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ABSTRACT 
Statistics on networks have become vital to the study of relational 
data drawn from areas including bibliometrics, fraud detection, 
bioinformatics, and the Internet. Calculating many of the most 
important measures—such as betweenness centrality, closeness 
centrality, and graph diameter—requires identifying short paths in 
these networks. However, finding these short paths can be intrac-
table for even moderate-size networks. We introduce the concept 
of a network structure index (NSI), a composition of (1) a set of 
annotations on every node in the network and (2) a function that 
uses the annotations to estimate graph distance between pairs of 
nodes. We present several varieties of NSIs, examine their time 
and space complexity, and analyze their performance on synthetic 
and real data sets. We show that creating an NSI for a given net-
work enables extremely efficient and accurate estimation of a 
wide variety of network statistics on that network. 

Categories and Subject Descriptors 
H.2.8   [Database Applications]: Data mining 
H.3.1   [Content Analysis and Indexing]: Indexing methods 

General Terms 
Algorithms, Measurement 

Keywords 
Network structure index, social network analysis, knowledge 
discovery in graphs, centrality 

1. INTRODUCTION 
“Six Degrees of Kevin Bacon” is a popular trivia game that chal-
lenges players to find a path of co-star relationships that connect a 
given actor with Kevin Bacon, a popular American performer who 
has appeared in over 50 movies [25]. Given the actor Raul Julia, 
for example, players might produce the path Raul Julia – Christina 
Ricci (“The Addams Family”) – Winona Rider (“Mermaids”) – 
Christian Slater (“Heathers”) – Kevin Bacon (“Murder in the 
First”). The game is an application of a classic problem in com-
puter science: finding short paths between nodes in a graph. 

Finding short paths is not just an amusing diversion. Over the past 
several decades, social scientists and mathematicians have devised 
several useful measures that can be calculated on the nodes of a 
network, each of which is derived from the nodes’ participation in 
short paths. Two of the best-known measures are betweenness 
centrality—the proportion of all shortest paths in the network that 
run through a given node—and closeness centrality—the average 
distance from the given node to every other node in the network 
[8]. For example, centrality measures can help evaluate whether 
Mr. Bacon lies near the center of the Hollywood universe or 

whether he is near the periphery. Several researchers have used 
such measures to construct statistical models of networks [9][15]. 

Recent work in knowledge discovery has begun to study very 
large networks, often comprising millions of nodes. Given net-
works of this size, even the most efficient algorithms for calculat-
ing network statistics can become intractable. For example, the 
most efficient known algorithms for calculating betweenness cen-
trality and closeness centrality are O(ne+n2logn), where n and e 
are the number of nodes and edges in the graph [2]. Ad hoc calcu-
lations that use basic path finding can have even higher complex-
ity, as they require bidirectional breadth-first search. 

 

Figure 1: The average number of nodes explored by bidirec-
tional breadth-first search increases dramatically as path 
length increases. The inset graph shows the distribution of 
shortest path length. Both graphs are based on the Rexa cita-
tion graph (see Appendix A for details). 
For instance, consider the Rexa citation graph of papers in com-
puter science and related fields (see Appendix A for details). The 
largest connected component contains 165,000 nodes (papers) 
connected by 321,000 edges (citations). Figure 1 depicts the dis-
tribution of shortest (optimal) path lengths between pairs of nodes 
(inset), along with the average number of nodes explored by a 
bidirectional breadth-first search that discovers these paths. On 
average, identifying a path of median length with breadth-first 
search requires the exploration of hundreds of nodes, while find-
ing a path of length 15 requires the exploration of 65,000 nodes. 
Calculations that require finding many of these paths become 
cumbersome, if not impossible. 



 

 

Below, we introduce the concept of a network structure index 
(NSI), a tool that enables efficient path finding in large relational 
datasets. We present several varieties of NSIs, examine their time 
and space complexity, and analyze their performance on synthetic 
and real data. Finally, we show that creating an NSI for a network 
enables extremely efficient and accurate estimation of a wide 
variety of graph statistics on that network. 

2. THE STRUCTURE INDEX 
A network structure index is similar to the type of index com-
monly used to speed queries in modern database systems. An NSI 
can be constructed once for a given graph and then used to speed 
the calculation of dozens or hundreds of subsequent measures on 
the graph. The intuition behind NSIs is provided by previous work 
that has shown that path finding can be surprisingly efficient in a 
network that exhibits homophily, the tendency of neighboring 
nodes to have similar attribute values [1]. Unfortunately, many 
networks do not “naturally” have attributes that exhibit homo-
phily. However, we can synthetically generate and annotate any 
arbitrary graph with such an attribute and use it for pathfinding in 
the same way that destination and mileage signs improve naviga-
tion in a 2D Euclidean space of roadways. 

An NSI consists of two components. The first is a set of node 
annotations that provides information about relative or absolute 
location. Formally, for a graph G consisting of vertices V and 
edges E, the annotations define a function A: V→ S, where S is an 
arbitrarily complex “annotation space.”  The second element of 
the structure index is a distance measure D: S × S → ℜ that maps 
pairs of node annotations to a positive real number.  

We do not require our distance measure D to be unbiased (or even 
a metric). As a result, the paths we find are not guaranteed to be 
optimal. However, in practice, search using our best NSIs returns 
paths that are both short and sufficient for a wide variety of appli-
cations. Our annotation space S can be quite simple (e.g., a single 
value for each node) or complex (e.g., multidimensional vectors 
of values). As with database indices, the key is to balance the 
complexity of the annotation process with its utility. In the follow-
ing subsections, we present several examples of NSIs. For each, 
we consider the time and space required to build and store the 
annotations, the time complexity of using the index, and the qual-
ity of the index. 

An NSI can be used directly to approximate graph distance, or it 
can be combined with a search algorithm to discover short paths 
between any two nodes in a graph. We explore both approaches in 
this paper. In our experiments that use the latter approach, we use 
best-first search, queuing nodes according to their annotation 
distance D from the target. When using an NSI for pathfinding, 
we use the first path discovered between the origin and destination 
nodes, rather than continuing to explore alternative routes. 

2.1 ALL PAIRS SHORTEST PATH (APSP)  
Among the most basic NSIs is the ALL PAIRS SHORTEST PATH 
(APSP) index, consisting of an n×n matrix (n = |V|) containing the 
optimal path distances between all pairs of nodes. The accompa-
nying distance function is a simple lookup into this table. While 
this strategy yields optimal results when searching for paths, in 
many cases it may be infeasible in terms of annotation complex-
ity—the Floyd-Warshall algorithm runs in O(n3) [7], while more 
complex approaches using fast matrix multiplication can reduce 
the exponent to 2.376 [4]. Furthermore, APSP requires O(n2) to 

store the distances themselves. Although APSP may seem trivial, 
the use of structure indices is a general approach, not specific to a 
single implementation or annotation scheme. Any NSI trades off 
complexity and performance, and APSP represents an extreme on 
both scales. 

2.2 DEGREE 
The DEGREE NSI represents the opposite ends of the complexity 
and performance spectra from APSP. In this scheme, we simply 
annotate each node with its undirected degree within the graph. 
To calculate the annotations distance between a source nodes s 
and target t, we define the following function: 

! 

DDegree (s,t) = 2n " degree(s) " degree(t)  

Thus when navigating the graph with a best-first search we will 
always judge the unexplored node with the highest degree to be 
closest to the target node [1]. While simple to construct and store 
(O(n) for both time and space complexity), the DEGREE NSI does 
not perform well in practice, as we show in Section 3.  

2.3 LANDMARKS 
Previous work in network path finding has utilized a system of 
network landmarks to efficiently navigate graph structure [3][16]. 
With this technique, we randomly designate a small number of 
nodes in the network to serve as navigational beacons. Then, we 
annotate nodes in the graph by flooding out from each landmark 
and recording the graph distance to each node in the network. The 
resulting annotation for each node is a vector of graph distances, 
with each landmark we designate defining an independent annota-
tion “dimension.”  An illustration of this type of annotation is 
shown in Figure 2.  
 

 
Figure 2: A LANDMARK NSI annotates nodes with distances to 
landmark nodes (here, node B). Each additional landmark 
provides a separate “dimension” of annotations. 
The distance measure D is defined as follows: 

! 

D
Landmark

(s,t) =MIN
l"L

d(s,l) + d(l,t)[ ]  

Where L is the set of landmark nodes, and d() is the exact short-
est-path distance between nodes. Unfortunately, this strategy per-
forms rather poorly in practice. Many of today’s “small-world” 
data sets are characterized by small diameters due to the existence 
of “short cut” links in the graph [11][24]. As a result, a found path 
that passes through a landmark often forms two sides of a triangle, 
resulting in artificially long paths. 



 

 

2.4 ZONES 
The ZONE NSI utilizes multiple dimensions, where each dimen-
sion divides the graph into regions that are contiguous, mutually 
exclusive, and collectively exhaustive (see Figure 3 for an exam-
ple). Each dimension is analogous to the way that a state in the 
U.S. is divided into counties or voting precincts. As the number of 
dimensions grows, each node becomes distinguishable from other 
nodes based on its zone memberships.  

 
Figure 3: A ZONE NSI divides the set of nodes into disjoint 
regions (annotated here with a 1, 2, or 3). ZONE NSIs typically 
use multiple, independently derived zone designations; this 
example depicts only one dimension. 
We explored several methods for creating each dimension of a 
ZONE NSI. Two key criteria for selecting a method are its ability 
to generate dimensions that (1) are statistically independent and 
(2) contain zones of roughly equal size. To a first approximation, 
independent dimensions are more useful for indexing than corre-
lated dimensions and equal-size zones in a dimension contain the 
most information. However, generating dimensions that meet both 
criteria can be challenging in graphs with a highly variant degree 
distribution. 

The most effective method we discovered for creating dimensions 
is a competitive flooding algorithm that is both incremental and 
randomized. The algorithm works as follows: 

1. Randomly select k seed nodes, assign them zone labels 1 
through k, and place them in the labeled set L. 

2. Place all other nodes in the unlabeled set U. 
3. While U is not empty 

a. Randomly select a node l from the labeled set, and one 
of its unlabeled neighbors u. 

b. Assign u to the same zone as l and move it to the la-
beled set L. 

This entire process is repeated d times, providing us with d sets of 
zones. Thus each node is annotated with a d-dimensional vector of 
zone labels. The annotation distance between two zone vectors is 
defined as the number of pair-wise matches. 

! 

DZone (s,t) =1"
1 if zoned (s) = zoned (t),

0 otherwise

# 
$ 
% d

& d  

A key characteristic of this algorithm is that it labels only a single 
unlabeled neighbor of each labeled node at each step. Labeling all 
neighbors creates zones of unequal size resulting in dimensions 
that tend to be highly correlated. Labeling only a single neighbor 
creates zones of nearly equal size and reduces correlation among 
dimensions. 

The time complexity of the annotation process is O(ed), where e is 
the number of edges |E| in the graph and d is the number of inde-
pendent graph labelings or dimensions in annotation space. Stor-
ing the zone for each node and dimension takes O(nd) space. The 
savings over the APSP example above are significant in both re-
gards. 

2.5 DISTANCE TO ZONE 
The DISTANCE TO ZONE (DTZ) annotation scheme is a hybrid ap-
proach that combines the LANDMARK and ZONE strategies. The 
annotation procedure (1) divides the graph into zones using the 
flooding algorithm described in above; and (2) for each node u 
and zone Z, calculates dtz(u, Z): the distance from u to the closest 
node in Z. 

 
Figure 4: A DTZ NSI uses both zones and distance to zones as 
annotations. Here we see an example for a single dimension 
with three zones. 
In Figure 4, node A has zone distances of 1, 0, and 2 for the white, 
light gray, and dark gray zones respectively, while node D has 
distances of 1, 1, and 0. As with the ZONE model, we repeat the 
entire process d times to produce several dimensions of annotation 
space, and sum over all dimensions to calculate annotation dis-
tance. The annotation distance between nodes s and t is defined 
as:  

! 

D
DTZ

(s,t) = dtz
d
(s,  zone(t)) + dtz

d
(t,  zone(s))

d

"  

Note that the values of dtz(s, zone(t)) and dtz(t, zone(s)) may 
differ, as the random flooding process does not produce symmet-
ric distances between nodes and zones. For the one-dimensional 
case in Figure 4, the total distance-to-zone value for the pair (E, F) 
is dtz(E, dark gray) + dtz(F, light gray) = 1 + 2 = 3.  

The resulting set of node annotations takes up O(nkd) space. Cal-
culating the distance of each node from a single zone requires an 
O(e) flood, resulting in a total time complexity of O(ekd). Note 
that for large values of k and d, the space and time requirements 
can exceed the O(n2) and O(n3) space and time needed for the 
APSP index. In practice, however, we can find near-optimal paths 
in very large graphs with relatively small numbers of zones and 
dimensions. 

3. SEARCH PERFORMANCE 
We measure the optimality of the lengths of the paths found by a 
particular NSI by the path-length ratio P: 

! 

P = pfi
i=1

r

" poi
i=1

r

"  



 

 

Where pf and po are the lengths of the found and optimal paths for 
r randomly selected pairs of nodes in the graph. An NSI that finds 
optimal paths (such as APSP) will have P = 1.0, while a poorly 
performing NSI will produce a value of P >> 1.0. This measure 
weights the contribution of long paths more than short ones, but 
short-to-medium-length paths are much more frequent in all the 
graphs we evaluate. If traversal time is proportional to path length 
and paths between all pairs of nodes are equally likely to be re-
quested, then P is an unbiased estimator of overall performance.  

The most important benefit of using an NSI for path finding is the 
decrease in search complexity for applications that rely on finding 
paths. Unless we can dramatically increase search performance, it 
is difficult to justify the computational and storage costs of build-
ing the index. To measure this performance gain, we define the 
exploration ratio E: 

! 

E = e fi
i=1

r

" ebi
i=1

r

"  

Where ef is the number of nodes explored by best-first search 
using our structure index, and eb is the number of nodes that are 
explored using a bidirectional breadth-first search for r pairs of 
nodes. Here, values close to zero reflect parsimonious search per-
formance, and values greater than 1.0 indicate pathologically poor 
search performance.  

We evaluate the NSIs from Section 2 on synthetic graphs of 
10,000 nodes generated using three models:  random networks as 
defined by Erdős and Rényi [5], rewired lattices defined by Watts 
and Strogatz [24], and the Forest Fire graph model recently intro-
duced by Leskovic [14]. (See Appendix A for more detail on the 
network generation procedures.) In Figure 5, we compare the 
performance of DEGREE, LANDMARK, ZONE, and DTZ when imple-
mented with increasing numbers of dimensions. Since the APSP 
index will always behave optimally, we omit the results from the 
figures. 

Several features of the plots shown are immediately apparent. 
Because degree-based annotations only consist of a single static 
value, adding additional dimensions is redundant and performance 
does not change across dimensions in the plots shown here. DE-
GREE also performs poorly on lattice networks, where degree pro-
vides no useful navigation information.  

Some methods (e.g., DEGREE and LANDMARK) have unacceptably 
high exploration ratios—exploring many times more nodes than 
simple breadth-first search—even when they exhibit acceptable 
path ratio performance. This effect is due to the use of best-first 
search where the search algorithm expands nodes ordered by an-
notation distance rather than by the path distance from the source 
node. 

 

 
Figure 5: Path-length ratio and exploration ratio of several NSIs on three canonical network types as the dimensionality of the in-
dices changes. The ZONE and DTZ NSIs utilize 50 regions per dimension. Results were averaged over multiple synthetically gener-
ated networks of 2,000 nodes.  
 
 

 



 

 

The DTZ index performs consistently best across all network types. 
This is not surprising, given that DTZ combines all the local infor-
mation available to ZONE, as well as global gradient information 
akin to LANDMARK. With 10 dimensions and 50 zones, this 
amounts to 500 landmarks with which to navigate. 
 

Table 1: Time and space complexity of different network 
structure indices. 

NSI Time Space 
APSP ~ O(n3) O(n2) 
DEGREE O(n) O(n) 
LANDMARK O(ed) O(nd) 
ZONE O(ed) O(nd) 
DTZ O(ekd) O(nkd) 

 

However, the ZONE and DTZ annotation schemes have two pa-
rameters: the number of zones to use k, and the number of dimen-
sions d. Increasing each never hurts in terms of performance; 
however, more zones and higher dimensions take longer to build 
and more space to store. The space and time complexity of each 
annotation scheme is summarized in Table 1.  Recall that the ZONE 
scheme requires only O(nd) space, compared to O(nkd) for DTZ. 
Given the additional information being stored by DTZ, we expect 
for it to outperform a ZONE index with an equivalent dimensional-
ity and number of regions.  

 
Figure 6: Path ratios for ZONE and DTZ on random and Forest 
Fire networks for equivalently sized sets of annotations. In the 
ZONE plots, number of dimensions is labeled on a geometric 
scale (as a multiple of the number of zones) in order to make a 
fair comparison with DTZ.  

In order to directly compare the two NSIs, we can increase the 
number of dimensions of ZONE so that its total space requirements 
equal that of DTZ. The results are shown in Figure 6. ZONE and 
DTZ offer roughly equivalent performance once their annotations 
are allowed to fill equal amounts of memory. Further, the results 
seem to vary slightly across graph types, with ZONE performing a 
bit better on random graphs and a bit worse on Forest Fire graphs. 
As mentioned previously, the key to using the NSI effectively is 
to determine the size and type of the index to build, balancing 
complexity and performance. 

 
Figure 7: Path and exploration ratios for a DTZ used on real 
data. 
Figure 7 depicts the performance characteristics of the DTZ index 
on two real datasets: the Rexa citation graph and the IMDb actor 
graph (165k nodes / 321k edges and 10k nodes / 628k edges, re-
spectively; see Appendix A). The results demonstrate the robust-
ness of the DTZ technique. The Rexa dataset is a relatively large, 
sparsely connected graph, with each node having an average de-
gree of 1.95. The IMDb data set is roughly twenty times smaller 
in terms of nodes, but has an average degree of 62.8. Considered 
together, these two data sets represent a wide range of network 
structures. In both cases, the DTZ NSI approaches optimal path 
lengths with very few annotation dimensions. Furthermore, the 
best-first searches performed with the indices are two orders of 
magnitude more efficient than simple breadth-first search. As we 
show in section 4, this allows us to efficiently calculate a number 
of statistics on real networks. 
 

4. APPLICATIONS 
While having the ability to efficiently find a path to Kevin Bacon 
in an actor graph is certainly useful in its own right, the real utility 
of an NSI becomes apparent when it is integrated into an algo-



 

 

rithm that requires efficient discovery of short paths between sev-
eral pairs of nodes in the graph. 

4.1 Constant Time Distance Estimation 
Depending on the distance measure being employed, we can 
sometimes use an NSI to directly estimate the graph distance be-
tween any two nodes. Whether this is feasible depends on the 
ability of our annotation distance measure to provide global rather 
than local information. Figure 8 shows we scatterplots of calcu-
lated annotation distance versus actual graph distance for the ZONE 
and DTZ annotation schemes. In the case of ZONE, even at short 
path lengths the annotation distances are highly variable. Though 
in practice these values are often good enough to provide effective 
local information for search navigation, they are not good estima-
tors of actual graph distance. The plot for DTZ, however, exhibits a 
clear linear relationship between annotation distance and graph 
distance. As a result, we can accurately gauge the relative distance 
between different pairs of nodes using the annotation distance.  

 
Figure 8: Scatterplots of the relationship between annotation 
distance and actual graph distance for ZONE (top) and DTZ 
(bottom) on the Rexa citation network. 
If necessary, we can use DTZ annotation distance to estimate ac-
tual graph distances with the following procedure: (1) annotate the 
graph as described for DTZ in Section 2.4, (2) randomly sample p 
pairs of nodes in the graph and perform breadth-first search to 
obtain their exact graph distance, and (3) use linear regression to 
obtain an equation for estimated distance:  

! 

ˆ d (x, y) = m "DDTZ (x, y) + b  

Depending on the structure of the graph, step 2 may be intractable 
for some pairs of nodes. However, since we’re identifying a 
strictly linear relationship, we can terminate our breadth-first 
search after examining paths of lengths greater than four or five 
and still produce reliable regression results. 

Simple distances can be used to produce a wide variety of attrib-
utes on nodes, and these attributes, in turn, can be used by data 
mining algorithms that analyze graphs [9][15]. For instance, a 
simple distance function can be used to label nodes with their 
distance to a particular node in a graph (e.g., how close is each 
actor to Kevin Bacon?). Additionally, a distance function can be 
used to label nodes with the minimum or maximum distance to 
one of a set of designated nodes (e.g., how close is each actor to 
an Academy Award winner?). While such calculations can be 
made with any method for finding short paths, including breadth-
first search, only an efficient distance function, such as the one 
provided by an NSI, makes such calculations feasible for large 
graphs. 

4.2 Closeness Centrality 
Centrality measures such as betweenness centrality and closeness 
centrality [8] are crucial to the study of social network dynamics. 
Unfortunately, even their approximate calculation involves find-
ing the shortest path between many pairs of nodes. As a result, 
accurate estimates of these measures are often impossible to cal-
culate efficiently for large data sets. However, by using an NSI for 
path finding, we can estimate these measures efficiently. 

Closeness centrality, or C, measures the proximity of a given node 
in a network to every other node.  

! 

C(a) = d(a,b
i
)

i

"  

To estimate C, we can calculate the average of graph distance to a 
sample of nodes in our data set.  Rather than using (possibly in-
tractable) breadth-first search, we use NSI-based navigation to 
discover the distance between these sampled pairs. Since the path 
lengths found with the structure index are always greater than or 
equal to the optimal shortest path lengths, our estimate of C will 
be consistently upwardly biased. However, in most applications, 
the actual value of C for a particular node is meaningless in and of 
itself; rather, it is the value of C relative to the corresponding 
values for other nodes in the network that is of importance. 

Traditionally, the quality of a rank ordering is evaluated using a 
permutation test on Spearman’s ρ statistic or Kendall’s τ. How-
ever, since our sample size is relatively large (thousands of 
nodes), any reasonably correct ordering is going to appear signifi-
cant when compared to the random rankings of a permutation test. 
Instead, we present scatterplots of actual versus approximated 
closeness rankings obtained with a DTZ NSI in Figure 9. Note that 
even the “exact” C values used here are actually estimates, as they 
are obtained through sampling. As can be seen from the figure, 
using path lengths discovered through NSI navigation provides 
highly accurate estimates. 

To evaluate the utility of the distance estimates obtained from the 
approximated distance from Section 4.1, we repeat the experi-
ments for estimating closeness centrality, using path lengths cal-
culated from the linear equation rather than ones found through 
searching. The results can be seen in the scatterplots in Figure 10. 
While the results are not as accurate, the distance function can be 



 

 

calculated in constant time, which in practice allows for many 
more pairs to be sampled when making estimates. 

 
Figure 9: Closeness approximation ranking comparisons for 
estimations made with 100 (top) and 5000 (bottom) sampled 
pairs. 
 
The list in Table 2 shows actors drawn from the data and ranked 
by closeness centrality. As outlined in Appendix A, the data are 
drawn from movies made between 1970 and 1999 listed in the 
Internet Movie Database. Kevin Bacon does not top the list, 
though he still ranks 554th out of over ten thousand actors. The 
most highly ranked actor by our estimate of closeness centrality is 
Martin Sheen, a popular actor with over three decades of experi-
ence. During the period covered by our data, Sheen appeared in 
over 150 films and television shows in a remarkably wide variety 
of genres, including drama (Badlands, Apocalypse Now, The West 
Wing), comedy (The Simpsons), science fiction (Babylon 5), 
thriller (Voyage of Terror), and horror (Tales from the Crypt). The 
other top-ranked actors have similar long careers with diverse 
roles that have paired them with a wide variety of actors. 
 
 
 

Table 2. IMDb actors ranked by approximated closeness cen-
trality. 

1. Martin Sheen 
2. Michael York 
3. Jürgen Prochnow  
4. Seymour Cassel  
5. Tchéky Karyo  
6. Malcom McDowell  
7. Harvey Keitel  
8. David Warner  
9. Robert DeNiro  
10. Ben Kingsley  

11. Udo Kier  
12. Christopher Plummer 
13. Martin Landau 
14. Richard Riehle 
15. James Earl Jones  
16. Brion James  
17. Peter Coyote  
18. F. Murray Abraham 
19. Whoopi Goldberg  
20. Samuel L. Jackson 

 

 
Figure 10: “Searchless” closeness estimate ranking compari-
son for approximations derived from 100 (above) and 5000 
(below) sampled pairs. 
 
As with simple distance, a measure of centrality can be used to 
produce attributes on nodes that may be useful to knowledge dis-
covery algorithms. In particular, measures of closeness centrality 
can be used to determine the closeness of every node to a collec-
tion of key nodes (e.g., closeness to all winners of Academy 
Awards for best actor in the past 10 years). Closeness can also be 
calculated for more restricted communities. For example, cluster-
ing can be used to reveal communities within the graph, which in 



 

 

turn can be used to constrain closeness calculations for their 
members. This can produce attributes that measure a form of lo-
calized closeness centrality (e.g., closeness rank of an actor within 
his or her “home” movie industry). Finally, there is no reason to 
adhere strictly to the conventional definition of closeness. For 
example, we can weight closeness based on the attributes of the 
outlying nodes (e.g., closeness to winners of Academy Awards 
weighted by recency of award). As with simple distance, these 
attributes have always been available, but an NSI makes them 
tractable for large graphs. 

4.3 Betweenness Centrality 
Betweenness centrality, or B, is a second measure of network 
“importance.”  The betweenness of a node measures the number 
of short paths on which a given node lies [8]:   

! 

B(a) =
ga (i, j)

g(i, j)
ij

"  ,  i # j # a  

Where g(i,j) is the number of shortest geodesic paths connecting 
nodes i and j, and ga(i,j) is the number of these paths that pass 
through node a.  

 
Figure 11: Betweenness ranks calculated with 5000 (above) 
and 50000 (below) sampled pairs of nodes on a network of 
10000 nodes. 

Since its calculation requires knowledge of actual paths rather 
than simple path lengths, in practice it is often intractable to calcu-
late exactly (the best known algorithm runs in O(en+n2logn) time 
[2]). However, we can estimate betweenness using the paths iden-
tified through NSI-based navigation. Similar to our procedure for 
estimating closeness, we randomly sample pairs of nodes and 
discover the shortest path between them. We then count the num-
ber of times each node in the graph appears on one of these paths 
to obtain a betweenness ranking. The results are depicted in 
Figure 11. Here we compare rankings of nodes using our be-
tweenness estimate (obtained with a DTZ NSI) with the exact 
measure (not using samples as with the closeness example above). 
Because the sampling procedure fails to include all the short paths 
in its calculation of betweenness, many nodes have identical be-
tweenness scores, forming the horizontal lines in the scatter plots. 
Even so, the plot exhibits a clear relationship between the actual 
and approximated values of betweenness. 

In the actor graph, a high betweenness score can indicate an ac-
tor’s role as a “bridge” between two communities. In Table 3 we 
have the top 20 actors as ranked by betweenness centrality. Ron 
Jeremy, the top scoring actor on the list, is a prolific adult film 
star who has recently crossed over into mainstream cinema. Simi-
larly, Gérard Depardieu and Stellan Skarsgård link foreign film 
communities (French and Swedish, respectively) to Hollywood.  

Table 3. Top twenty IMDb actors as ranked by estimated be-
tweenness centrality. 

1. Ron Jeremy  
2. Udo Kier  
3. Gérard Depardieu  
4. Stellan Skarsgård  
5. Martin Sheen  
6. Tchéky Karyo 
7. Ice-T 
8. Nina Hartley  
9. Michael York  
10. Max Von Sydow  

11. Malcom McDowell  
12. Om Puri 
13. Ginger Lynn Allen  
14. Ben Kingsley  
15. Jürgen Prochnow 
16. Féodor Atkine 
17. Peter Coyote  
18. Armin Mueller-Stahl  
19. Harvey Keitel  
20. Joaquim De Almeida 

As with simple distance and closeness centrality, betweenness 
centrality can also be used to create features on nodes that are 
useful for data mining. For example, we could calculate between-
ness centrality for particular groups of nodes (e.g., actors that sit 
between winners of Academy Awards for best picture and the 
IMDb’s “Bottom 100,” the worst 100 movies as voted by users of 
the Internet Movie Database). 

5. RELATED WORK 
Kleinberg [10][11] demonstrates the notion of similarity-based 
navigation in small-world networks. He demonstrates how the 
presence of network homophily can provide a gradient that guides 
search using local information. Watts investigated a similar ap-
proach by constructing a hierarchical model from which to derive 
homophily.[23] In this paper, we present methods for creating 
such homophily in domains that may lack local information. We 
detail a number of ways in which this information can be obtained 
for both synthetic and real datasets.  

As described above, the LANDMARK NSI designates select nodes 
as landmarks to provide directional information for navigation. 
This approach has been studied by Chow [3] in conjunction with 
A* search, since an admissible heuristic can be derived from dis-
tances to landmarks. While this strategy can guarantee optimal 
paths by employing A*, a large number of nodes must be explored 



 

 

to discover these paths. This is not ideal if fast discovery of short 
paths is needed, as in the case of approximating network statistics. 
We show that the LANDMARK approach is not effective when 
combined with a non-optimal best-first search strategy. 

Another strategy, developed by Ng and Zhang [16], uses a tech-
nique called Global Network Positioning (GNP) based on comput-
ing coordinates of landmarks. This approach has been adopted by 
the Networks/Internet community as a basis for determining net-
work latency between hosts on the Internet. Most of the Internet 
coordinate approaches attempt to minimize network latency 
through extensions of GNP [22][19][18]. Kleinberg provides a 
theoretical analysis and framework of all beacon-based strategies, 
such as GNP and others [12]. This mostly describes the effective-
ness of triangulation (determining positions of uncertain nodes) in 
beacon-based approaches.  

Other strategies in the Internet domain have attempted to create 
network overlay structures, such as a rings-based approach that 
does not rely on selection of landmark nodes.[26] This concept 
has recently been explored theoretically as a technique for dis-
tance estimation and nearest neighbor searches by Slivkins [20] 
and Krauthgamer [13]. However, it is unclear how accurately any 
of these strategies perform on domains other than the Internet or 
for the purposes of approximating network statistics. Additionally, 
our current work focuses on undirected, unweighted graphs with 
the goal of minimizing hop count, not network latency.  

6. CONCLUSIONS 
We have identified several methods for creating a network struc-
ture index. Two of these methods, ZONE and DTZ, allow efficient 
and accurate estimation of path lengths between arbitrary nodes in 
a network. Using these indices, we can estimate path length be-
tween a pair of nodes in constant time, and we can estimate the 
closeness centrality of a given node in time that is linear in the 
number of outlying nodes. In addition, we have shown empirically 
that we can estimate the betweenness centrality of a given node by 
accessing less than 5% of the nodes explored by breadth-first 
search. 
Such efficient calculations of network statistics open up a new 
range of potential approaches to knowledge discovery. First, iden-
tification of short paths and central nodes are important types of 
knowledge discovery for networks. Closeness centrality can direct 
attention to the core of a network, and betweenness centrality can 
help identify key connectors of otherwise separate communities. 
Second, estimates of these measures can support the application of 
other methods (e.g., joint statistical models such as probabilistic 
relational models [9] or relational dependency networks [15]). 
Centrality and other path-based measures summarize local struc-
ture in ways that can be easily considered by learning algorithms 
for these models. Third, path length and centrality measures can 
be adapted to produce a wide variety of more local features, such 
as distance to particular nodes, closeness to particular classes of 
nodes, and betweenness for two or more subsets of nodes. 

Despite our success at creating reasonably efficient and accurate 
NSIs, we have not exhausted the space of potential solutions in 
this general class of indices. As we outlined in Section 8, a num-
ber of promising results in computer networking and theory point 
toward additional techniques for constructing NSI annotations, 
and we are actively investigating these alternatives. In addition, 
we are considering how to efficiently update NSIs when nodes 
and links are added to the network so that dynamic graphs can be 

successfully indexed. Finally, we are investigating how to apply 
our own recent developments in network searching [21] to more 
effectively use NSI annotations to find short paths. 

We are actively exploring additional applications of network 
structure indices. Two of the most promising directions are find-
ing connection subgraphs and approximating neighborhood func-
tions. Faloutsos and coauthors have pioneered work in this area by 
identifying efficient methods for finding connection subgraphs—
sets of short paths between nodes—and for approximating the size 
of the neighborhood of a node.[6][17] NSIs may provide an alter-
native way of representing much of the information needed for 
both of these tasks. 
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APPENDIX A: DATA SETS 
Synthetic Graph Generation Procedures 
We evaluated the performance of our indices on three types of 
synthetic data sets. Small (100 node) examples of each are de-
picted in Figure 12. The first type is based on an Erdös-Rényi 
style random graph model [5]. To build one of these graphs, we 
specify the number of nodes and edges as parameters, and wire 
the graph by randomly selecting the endpoints for each edge that 
we want to create. Once the edges are in place, we then select the 
largest connected component of the graph (typically encompass-
ing > 95% of the nodes) for annotation.  

The second type of graph used is a “lightly” rewired lattice, as 
first proposed by Watts and Strogatz [24]. For this model, we 
specify the number of nodes in the graph, the degree of each node, 
and the edge rewiring probability. After constructing a regular 
lattice with the specified number of nodes and edges, we then 
independently flip a coin to decide whether or not to rewire each 
edge by randomly assigning one of its endpoints to a new destina-
tion. The examples used in this paper were generated with a rewir-
ing probability of 0.01.  

Finally, we tested our algorithms using graphs generated with the 
“Forest Fire” model described by Leskovec et al. [14], using 
“burn probabilities” ranging from 0.32 to 0.48, and a “backward 
burning probability” of 0.2. 

Real Datasets 
Two real-world datasets were used for experiments in this paper. 
The Rexa database is a citation graph of scientific papers in com-
puter science. It contains 165k nodes, representing papers, con-
nected by 321k undirected edges, representing the citations among 
papers. The low average degree is due to coreference errors in the 
particular version of the Rexa dataset used and the fact that many 
papers in the dataset cite papers that do not appear elsewhere in 
the data and thus have a degree of one. 

The IMDb dataset is a network of actors drawn from 
www.imdb.com. Actors are linked when they have costarred in a 
movie together between 1970 and 2000. Furthermore, actors who 
have appeared in fewer than 20 movies in that period have been 
filtered out. The resulting network contains 10k nodes and 628k 
edges



 

 

 

 
Figure 12: Examples of synthetic graphs with 100 nodes. 

 

 


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2006

	Using Structure Indices for Efficient Approximation of Network Properties
	Matthew J. Rattigan
	Marc Maier
	David Jensen
	Recommended Citation


	Microsoft Word - nsi_tech_report_18.doc

