
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2006

Using Structure Indices for Efficient
Approximation of Network Properties
Matthew J. Rattigan
University of Massachusetts - Amherst

Marc Maier
University of Massachusetts - Amherst

David Jensen
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Rattigan, Matthew J.; Maier, Marc; and Jensen, David, "Using Structure Indices for Efficient Approximation of Network Properties"
(2006). Computer Science Department Faculty Publication Series. 166.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/166

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13600943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/166?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Rattigan, M., M. Maier, and D. Jensen (2006). Using structure indices for efficient approximation of network properties. Technical report
TR 06-23. University of Massachusetts Amherst. Department of Computer Science.

Using Structure Indices for
Efficient Approximation of Network Properties

Matthew J. Rattigan
Knowledge Discovery Laboratory
Department of Computer Science

University of Massachusetts Amherst
rattigan@cs.umass.edu

Marc Maier
Knowledge Discovery Laboratory
Department of Computer Science

University of Massachusetts Amherst
maier@cs.umass.edu

David Jensen
Knowledge Discovery Laboratory
Department of Computer Science

University of Massachusetts Amherst
jensen@cs.umass.edu

ABSTRACT
Statistics on networks have become vital to the study of relational
data drawn from areas including bibliometrics, fraud detection,
bioinformatics, and the Internet. Calculating many of the most
important measures—such as betweenness centrality, closeness
centrality, and graph diameter—requires identifying short paths in
these networks. However, finding these short paths can be intrac-
table for even moderate-size networks. We introduce the concept
of a network structure index (NSI), a composition of (1) a set of
annotations on every node in the network and (2) a function that
uses the annotations to estimate graph distance between pairs of
nodes. We present several varieties of NSIs, examine their time
and space complexity, and analyze their performance on synthetic
and real data sets. We show that creating an NSI for a given net-
work enables extremely efficient and accurate estimation of a
wide variety of network statistics on that network.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining
H.3.1 [Content Analysis and Indexing]: Indexing methods

General Terms
Algorithms, Measurement

Keywords
Network structure index, social network analysis, knowledge
discovery in graphs, centrality

1. INTRODUCTION
“Six Degrees of Kevin Bacon” is a popular trivia game that chal-
lenges players to find a path of co-star relationships that connect a
given actor with Kevin Bacon, a popular American performer who
has appeared in over 50 movies [25]. Given the actor Raul Julia,
for example, players might produce the path Raul Julia – Christina
Ricci (“The Addams Family”) – Winona Rider (“Mermaids”) –
Christian Slater (“Heathers”) – Kevin Bacon (“Murder in the
First”). The game is an application of a classic problem in com-
puter science: finding short paths between nodes in a graph.

Finding short paths is not just an amusing diversion. Over the past
several decades, social scientists and mathematicians have devised
several useful measures that can be calculated on the nodes of a
network, each of which is derived from the nodes’ participation in
short paths. Two of the best-known measures are betweenness
centrality—the proportion of all shortest paths in the network that
run through a given node—and closeness centrality—the average
distance from the given node to every other node in the network
[8]. For example, centrality measures can help evaluate whether
Mr. Bacon lies near the center of the Hollywood universe or

whether he is near the periphery. Several researchers have used
such measures to construct statistical models of networks [9][15].

Recent work in knowledge discovery has begun to study very
large networks, often comprising millions of nodes. Given net-
works of this size, even the most efficient algorithms for calculat-
ing network statistics can become intractable. For example, the
most efficient known algorithms for calculating betweenness cen-
trality and closeness centrality are O(ne+n2logn), where n and e
are the number of nodes and edges in the graph [2]. Ad hoc calcu-
lations that use basic path finding can have even higher complex-
ity, as they require bidirectional breadth-first search.

Figure 1: The average number of nodes explored by bidirec-
tional breadth-first search increases dramatically as path
length increases. The inset graph shows the distribution of
shortest path length. Both graphs are based on the Rexa cita-
tion graph (see Appendix A for details).
For instance, consider the Rexa citation graph of papers in com-
puter science and related fields (see Appendix A for details). The
largest connected component contains 165,000 nodes (papers)
connected by 321,000 edges (citations). Figure 1 depicts the dis-
tribution of shortest (optimal) path lengths between pairs of nodes
(inset), along with the average number of nodes explored by a
bidirectional breadth-first search that discovers these paths. On
average, identifying a path of median length with breadth-first
search requires the exploration of hundreds of nodes, while find-
ing a path of length 15 requires the exploration of 65,000 nodes.
Calculations that require finding many of these paths become
cumbersome, if not impossible.

Below, we introduce the concept of a network structure index
(NSI), a tool that enables efficient path finding in large relational
datasets. We present several varieties of NSIs, examine their time
and space complexity, and analyze their performance on synthetic
and real data. Finally, we show that creating an NSI for a network
enables extremely efficient and accurate estimation of a wide
variety of graph statistics on that network.

2. THE STRUCTURE INDEX
A network structure index is similar to the type of index com-
monly used to speed queries in modern database systems. An NSI
can be constructed once for a given graph and then used to speed
the calculation of dozens or hundreds of subsequent measures on
the graph. The intuition behind NSIs is provided by previous work
that has shown that path finding can be surprisingly efficient in a
network that exhibits homophily, the tendency of neighboring
nodes to have similar attribute values [1]. Unfortunately, many
networks do not “naturally” have attributes that exhibit homo-
phily. However, we can synthetically generate and annotate any
arbitrary graph with such an attribute and use it for pathfinding in
the same way that destination and mileage signs improve naviga-
tion in a 2D Euclidean space of roadways.

An NSI consists of two components. The first is a set of node
annotations that provides information about relative or absolute
location. Formally, for a graph G consisting of vertices V and
edges E, the annotations define a function A: V→ S, where S is an
arbitrarily complex “annotation space.” The second element of
the structure index is a distance measure D: S × S → ℜ that maps
pairs of node annotations to a positive real number.

We do not require our distance measure D to be unbiased (or even
a metric). As a result, the paths we find are not guaranteed to be
optimal. However, in practice, search using our best NSIs returns
paths that are both short and sufficient for a wide variety of appli-
cations. Our annotation space S can be quite simple (e.g., a single
value for each node) or complex (e.g., multidimensional vectors
of values). As with database indices, the key is to balance the
complexity of the annotation process with its utility. In the follow-
ing subsections, we present several examples of NSIs. For each,
we consider the time and space required to build and store the
annotations, the time complexity of using the index, and the qual-
ity of the index.

An NSI can be used directly to approximate graph distance, or it
can be combined with a search algorithm to discover short paths
between any two nodes in a graph. We explore both approaches in
this paper. In our experiments that use the latter approach, we use
best-first search, queuing nodes according to their annotation
distance D from the target. When using an NSI for pathfinding,
we use the first path discovered between the origin and destination
nodes, rather than continuing to explore alternative routes.

2.1 ALL PAIRS SHORTEST PATH (APSP)
Among the most basic NSIs is the ALL PAIRS SHORTEST PATH
(APSP) index, consisting of an n×n matrix (n = |V|) containing the
optimal path distances between all pairs of nodes. The accompa-
nying distance function is a simple lookup into this table. While
this strategy yields optimal results when searching for paths, in
many cases it may be infeasible in terms of annotation complex-
ity—the Floyd-Warshall algorithm runs in O(n3) [7], while more
complex approaches using fast matrix multiplication can reduce
the exponent to 2.376 [4]. Furthermore, APSP requires O(n2) to

store the distances themselves. Although APSP may seem trivial,
the use of structure indices is a general approach, not specific to a
single implementation or annotation scheme. Any NSI trades off
complexity and performance, and APSP represents an extreme on
both scales.

2.2 DEGREE
The DEGREE NSI represents the opposite ends of the complexity
and performance spectra from APSP. In this scheme, we simply
annotate each node with its undirected degree within the graph.
To calculate the annotations distance between a source nodes s
and target t, we define the following function:

!

DDegree (s,t) = 2n " degree(s) " degree(t)

Thus when navigating the graph with a best-first search we will
always judge the unexplored node with the highest degree to be
closest to the target node [1]. While simple to construct and store
(O(n) for both time and space complexity), the DEGREE NSI does
not perform well in practice, as we show in Section 3.

2.3 LANDMARKS
Previous work in network path finding has utilized a system of
network landmarks to efficiently navigate graph structure [3][16].
With this technique, we randomly designate a small number of
nodes in the network to serve as navigational beacons. Then, we
annotate nodes in the graph by flooding out from each landmark
and recording the graph distance to each node in the network. The
resulting annotation for each node is a vector of graph distances,
with each landmark we designate defining an independent annota-
tion “dimension.” An illustration of this type of annotation is
shown in Figure 2.

Figure 2: A LANDMARK NSI annotates nodes with distances to
landmark nodes (here, node B). Each additional landmark
provides a separate “dimension” of annotations.
The distance measure D is defined as follows:

!

D
Landmark

(s,t) =MIN
l"L

d(s,l) + d(l,t)[]

Where L is the set of landmark nodes, and d() is the exact short-
est-path distance between nodes. Unfortunately, this strategy per-
forms rather poorly in practice. Many of today’s “small-world”
data sets are characterized by small diameters due to the existence
of “short cut” links in the graph [11][24]. As a result, a found path
that passes through a landmark often forms two sides of a triangle,
resulting in artificially long paths.

2.4 ZONES
The ZONE NSI utilizes multiple dimensions, where each dimen-
sion divides the graph into regions that are contiguous, mutually
exclusive, and collectively exhaustive (see Figure 3 for an exam-
ple). Each dimension is analogous to the way that a state in the
U.S. is divided into counties or voting precincts. As the number of
dimensions grows, each node becomes distinguishable from other
nodes based on its zone memberships.

Figure 3: A ZONE NSI divides the set of nodes into disjoint
regions (annotated here with a 1, 2, or 3). ZONE NSIs typically
use multiple, independently derived zone designations; this
example depicts only one dimension.
We explored several methods for creating each dimension of a
ZONE NSI. Two key criteria for selecting a method are its ability
to generate dimensions that (1) are statistically independent and
(2) contain zones of roughly equal size. To a first approximation,
independent dimensions are more useful for indexing than corre-
lated dimensions and equal-size zones in a dimension contain the
most information. However, generating dimensions that meet both
criteria can be challenging in graphs with a highly variant degree
distribution.

The most effective method we discovered for creating dimensions
is a competitive flooding algorithm that is both incremental and
randomized. The algorithm works as follows:

1. Randomly select k seed nodes, assign them zone labels 1
through k, and place them in the labeled set L.

2. Place all other nodes in the unlabeled set U.
3. While U is not empty

a. Randomly select a node l from the labeled set, and one
of its unlabeled neighbors u.

b. Assign u to the same zone as l and move it to the la-
beled set L.

This entire process is repeated d times, providing us with d sets of
zones. Thus each node is annotated with a d-dimensional vector of
zone labels. The annotation distance between two zone vectors is
defined as the number of pair-wise matches.

!

DZone (s,t) =1"
1 if zoned (s) = zoned (t),

0 otherwise

$
% d

& d

A key characteristic of this algorithm is that it labels only a single
unlabeled neighbor of each labeled node at each step. Labeling all
neighbors creates zones of unequal size resulting in dimensions
that tend to be highly correlated. Labeling only a single neighbor
creates zones of nearly equal size and reduces correlation among
dimensions.

The time complexity of the annotation process is O(ed), where e is
the number of edges |E| in the graph and d is the number of inde-
pendent graph labelings or dimensions in annotation space. Stor-
ing the zone for each node and dimension takes O(nd) space. The
savings over the APSP example above are significant in both re-
gards.

2.5 DISTANCE TO ZONE
The DISTANCE TO ZONE (DTZ) annotation scheme is a hybrid ap-
proach that combines the LANDMARK and ZONE strategies. The
annotation procedure (1) divides the graph into zones using the
flooding algorithm described in above; and (2) for each node u
and zone Z, calculates dtz(u, Z): the distance from u to the closest
node in Z.

Figure 4: A DTZ NSI uses both zones and distance to zones as
annotations. Here we see an example for a single dimension
with three zones.
In Figure 4, node A has zone distances of 1, 0, and 2 for the white,
light gray, and dark gray zones respectively, while node D has
distances of 1, 1, and 0. As with the ZONE model, we repeat the
entire process d times to produce several dimensions of annotation
space, and sum over all dimensions to calculate annotation dis-
tance. The annotation distance between nodes s and t is defined
as:

!

D
DTZ

(s,t) = dtz
d
(s, zone(t)) + dtz

d
(t, zone(s))

d

"

Note that the values of dtz(s, zone(t)) and dtz(t, zone(s)) may
differ, as the random flooding process does not produce symmet-
ric distances between nodes and zones. For the one-dimensional
case in Figure 4, the total distance-to-zone value for the pair (E, F)
is dtz(E, dark gray) + dtz(F, light gray) = 1 + 2 = 3.

The resulting set of node annotations takes up O(nkd) space. Cal-
culating the distance of each node from a single zone requires an
O(e) flood, resulting in a total time complexity of O(ekd). Note
that for large values of k and d, the space and time requirements
can exceed the O(n2) and O(n3) space and time needed for the
APSP index. In practice, however, we can find near-optimal paths
in very large graphs with relatively small numbers of zones and
dimensions.

3. SEARCH PERFORMANCE
We measure the optimality of the lengths of the paths found by a
particular NSI by the path-length ratio P:

!

P = pfi
i=1

r

" poi
i=1

r

"

Where pf and po are the lengths of the found and optimal paths for
r randomly selected pairs of nodes in the graph. An NSI that finds
optimal paths (such as APSP) will have P = 1.0, while a poorly
performing NSI will produce a value of P >> 1.0. This measure
weights the contribution of long paths more than short ones, but
short-to-medium-length paths are much more frequent in all the
graphs we evaluate. If traversal time is proportional to path length
and paths between all pairs of nodes are equally likely to be re-
quested, then P is an unbiased estimator of overall performance.

The most important benefit of using an NSI for path finding is the
decrease in search complexity for applications that rely on finding
paths. Unless we can dramatically increase search performance, it
is difficult to justify the computational and storage costs of build-
ing the index. To measure this performance gain, we define the
exploration ratio E:

!

E = e fi
i=1

r

" ebi
i=1

r

"

Where ef is the number of nodes explored by best-first search
using our structure index, and eb is the number of nodes that are
explored using a bidirectional breadth-first search for r pairs of
nodes. Here, values close to zero reflect parsimonious search per-
formance, and values greater than 1.0 indicate pathologically poor
search performance.

We evaluate the NSIs from Section 2 on synthetic graphs of
10,000 nodes generated using three models: random networks as
defined by Erdős and Rényi [5], rewired lattices defined by Watts
and Strogatz [24], and the Forest Fire graph model recently intro-
duced by Leskovic [14]. (See Appendix A for more detail on the
network generation procedures.) In Figure 5, we compare the
performance of DEGREE, LANDMARK, ZONE, and DTZ when imple-
mented with increasing numbers of dimensions. Since the APSP
index will always behave optimally, we omit the results from the
figures.

Several features of the plots shown are immediately apparent.
Because degree-based annotations only consist of a single static
value, adding additional dimensions is redundant and performance
does not change across dimensions in the plots shown here. DE-
GREE also performs poorly on lattice networks, where degree pro-
vides no useful navigation information.

Some methods (e.g., DEGREE and LANDMARK) have unacceptably
high exploration ratios—exploring many times more nodes than
simple breadth-first search—even when they exhibit acceptable
path ratio performance. This effect is due to the use of best-first
search where the search algorithm expands nodes ordered by an-
notation distance rather than by the path distance from the source
node.

Figure 5: Path-length ratio and exploration ratio of several NSIs on three canonical network types as the dimensionality of the in-
dices changes. The ZONE and DTZ NSIs utilize 50 regions per dimension. Results were averaged over multiple synthetically gener-
ated networks of 2,000 nodes.

The DTZ index performs consistently best across all network types.
This is not surprising, given that DTZ combines all the local infor-
mation available to ZONE, as well as global gradient information
akin to LANDMARK. With 10 dimensions and 50 zones, this
amounts to 500 landmarks with which to navigate.

Table 1: Time and space complexity of different network
structure indices.

NSI Time Space
APSP ~ O(n3) O(n2)
DEGREE O(n) O(n)
LANDMARK O(ed) O(nd)
ZONE O(ed) O(nd)
DTZ O(ekd) O(nkd)

However, the ZONE and DTZ annotation schemes have two pa-
rameters: the number of zones to use k, and the number of dimen-
sions d. Increasing each never hurts in terms of performance;
however, more zones and higher dimensions take longer to build
and more space to store. The space and time complexity of each
annotation scheme is summarized in Table 1. Recall that the ZONE
scheme requires only O(nd) space, compared to O(nkd) for DTZ.
Given the additional information being stored by DTZ, we expect
for it to outperform a ZONE index with an equivalent dimensional-
ity and number of regions.

Figure 6: Path ratios for ZONE and DTZ on random and Forest
Fire networks for equivalently sized sets of annotations. In the
ZONE plots, number of dimensions is labeled on a geometric
scale (as a multiple of the number of zones) in order to make a
fair comparison with DTZ.

In order to directly compare the two NSIs, we can increase the
number of dimensions of ZONE so that its total space requirements
equal that of DTZ. The results are shown in Figure 6. ZONE and
DTZ offer roughly equivalent performance once their annotations
are allowed to fill equal amounts of memory. Further, the results
seem to vary slightly across graph types, with ZONE performing a
bit better on random graphs and a bit worse on Forest Fire graphs.
As mentioned previously, the key to using the NSI effectively is
to determine the size and type of the index to build, balancing
complexity and performance.

Figure 7: Path and exploration ratios for a DTZ used on real
data.
Figure 7 depicts the performance characteristics of the DTZ index
on two real datasets: the Rexa citation graph and the IMDb actor
graph (165k nodes / 321k edges and 10k nodes / 628k edges, re-
spectively; see Appendix A). The results demonstrate the robust-
ness of the DTZ technique. The Rexa dataset is a relatively large,
sparsely connected graph, with each node having an average de-
gree of 1.95. The IMDb data set is roughly twenty times smaller
in terms of nodes, but has an average degree of 62.8. Considered
together, these two data sets represent a wide range of network
structures. In both cases, the DTZ NSI approaches optimal path
lengths with very few annotation dimensions. Furthermore, the
best-first searches performed with the indices are two orders of
magnitude more efficient than simple breadth-first search. As we
show in section 4, this allows us to efficiently calculate a number
of statistics on real networks.

4. APPLICATIONS
While having the ability to efficiently find a path to Kevin Bacon
in an actor graph is certainly useful in its own right, the real utility
of an NSI becomes apparent when it is integrated into an algo-

rithm that requires efficient discovery of short paths between sev-
eral pairs of nodes in the graph.

4.1 Constant Time Distance Estimation
Depending on the distance measure being employed, we can
sometimes use an NSI to directly estimate the graph distance be-
tween any two nodes. Whether this is feasible depends on the
ability of our annotation distance measure to provide global rather
than local information. Figure 8 shows we scatterplots of calcu-
lated annotation distance versus actual graph distance for the ZONE
and DTZ annotation schemes. In the case of ZONE, even at short
path lengths the annotation distances are highly variable. Though
in practice these values are often good enough to provide effective
local information for search navigation, they are not good estima-
tors of actual graph distance. The plot for DTZ, however, exhibits a
clear linear relationship between annotation distance and graph
distance. As a result, we can accurately gauge the relative distance
between different pairs of nodes using the annotation distance.

Figure 8: Scatterplots of the relationship between annotation
distance and actual graph distance for ZONE (top) and DTZ
(bottom) on the Rexa citation network.
If necessary, we can use DTZ annotation distance to estimate ac-
tual graph distances with the following procedure: (1) annotate the
graph as described for DTZ in Section 2.4, (2) randomly sample p
pairs of nodes in the graph and perform breadth-first search to
obtain their exact graph distance, and (3) use linear regression to
obtain an equation for estimated distance:

!

ˆ d (x, y) = m "DDTZ (x, y) + b

Depending on the structure of the graph, step 2 may be intractable
for some pairs of nodes. However, since we’re identifying a
strictly linear relationship, we can terminate our breadth-first
search after examining paths of lengths greater than four or five
and still produce reliable regression results.

Simple distances can be used to produce a wide variety of attrib-
utes on nodes, and these attributes, in turn, can be used by data
mining algorithms that analyze graphs [9][15]. For instance, a
simple distance function can be used to label nodes with their
distance to a particular node in a graph (e.g., how close is each
actor to Kevin Bacon?). Additionally, a distance function can be
used to label nodes with the minimum or maximum distance to
one of a set of designated nodes (e.g., how close is each actor to
an Academy Award winner?). While such calculations can be
made with any method for finding short paths, including breadth-
first search, only an efficient distance function, such as the one
provided by an NSI, makes such calculations feasible for large
graphs.

4.2 Closeness Centrality
Centrality measures such as betweenness centrality and closeness
centrality [8] are crucial to the study of social network dynamics.
Unfortunately, even their approximate calculation involves find-
ing the shortest path between many pairs of nodes. As a result,
accurate estimates of these measures are often impossible to cal-
culate efficiently for large data sets. However, by using an NSI for
path finding, we can estimate these measures efficiently.

Closeness centrality, or C, measures the proximity of a given node
in a network to every other node.

!

C(a) = d(a,b
i
)

i

"

To estimate C, we can calculate the average of graph distance to a
sample of nodes in our data set. Rather than using (possibly in-
tractable) breadth-first search, we use NSI-based navigation to
discover the distance between these sampled pairs. Since the path
lengths found with the structure index are always greater than or
equal to the optimal shortest path lengths, our estimate of C will
be consistently upwardly biased. However, in most applications,
the actual value of C for a particular node is meaningless in and of
itself; rather, it is the value of C relative to the corresponding
values for other nodes in the network that is of importance.

Traditionally, the quality of a rank ordering is evaluated using a
permutation test on Spearman’s ρ statistic or Kendall’s τ. How-
ever, since our sample size is relatively large (thousands of
nodes), any reasonably correct ordering is going to appear signifi-
cant when compared to the random rankings of a permutation test.
Instead, we present scatterplots of actual versus approximated
closeness rankings obtained with a DTZ NSI in Figure 9. Note that
even the “exact” C values used here are actually estimates, as they
are obtained through sampling. As can be seen from the figure,
using path lengths discovered through NSI navigation provides
highly accurate estimates.

To evaluate the utility of the distance estimates obtained from the
approximated distance from Section 4.1, we repeat the experi-
ments for estimating closeness centrality, using path lengths cal-
culated from the linear equation rather than ones found through
searching. The results can be seen in the scatterplots in Figure 10.
While the results are not as accurate, the distance function can be

calculated in constant time, which in practice allows for many
more pairs to be sampled when making estimates.

Figure 9: Closeness approximation ranking comparisons for
estimations made with 100 (top) and 5000 (bottom) sampled
pairs.

The list in Table 2 shows actors drawn from the data and ranked
by closeness centrality. As outlined in Appendix A, the data are
drawn from movies made between 1970 and 1999 listed in the
Internet Movie Database. Kevin Bacon does not top the list,
though he still ranks 554th out of over ten thousand actors. The
most highly ranked actor by our estimate of closeness centrality is
Martin Sheen, a popular actor with over three decades of experi-
ence. During the period covered by our data, Sheen appeared in
over 150 films and television shows in a remarkably wide variety
of genres, including drama (Badlands, Apocalypse Now, The West
Wing), comedy (The Simpsons), science fiction (Babylon 5),
thriller (Voyage of Terror), and horror (Tales from the Crypt). The
other top-ranked actors have similar long careers with diverse
roles that have paired them with a wide variety of actors.

Table 2. IMDb actors ranked by approximated closeness cen-
trality.

1. Martin Sheen
2. Michael York
3. Jürgen Prochnow
4. Seymour Cassel
5. Tchéky Karyo
6. Malcom McDowell
7. Harvey Keitel
8. David Warner
9. Robert DeNiro
10. Ben Kingsley

11. Udo Kier
12. Christopher Plummer
13. Martin Landau
14. Richard Riehle
15. James Earl Jones
16. Brion James
17. Peter Coyote
18. F. Murray Abraham
19. Whoopi Goldberg
20. Samuel L. Jackson

Figure 10: “Searchless” closeness estimate ranking compari-
son for approximations derived from 100 (above) and 5000
(below) sampled pairs.

As with simple distance, a measure of centrality can be used to
produce attributes on nodes that may be useful to knowledge dis-
covery algorithms. In particular, measures of closeness centrality
can be used to determine the closeness of every node to a collec-
tion of key nodes (e.g., closeness to all winners of Academy
Awards for best actor in the past 10 years). Closeness can also be
calculated for more restricted communities. For example, cluster-
ing can be used to reveal communities within the graph, which in

turn can be used to constrain closeness calculations for their
members. This can produce attributes that measure a form of lo-
calized closeness centrality (e.g., closeness rank of an actor within
his or her “home” movie industry). Finally, there is no reason to
adhere strictly to the conventional definition of closeness. For
example, we can weight closeness based on the attributes of the
outlying nodes (e.g., closeness to winners of Academy Awards
weighted by recency of award). As with simple distance, these
attributes have always been available, but an NSI makes them
tractable for large graphs.

4.3 Betweenness Centrality
Betweenness centrality, or B, is a second measure of network
“importance.” The betweenness of a node measures the number
of short paths on which a given node lies [8]:

!

B(a) =
ga (i, j)

g(i, j)
ij

" , i # j # a

Where g(i,j) is the number of shortest geodesic paths connecting
nodes i and j, and ga(i,j) is the number of these paths that pass
through node a.

Figure 11: Betweenness ranks calculated with 5000 (above)
and 50000 (below) sampled pairs of nodes on a network of
10000 nodes.

Since its calculation requires knowledge of actual paths rather
than simple path lengths, in practice it is often intractable to calcu-
late exactly (the best known algorithm runs in O(en+n2logn) time
[2]). However, we can estimate betweenness using the paths iden-
tified through NSI-based navigation. Similar to our procedure for
estimating closeness, we randomly sample pairs of nodes and
discover the shortest path between them. We then count the num-
ber of times each node in the graph appears on one of these paths
to obtain a betweenness ranking. The results are depicted in
Figure 11. Here we compare rankings of nodes using our be-
tweenness estimate (obtained with a DTZ NSI) with the exact
measure (not using samples as with the closeness example above).
Because the sampling procedure fails to include all the short paths
in its calculation of betweenness, many nodes have identical be-
tweenness scores, forming the horizontal lines in the scatter plots.
Even so, the plot exhibits a clear relationship between the actual
and approximated values of betweenness.

In the actor graph, a high betweenness score can indicate an ac-
tor’s role as a “bridge” between two communities. In Table 3 we
have the top 20 actors as ranked by betweenness centrality. Ron
Jeremy, the top scoring actor on the list, is a prolific adult film
star who has recently crossed over into mainstream cinema. Simi-
larly, Gérard Depardieu and Stellan Skarsgård link foreign film
communities (French and Swedish, respectively) to Hollywood.

Table 3. Top twenty IMDb actors as ranked by estimated be-
tweenness centrality.

1. Ron Jeremy
2. Udo Kier
3. Gérard Depardieu
4. Stellan Skarsgård
5. Martin Sheen
6. Tchéky Karyo
7. Ice-T
8. Nina Hartley
9. Michael York
10. Max Von Sydow

11. Malcom McDowell
12. Om Puri
13. Ginger Lynn Allen
14. Ben Kingsley
15. Jürgen Prochnow
16. Féodor Atkine
17. Peter Coyote
18. Armin Mueller-Stahl
19. Harvey Keitel
20. Joaquim De Almeida

As with simple distance and closeness centrality, betweenness
centrality can also be used to create features on nodes that are
useful for data mining. For example, we could calculate between-
ness centrality for particular groups of nodes (e.g., actors that sit
between winners of Academy Awards for best picture and the
IMDb’s “Bottom 100,” the worst 100 movies as voted by users of
the Internet Movie Database).

5. RELATED WORK
Kleinberg [10][11] demonstrates the notion of similarity-based
navigation in small-world networks. He demonstrates how the
presence of network homophily can provide a gradient that guides
search using local information. Watts investigated a similar ap-
proach by constructing a hierarchical model from which to derive
homophily.[23] In this paper, we present methods for creating
such homophily in domains that may lack local information. We
detail a number of ways in which this information can be obtained
for both synthetic and real datasets.

As described above, the LANDMARK NSI designates select nodes
as landmarks to provide directional information for navigation.
This approach has been studied by Chow [3] in conjunction with
A* search, since an admissible heuristic can be derived from dis-
tances to landmarks. While this strategy can guarantee optimal
paths by employing A*, a large number of nodes must be explored

to discover these paths. This is not ideal if fast discovery of short
paths is needed, as in the case of approximating network statistics.
We show that the LANDMARK approach is not effective when
combined with a non-optimal best-first search strategy.

Another strategy, developed by Ng and Zhang [16], uses a tech-
nique called Global Network Positioning (GNP) based on comput-
ing coordinates of landmarks. This approach has been adopted by
the Networks/Internet community as a basis for determining net-
work latency between hosts on the Internet. Most of the Internet
coordinate approaches attempt to minimize network latency
through extensions of GNP [22][19][18]. Kleinberg provides a
theoretical analysis and framework of all beacon-based strategies,
such as GNP and others [12]. This mostly describes the effective-
ness of triangulation (determining positions of uncertain nodes) in
beacon-based approaches.

Other strategies in the Internet domain have attempted to create
network overlay structures, such as a rings-based approach that
does not rely on selection of landmark nodes.[26] This concept
has recently been explored theoretically as a technique for dis-
tance estimation and nearest neighbor searches by Slivkins [20]
and Krauthgamer [13]. However, it is unclear how accurately any
of these strategies perform on domains other than the Internet or
for the purposes of approximating network statistics. Additionally,
our current work focuses on undirected, unweighted graphs with
the goal of minimizing hop count, not network latency.

6. CONCLUSIONS
We have identified several methods for creating a network struc-
ture index. Two of these methods, ZONE and DTZ, allow efficient
and accurate estimation of path lengths between arbitrary nodes in
a network. Using these indices, we can estimate path length be-
tween a pair of nodes in constant time, and we can estimate the
closeness centrality of a given node in time that is linear in the
number of outlying nodes. In addition, we have shown empirically
that we can estimate the betweenness centrality of a given node by
accessing less than 5% of the nodes explored by breadth-first
search.
Such efficient calculations of network statistics open up a new
range of potential approaches to knowledge discovery. First, iden-
tification of short paths and central nodes are important types of
knowledge discovery for networks. Closeness centrality can direct
attention to the core of a network, and betweenness centrality can
help identify key connectors of otherwise separate communities.
Second, estimates of these measures can support the application of
other methods (e.g., joint statistical models such as probabilistic
relational models [9] or relational dependency networks [15]).
Centrality and other path-based measures summarize local struc-
ture in ways that can be easily considered by learning algorithms
for these models. Third, path length and centrality measures can
be adapted to produce a wide variety of more local features, such
as distance to particular nodes, closeness to particular classes of
nodes, and betweenness for two or more subsets of nodes.

Despite our success at creating reasonably efficient and accurate
NSIs, we have not exhausted the space of potential solutions in
this general class of indices. As we outlined in Section 8, a num-
ber of promising results in computer networking and theory point
toward additional techniques for constructing NSI annotations,
and we are actively investigating these alternatives. In addition,
we are considering how to efficiently update NSIs when nodes
and links are added to the network so that dynamic graphs can be

successfully indexed. Finally, we are investigating how to apply
our own recent developments in network searching [21] to more
effectively use NSI annotations to find short paths.

We are actively exploring additional applications of network
structure indices. Two of the most promising directions are find-
ing connection subgraphs and approximating neighborhood func-
tions. Faloutsos and coauthors have pioneered work in this area by
identifying efficient methods for finding connection subgraphs—
sets of short paths between nodes—and for approximating the size
of the neighborhood of a node.[6][17] NSIs may provide an alter-
native way of representing much of the information needed for
both of these tasks.

7. ACKNOWLEGEMENTS
This research is supported by Lawrence Livermore National
Laboratory and the Department of Energy under contract number
W7405-ENG-48. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding
any copyright notation hereon. The views and conclusions con-
tained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorse-
ments either expressed or implied, of LLNL/DOE or the U.S.
Government.

The authors wish to thank Andrew McCallum, and the students
and staff of the Information Extraction and Synthesis Lab at the
University of Massachusetts for use of the Rexa data, as well as
Cindy Loiselle for her helpful comments and M&Ms.

8. REFERENCES
[1] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A.

Huberman. Search in power-law networks. Physical Review
E, 64, 2001.

[2] U. Brandes. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology 25:163-177, 2001.

[3] E. Chow. A graph search heuristic for shortest distance paths.
Technical Report UCRL-JRNL-202894, Lawrence
Livermore National Laboratory, 2004.

[4] D. Coppersmith and S. Winograd. Matrix muliplication via
arithmetic progressions. J. Symbolic Computing. 9:251-280,
1990.

[5] P. Erdös and A. Rényi. On the evolution of random graphs.
Publ. Math. Inst. Hungar. Acad. Sci. 5, 17-61. 1960.

[6] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discov-
ery of connection subgraphs. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining,, 2004.

[7] R. W. Floyd. Algorithm 97 (SHORTEST PATH). Communi-
cations of the ACM, 5(6):345, 1962.

[8] L. C. Freeman. Centrality in social networks: Conceptual
clarification. Social Networks 1:215-239, 1979.

[9] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 1999.

[10] J. Kleinberg. Navigation in a small world. Nature, 406:845,
2000.

[11] J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. In Proceedings of the 32nd ACM Symposium
on Theory of Computing, 2000.

[12] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and
embedding using small sets of beacons. In Proceedings of
the 45th Annual IEEE Symposium on Foundations of
Computer Science, 2004.

[13] R. Krauthgamer and J. R. Lee. Navigating nets: Simple algo-
rithms for proximity search. In ACM-SIAM Symposium on
Discrete Algorithms, 2004.

[14] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: Densification laws, shrinking diameters and possible
explanations. In Proceedings of the 11th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 2005.

[15] J. Neville and D. Jensen. Dependency networks for relational
data. Proceedings of the 4th IEEE International Conference
on Data Mining, 2004.

[16] T. S. E. Ng and H. Zhang. Predicting Internet network dis-
tance with coordinates-based approaches. In Proceedings of
the 21st Annual Joint Conference of the IEEE Computer
and Communications Societies 1:170-179, 2002.

[17] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A fast
and scalable tool for data mining in massive graphs. In Pro-
ceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002.

[18] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for scalable distributed location. In Proceed-
ings of the 2nd International Workshop on Peer-To-Peer
Systems, 2003.

[19] Y. Shavitt and T. Tankel. Big-Bang simulation for embed-
ding network distances in Euclidean space. In Proceedings
of IEEE Infocom, 2003.

[20] A. Slivkins. Distance estimation and object location via rings
of neighbors. In Proceedings of the ACM Symposium on
Principles of Distributed Computing, 2005.

[21] Ö. Şimşek and D. Jensen. Decentralized search in networks
using homophily and degree disparity. In Proceedings of
the Nineteenth International Joint Conference on Artifi-
cial Intelligence, 2005.

[22] L. Tang and M. Crovella. Virtual landmarks for the Internet.
In Proceedings of the Conference on Internet Measure-
ment Conference, 2003.

[23] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and
search in social networks. Science, 296:1302-1305, 2002.

[24] D. J. Watts and S. H. Strogatz. Collective dynamics of small-
world networks. Nature, 393:440-442, 1998.

[25] Wikipedia contributors (2006). Six Degrees of Kevin Bacon.
Wikipedia, The Free Encyclopedia. Retrieved 15:10, April
15, 2006 from http://en.wikipedia.org/w/index.php?
title=Six_Degrees_of_Kevin_Bacon&oldid=48040027.

[26] B. Wong, A. Slivkins and E. G. Sirer. Meridian: A light-
weight network location service without virtual coordinates.
In Proceedings of SIGCOMM, 2005.

APPENDIX A: DATA SETS
Synthetic Graph Generation Procedures
We evaluated the performance of our indices on three types of
synthetic data sets. Small (100 node) examples of each are de-
picted in Figure 12. The first type is based on an Erdös-Rényi
style random graph model [5]. To build one of these graphs, we
specify the number of nodes and edges as parameters, and wire
the graph by randomly selecting the endpoints for each edge that
we want to create. Once the edges are in place, we then select the
largest connected component of the graph (typically encompass-
ing > 95% of the nodes) for annotation.

The second type of graph used is a “lightly” rewired lattice, as
first proposed by Watts and Strogatz [24]. For this model, we
specify the number of nodes in the graph, the degree of each node,
and the edge rewiring probability. After constructing a regular
lattice with the specified number of nodes and edges, we then
independently flip a coin to decide whether or not to rewire each
edge by randomly assigning one of its endpoints to a new destina-
tion. The examples used in this paper were generated with a rewir-
ing probability of 0.01.

Finally, we tested our algorithms using graphs generated with the
“Forest Fire” model described by Leskovec et al. [14], using
“burn probabilities” ranging from 0.32 to 0.48, and a “backward
burning probability” of 0.2.

Real Datasets
Two real-world datasets were used for experiments in this paper.
The Rexa database is a citation graph of scientific papers in com-
puter science. It contains 165k nodes, representing papers, con-
nected by 321k undirected edges, representing the citations among
papers. The low average degree is due to coreference errors in the
particular version of the Rexa dataset used and the fact that many
papers in the dataset cite papers that do not appear elsewhere in
the data and thus have a degree of one.

The IMDb dataset is a network of actors drawn from
www.imdb.com. Actors are linked when they have costarred in a
movie together between 1970 and 2000. Furthermore, actors who
have appeared in fewer than 20 movies in that period have been
filtered out. The resulting network contains 10k nodes and 628k
edges

Figure 12: Examples of synthetic graphs with 100 nodes.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2006

	Using Structure Indices for Efficient Approximation of Network Properties
	Matthew J. Rattigan
	Marc Maier
	David Jensen
	Recommended Citation

	Microsoft Word - nsi_tech_report_18.doc

