRLE.
This comparison shows that a perfect alias analysis could at
most eliminate an average of 2.5% more heap loads. In addi-
tion, we modifyTBAA for incomplete programs and demon-
strate, usingRLE, that it performs as well as it does on com-
plete programs. These results andTBAA ’s fast time complex-
ity suggest thatTBAA is a practical and promising analysis
for scalar optimization of type-safe programs.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our type-based alias analysis algorithms.
Section 3 presents our evaluation methodology, and uses it
to evaluateTBAA . Section 4 extends and evaluatesTBAA for
incomplete programs. Section 5 discusses related work in
alias analysis. Section 6 concludes.

2 Type-Based Alias Analysis

This section describes type-based alias analyses (TBAA ) in
which the compiler has access to the entire program except
for the standard libraries.TBAA assumes a type-safe pro-
gramming language such as Modula-3 [25] or Java [33] that
does not support arbitrary pointer type casting (thisfeatureis
supported in C and C++). We begin with our terminology,
and then discuss using type declarations, object field and ar-
ray access semantics, and modifications to the set of possible
types via variable assignments to disambiguate memory ac-
cesses.

2.1 Memory Reference Basics

Table 1 lists the three kinds of memory references in Modula-
3 programs, their names, and a short description.1

Table 1: Kinds of Memory References

Notation Name Description

p.f Qualify Access fieldf of objectp
pˆ Dereference Dereference pointerp
p[i] Subscript Array p with subscripti

We call a non-empty string of memory references, for exam-
pleaˆ.b[i].c , anaccess path(AP) [22]. Without loss of
generality, we assume that distinct object fields have different
names. We also define:

Type (p): The static type ofAP p.
Subtypes(T): The set of subtypes of typeT,

which includesT.

In Modula-3 and other type-safe languages, an object of type
T can legally access objects of typeSubtypes(T). Each of
our alias analyses refines the type of objects to which anAP
(memory reference) may refer. If twoAPs may have the
same type, then the analyses determines they may access the
same location.1These types of memory references are, of course, not unique to Modula-
3.

TYPE
T = OBJECT f, g: T; END;
S1 = T OBJECT ... END;
S2 = T OBJECT ... END;
S3 = T OBJECT ... END;

VAR
t: T;
s: S1;
u: S2;

Figure 1: Type Hierarchy Example

2.2 TBAA Using Type Declarations

To use type declarations to disambiguate memory references,
we simply examine the declared type of an access pathAP ,
and then assume theAP may reference any object with the
same declared type or subtype. We call this version ofTBAA ,
TypeDecl. More formally, given twoAPs p andq, Type-
Decl(p, q) determines they may be aliases if and only if:

Subtypes(Type (p)) \ Subtypes(Type (q)) 6= ;.

Consider the example in Figure 1. SinceS1 is a subtype of
T, objects of typeT can reference objects of typeS1. Thus,

Subtypes(Type (t )) \ Subtypes(Type (s )) 6= ;
Subtypes(Type (t )) \ Subtypes(Type (u)) 6= ;
Subtypes(Type (s )) \ Subtypes(Type (u)) = ;

In other words,t and s may reference the same location,
and t andu may reference the same location, buts andu
may not reference the same location since they have different
types. Note thatTypeDeclis not transitive.

Table 2:FieldTypeDecl(AP 1,AP 2) Algorithm

Case AP 1 AP 2 FieldTypeDecl(AP 1,AP 2)

1 p p true
2 p.f q.g (f = g) ^ FieldTypeDecl(p, q)
3 p.f qˆ AddressTaken (p.f ) ^

TypeDecl(p.f , qˆ )
4 pˆ q[i] AddressTaken(q[i] ) ^

TypeDecl(pˆ , q[i] )
5 p.f q[i] false
6 p[i] q[j] FieldTypeDecl(p, q)
7 p q TypeDecl(p, q)

2.3 Using Field Access Types

We next improve the precision ofTypeDecl using the type
declarations of fields and other high level information in the
program. We call this version of type-based alias analysis
FieldTypeDecl. It distinguishes accesses such ast.f and
t.g , f 6= g, thatTypeDeclmisses. TheFieldTypeDeclal-
gorithm appears in Table 2. GivenAP1 andAP2, it returns
true ifAP1 andAP2 may be aliases. It usesAddressTaken,
which returns true if the program ever takes the address of
its argument. For example,AddressTaken(p.f ) is true if
the program takes the address of fieldf of an object in the
setTypeDecl (p). AddressTaken(q[i] ) returns true if the
program takes the address of some element of an array ofq’s

2



type. In Modula-3, programs may take the addresses of mem-
ory locations in only two ways: via the pass-by-reference
parameter passing mechanism, and via theWITH statement,
which creates a temporary name for an expression. For sim-
plicity we assume that aggregate accesses, such as assign-
ments between two records, have been broken down into ac-
cesses of each component.

The seven cases in Table 2 determine the following.

1: IdenticalAPs always alias each other.

2: Two qualified expressions may be aliases if they access
the same field in potentially the same object.

3-4: A pointer dereference may reference the same location
as a qualified or subscripted expression only if their
types are compatible and the program may take the ad-
dress of the qualified or subscripted expression.

5: In Modula-3, a subscripted expression cannot alias a
qualified expression.

6: Two subscripted expressions are aliases if they may sub-
script the same array.FieldTypeDeclignores the actual
subscripts.

7: For all other cases ofAPs, including two pointer deref-
erences,FieldTypeDecl usesTypeDecl to determine
aliases.

Java programs would have similar rules. For C++ pro-
grams, the rules must be more conservative to handle arbi-
trary pointer casts and pointer arithmetic.

2.4 Using Assignment

TypeDeclis conservative in the sense that it assumes that the
program uses types in their full generality. For instance, pro-
grams often use list packages that support linking objects of
different types to link objects of only one type. We thus im-
prove onTypeDeclby examining the effects of explicit and
implicit assignments to determine more accurately the types
of objects anAP may reference in a flow-insensitive manner.
We call this algorithmSMTypeRefs(Selectively Merge Type
References). Unlike TypeDecl, which always merges the de-
clared type of anAP with all of its subtypes,SMTypeRefs
only merges a type with a subtype when a statement assigns
some reference of subtypeS to a reference of typeT. As an
example, consider applyingTypeDecl to the following pro-
gram given the type hierarchy in Figure 1:

VAR
t: T := NEW (T);
s: S1 := NEW (S1);

SinceTypeDecl only considers declared types, it assumes
that t ands may reference the same location because it is
semantically correct for objects of typeT to reference objects
of type S1. By inspecting the code however, it is obvious
that t ands never reference the same location since there is
no explicit or implicit assignment between the two.SMType-
Refsproves independence in this situation as follows: if the
program never assigns an object of typeS1 to a reference of

(* Step 1: put each type in its own set *)
for all pointer typesT do
Group := Group +ffTgg

(* Step 2: merge sets because of assignments *)
for all implicit and explicit pointer assignments,a:=b , do
Ta := Type (a); Tb := Type (b);
if Ta 6= Tb then
let Ga, Gb2 Group, such thatTa 2 Ga, Tb 2 Gb
Group := Group -fGag - fGbg + fGa[ Gbg

(* Step 3: ConstructTypeRefsTable*)
for all typest do
let g 2 Group,t 2 g
TypeRefsTable(t ) = g \ Subtypes(t )

Figure 2: Selective Type Merging

typeT (directly or indirectly), thent ands cannot possibly
be aliases. Notice that if there is any such assignment,SM-
TypeRefsassumes thatAPs of typeT may be aliased toAPs
of typeS1. We call these assignmentsmerges.

Figure 2 presents the algorithm to selectively merge
types.2 This algorithm produces aTypeRefsTablewhich
takes a declared typeT as an argument and returns all the
types potentially referenced by anAP declared to be of type
T. Given twoAP p andq, SMTypeRefs(p,q) determines
they may be aliases if and only if:

TypeRefsTable(Type (p))\ TypeRefsTable(Type (q)) 6= ;
In Figure 2, each setS = fT1; : : : ; Tkg in Group represents
an equivalence class of types such that anAP with a declared
typeT 2 S may reference any objects of typeTi 2 S. For
example, given the setS = fT1,T2g 2 Group , APs with
declared typeT1 may reference any object of typeT1 or T2.

Step 1 initializesGroup , such that each declared type is
in an independent set and anAP declared with typeT is thus
assumed to reference only objects of typeT. Step 2 exam-
ines all the assignment statements and merges the type sets
if the types of the left and right hand sides are different.3
Step 2 does not consider the order of the instructions and is
thereforeflow insensitive. Step 3 then filters out infeasible
aliases fromGroup , creatingasymmetryin theSMTypeRefs
relationship.4 For instance, anAP with declared typeT in
Figure 1 may reference objects of typeT or typeS1, but anAP declared asS1 may not reference objects of typeT. The
final result of Step 3 is theTypeRefsTable.

Figure 3 uses the the type declarations in Figure 1 to il-
lustrate how the selective merging algorithm works. The2A more precise but slower formulation maintains a separate group for
each type. In our experiments, the difference between the two variations was
insignificant.3Step 2 is similar to Steensgaard’s algorithm [32].4If we took Steensgaard’s algorithm [32] and applied it to user defined
types, it would not discover this asymmetry.
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VAR
s1: S1 := NEW (S1);
s2: S2 := NEW (S2);
s3: S3 := NEW (S3);
t: T;

BEGIN
t := s1; (* Statement 1 *)
t := s2; (* Statement 2 *)

END;

Figure 3: Example to IllustrateSMTypeRefs

T S1

S2

S3

T S2S1

S3

S3

T

S1

S2

(a) Initialized sets in Group (b) Sets after statement 1 (c) Sets after statement 2

Figure 4: Selective Merging for Figure 3

VARdeclarations declare and initialize variables to newly al-
located objects of their declared types. Step 1 thus initial-
izes each declared type in a set of its own, as shown in Fig-
ure 4(a) where each oval represents a set inGroup . Fig-
ure 4(b) showsGroup after Step 2 merges typesT andS1,
the types for the first assignment; and Figure 4(c) shows that
the second assignment causes Step 2 to mergeS2 with T and
S1. S3 remains in a set by itself. Step 3 of the merge algo-
rithm then creates asymmetry for the subtype declarations in
theTypeRefsTable, as shown in Table 3. NoticeSMTypeRefs
determinesAPs declared to be of typeT may not reference
objects of typeS3, butTypeDeclmust assume they may.

Table 3:TypeRefsTablefor Figure 3

Type TypeRefsTable(Type)

T T, S1, S2
S1 S1
S2 S2
S3 S3

We obtain the final version of ourTBAA algorithmSMField-
TypeRefs(Fields+Selectively Merge Type References) by us-
ing SMTypeRefsfor TypeDecl in the FieldTypeDeclalgo-
rithm in Table 2.

2.5 Complexity

The complexity of this type-based alias analysis (TBAA ) is
dominated by step 2 ofSMTypeRefs. This step makes a sin-
gle linear pass through the program and at each pointer as-
signment unions two sets of types. The complexity ofTBAA

is thusO(n) bit-vector steps, wheren is the number of in-
structions in the program. Each bit-vector step takes time pro-

portional to the number of types in the program. The time to
usethe results of theTBAA may, of course, be more than lin-
ear time. For instance, computing all themay-aliaspairs us-
ing TBAA (or any otherpoints-toanalysis) takesO(e2) time,
wheree is the number of memory expressions in the program.

3 Evaluation
This section evaluates type-based alias analysis using static
and dynamic metrics, and alimit analysis. We first review the
strengths and weaknesses of static and dynamic metrics, and
thus motivate our limit analysis.

Static Evaluation. The majority of previous work on
alias analysis [2, 4, 6, 7, 9, 15, 20, 21, 22, 30, 32, 35] mea-
suresstatic properties, such as the sizes of themay aliasand
points-tosets. Static properties enable comparisons between
the precision of two alias analyses using the size of their static
points-to sets; the smaller the set the more precise the analy-
sis. Static properties have, however, two main disadvantages.
(1) Static properties cannot tell us if the analysis is effective
with respect to its clients. For example, even if the alias sets
are small, the analysis may not differentiate the pointers that
will enable optimizations to improve performance or increase
the effectiveness of other analyses. (2) Static properties do
not enable comparisons between theeffectivenessof two alias
analyses with different strengths and weaknesses. For exam-
ple, the size of the points-to sets of two analyses may be the
same, but the analyses may disambiguate different pointers.
A static analysis that compares the resulting number of opti-
mization opportunities remedies some of this problem.

Dynamic Evaluation. A few researchers recently eval-
uated alias analyses by measuring theexecution-time im-
provementdue to an optimization that uses alias analysis
[19, 36, 8, 17]. Using run-time improvements complements
static metrics, since run-time improvements directly measure
the impact of the alias analysis on its clients (usually com-
piler optimizations). However, one of their disadvantages is
that the results are specific to the given program inputs.

Limit Evaluation. Both static and dynamic evaluation
have an additional significant shortcoming: these properties
do not tell us how much room for improvement there is in
the alias analysis (except in the unusual case of an alias anal-
ysis that disambiguates all memory references). We would
like to know if the aliases really exist at run-time, and if any
imprecision in the alias analysis causes missed opportunities
for optimizations or other clients of the analysis. To detect
imprecision and its impact, we also use a run-time limit anal-
ysis to determine missed optimization opportunities and their
causes for a given program input. No previous work on alias
analysis uses this metric.

The remainder of this section is organized as follows. Sec-
tions 3.1 and 3.2 describe our experimental framework and
benchmark programs. Section 3.3 presents the static alias
pairs for our analyses. Section 3.4 presents the simulated
run-time improvements due to our alias analysis for redun-
dant load elimination. Section 3.5 evaluates the room for im-
provement in our analysis.
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Table 4: Description of Benchmark Programs

Name Lines Instructions % Heap loads % Other loads Description

format [23] 395 1,879,195 10 17 Text formatter
dformat [23] 602 1,442,541 9 19 Text formatter
write-pickle 654 1,614,437 13 16 Reads and writes an AST
k-tree[3] 726 50,297,517 10 21 Manages sequences using trees
slisp 1,645 11,462,791 27 9 Small lisp interpreter
pp 2,328 45,779,402 11 19 Pretty printer for Modula-3 programs
dom [24] 6,186 System for building distributed applications
postcard 8,214 Graphical mail reader
m2tom3 10,574 50,894,990 8 28 Converts Modula-2 code to Modula-3
m3cg 16,475 5,636,004 8 21 M3 v. 3.5.1 code generator + extensions

Front end
adapter

Back end
adapter

Saved IR   Object codeM3 Front End

Whole Program
Optimizer

GCC Back End

Figure 5: Compilation Framework

3.1 Environment

Figure 5 illustrates our compilation framework. The front
end reads a Modula-3 module and generates a file contain-
ing a typed abstract syntax tree (AST) for the compiled mod-
ule. Thewhole program optimizer(WPO) reads in theASTs
for a collection of modules, analyzes and transforms them,
and then it writes out the modifiedAST for each module and
a file with the corresponding low-level stack machine code.
The stack representation is the input language for a back end
based onGCC. WPO implements all optimizations and analy-
ses presented in this paper.

3.2 Benchmarks

For each benchmark in our suite, Table 4 gives the num-
ber of non-comment, non-blank lines of code. For the non-
interactive programs, Table 4 also gives the number of in-
structions executed, the percent of instructions that are mem-
ory loads from the heap, and the percent of instructions that
are memory loads from the stack and global area (other).
None of these programs were written to be benchmarks,
but other researchers have used several of them in previous
studies [16, 10]. Table 4 contains the data for the origi-
nal programs (i.e., without the optimizations proposed here)
but with GCC’s standard optimizations turned on, which in-
clude register allocation and instruction scheduling (except
for m2tom3). Due to a compiler bug inGCC, we were unable
to perform the standard optimizations onm2tom3, which ex-
plains its unusually large number ofother loads. The num-
bers in Table 4 do not include instructions or memory refer-
ences from the standard libraries.

3.3 Static Evaluation

Table 5 evaluates the relative importance of the threeTBAA :
TypeDecl: TBAA using only type declarations;FieldType-
Decl: TBAA usingTypeDecland field declarations; andSM-
FieldTypeRefs: TBAA usingFieldTypeDecland assignment
statements. TheReferencescolumn gives the total number of
heap memory references in the source of the benchmark pro-
grams. For each of the analyses, the table contains the num-
ber of local (L Alias) and global (G Alias) alias pairs. Local
alias pairs are heap memory references within the same pro-
cedure that may alias each other, and global alias pairs are
heap memory references not necessarily within the same pro-
cedure that may alias each other. Since each memory refer-
ence trivially aliases itself, we exclude this pair. Note that
sinceSMFieldTypeRefsis strictly more powerful thanField-
TypeDecl, andFieldTypeDeclis strictly more powerful than
TypeDecl, we can use static metrics to compare the three.

From the table, we see thatTypeDeclperforms a lot worse
than FieldTypeDecl, and that flow-insensitive merging us-
ing SMFieldTypeRefsoffers little improvement overField-
TypeDecl. SMFieldTypeRefsimproves local and global alias
pairs onpostcard , and the number of global aliases for
m3cg. On average, each heap reference may alias 4.7 other
intraprocedural references usingTypeDecl, 3.4 references us-
ing FieldTypeDecl, and 3.4 references usingSMFieldType-
Refs. The range is from 0.3 to 20.8 references forSMField-
TypeRefs. On average, each heap reference may alias 54.1
other interprocedural references usingTypeDecl, 12.7 refer-
ences usingFieldTypeDecl, and 12.7 references usingSM-
FieldTypeRefs. The range is from 2 to 27.7 references for
SMFieldTypeRefs. The number of interprocedural aliases is
much higher than the number of intraprocedural aliases, sug-
gesting thatTBAA is probably too imprecise for interproce-
dural optimizations. In the next two sections, we show that
even though our analysis does not disambiguate all intrapro-
cedural memory references (i.e., the local aliases are greater
than zero), it may be precise enough for some applications.

3.4 Optimization Results

This section measures the static and simulated execution-time
impact of TBAA on redundant load elimination (RLE). We
first describe our implementation ofRLE, and then show its
impact on execution time. Section 3.5 then describes a limit
analysis that demonstrates that with respect toRLE, there is
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Table 5: Alias Pairs

TypeDecl FieldTypeDecl SMFieldTypeRefs
Program References L Alias G Alias L Alias G Alias L Alias G Alias

format 75 221 450 133 206 133 206
dformat 156 554 2665 293 1286 293 1286
write-pickle 171 383 2089 235 507 235 507
slisp 230 122 2322 74 464 74 464
pp 444 1626 10830 719 3811 719 3811
k-tree 612 2731 24344 1328 9655 1328 9655
dom 800 932 29550 589 21802 589 21802
m2tom3 904 19036 47856 18824 25048 18826 25048
postcard 1038 4208 30890 1623 5278 1615 5262
m3cg 4515 16521 1409449 6154 121476 6153 120525

... := a.b^[j]

1

2 3

4

2

4

3

1

0

t := a.b^

... := t[i] ... := t[j]... := a.b^[i]

Figure 6: Eliminating Loop Invariant Memory Loads

... := t[j]... := a.b^[i]

... := t[j]

2 3

4

2 3

4

1 1

... := a.b^[j]

... := a.b^[j]

t := a.b^
... := t[i]

t := a.b^

Figure 7: Eliminating Redundant Memory Loads

little or no room for improvement inTBAA .

3.4.1 Redundant Load Elimination

Redundant load elimination (RLE) combines variants of loop
invariant code motion (similar to register promotion [8]) and
common subexpression elimination [1], which most optimiz-
ing compilers perform.RLE differs from classic loop invari-
ant code motion and common subexpression elimination in
that it eliminates redundant loads instead of redundant com-
putation. We expectRLE to be a profitable optimization since
loads are expensive on modern machines and architects ex-
pect they will only get more expensive [18].

RLE hoists memory references out of loops if the reference
is loop invariant and is executed on every iteration of the loop,
leaving it up to the back end to place the hoisted memory ref-
erence in a register. For example in Figure 6, the access path
a.bˆ is redundant on all paths, and loop invariant code mo-
tion moves it into the loop header. As shown in Figure 7,
RLE also replaces redundant memory expressions by simple
variable references, which the back end may place in a reg-
ister. A memory expression at statements is redundant if it

is available on every path tos . RLE therefore improves per-
formance by enabling the replacement of costly memory ref-
erences with fast register references. SinceRLE operates on
memory references its effectiveness depends directly on the
quality of the alias information (and also on the back end). To
enableRLE across calls,RLE is preceded by a mod-ref analy-
sis which summarizes the access paths that are referenced and
modified by each call. For example, in order to hoist a mem-
ory reference out of a loop containing a call,TBAA needs
to know whether the call changes the value of the memory
reference. Note that even thoughRLE uses interprocedural
mod-ref information, it does not eliminate redundant loads
across procedure boundaries.

3.4.2 Impact of TBAA on RLE

Table 6 gives the number of access paths thatRLE removes
statically in each of our benchmark programs for each variant
of TBAA : TypeDecl, FieldTypeDecl, andSMFieldTypeRefs,
By comparing Table 6 and Table 5, we see that the differ-
ences between the number of local alias pairs is the strongest
indicator of optimization opportunities forRLE. In partic-
ular, the big differences between the number of alias pairs
for TypeDeclandFieldTypeDeclresult in an increase in the
number of redundant loads found byRLE. In contrast, the
reductions in the number of alias pairs betweenFieldType-
Decl andSMFieldTypeRefsdoes not change the number of
redundant loads found byRLE. (These reductions are how-
ever smaller than the others.)

Table 6: Number of Redundant Loads Removed Statically

Program TypeDecl FieldTypeDecl SMFieldTypeRefs

format 27 29 29
dformat 10 22 22
write-pickle 46 47 47
k-tree 221 228 228
m2tom3 369 396 396
slisp 36 37 37
m3cg 524 613 613

We also measured execution times using a detailed (and
validated [5]) simulator for an Alpha 21064 workstation with
one difference: rather than simulating an 8K primary cache
we simulated a 32K primary cache to eliminate variations due
to conflict misses that we observed in an 8K direct mapped
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Figure 8: Impact ofRLE

cache. Also, we only measured the execution time spent in
user code since that is the only code that we were able to
analyze. Execution times are normalized with respect to the
execution time of the original program withoutRLE, but with
all of GCC’s optimizations. (GCC eliminates redundant loads
without any assignments to memory between them.)

Figure 8 illustrates the simulated execution time impact of
TBAA on RLE relative to the original execution time. The
graph has three bars for each non-interactive benchmark.
Each bar represents the execution time due toRLE and a dif-
ferent alias analysis:TypeDecl (types only),FieldTypeDecl
(types and fields), andSMFieldTypeRefs(types, fields, and
merges).

TBAA enablesRLE to improve program performance from
1% to 8%, and on average 4%. SinceRLE is just one of many
optimizations that benefits from alias analysis, the full impact
of alias analysis on execution time should be higher. Also,
contrary to what the data in Table 5 and Table 6 suggest, the
three variants ofTBAA have roughly the same performanceas
far as RLE is concerned. These results make two important
points. First, a more precise alias analyses is not necessar-
ily better; it all depends on how the alias analysis is used.
Second, static metrics, such as alias pairs are insufficient by
themselves for evaluating alias analyses.

3.5 Comparing TBAA to an Upper Bound

How much precision doesTBAA lose in order to achieve its
fast time bound?It is easy to contrive examples whereTBAA

fails to disambiguate memory references while many other
alias analyses succeed. This section demonstrates, using a
limit study, that forRLE and our benchmark programs, there
is little to be gained from an alias analysis that is more precise
thanTBAA .

Figure 9 compares heap loads that are redundant at run
time beforeand after applying RLE. A redundant load is
when two consecutive loads of the same address load the
same value in the same procedure activation. We measure
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Figure 10: Source of Redundant Loads after Optimizations

these loads usingATOM[31], a binary rewriting tool for the
Alpha. We instrument every load in an executable, record-
ing its address and value. If the most recent previous load
of an address is redundant with the current load, we mark it
as redundant. (Elsewhere we describe this process in more
detail [13].) In Figure 9, the black bars give the fraction of
heap references that are redundant in the original program.
The white bars give the fraction of heap references that are
redundant afterTBAA andRLE (this fraction is with respect
to the original number of heap references). These results are
specific to program inputs.

Figure 9 shows that our optimizations eliminate between
37% and 87% of the redundant loads in these programs.
Moreover, for 6 of the 8 benchmark programs, only 5%
or fewer of the remaining loads are redundant. However,
slisp andktree still have many redundant loads. To un-
derstand the source of all the remaining redundant loads, we
manually classified them as follows:

1. Encapsulation: RLE could not eliminate a redundant
expression because it was implicit in our high-level
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(AST) intermediate representation. For example, the
subscript expression for an open array involves an im-
plicit memory reference to the dope vector.

2. Conditional: RLE did not eliminate a redundant expres-
sion because it was only partially redundant,i.e., redun-
dant along some paths but not along others. Partial re-
dundancy elimination would catch these.

3. Breakup: RLE did not eliminate a redundant expression
because it consisted of multiple smaller expressions and
our optimizer does not do copy propagation.

4. Alias failure: TBAA did not disambiguate two memory
references.

5. Rest: we don’t know the reason whyRLE did not elimi-
nate the redundant loads since we did not determine the
reason for the entire list of redundant expressions (which
is labor intensive).

The first category is due to a limitation of representation,
not TBAA or RLE. Categories 2 and 3 are limitations in our
implementation ofRLE, rather thanTBAA . The fourth cate-
gory, alias failure, corresponds to limitations ofTBAA . The
fifth category may be a limitation ofRLE or TBAA or the rep-
resentation. Each bar in Figure 10 breaks down theRedun-
dant after Optimizationsbar from Figure 9 into the above five
categories.

Figure 10 illustrates thatEncapsulation(dope vector ac-
cesses to index open arrays) is the most significant source of
the remaining redundant loads. Figure 10 also shows that we
did not encounter a single situation when optimization failed
due to inadequacies in our alias analysis. Those redundant
loads that could be due to failed analysis are categorized as
Rest, and on average, are less than 2.5% of the remaining
loads. Thus, forRLE on these programs and their inputs,
there is not much room for improvement in our simple and
fast alias analysis.

3.6 Summary of Results

This section evaluatedTBAA using four different metrics:� Number of static alias pairs.� Run-time improvement due to an optimization that uses
TBAA (RLE).� Number of opportunities exposed byTBAA for RLE.� An upper-bound forTBAA with respect toRLE.

Each of these four metrics exposes different information
aboutTBAA . The first metric,number of static alias pairs,
tells us two things. (1) For our benchmark programs,SM-
FieldTypeRefsoffers little or no precision overFieldType-
Decl. (2) FieldTypeDeclis potentially a much better alias
analysis thanTypeDecl. Even thoughFieldTypeDecl of-
fers little performance improvement overTypeDeclfor RLE,
FieldTypeDeclshould probably be the algorithm of choice
since it does gives more precise results (without much added
complexity) which may be important for other optimizations
that use alias analysis.

The second metric,run-time improvement, indicates the
how much an optimization or analysis really matters to the
bottom line: performance. Our experiments find that the ma-
jority of the run-time improvement comes fromTypeDecl.
FieldTypeDeclimproves performance only slightly. The re-
sults also illustrate that the run-time improvement due to our
analysis and optimization is relatively small: on average 4%
improvement. If run-time improvement is the only metric
we use, then we might conclude thatTBAA is a very impre-
cise alias analysis. However,upper-bound analysisreveals
that TBAA in fact performs about as well as any alias anal-
ysis could perform with respect toRLE and our benchmarks
programs.

The third metric, number of opportunities exposed by
TBAA for RLE, reveals thatFieldTypeDecl enables many
more opportunities forRLE than TypeDecl. However, our
run-time measurements find thatFieldTypeDecl is only
slightly better thanTypeDecl. If we had used only run-time
improvements to evaluate our analysis we might conclude
thatTypeDeclis the algorithm of choice. However, thenum-
ber of opportunitiesmetric tells us thatFieldTypeDeclis in-
deed significantly better thanTypeDecl. Perhaps with differ-
ent benchmark inputsFieldTypeDeclmay improve perfor-
mance significantly more thanTypeDecl.

Finally, theupper-bound analysis forRLE usingTBAA re-
veals that a more precise alias analysis forRLE would yield
few benefits: there is little or no room for improvement in
TBAA with respect toRLE.

To summarize, the four metrics tell us different informa-
tion about the different levels ofTBAA . For this reason, we
feel thatall of these metrics should be used together in a thor-
ough evaluation of an alias analysis (or for that matter any
compiler analysis).

3.7 Cumulative Results

Figure 11 shows the cumulative impact of two sets of op-
timizations: method invocation resolution [14] plus inlin-
ing (Minv + Inlining) and RLE. Method resolution uses
TBAA (and other analyses) to help resolve method invoca-
tions on object fields and array elements. While we expected
method resolution and inlining to expose more opportunities
for RLE, they did not. On studying the interactions ofRLE

with method invocations and inlining using limit analysis, we
found that inlining exposes more redundant expressions but
they are usually conditional (Section 3.5). Thus, while partial
redundancy elimination can eliminate these redundant loads,
RLE cannot. We plan to implement and evaluate partial re-
dundancy elimination of memory expressions in future work.

4 Analyzing Incomplete Programs
Most prior pointer alias analyses for the heap are whole-
program analyses, i.e., the compiler assumes it is analyzing
the entire program, including libraries, making aclosed world
assumption. Many situations arise when the entire program
is not available: for instance, during separate compilation, or
compiling libraries without all their potential clients, or com-
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Figure 11: Cumulative Impact of Optimizations

piling incomplete programs.
In unsafe languages such as C++, alias analyses must as-

sume that unavailable code may affect all pointers in arbitrary
ways. For type-safe languages like Modula-3 and Java, the
compiler can use type-safety and a type-based alias analysis
to make stronger type-safety assumptions about unavailable
code. It can assume that unavailable code will not violate
the type system of the language. For example, consider the
following procedure declaration using the types declared in
Figure 1.

PROCEDURE f (p: S1; q: S2) = ...

In an unsafe language, if some of the callers off are not
available for analysis, the compiler must assume thatp and
q are aliases. For a type-safe language, a type-based analysis
can safely assume thatp andq are not aliases since they have
incompatible types.

Two components ofTBAA rely on properties other than the
type system of the language:AddressTakenand type merg-
ing. Since unavailable code may pass the address of a qual-
ified expression or subscript expression to available code we
reviseAddressTakenas follows.

AddressTaken(p) is true:

1. if the program ever takesp’s address (for instance to
pass it by reference or as part of aWITH), or

2. if f is a pass-by-reference formal andp andf have the
same type.

Since Modula-3 requires the types of pass-by-reference
formals and actuals to be identical, the second clause needs
to check only for typeequality, not typecompatibility. Note
that this new definition ofAddressTakenconsiders instruc-
tions in the program for available code (1) and considers only
the type system for unavailable code (2).

Since unavailable code may cause merges of types, we
makeSMFieldTypeRefsmore conservative at merges. We
merge any two types (related by the subtype relation) to

97 99 98 98 97

92 94
97 99 98 98 97

92 94

0

10

20

30

40

50

60

70

80

90

100

Format Dformat Write-Pickle K-Tree M2toM3 Slisp M3CG

P
er

ce
n

t 
o

f 
o

ri
g

in
al

 r
u

n
n

in
g

 t
im

e

RLE RLE Open

Figure 12: Open and Closed World Assumptions

which it has access since unavailable code may assign them.
Since Modula-3 uses structural type equivalence, unavailable
code can access most types because it can construct its own
copy of the types. Exceptions to this ability areBranded
types in Modula-3. These types essentially observe name
equivalence and may not be “reconstructed” by unavailable
code.

Figure 12 compares the simulated run-time improvement
due to redundant load elimination usingTBAA when assum-
ing that the entire program is available (closed world) and
assuming it is not available (open world). Notice that in our
experiments, the open-world assumption has an insignificant
impact on the effectiveness ofTBAA with respect toRLE.
This result however reflects the results in Table 6, sinceSM-
FieldTypeRefs, which is most affected by the open world as-
sumption, does not enable any additional opportunities for
RLE overFieldTypeDecl. With respect to the static metrics,
we found that they were the same for the open-world and
closed-world assumptions with one difference: M3CG had
about 80 more alias pairs (interprocedurally) with the open-
world assumption than with the closed world assumption.
However, the additional alias pairs did not reduce the effec-
tiveness ofRLE.

5 Related Work
Alias analysis must consider an unbounded number of paths
through an unbounded collection of data, and is therefore
harder than traditional data-flow analyses. The literature con-
tains many algorithms for alias analysis [2, 4, 6, 7, 9, 15, 19,
8, 20, 21, 22, 30, 32, 35, 36]. The key differences between
the algorithms stem from where and how they approximate
the unbounded control paths and data. The approximation
determines the precision and efficiency of the algorithm, and
these alias analyses range from precise exponential time al-
gorithms to less precise nearly linear time algorithms.

Our work differs from previous work in two ways: (1) It
is type-based instead of instruction-based. (2) We evaluate
our alias algorithm with respect to an optimization, redun-
dant load elimination, and its upper bound, rather than us-
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ing static measurements as used by most work on alias anal-
ysis [2, 4, 6, 7, 9, 15, 20, 21, 22, 30, 32, 35]. Our upper
bound measurement is similar to Wall’s [34], which assumes
a “perfect alias analysis” to find an upper bound on instruc-
tion level parallelism. Wall [34] does not evaluate an existing
alias analysis as we do, but just gives the potential of a perfect
alias analysis for instruction level parallelism.

Aho,et al. [1] and Chase,et al. [6] were among the first to
notice that using programming language types could improve
alias analysis, but did not present algorithms that did so. Our
alias algorithm is most similar to those of Rinard and Diniz
[26], Steensgaard [32], and Ruf [27, 28].

Rinard and Diniz use type equality to disambiguate mem-
ory references. The type system they use is a subset of
C++ that does not have inheritance and is thus weaker than
Modula-3’s or Java’s type systems. Steensgaard uses an
instruction-based alias algorithm which uses non-standard
types, not programming language types, to obtain a fast alias
analysis. His type inference algorithm is similar to our selec-
tive type merging; however, he does not use programming
language types, and in particular inheritance, to prune the
merge sets as we do. Ruf shows how to use programming
language types to partition data-flow analyses: each partition
represents code that can be analyzed independently and thus
a different analysis can be used on each partition [28]. Ruf
uses his scheme to partition programs for alias analyses, but
does not use the programming language types in the analysis.
Ruf [27] compares a context sensitive alias analysis to a con-
text insensitive alias analysis and finds, for his benchmarks,
that they are comparable in precision. Our work supports his
in that we also find that a simple alias analysis can yield very
precise results.

Cooper and Lu [8] describe and evaluate register promo-
tion, an optimization that moves memory references out of
loops and into registers. They evaluate register promotion
with two alias analyses: a trivial analysis and a flow-sensitive
alias analysis. They used the number of instructions executed
as their performance metric and found that the more powerful
alias analysis did not significantly improve performance. Our
results support theirs: for many applications a fast and simple
alias analysis may be sufficient.

Shapiro and Horwitz [29] evaluate the impact of three flow
insensitive alias analyses on a range of optimizations. They
evaluate their algorithms by counting optimization opportuni-
ties rather than any of the metrics that we use. They find that
clients of alias analysis may run faster with a more precise
alias analysis than with a less precise alias analysis. Sim-
ilarly, Ghiya and Hendren [17] use pointer analysis to im-
prove scalar optimizations, and present run-time improve-
ments. This work was concurrent with ours, They do not
present a limit study.

Debrayet al. [11] describe an alias analysis for executable
code. They evaluate their algorithm by measuring the per-
centage of loads eliminated by redundant load elimination.
They do not present execution time improvements or a limit
study for their alias analysis.

Since we ignore control flow, our algorithm achieves aO(Instructions� Types) time complexity that is asymptot-
ically as fast as the fastest existing alias analysis [32].

6 Conclusions
This paper describes and evaluates three algorithms that use
programming language types to disambiguate memory refer-
ences. The first analysis uses type compatibility to determine
aliases. The second extends the first by using additional high-
level information such as field names and types. The third,
TBAA , extends the second with a flow-insensitive analysis.
We show that the algorithm that uses only type compatibility
is very imprecise whereas the other two analyses are much
better at disambiguating memory references in the same pro-
cedure. We also evaluateTBAA with respect to redundant
load elimination (RLE), one of its many potential clients. Our
results show thatTBAA and RLE improve program perfor-
mance by up to 8%, and on average 4%. We demonstrate that
with respect toRLE and these benchmark programs,TBAA is
very precise; a more precise analysis could only enableRLE

to eliminate on average an additional 2.5% of redundant ref-
erences, and at most 6%. BecauseTBAA relies on type-safety,
it can be conservative in the face of incomplete, type-safe pro-
grams without losing effectiveness. Our results show that as
far asRLE is concerned,TBAA performs just as well with an
open-world assumption as with a closed-world assumption.

TBAA achieves its fast time bound and accuracy because
of type safety, and our results confirm a common (but to our
knowledge, untested) belief that type safety can be used to
improve program performance. Taken together, these results
suggest that type-based alias analysis can be effective, and
that a thorough evaluation of alias analyses with respect to
their clients is necessary to understand their strengths and
weaknesses.
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