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Abstract. In this paper, we study the problem of emulating TG steps of an NG-node guest network, G,
on an NH-node host network, H. We call an emulation work-preserving if the time required by the
host, TH, is O(TGNG/NH), because then both the guest and host networks perform the same total
work (i.e., processor-time product), Q(TGNG), to within a constant factor. We say that an emulation
occurs in real-time if TH 5 O(TG), because then the host emulates the guest with constant slowdown.
In addition to describing several work-preserving and real-time emulations, we also provide a general
model in which lower bounds can be proved. Some of the more interesting and diverse consequences
of this work include:

(1) a proof that a linear array can emulate a (much larger) butterfly in a work-preserving fashion, but
that a butterfly cannot emulate an expander (of any size) in a work-preserving fashion,

(2) a proof that a butterfly can emulate a shuffle-exchange network in a real-time work-preserving
fashion, and vice versa,

(3) a proof that a butterfly can emulate a mesh (or an array of higher, but fixed, dimension) in a
real-time work-preserving fashion, even though any O(1)-to-1 embedding of an N-node mesh in
an N-node butterfly has dilation V(log N), and

(4) simple O(N2/log2 N)-area and O(N3/ 2/log3/2 N)-volume layouts for the N-node shuffle-exchange
network.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures—parallel processors; C.2.1 [Computer-Communications Networks]: Network Analysis and De-
sign—network topology; F.1.1 [Computation by Abstract Devices]: Models of Computation—networks
of machines; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and
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Problems—computations on discrete structures; G.2.1 [Discrete Mathematics]: combinatories—combi-
natorial algorithms; G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Graph embeddings, network emulations, parallel architectures,
processor arrays

1. Introduction

In this paper, we study the problem of emulating an NG-node guest network G 5
(VG, EG) on an NH-node host network H 5 (VH, EH) where NH # NG. Our
goal is to emulate TG steps of any computation on G in TH 5 STG steps on H
where S (the slowdown of the emulation) is as small as possible. The slowdown of
the emulation must always be at least as large as NG/NH since G has NG/NH
times as many processors as does H. If S 5 O(NG/NH), then we say that the
emulation is work-preserving because then the total work (i.e., the processor-time
product) performed by the emulating network (WH 5 THNH) is within a
constant factor of the work performed by the guest network (WG 5 TGNG).
Such emulations achieve optimal speedup (to within a constant factor) over
sequential emulations of G since they use NH processors to solve a problem
Q(NH) times faster than is possible with a single processor.
Formally, we say that there is a work-preserving emulation of a class of networks

& by a class of networks * with slowdown S(N) if for every N and T, any N-node
network in * can emulate T steps of any N z S(N)-node network in & in
O(T z S(N)) steps. In the special case that S(N) 5 O(1), we say that the
emulation occurs in real time. Real-time emulations are the hardest to obtain
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since we require the host network to emulate a guest network of the same size
with constant slowdown.
There are several good reasons for studying the problem of emulating one

network on another in a work-preserving fashion. First, this kind of analysis gives
us an excellent means by which to compare the computational power of one
network relative to that of another. More importantly, it gives us an automatic
way to compile and run algorithms designed for one kind of parallel architecture
without loss of efficiency on another.
More generally, the study of work-preserving emulations lies at the heart of

efficient parallel computing. Indeed, one of the central problems in efficient
parallel computing is the task of mapping a collection of processes linked by
precedence and/or communication constraints onto the processors and routing
network of a parallel machine so that

(1) the processing load imposed on the processors is balanced,
(2) the communication between processors can be handled efficiently, and
(3) the computation and communication can be scheduled so that the necessary

inputs for a process are available where and when the process is scheduled to
be computed.

In other words, we would like to schedule the communication and computation
in a way that takes maximum advantage of the available hardware to minimize
the completion time of the job.
In general, we can model the computation to be performed by a DAG. Each

node of the DAG represents a process and each directed edge (u, v) represents
a communication that must take place between processes u and v. Typically, this
communication represents data output from u after u is completed which is to be
input to v before v is started. The parallel machine can be modeled as a network.
The nodes of the network correspond to processors, and the edges correspond to
communication links between processors (and/or their associated memories). To
implement the computation on a parallel machine, we must construct a schedule
that specifies which processor executes each process, and how the outputs of
these processes are communicated.
In many applications, the DAG possesses a very natural structure. For

example, typical DAGs encountered in practice are derivatives of a binary tree,
array, butterfly, or shuffle-exchange network. This is often due to the fact that
the DAG is associated with an algorithm whose inherent underlying structure is a
tree or array (as is the case for many problems in numerical analysis and linear
algebra) or a butterfly or shuffle-exchange network (as is the case for Fourier
Transform and data manipulation problems). Alternatively, it could be that the
DAG was constructed from an algorithm specifically designed for use on one of
these common parallel architectures.
Similarly, parallel networks also tend to be very naturally structured and

typically are configured as trees, arrays, butterflies, and the like. Hence, the
mapping problem often consists of emulating TG steps of one NG-node network
(represented as a DAG of depth TG in which each level consists of a copy of G)
on an NH-node network with a different structure. Ideally, we would like to
perform the computation in O(TGNG/NH) steps, which is precisely the problem
of finding a work-preserving emulation of one network on another.
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As we shall see, in order for a work-preserving emulation to be possible, it is
sometimes necessary for the guest network to be substantially larger than the
host. For example, we will show that a small linear array (which has a very simple
structure) can perform a work-preserving emulation of a butterfly (which has a
more complicated structure), but only if the butterfly is exponentially larger. In
practice, however, it is not uncommon for a parallel machine with between 8 and
256 processors to be emulating array-based computations involving hundreds of
thousands of data points. In such examples, even work-preserving emulations
with exponential slowdown may be within the scope of practicality. Indeed, the
most important feature of the computation is that it be work-preserving.

1.1. EMBEDDINGS. An efficient emulation scheme can often be devised by
finding a good embedding of the guest network into the host. By an embedding
of a network G into a network H, we mean a mapping f: G 3 H that takes the
nodes of G to the nodes of H and the edges of G to paths in H. The dilation of
an embedding is the length of the longest path f(e) corresponding to an edge e
of G. The congestion of an embedding is the largest number of paths f(e)
crossing a single edge of H. The load of an embedding is the maximum number
of nodes of G mapped to a single node of H. In a one-to-one embedding, the
load is 1. Throughout the paper we will make use of the fact that if there is an
embedding of G in H with congestion c, dilation d, and load l, then there is an
emulation of G by H with slowdown O(l 1 c 1 d). This fact follows from the
proof in Leighton et al. [1988] that for any set of packets whose paths have
congestion c and dilation d, there is a schedule of length O(c 1 d) in which at
most one packet traverses each edge at each step. When H is an array, tree,
butterfly, or shuffle-exchange network, the schedule can be computed on-line
using an algorithm that works for all leveled networks [Leighton et al. 1988;
1994].
As a simple example, let & be the class of linear arrays, and * be the class of

all bounded-degree connected networks. It is well known [Sekanina 1962] that an
N-node linear array can be embedded in any connected bounded-degree N-node
network with load 1, dilation O(1), and congestion O(1). Hence, any N-node
bounded-degree connected network H can emulate any N-node linear array with

FIG. 1. An 8-input butterfly without wraparound.
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constant slowdown, and thus there is a real-time emulation of the class & by the
class *.
As another simple example, consider the more interesting problem of emulat-

ing a butterfly on a N-node linear array. We will prove that the class of
butterflies cannot be emulated in real time by the class of linear arrays. (This
should come as no surprise, although the proof is not entirely trivial.) However,
there is a simple work-preserving emulation of the class of butterflies by the class
of linear arrays with slowdown O(2N).
The M-node butterfly with wraparound has nodes consisting of all ordered pairs

^l, C&, where the level l is taken from the set {0, . . . , r 2 1} and the column C
is an r-bit string. Hence, M 5 r2 r. Node ^l, cr21 . . . cr212l

. . . c0& is connected
to node ^l 1 1 mod r, cr21 . . . cr212l

. . . c0& by a straight edge, and to node
^l 1 1 mod r, cr21 . . . cr212l

. . . c0& by a cross edge, where cr212l denotes the
complement of bit cr212l. The butterfly without wraparound is defined similarly
(see Figure 1), but with M 5 (r 1 1)2r and the mod r removed from the edge
definitions. In the butterfly without wraparound, the nodes in level 0 are called
the inputs and the nodes in level r are called the outputs. In the butterfly with
wraparound, the inputs and the outputs are identified into a single level. Each of
these networks can be embedded into the other with constant load, dilation and
congestion, so that each can perform a real-time emulation of the other.
Given an N-node linear array, by mapping the 2N21 nodes of the form ^l, C&

(where C [ {0, 1}N21) to the lth node of the linear array, an N-node linear
array can emulate an N2N21-node butterfly without wraparound with 2N21

slowdown. A linear array can therefore also perform a work-preserving emula-
tion of a regular butterfly with slowdown O(2N).
Seeing this elementary example, one is tempted to ask if there are faster

work-preserving emulations of a butterfly on a linear array. In other words, can a
linear array emulate a smaller butterfly (perhaps larger by only a polynomial
factor) in a work-preserving fashion? Although the proof is not obvious, the
answer is no. There is no work-preserving emulation of the class of butterflies by
the class of linear arrays with polynomial slowdown. Any such emulation requires
exponential slowdown. Alternatively, we might wonder if a linear array can
emulate an arbitrary bounded-degree network in a work-preserving fashion given
enough slowdown. Again, the answer is no. Although the linear array can
emulate a butterfly in a work-preserving fashion, it cannot emulate any expander,
no matter how much blowup is allowed. In fact, by combining these results, we
can conclude that even a butterfly is not sufficiently powerful to emulate an
expander in a work-preserving fashion.
In this paper, we also consider emulations that are not work-preserving. Such

emulations are (by definition) inefficient, and we define the inefficiency of such
an emulation to be I 5 WH/WG. In these terms, an emulation is work-preserving
if it has constant inefficiency. Many of our bounds will reflect trade-offs between
slowdown and inefficiency. In general,

I 5
S

C
,

where C 5 NG/NH is the contraction of an emulation.
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1.2. A CLOSER LOOK AT THE COMPUTATIONAL MODEL. If we can find an
embedding of a network G into a network H with constant dilation, congestion,
and load, then it is fairly clear that H can emulate G with constant slowdown. Is
the converse true? Somewhat surprisingly, it is not. For example, Bhatt et al.
[1996] proved that any embedding of an N-node mesh into an N-node butterfly
with constant load requires dilation V(log N) (the diameter of the butterfly). At
first glance, it might seem that this result implies that any emulation of an
N-node mesh by an N-node butterfly must have slowdown at least V(log N).
However, we show that an N-node butterfly can emulate T-steps of an N-node
mesh in O(T) steps.
In order to understand how such a contradictory result is possible, we need to

take a closer look at what it means to emulate TG steps of one network in TH
steps on another. We model the emulation of the guest by the host as a pebbling
process on a DAG, G. In particular, G consists of TG 1 1 levels, one for each
guest time step t, where 0 # t # TG. (Level 0 corresponds to the initial state of
the guest.) On level t, there is a node (v, t) for every node, v, of G, and a node
(e, t) for every edge, e, of G. Node (v, t) represents the state of guest processor
v at the end of step t, while node (e, t) represents the data sent across guest
edge e during step t. In addition, for t . 0, there are directed edges in G into
node (v, t) from nodes (v, t 2 1) and (e1, t 2 1), (e2, t 2 1), . . . , (ek,
t 2 1), where e1, e2, . . . , ek are the edges into v. For each edge e leaving v in
G, there are edges in G into (e, t) from the same nodes, (v, t 2 1) and (e1,
t 2 1). . .(ek, t 2 1). The goal of the host is to create a pebble for each node in
G. We call the pebbles for DAG nodes of the form (v, t) node pebbles and those
for nodes of the form (e, t) edge pebbles. At each step in the emulation, a host
node may perform the following operations:

(1) Copy a single edge pebble that it contains.
(2) Send a single edge pebble to a neighbor.
(3) Create a node or edge pebble for a node in G if it contains pebbles for all of

that node’s predecessors in the previous level of G.

The trick that makes it possible for a butterfly to emulate a mesh in real-time
is to allow the host to create more than one pebble for each DAG node. (Note
that in the emulation schemes based on embedding G in H, the host creates
exactly one pebble for each DAG node.) Creating several pebbles for a node
corresponds to performing the same computation more than once. By allowing
redundant computation, we dramatically increase the number of ways that the
host can emulate the guest. This makes it more likely that we can find a
computation that can be efficiently emulated on some host network H, but it also
makes the task of proving lower bounds more difficult. Indeed, at the very least,
we must choose TG to be large since by allowing redundant computations of
pebbles, any O(1) steps of any N-node bounded-degree network G can be
computed in O(1) steps on any N-node network H. (This is because if T 5
O(1), then any output pebble can only depend on O(1) input pebbles, which can
be redundantly computed locally since every node of H is assumed to have access
to all input pebbles.)
Note that when we prove a lower bound on the ability of a network H to

emulate a network G, it does not necessarily mean that H cannot effectively
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compute the same result as does G (possibly by using a different algorithm, for
example). Rather, we are proving lower bounds on the ability of H to perform
the same step-by-step computations as G when G is used in a general purpose
way. Hence, the term emulation. We suspect that our pebbling model is probably
the most general model in which we could hope to prove lower bounds.

1.3. NETWORK DEFINITIONS. We now formally define the networks whose
properties we will be studying (aside from the butterfly, which has already been
defined).
An array of dimension d and side length n has N 5 nd nodes. Each node in

the array has a distinct label ( x1, x2, . . . , xd), where 0 # xi # n 2 1, for 1 #
i # d. If the array has wraparound, then for each dimension i, node ( x1, . . . ,
xi, . . . , xd) is connected to node ( x1, . . . , xi 2 1 mod n, . . . , xd) and to node
( x1, . . . , xi 1 1 mod n, . . . , xd). If the array does not have wraparound, then
for each dimension i, node ( x1, . . . , xi, . . . , xd) is connected to node ( x1, . . . ,
xi 2 1, . . . , xd), unless xi 5 0, and to node ( x1, . . . , xi 1 1 mod n, . . . , xd),
unless xi 5 n 2 1. A 1-dimensional array without wraparound is called a linear
array; with wraparound it is called a ring. A 2-dimensional array without
wraparound is called a mesh; with wraparound it is called a torus. All of the
results in this paper that are proven for meshes can be extended to arrays of
higher, but fixed dimension, with or without wraparound.
The N-node complete binary tree, where N 5 2h 2 1, has vertex set {1, . . . ,

N }, where each vertex i # (N 2 1)/ 2 is connected to vertices 2i and 2i 1 1.
The nodes of the N-node shuffle-exchange network, where N 5 2n, consist of

all n-bit strings. Node xnxn21
. . . x2x1 is connected to nodes xn21xn22

. . . x1xn
and x1xn . . . x3x2 by shuffle edges, and to node xn . . . x1 by an exchange edge.
A class of networks is called an expander if there exists a constant a . 0 such

that if G 5 (V, E) is an N-node network in the class, then for any set S # V,
uS ø N(S) u $ min{(1 1 a) uS u, 3N/4}, where N(S) 5 {v [ V u (u, v) [ E,
u [ S}. In other words, a network is an expander if every set S has at least a uS u
neighbors, provided that (1 1 a) uS u # 3N/4.

1.4. OUR RESULTS. The technical portion of this paper is divided into five
sections. We commence in Section 2 with some general techniques for establish-
ing the existence or nonexistence of a work-preserving emulation. In Sections 3
through 6, we focus on the special cases of emulations by arrays of fixed
dimension, complete binary trees, butterflies, and shuffle-exchange networks,
respectively.
In Section 2, we describe two general methods for proving lower bounds on the

slowdown of a work-preserving emulation. The first method is based on dilation
considerations and appears in Section 2.1. As an application of this method, we
prove that any class of low diameter networks (such as complete binary trees)
cannot be emulated in real time on any class of networks that has poor expansion
properties (such as arrays of fixed dimension). The second method is based on
congestion properties and is presented in Section 2.2. Here, we describe a
general method for proving that a work-preserving emulation requires a large
amount of time, or that it is impossible altogether. As an example, we prove that
any work-preserving emulation of a butterfly on an array of fixed dimension
requires exponential time, and that it is not possible to emulate an expander on a
butterfly in work-preserving fashion. These results provide a curious contrast
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between the power of a linear array, butterfly, and an expander. By most
standards, it would seem that a butterfly is closer in power to an expander than it
is to a linear array. Yet a linear array can emulate a butterfly in a work-
preserving fashion, but a butterfly (or almost any nonexpander) cannot emulate
an expander in a work-preserving fashion.
In Section 3, we prove tight bounds on the slowdown required for an array to

emulate a tree, array or butterfly.
In Section 4, we prove that an N-node complete binary tree can perform a

work-preserving emulation of any bounded-degree tree with O(N log log N) (or
more) nodes. We also give evidence, but no proof, that there is no corresponding
real-time emulation for this class. (Proving that a complete binary tree cannot
emulate a complete ternary tree in real-time is one of several challenging
questions left open in this paper.)
Section 5 explores emulations by butterfly networks. We begin in Section 5.1

by observing that a butterfly can perform a work-preserving emulation of any
larger butterfly. Next, in Section 5.2, we show that an N-node butterfly can
perform a work-preserving emulation of any bounded-degree tree of size N log
log N or larger. The emulations of butterflies and trees are relatively straightfor-
ward; the emulations in the remainder of Section 5 are more sophisticated.
In Section 5.3, we show that an N-node butterfly can emulate an N-node mesh

in real-time. This result is interesting because any one-to-one embedding of an
array (of dimension 2 or more) in a butterfly requires V(log N) dilation [Bhatt et
al. 1996], which suggests that any emulation must require slowdown V(log N).
The result takes on added significance given the fact that many parallel
numerical algorithms are array-based while several parallel machines are butter-
fly-based.
Next, in Section 5.4, we describe a simple constant-congestion and constant-

load embedding of an N-node shuffle-exchange network in an N-node butterfly.
This result can be used to provide an elementary proof that the N-node
shuffle-exchange network can be laid out in O(N2/log2N) area and in O(N3/ 2/
log3/2N) volume. Both results are optimal. The area bound was known previously
[Kleitman et al. 1981], but the proof was much more difficult (as were the proofs
for several suboptimal layouts for the shuffle-exchange network).1 The 3-d layout
bound is new and was not obtainable by any of the previous approaches to the
2-d layout problem.
Finally, in Section 5.6, we describe a real-time emulation of the shuffle-

exchange network on the butterfly. In Section 6, we prove the reverse, namely,
that there is a real-time emulation of the butterfly on the shuffle-exchange
network. Taken together, these results resolve the long open question of whether
the butterfly and shuffle-exchange network are computationally equivalent. The
real-time emulation of the butterfly by the shuffle-exchange network yields
several new efficient algorithms for the shuffle-exchange network. For example,
we now know that a shuffle-exchange network can sort N numbers in O(log N)
steps with high probability. Previously, such an algorithm was known for the
butterfly [Leighton et al. 1988; Pippenger 1984; Reif and Valiant 1987], but that
algorithm made crucial use of the recursive structure of the butterfly, a structure

1 See, for example, Hoey and Leiserson [1980], Leighton et al. [1984], Leighton and Miller [1981],
and Steinberg and Rodeh [1981].
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not present in a shuffle-exchange network. The emulation also yields a real-time
emulation of arrays of fixed-dimension by the shuffle-exchange network.

1.5. PREVIOUS WORK. The notion of work-preserving emulations was previ-
ously studied by Fishburn and Finkel [1982]. They examined emulations in which
both the guest and host are drawn from the same class of networks. Several of
their results are included in this paper for completeness.
There has been a great deal of previous work on network embeddings with the

intent of showing that one network can or can’t emulate another network
efficiently.2 Many of the results were positive and proved things like “all N-node
binary trees can be emulated in constant time on an N-node hypercube.” There
were also some negative results, but their significance is less clear. For example,
even though an embedding of a mesh into a butterfly requires dilation V(log N),
we now find that a butterfly can emulate a mesh with constant slowdown.
Embeddings in which a guest node may be mapped to several host nodes, thus

allowing redundant computation, were studied by Fellows [1985] and Meyer auf
der Heide [1983; 1986] and Meyer auf der Heide and Wanka [1989]. In
particular, Meyer auf der Heide [1986] showed how to construct a bounded-
degree network with N11e nodes, for some arbitrary fixed e . 0, that can
emulate any bounded-degree N-node network with only constant slowdown.
Also, in Meyer auf der Heide [1983], he showed that it is not possible to
construct an N-node bounded-degree network that can emulate all N-node
bounded-degree networks with slowdown less than V(log N/log log N).
Work-preserving PRAM algorithms have previously been studied by Kruskal et

al. [1988] and served to motivate this work. Related problems of scheduling
computations on fixed-connection networks have also been studied by Papadimi-
triou and Yannakakis [1988].

2. Lower Bounds

In this section, we present lower bounds on slowdown and inefficiency.
Loosely speaking, these lower bounds apply when the guest network expands
faster than the host network. The first lower bound can be used to show that
any emulation of a complete binary tree by a linear array has slowdown
V(NH/log NH). The second can be used to show that a butterfly cannot
perform a work-preserving emulation of an expander network, that any
work-preserving emulation of a butterfly by a linear array H requires
slowdown at least 2V(NH), and that any work-preserving emulation of a (k 1
1)-dimensional array by a k-dimensional array H requires slowdown at least
V(NH

1/k). All of these lower bounds on slowdown are tight up to constant
factors in the V notation.
For the sake of proving lower bounds, we simplify the pebbling model

somewhat. As described in Section 1, the goal of the host is to pebble a DAG, G,
with TG 1 1 levels, but now each level t contains only the nodes of the form
(v, t), and none of the form (e, t). The edges into (v, t) come from (v, t 2 1),
and (v1, t 2 1), (v2, t 2 1), . . . , (vk, t 2 1), where v1, . . . , vk are the
neighbors of v in G. As before, (v, t) represents the state of processor v at time

2 See, for example, Atallah [1988], Bhatt et al. [1986; 1996], Bhatt and Ipsen [1988], Greenberg et al.
[1990], Leighton et al. [1988], and Raghunathan and Saran [1988].
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step t. At each step, a host node may make a copy of a pebble that it creates,
send a pebble to one of its neighbors, or create a pebble for a node of G provided
that it contains pebbles for all of that node’s predecessors in G. Although it is not
entirely realistic to allow a host edge to pass the entire state of a guest node in a
single time step, the lower bounds that we prove in this simplified model hold in
the more realistic model as well.
Before proving the lower bounds, we need to introduce some notation. For an

undirected network G 5 (V, E), let d(u, v) be the length (number of edges) of
the shortest path between nodes u and v in G. Let BG(u, i) be the set of nodes
within a distance i of u in G, that is, BG(u, i) 5 {v [ V u d(u, v) # i}, and let
bG(u, i) 5 uBG(u, i) u. We call bG the growth function of G.

2.1. DISTANCE-BASED LOWER BOUND. The following theorem shows that if
the guest network grows faster than the host network, then any emulation of the
guest by the host, work-preserving or not, must be slow.

THEOREM 2.1.1. Let H 5 (VH, EH) be an NH-node host network and G 5
(VG, EG) be an NG-node guest network, and suppose that there are integers tH and
tG such that

max
u[VH

O
i51

tH

bH~u , i! , min
v[VG

O
j51

tG

bG~v, j! .

Then any emulation of TG $ tG steps of G by H has slowdown

S .
tH 1 1

2tG
.

PROOF. Our strategy will be to find a sequence of V(TG/tG) pebbles created
by H such that no two are created within tH host time steps of each other. Such
a sequence implies that the slowdown S 5 TH/TG is at least V(tH/tG).
We start the sequence with the last pebble created by H. Suppose that at time

TH some node u0 [ VH creates a pebble for DAG node (v0, t0), where t0 5 TG.
The pebble for (v0, t0) cannot be created by H until pebbles for all of its
predecessors in the DAG are created. In particular, there are at least j51

tG

bG(v0, j) predecessors for time steps t0 2 tG through t0 2 1. We want to show
that the pebble for at least one of these predecessors must have been created by
the host network before time TH 2 tH. The pebble for every predecessor of
(v0, t0) that is created at distance i from u0 in H must be created at or before
time TH 2 i. Thus, at most i51

tH bH(u0, i) pebbles for predecessors of (v0, t0)
are created by H between time steps TH 2 tH and TH 2 1. Since maxu[VH i51

tH

bH(u, i) , minv[VG j51
tG bG(v, j), the pebble for some predecessor (v1, t1),

t1 $ TG 2 tG, must be created by the host network at or before time TH 2
(tH 1 1).
We can repeat the argument to find a pebble for a predecessor (v2, t2), t2 $

TG 2 2tG, of (v1, t1) that must be created by the host at or before time TH 2
2(tH 1 1), and so on. Eventually we obtain a pebble (vk, tk) such that tG . tk
$ TG 2 ktG. This pebble must be created by the host at or before time TH 2
k(tH 1 1). We assume that input pebbles are created at host time step 0, and
that the emulation begins with time step 1. Thus, TH 2 k(tH 1 1) $ 0.
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Dividing the inequality TH $ k(tH 1 1) by the inequality TG , (k 1 1)tG, we
have

TH/TG .
tH 1 1

2tG

for TG $ tG. e

COROLLARY 2.1.2. Any emulation of TG $ tG steps of G by H has inefficiency

I 5 VS tHNH

tGNG
D .

PROOF

I 5
WH

WG

5
THNH

TGNG
.

~tH 1 1!NH

2tGNG
. e

COROLLARY 2.1.3. For fixed k, any emulation of a complete binary tree, G, by a
k-dimensional array, H, has slowdown at least V((NG/log

k NG)
1/(k11)).

PROOF. Since the diameter of an NG-node complete binary tree is log NG,
by choosing tG 5 2log NG, we can force the sum minv[VG j51

tG bG(v, j) to be
at least NG log NG. (For j $ log NG 1 1, bG(v, j) 5 NG.) On the
other hand, the sum maxu[VH i51

tH bH(u, i) is less than NG log NG for tH 5
Q((NG log NG)

1/(k11)). Hence

S .
tH 1 1

2tG
5 VS S NG

logk NG
D 1/(k11)D . e

2.2. CONGESTION-BASED LOWER BOUND. The second lower bound requires a
little more notation. Let G 5 (VG, EG) be an undirected network as before: For
a set U # VG, we define the i-neighborhood of U, 1 i(U), to be the set of nodes
not in U, but within a distance i of some node in U, 1 i(U) 5 (øu[UBG(u, i))
2 U. We define an (R, f(R))-decomposition of a network H 5 (VH, EH) to be a
partition of VH into sets of nodes (regions) such that each contains at least R nodes
and at most 2R nodes, and has a 1-neighborhood of size at most f(R). Note that
there are at least uVHu/2R and at most uVHu/R regions in an (R, f(R))-decomposition.
The last network parameter that we need, zG, is best described in terms of a

simple game. The player starts by choosing a nodes of a connected network G
and placing them in a bag. The player is given a collection of ea, 0 # e , 1,
tokens to play with. The game is played in rounds, each consisting of two steps.
In the first step, all of the neighbors of the nodes in the bag are added to the bag.
In the second step, the player may spend tokens in order to remove nodes from
the bag. For each token spent, one node may be removed. Let X0 denote the set
of nodes in the bag initially, and let Xi denote the set of nodes in the bag at the
end of round i. Let Yi be the set of nodes removed in the second step of round i.
Then Xi is given by the recurrence Xi 5 Xi21 1 11(Xi21) 2 Yi. The game ends
when the number of nodes in the bag exceeds its capacity, c, at the end of a step,
where c , NG. If k is the number of rounds played, then uXiu # c for i , k, uXiu
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. c for i 5 k, and i51
k uYiu # ea. The goal is to play as many rounds as

possible. Let zG(a, e, c) be a upper bound on the length of the longest possible
game that is at most 2 NG and nonincreasing in a. Note that since at least one
node is always added to the bag in the first step of each round, and there are ea
tokens to spend, the game always ends within c 1 ea steps. Since c , NG and
ea , a # NG, one (usually weak) choice for zG(a, e, c) is 2NG.
The game will be used in the proof of Theorem 2.2.1 below as follows: The

nodes in the bag at the beginning of the game are nodes of G for which some
region 5 of H must create pebbles for some particular guest time step t. The first
step of each round brings the predecessors of the nodes in the bag into the bag.
Pebbles for these nodes for the previous guest time step, t 2 1, must either be
created by the region or imported from another region before the pebbles for
time step t can be created. Spending a token corresponds to importing a pebble
from another region. Thus, for each node left in the bag at the end of a round,
the region must create a pebble. If there are a nodes in the bag at the beginning,
and the player has ea tokens to spend, then the region must create c pebbles for
some guest time step between t and t 2 zG(a, e, c).

THEOREM 2.2.1. Suppose that H 5 (VH, EH) is an NH-node host network with
an (R, f(R))-decomposition, and that G 5 (VG, EG) is an NG-node guest network.
Let

b 5 maxH zGSNG4 , 0, 3NG4 D , zGS 3NGR8NH
,
1

2
,
NG

2 D J .
Then for any emulation of G by H where TG . 3b,

I $ minH R

32bf~R!
,
NH

192RJ .
PROOF. The basic strategy is to show that either the host spends a lot of time

passing pebbles across the perimeters of the regions in the (R, f(R))-decompo-
sition, or the host spends a lot of time creating pebbles. We will break the TG
guest time steps into blocks of 3b consecutive steps and classify every block as
either an importer or a creator. If a block is an importer, then many pebbles for
the block cross region perimeters. If a block is a creator, then some region
creates many pebbles for the block. If the majority of the blocks are importers,
then the time required by the host to pass pebbles across the perimeters of the
regions is large. Otherwise, the time required to create the pebbles is large.
Before we can get started we need one more piece of notation. For each node

v in G there is at least one pebble created by H for each guest time step t
between 1 and TG. The first pebble created for v for time t is called the t-primary
pebble for v. For each value of t, there are exactly NG t-primary pebbles.
The t-primary pebbles are ordered according to the order in which they are

created by H, with ties broken arbitrarily. We call the first 3NG/4 t-primary
pebbles the t-early pebbles and the last 3NG/4 the t-late pebbles. (Note that half
of the t-primary pebbles are both early and late).
We begin with the definition of an importer block. Consider a block from step

t to t 2 3b 1 1. Since there are at most NH/R regions in the (R, f(R))-
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decomposition of H, the average number of t-early pebbles created by each
region is at least p 5 3NGR/4NH. We say that a region is t-busy if it creates at
least p/ 2 t-early pebbles. We say that a t-early pebble is t-busy if it is created by
a t-busy region. At least half of the t-early pebbles are t-busy. Thus, there are at
least 3NG/8 t-busy pebbles. Suppose that a t-busy region creates s t-busy
pebbles, where s $ p/ 2. We say that the region is an importer if it imports a total
of at least s/ 2 pebbles for time steps between t 2 1 and t 2 2b . We say that a
block is an importer if every t-busy region is an importer, or if some region
imports a total of at least 3NG/16 pebbles for time steps between t 2 1 and t 2
2b. Note that in either case, if a block is an importer then a total of at least
3NG/16 pebbles for time steps between t 2 1 and t 2 2b are imported by all of
the regions.
If at least half of the TG/3b blocks are importers, then we can find a lower

bound on inefficiency by computing the time required to import pebbles. In this
case, the total number of pebbles imported by all of the importer blocks is at
least TGNG/32b. The host time required to import these pebbles is at least TH
$ TGNGR/32bNHf(R), because at each host time step, each of the (at most)
NH/R regions can import at most f(R) pebbles. In this case,

I $
R

32bf~R!
.

As we shall see, if a block is not an importer then some region must create
many pebbles for the block. Hence, the name creator. In a creator block, there
must be some t-busy region 5 that creates s t-busy pebbles, where s $ p/ 2, but
imports fewer than s/ 2 pebbles for time steps between t 2 1 and t 2 2b . Since
s $ p/ 2 5 3NGR/8 and zG(a, e, c) is non-increasing in a, zG(s, 1/ 2, NG/ 2) #
zG( p/ 2, 1/ 2, NG/ 2) # b , 2b. Thus, 5 imports at most s/ 2 pebbles for time
steps between t 2 1 and t 2 zG(s, 1/ 2, NG/ 2). The t-busy pebbles created by 5
cannot be created until pebbles for all of their predecessors in the pebble DAG
are created. Thus, 5 must create at least NG/ 2 pebbles for some time step
between t and t 2 zG(s, 1/ 2, NG/ 2). Furthermore, since 5 imports a total of at
most 3NG/16 pebbles for time steps between t 2 1 and t 2 2b, it must create at
least 5NG/16 pebbles for each time step between t 2 zG(s, 1/ 2, NG/ 2) and t 2
2b (and hence for each time step between t 2 b and t 2 2b) before creating its
t-busy pebbles. For each of these time steps, at least NG/16 of these 5NG/16
pebbles are created for nodes whose (t 2 2b)-primary pebbles are (t 2 2b)-late
pebbles. We call these NG/16 pebbles the descendant pebbles. The descendant
pebbles may or may not be primary pebbles (if they are, then they are late
pebbles), but by construction they are created by 5 before the t-busy pebbles for
5.
We have chosen the descendant pebbles so that none are created by H until all

of the descendant pebbles for previous blocks have been created. The proof is as
follows: None of the descendant pebbles are created until all of the first NG/4
(t 2 2b)-primary pebbles are created. In order to create these NG/4 pebbles, all
of the early pebbles for all time steps at or before t 2 2b 2 zG(NG/4, 0,
3NG/4) must be created, because 3NG/4 nodes in G lie within a distance
zG(NG/4, 0, 3NG/4) of the nodes corresponding to the first NG/4 (t 2
2b)-primary pebbles. Since zG(NG/4, 0, 3NG/4) # b, it follows that all of the

116 R. R. KOCH ET AL.



early pebbles (and hence all busy pebbles) for all time steps at or before t 2 3b
(i.e., for all previous blocks) must be created before any descendant pebble is
created. But the busy pebbles for a block are not created until after the
descendant pebbles for that block.
If at least half of the blocks are creators, then we can derive a lower bound on

inefficiency by summing the time to create the descendant pebbles for each of
the creator blocks. For each of TG/6b creator blocks, at least bNG/16 descen-
dant pebbles are created by a single region. Since a region contains at most 2R
host nodes, the host time for each block is at least bNG/32R. The host time for
all of the creator blocks is at least TGNG/192R and the inefficiency is at least

I $
NH

192R
.

Combining the two cases proves the theorem. e

COROLLARY 2.2.2. For fixed k, a k-dimensional array H cannot perform a
work-preserving emulation of an expander network G.

PROOF. The proof concludes by applying Theorem 2.2.1 with R 5 Q((NH log
NH)

k/(k11)), f(R) 5 O(R(k21)/k), and b 5 O(log(NH/R)). The inefficiency is
at least I $ V((NH/log

k NH)
1/(k11)). Thus, independent of the ratio NG/NH,

the inefficiency is non-constant, and hence the emulation is not work-preserving.
Before applying the theorem, we must show that b is O(log(NH/R)). Recall

that the number of nodes in the bag is given by the recurrence Xi 5 Xi21 1
11(Xi21) 2 Yi. For an expander network G, u11(Xi21) u $ min{a uXi21u,
3NG/4}, for some constant a . 0. The most efficient way to slow the growth of
this recurrence is to spend all of the tokens during the first round, that is, uYiu 5
0 for i . 1. Hence,

b 5 max$ zG~NG/4, 0, 3NG/4! , zG~3NGR/16NH, 0, NG/ 2!%

e

5 max$log(11a)/a 3, log(11a)/a 32NH/3R%

5 O~log~NH/R!! .

COROLLARY 2.2.3. A butterfly network H cannot perform a work-preserving
emulation of an expander network G.

PROOF. Apply Theorem 2.2.1 with R 5 Q(NH log log NH/log NH), f(R) 5
O(R/log R), and b 5 O(log(NH/R)). The inefficiency is at least I $ V(log
NH/log log NH). Thus, independent of the ratio NG/NH, the inefficiency is
non-constant. e

COROLLARY 2.2.4. For fixed k, any work-preserving emulation of a butterfly G
by a k-dimensional array H has slowdown at least 2V(NH

1/k).

PROOF. The proof of this theorem concludes by applying Theorem 2.2.1 with
R 5 Q((NH log NG)

k/(k11)), f(R) 5 O(R(k21)/k), and b 5 O(log NG). The
inefficiency is at least I $ V((NH/log

k NG)1/(k11)). Thus, for the inefficiency to be
constant, we must have NG $ 2V(NH

1/k). Since the slowdown S is at least NG/NH,
we have S # 2V(NH

1/k)/NH 5 2V(NH
1/k).
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The difficult part of the proof lies in showing that b 5 O(log NG). Since b 5
max{ zG(NG/4, 0, 3NG/4), zG(3NGR/8NH, 1/ 2, NG/ 2)}, it suffices to show
that for any a . 0, zG(a, 1/ 2, 3NG/4) 5 O(log NG).
The key idea is to view the butterfly as a collection of overlapping complete

binary trees. Let the guest network, G, be an n log n-node butterfly (with
wraparound) with each edge directed from level l to level l 1 1 mod log n. Then
each node in the butterfly is the root of a complete binary tree of depth log n. In
any particular tree, T, no butterfly node appears more than once, except the
root, which also appears as a leaf. We can extend T by attaching to each leaf a
linear array of log n nodes. Every butterfly node appears in exactly one linear
array. The a butterfly nodes initially in the bag are all tree roots. Since there are
at most a/ 2 tokens to play with, at least a/ 2 of these roots are never removed
from the bag. Henceforth, we shall restrict our attention to the set, F, of trees
(with their attached linear arrays) rooted at these a/ 2 nodes. We will show that
the trees in F grow so quickly that no matter how the a/ 2 tokens are spent, after
O(log NG) steps, at least 3NG/4 nodes are in the bag.
Before proceeding, let us introduce a little notation. For a tree T in F, let f i

T

be the number of linear array nodes in the bag at the end of step 2 log n 1 i, and
let F t

T be the total amount of time spent in the bag by linear array nodes between
steps 2 log n 1 1 and 2 log n 1 t, that is, F t

T 5 i51
t f i

T. For the entire forest
F, let F t 5 T[F F t

T. Note that each butterfly node may be counted uF u times in
F t.
As the a/ 2 tokens are spent, they slow the growth of the trees in F, and we

must account for the effect of each token. Consider a single tree T. If no tokens
are spent, then after 2 log n steps, all of the nodes in T’s linear arrays are in the
bag. In this case, after 2 log n 1 t steps, F t

T 5 tn log n. When a token is spent,
it may delay the time at which some nodes enter the bag. For example, if a node,
v, at depth l, 0 # l # log n, is removed from the bag at step t, then its children
may be prevented from entering the bag at step t 1 1. (Of course, they may
already be in the bag.) More generally, the descendants of v at depth l 1 i may
be prevented from entering the bag at step t 1 i. To account for the delay
caused by removing v from the bag at step t, we attribute damage to the token
spent to remove v. Since v has n/ 2 l descendant linear arrays, each of which
contains log n nodes, we attribute n log n/ 2 l damage to the token. If v is a linear
array node, then log n 1 1 # l # 2 log n, and we attribute 2 log n 2 l 1 1
damage to the token.
The usefulness of our accounting system stems from the fact that whenever a

linear array node, u, in T is not in the bag at the end of some time step 2 log n 1
t, t $ 1, at least one damage point accounts for it. The reasoning follows: If u is
not in the bag at the end of step 2 log n 1 t, then either it was removed from the
bag during step 2 log n 1 t, or its parent was not in the bag at the end of step 2
log n 1 t 2 1. By construction, the root of T is never removed from the bag.
Thus, by induction, if a node u is not in the bag at step 2 log n 1 t, then for
some l $ 0, its ancestor l levels higher in the tree was removed from the bag
during step 2 log n 1 t 2 l. But when this ancestor was removed, we allotted a
damage point to the corresponding token.
Since the trees in F overlap, spending a single token does damage in many

trees. Each node v in the butterfly appears at most once as a tree root, twice at
depth one, and so on. In general, a node v appears in trees at most 2 l times at
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depth l, up to a maximum of uF u total appearances. A node also appears at most
uF u times in linear arrays. Let kl denote the number of times a node v appears in
a tree at depth l. Then, l50

log n kl # uF u, and for 0 # l # log n, kl # 2 l. The total
damage allotted when a token is spent to remove v is

O
l50

log n

kln log
n

2 l
1 O

l5log n 1 1

2 log n

kl~2 log n 2 l 1 1! .

The first term is maximized when all of the appearances of v are as close to the
root as possible, that is, kl 5 2 l for l # log( uF u 1 1) 2 1 and kl 5 0 for l .
log( uF u 1 1) 1 1. Thus, the value of the first term is O(n log n loguF u). The
value of the second term is at most uF ulog n # n log n. Hence, for a/ 2 5 uF u
tokens, the total is O(n log n uF uloguF u).
To prove that there must be at least (3n log n)/4 nodes in the bag within

O(log n) steps, we show that for some t # O(log n), the average number of
nodes in the bag between steps 2 log n 1 1 and 2 log n 1 t, F t/t, is at least (3n
log n)/4. Recall that if no tokens are spent, F t 5 n log n uF ut. After subtracting
for damage, the average number of nodes in the bag is at least (n log n uF ut 2
O(n log n uF uloguF u))/t uF u. Here, we have divided by uF u because a linear array
node is counted uF u times in F t. For t 5 c log n, where c is a sufficiently large
constant, this average exceeds 3n log n/4. e

COROLLARY 2.2.5. For fixed j and k, any work-preserving emulation of a
j-dimensional array G by a k-dimensional array H, j . k, has slowdown at least
V(NH

( j2k)/k).

PROOF. The proof concludes by applying Theorem 2.2.1 with
R 5 Q((NG

1/jNH)
k/(k11)), f(R) 5 O(R(k21)/k), and b 5 O(NG

1/j). The
inefficiency is at least I $ V((NH

j /NG
k )1/j(k11)). Hence, in order for the

inefficiency to be constant, we must have NG $ V(NH
j/k). In this case, the

slowdown is at least NH
( j2k)/k.

We bound b as follows. The number of nodes in the bag is given by the
recurrence Xi 5 Xi21 1 11(Xi21) 2 Yi. For a j-dimensional array G ( j fixed),
u11(Xi21) u 5 O( uXi21u

( j21)/j). The most efficient way to slow the growth of this
occurrence is to spend all of the tokens during the first round, that is, uYiu 5 0
for i . 1. In this case, the number of rounds is bounded by the diameter of G,
that is, O(NG

1/j). e

3. Emulations by Arrays

Although arrays cannot perform real-time emulations of networks with small
diameter, we can show that they can perform work-preserving emulations of
complete binary trees, other arrays, and butterflies. In each case, we find an
embedding of the guest network into the array with the appropriate load,
congestion, and dilation. The edges of the guest network are emulated by routing
packets between the nodes of the linear array. Observations 3.2 and 3.3 were
proved by Fishburn and Finkel [1982]. Using Corollaries 2.1.3 and 2.2.5, the
emulations of complete binary trees and other arrays can be shown to be tight in
the sense that, up to constant factors, there are no work-preserving emulations
with smaller slowdowns. For butterflies, the lower bound on the slowdown given
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in Corollary 2.2.4 and the slowdown of the emulation of Observation 3.4 are both
exponential in the size of the array, but the exponents differ by a constant factor.

OBSERVATION 3.1. For fixed k, an N-node k-dimensional array can perform a
work-preserving emulation of an N(k11)/k/log N-leaf complete binary tree.

PROOF. We show how to embed an N(k11)/k/log N-leaf complete binary tree
into an N-node k-dimensional array with load and dilation O(N1/k/log N), and
constant congestion; the desired emulation follows.
First, we embed an N(k11)/k/log N-leaf complete binary tree into an N-leaf

complete binary tree, by mapping the nodes of each N1/k/log N-leaf subtree
rooted at depth log N to its root. This embedding has load N1/k/log N, and
dilation and congestion one.
When k 5 2, we use a result of Paterson et al. [1981] that states that an N-leaf

complete binary tree can be laid out in area O(N) with maximum edge length
O(=N/log N). This layout immediately yields an embedding of an N-leaf
complete binary tree into an N-node two-dimensional array with load O(1),
dilation O(=N/log N), and congestion O(1). The techniques in their proof
generalize in a straightforward way to yield an embedding into any N-node
k-dimensional array with load O(1), dilation O(N1/k/log N), and congestion
O(1).
Combining these two embeddings yields an embedding of an N(k11)/k/log

N-leaf complete binary tree into an N-node k-dimensional array with load and
dilation O(N1/k/log N), and constant congestion. e

OBSERVATION 3.2 [FISHBURN AND FINKEL 1982]. An N-node k-dimensional
array can perform a work-preserving emulation of an N j/k-node j-dimensional array,
j . k.

PROOF. An Nj/k-node j-dimensional array can be embedded in an N-node
k-dimensional array with load N( j2k)/k, congestion N( j2k)/k, and dilation 1. e

OBSERVATION 3.3 [FISHBURN AND FINKEL 1982]. For any M $ N, an N-node
k-dimensional array can perform a work-preserving emulation of an M-node
k-dimensional array.

PROOF. An M-node k-dimensional array can be embedded in an N-node
k-dimensional array with load O(M/N), dilation 1, and congestion
O((M/N)121/k). e

OBSERVATION 3.4. An NH 5 nk-node k-dimensional array H can perform a
work-preserving emulation of an NG 5 n2n-node butterfly network G.

PROOF. An n2n-node butterfly network with 2n rows and n columns can be
embedded in a NH 5 nk-node k-dimensional array with load O(2n/nk21),
congestion O(2n/nk21), and dilation O(n). e

Because an N-node linear array can be embedded in any N-node connected
network with constant load, congestion, and dilation [Sekanina 1960], every
connected network can perform a real-time emulation of a linear array. Hence,
Observations 3.1 through 3.4 can be modified to hold for all connected networks.

120 R. R. KOCH ET AL.



4. Emulations by Complete Binary Trees

In this section, we examine the power of complete binary trees to emulate other
trees and forests. We begin in Section 4.1 by showing that a complete binary tree
can perform a work-preserving emulation of any larger complete binary tree.
Next, in Section 4.2, we show that an N-node complete binary tree can perform a
work-preserving emulation of any N log log N-node bounded-degree forest.
Finally, in Section 4.3, we prove that any static emulation of an N-leaf complete
ternary tree by an M-leaf complete binary tree, where N , M , 3N has
slowdown V(=log log N). This result suggests that there is no real-time emula-
tion of a complete ternary tree by a complete binary tree, and that the emulation
of Section 4.2 is optimal.

4.1. WORK-PRESERVING EMULATIONS OF LARGER COMPLETE BINARY TREES.
The following theorem extends a result of Fishburn and Finkel [1982] by showing
that a complete binary tree can emulate any larger complete binary tree in a
work-preserving fashion.

THEOREM 4.1.1. For any M $ N, an N-node complete binary tree can perform a
work-preserving emulation of an M-node complete binary tree.

PROOF. An M-node complete binary tree can be embedded in an N-node
complete binary tree with load O(M/N), dilation 1 and congestion 1. e

4.2. WORK-PRESERVING EMULATIONS OF BOUNDED-DEGREE TREES. In this
section, we show that any N log log N-node forest with maximum degree D can
be embedded in an N-node complete binary tree with load O(D log log N),
congestion O(D2 log log N), and dilation O(log D). As a corollary, there is a
work-preserving emulation of the class of bounded-degree forests by the class of
complete binary trees with slowdown O(log log N).
In constructing the embedding, we use the following well-known weighted-

separator lemma and its corollaries:

LEMMA 4.2.1. Suppose that F 5 (V, E) is a forest where each vertex has been
assigned some non-negative weight. Then it is possible to remove a single vertex from
V so that the remaining vertices can be partitioned into two subforests F1 and F2
such that no edge connects a vertex in F1 to a vertex in F2, and F1 and F2 each
contain at most 2/3 of the total weight.

PROOF. An early proof for the unweighted case appears in Lewis et al. [1965].
The generalization to the weighted case is straightforward. e

COROLLARY 4.2.2. By removing a single vertex, it is possible to partition a forest
F 5 (V, E) into two subforests each containing at most 2uV u/3 vertices.

PROOF. Assign each vertex weight 1 and apply Lemma 4.2.1. e

COROLLARY 4.2.3. For any k, by removing a set S of k vertices, it is possible to
partition a forest F 5 (V, E) into two subforests, F1 and F2, each containing at most
uVu(1 1 (2/3)k)/2 vertices.

PROOF. Initially F1 and F2 are empty and a third set R contains all of the
vertices. Iterate the following step k times. Apply Corollary 4.2.2 to split R into
two subforests, then remove the smaller subforest from R and add it to the
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smaller of F1 and F2. At the end of each step, F1 and F2 differ in size by at most
uR u. After k iterations, R contains at most uV u(2/3)k vertices. Add R to the
smaller of the two sets. e

COROLLARY 4.2.4. Suppose that F 5 (V, E) is a forest where each vertex has
been assigned some non-negative weight. Then for any k, it is possible to remove a
set S of k vertices from V such that the remaining vertices can be partitioned into two
subforests F1 and F2 such that no edge connects a vertex in F1 with a vertex in F2,
and each contains at most uV u(1 1 (2/3)(k21)/2)/2 vertices and at most 5/6 of the
total weight.

PROOF. First apply Lemma 4.2.1 to partition the forest into two subforests L
and R, each containing at most 2/3 of the weight. Next, using Corollary 4.2.3,
remove (k 2 1)/ 2 nodes from each of L and R to split L into L1 and L2, and R
into R1 and R2. Let L1 and R1 have more weight than L2 and R2 respectively,
and let F1 5 L1 ø R2 and F2 5 L2 ø R1. The weight of F1 is maximized when
L1 has 2/3 of the total weight and R2 has half of the remaining 1/3 of the weight.
Thus, F1 has at most 5/6 of the total weight. A similar argument holds for F2.
The size of F1 (and similarly F2) is at most uL u(1 1 (2/3)(k21)/ 2)/ 2 1 uR u(1 1
(2/3)(k21)/ 2)/ 2 which, since uL u 1 uR u # uV u, is at most uV u(1 1
(2/3)(k21)/ 2)/ 2. e

With these tools in hand, we present the embedding.

THEOREM 4.2.5. An N log log N-node forest with maximum degree D can be
embedded in an N-node complete binary tree with load l 5 O(D log log N),
congestion c 5 O(D2 log log N), and dilation d 5 O(log D).

PROOF. The embedding begins by using Corollary 4.2.3 to find a set S of k 5
O(log log N) nodes that partitions the forest F 5 (V, E) into two subforests,
each containing at most uV u(1 1 1/log N)/ 2 vertices. We embed S at the root of
the binary tree and then recursively embed one of the subforests in the left
subtree of the root, and the other in the right.
At levels below the root, we use Corollary 4.2.4 to simultaneously partition the

vertices of the forest and the edges connecting the forest to vertices that are
embedded higher in the binary tree. Let Fi 5 (Vi, Ei) be a forest to be
embedded in a subtree rooted at a level i node v i in the binary tree. Let Ni be
the number of edges connecting Fi to vertices embedded higher in the binary
tree; Ni is the congestion of the binary tree edge connecting v i to its parent. We
assign each vertex of Fi a weight equal to the number of neighbors it has that are
embedded higher in the binary tree. Using Corollary 4.2.4, we find a set Si of k 5
O(log log N) vertices that partitions Fi into two subforests, each of size at most
uViu(1 1 1/log N)/ 2, and each having at most (5/6)Ni edges to vertices that are
embedded higher in the tree. We embed the vertices of Si at v i and recursively
embed one of the subforests in the left subtree of v i, and the other in the right
subtree.
To limit the dilation to some integer d, whenever i is a multiple of d we embed

at v i not only Si but also all of the vertices in Fi that have at least one neighbor
embedded somewhere higher in the binary tree.
We must now show how to choose d so that both the congestion and the load

of the embedding are small. Consider any simple path from a level i node v i in
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the binary tree to a level i 1 d node, v i1d, where i is a multiple of d. At level i,
we embed a separator of size k and at most Ni other vertices that have at least
one neighbor embedded higher in the tree. Since each of these vertices has at
most D neighbors, Ni11 # DNi 1 Dk. At level i 1 1, we embed a separator of
size k that partitions Fi11 into two subforests, each having at most (5/6)Ni11
edges to vertices embedded higher in the binary tree. Thus, at level i 1 2, we
have Ni12 # (5/6)Ni11 1 Dk. In general, Ni1j is given by the recurrence

Ni1j # HDNi 1 Dk

~56!Ni1j21 1 Dk

j 5 1

1 , j # d.

Solving the recurrence yields

Ni1j # ~56!
j21DNi 1 6Dk .

We are now in a position to calculate the load and the congestion. Suppose by
induction that Ni # 12Dk. (For the base case, N0 5 0.) The solution to the
recurrence implies that for some d such that d 5 O(log D), we have Ni1d #
12Dk. Thus, in every simple path between a node at level i and a node at level
i 1 d, where i is a multiple of d, the congestion starts at 12Dk (or less) at level
i, rises to at most O(D2k) at level i 1 1 and proceeds to drop back down to at
most 12Dk at level i 1 d. Since k 5 O(log log N), the congestion of the
embedding is at most O(D2 log log N). How large can the load be? At each node
of the binary tree we embed a separator of size k. For every i that is a multiple of
d, we also embed a set nodes of size Ni # 12Dk. Finally, at the leaves we embed
forests of size

N log log NS ~1 1 1/log N!

2 D log N,
which is at most O(log log N). Thus, the load is at most O(D log log N). e

COROLLARY 4.2.6. There is a work-preserving emulation of the class of bound-
ed-degree forests by the class of complete binary trees with slowdown O(log log N).

4.3. LOWER BOUNDS FOR EMULATING COMPLETE TERNARY TREES. In this
section, we show that any static emulation of an N-node complete ternary tree by
an M-node complete binary tree, where N , M , 3N, must have slowdown
O(log log N). Informally, a static emulation is one in which each host node
emulates a fixed set of guest nodes. Unlike a simple embedding-based emulation,
however, redundant computation is allowed, that is, several host nodes may each
emulate the same guest node. The lower bound in this section holds only for
static emulations, whereas those proved in Section 2 hold for even more general
classes of emulations. All of the emulations described in this paper, however, are
static, and the lower bound strongly suggests both that a complete binary tree
cannot perform a work-preserving emulation of a complete ternary tree, and that
the emulation scheme of Section 4.2 is optimal.

4.3.1. Static Emulations. In a static emulation, a redundant guest network G9
5 (V9, E9) is embedded in the host H. The redundant network is defined as
follows: For every node v in the guest network G 5 (V, E), there is set of nodes
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p(v) in V9. Each set p(v) contains at least one node, and for u Þ v, p(v) and
p(u) are disjoint. We call the nodes in p(v) the instances of v in G9. The
network G9 is called redundant because it may contain several instances of each
guest node. For every node v9 [ p(v), and every edge (u, v) in E, the
redundant network contains a directed edge (u9, v9), for some u9 [ p(u). The
embedding maps nodes of G9 to nodes in H, and edges of G9 to paths in H.
The host emulates T steps of the guest network’s computation as follows: The

embedding of G9 into H maps a set c(a) of nodes of G9 to each host node a.
Node a emulates each node v9 [ c(a) by creating a node pebble (v9, t) for 1 #
t # T. A node pebble (v9, t) represents the state of node v9 at time t. Initially,
each node a of H contains node pebbles (v9, 0) for v9 [ c(a). Node a can
create a node pebble (v9, t) only if it has already created a node pebble (v9, t 2
1), and has received all of the edge pebbles of the form (e, t 2 1), where e is an
edge (u9, v9) into v9. An edge pebble (e, t 2 1) represents the communication
that v9 receives from its neighbor u9 in step t 2 1. After creating a node pebble
(v9, t), a node a can create all of the edge pebbles of the form ( g, t) for each
edge g out of v9. At each host time step a host node a can create a single node
pebble (and the corresponding edge pebbles). An edge pebble for an edge (u9,
v9) is sent along the path from u9 to v9 that is specified by the embedding. Note
that a node u9 may send edge pebbles to a neighbor v9, but receive edge pebbles
from a different instance v0 of guest node v.
The following three lemmas from Cole et al. [1996] show that if a static

emulation has slowdown s, then the load and congestion of the embedding of G9
into H cannot exceed s, and the average dilation of the edges on any cycle in G9
cannot exceed s.

LEMMA 4.3.1.1 [COLE ET AL. 1996]. Suppose that there is a value T0 . 0 such
that for all T . T0, the host can perform a static emulation of a T-step guest
computation in Ts steps. Then the maximum load on any host node is at most s.

LEMMA 4.3.1.2 [COLE ET AL. 1996]. Suppose that there is a value T0 . 0
such that for all T . T0, the host can perform a static emulation of a T-step
guest computation in Ts steps. Then the maximum congestion on any host edge is at
most s.

LEMMA 4.3.1.3 [COLE ET AL. 1996]. Suppose that there is a value T0 . 0 such
that for all T . T0, the host can perform a static emulation of a T-step guest
computation in at most Ts steps. Then the average dilation of the edges on any cycle
in G9 is at most s.

4.3.2. A Lower Bound on Embeddings. The lower bound on slowdown is
based on the following lower bound on the load and congestion of any embed-
ding of an N-leaf complete ternary tree in an M-leaf complete binary tree, where
N , M , 3N.

LEMMA 4.3.2.1. Any embedding of an N-leaf complete ternary tree T3 in an
M-leaf complete binary tree T2, N , M , 3N has either load l . 2log

aN, for some
fixed a , 1, or has congestion c 5 V(=log log N).

PROOF. The proof has the following outline: We begin by assuming that l #
2log

aN (otherwise, we’re done). Next, let L denote the number of leaves of T3 in
a subset S of the nodes of T3, and let w be a base-3 string representing L. First,
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we show that for any S, the number of edges between S and S̄ is at least the
number of 1’s in w, minus 1. As a consequence, if S is the set of nodes mapped to
a subtree rooted at a node v in T2, then the congestion on the edge from the v to
its parent is at least as large as the number of 1’s in w, minus one. Next, we
construct a path v0, v1, . . . , v(log2M)/ 2 in T2 from the root v0 to a node v(log2M)/ 2
at depth (log2 M)/ 2 such that there is a long sequence of nodes on the path, v j,
v j11, . . . , v j1s21 such that for each v i, where j # i # j 1 s 2 1, the number of
leaves of T3 mapped to the left and right subtrees of v i are nearly equal. Let Si
be the set of nodes of T3 mapped to the subtree rooted at v i, let Li be the
number of leaves of T3 in Si, and let wi be the base-3 string representing Li. To
complete the proof, we show that for some i, where j # i # j 1 s 2 1, there are
many 1’s in wi.
First, we show that for any subset S of the nodes of T3, the number of 1’s in w

is at most uESu 1 1, where ES is the set of edges in T3 connecting a node in S to
a node in S̄. The key idea is that the number of leaves in S, L, can be expressed
as a series of uESu 1 1 terms, both positive and negative, where each term is a
power of 3. If the root of T3 belongs to S, then the series begins with the term N;
otherwise, it begins with 0. Thereafter, each edge in ES contributes a term to the
series. An edge between a node u on level l and its parent on level l 2 1
contributes N/3 l if u is in S, and 2N/3 l otherwise. Because adding or subtracting
a power of 3 from a base 3 number can increase the number of 1-digits by at
most one, the number of 1’s w is at most uE(S) u 1 1.
Starting at the root, v0, we construct the path in T2 according to the following

rule. Suppose that v i is a node on the path. Then the next node on the path, v i11,
is the root of the left or right subtree of v i containing more leaves of T3. Let Li
be the number of leaves of T3 mapped to the subtree rooted at v i. Then v i11
contains at least Li/ 2 leaves of T3. We call the split at v i fair if both of its
subtrees contain at most Li((1/ 2) 1 e) leaves of T3, where e will be specified
later.
Next we put a lower bound on the length of the longest sequence of

consecutive fair splits. To start, it helps to have a lower bound on the number of
leaves of T3 mapped to the subtree rooted at the last node, v(log2M)/ 2 on the path.
Since at most 2log

aN leaves can be mapped to any node on the path, Li is given by
the following recurrence.

Li $ HN1
2 ~Li21 2 2log

aN!

i 5 0

i . 0.

It is not difficult to show that for 0 # i # (log2 M)/ 2, for some fixed g . 0, and
for sufficiently large N, Li $ Li21(1 2 1/Ng)/ 2. Informally, this lower bound
implies that embedding some leaves in nodes on the path doesn’t change the load
of any subtree by very much. Now let b be the number of unfair splits on the
path. Since the load of the embedding is at least as large as the number of leaves
of T3 mapped to the subtree rooted at the node v(log2M)/ 2 on the end of the path
divided by the number of nodes in the subtree (2=M 2 1), we have

l $
N

2ÎM S 12 S 1 2
1

NgD D ((log2M)/ 2) 2 bS 12 1 eD b.
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Since 1 1 x $ ex/ 2 for 0 # x # 1, M , 3N, and Ng . 2 and (log2(3N))/N
g ,

1 for sufficiently large N, we have l $ (1/6e)eeb. Let s be the length of the
longest sequence of consecutive fair splits. Then s $ (log2 M)/b $ (e log2
M)/ln(l/6e).
We now show that in the longest sequence of consecutive fair splits v j,

v j11, . . . , v j1s21, there must be a node v i, where j # i # j 1 s 2 1 such that
there are at least u 1’s in wi, where u is a value that will be specified later. For
the moment, let us assume that at each node v i on the sequence, the number of
leaves of T3 mapped to each subtree of v i is exactly Li/ 2 and that no leaves of T3
are mapped to the nodes v0, v1, . . . , v(log2M)/ 2 on the path. Since we divide Lj
by two s times, Lj $ 2s. Hence, the number of significant digits, t, in the base
three number wj is at least (log3 2)s. Suppose that the number of 1’s in wj is
smaller than u (otherwise, we’re done). The 1’s in wj partition it into at most u
substrings consisting of 0’s and 2’s only. In each substring, division by 2 either
converts all of the 0’s to 1’s (leaving the 2’s unchanged), or converts all of the 2’s
to 1’s (leaving the 0’s unchanged). Thus, after division by 2, a 0-digit follows a
2-digit (or vice versa) only if before the division, at least one of the digits was a 1.
Hence, a 0 follows a 2 (or vice versa) in at most 2u places in wj11. If there are at
least u 1’s in wj11, then we’re done. Otherwise, there are at most 3u positions in
wj11 in which a maximal substring consisting only of 0’s or only of 2’s can
terminate. Thus, there must be a substring consisting only of 0’s or only of 2’s of
length at least (t 2 u)/3u. To choose the right value for u, we set u 5 (t 2
u)/3u, which has solution u 5 Q(=t) 5 Q(=s). Whether the substring consists
of all 0’s or all 2’s, after at most s divisions by 2 it is converted to all 1’s.
Unfortunately, a fair split at a node v i does not divide Li exactly by 2; it also

adds as much as eLi. On the other hand, as many as 2
logaN leaves may be

embedded at the node v i itself, which reduces the number of leaves embedded in
its subtrees. For e 5 1/3 t, adding eLi does not change the t most significant bits
unless a carry propagates in. We need to show that our substring of u 5 Q(=t)
0’s or 2’s is not adversely affected by carries. Since a carry into a substring of 2’s
turns them all into 0’s, we need only consider the effect of a carry into a substring
of 0’s. A carry into a substring of 0’s converts the least significant 0 in the
substring into a 1, which is bad, because it reduces the length of the string.
However, 3u/ 2 carries are required to modify the u/ 2 least significant 0’s in the
substring. Since at most one carry occurs at each of the s splits, and s ,, 3u/ 2,
the length of the longest string of all 0’s or all 2’s never drops below u/ 2. As we
shall see, 2log

aN/Li # 1/3 t. An argument similar to the one above shows that
even after subtracting 1/3 t as many as s times, the length of the longest string of
all 0’s or all 2’s never drops below u/ 2.
To finish, we need to choose a value for t. To make the lower bound strong, we

want to make t as large as possible, while satisfying the following constraints:

(1) l # 2log
aN, for some fixed a . 0,

(2) s 5 e log2M/ln 6el,
(3) e 5 1/3 t,
(4) N , M , 3N,
(5) 2log

aN/Li # 1/3 t (for 0 # i # (log M)/ 2 2 1), and
(6) t 5 (log32)s.
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It is possible to satisfy all of these constraints by choosing t 5 V(log log N). In
this case, the congestion is at least u/ 2 5 V(=t) 5 V(=log log N). e

4.3.3. A Lower Bound on Slowdown. We conclude with the main theorem of
this section.

THEOREM 4.3.3.1. Any static emulation of an N-leaf complete ternary tree by an
M-leaf complete binary tree, N , M , 3N, has slowdown at least V(=log log N).

PROOF. Any redundant guest network G9 for the guest G contains as a
subnetwork an N-leaf complete ternary tree directed from the root to the leaves.
Hence, the lower bound of Lemma 4.3.2.1 applies to the guest network G9. Since
either the load is greater than 2log

aN, for some fixed a . 0, or the congestion is
greater than V(log log N), by Lemmas 4.3.1.1 and 4.3.1.2, the slowdown must be
at least V(log log N). e

5. Emulations by Butterfly Networks

In this section, we explore the ability of butterfly networks to emulate other
networks. We begin in Sections 5.1 and 5.2 with short proofs that butterflies can
perform work-preserving emulations of larger butterflies and bounded-degree
trees. Next, in Section 5.3, we show that a butterfly can perform a real-time
emulation of a mesh. This result is surprising, since any embedding of an
V(N)-node mesh into a N-node butterfly has dilation at least V(log N). In
Section 5.4, we prove that an N-node shuffle-exchange network can be embedded
in an O(N)-node butterfly with constant load and congestion, and O(log N)
dilation. One consequence of this result is a new and optimal three-dimensional
VLSI layout of the shuffle-exchange network, which is described in Section 5.5.
Finally, in Section 5.6, we prove that a butterfly network can perform a real-time
emulation of a shuffle-exchange network. This result, along with the proof in
Section 6.4 that a shuffle-exchange network can perform a real-time emulation of
a butterfly network, resolves a long open question regarding the relative comput-
ing power of these networks.

5.1. WORK-PRESERVING EMULATIONS OF LARGER BUTTERFLIES

THEOREM 5.1.1 [FISHBURN AND FINKEL 1982]. For any M $ N, an N-node
butterfly can perform a work-preserving emulation of an M-node butterfly.

PROOF. An M-node butterfly can be embedded in an N-node butterfly with
load O(M/N), dilation 1, and congestion O(M/N). e

5.2. WORK-PRESERVING EMULATIONS OF BINARY TREES. When the Bhatt et
al. [1988] result that a butterfly can emulate a complete binary tree in real time is
combined with the material in Section 4.2, we find that there is an O(log log
N)-slowdown work-preserving emulation of the class of bounded-degree trees on
the butterfly. Whether or not this emulation can be performed in real time
remains an open question.

5.3. REAL-TIME EMULATION OF MESHES. In this section, we show that an
N-node butterfly network can emulate an N-node mesh with constant slowdown.
Rather than launching into this proof directly, we begin in Section 5.3.1 by
showing that an N-node butterfly can emulate an N-node mesh with slowdown
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O(log log N). This result is much easier to prove, and it illustrates the main idea
used in the constant slowdown emulation: redundant computation. We conclude
in Section 5.3.2 with the constant slowdown emulation. Unlike the O(log log
N)-slowdown emulation, this emulation is recursive. In addition, it uses a much
more sophisticated mapping of the mesh to the butterfly.

5.3.1. An Emulation with Slowdown O (log log N)

THEOREM 5.3.1.1. An O(N)-node butterfly can emulate T steps of a =N 3 =N
mesh in O(T log log N 1 log N) steps.

PROOF. The trick is to divide the mesh into slightly overlapping submeshes, as
shown in Figure 2. Each log2N 3 log2N submesh overlaps its neighbors in either
2 log N rows or 2 log N columns. Since the submeshes overlap, some mesh nodes
appear in as many as four submeshes. We call two nodes in neighboring
submeshes mates if they correspond to the same mesh node.
A Q(N)-node butterfly can be broken into Q(log4N)-node subbutterflies by

removing all of the edges between consecutive levels every Q(log log N) levels.
Each log2N 3 log2N submesh is emulated by a different Q(log4N)-node
subbutterfly. Since a single mesh node may be emulated by several subbutterflies,
the butterfly performs redundant computation.
A Q(log4N)-node subbutterfly emulates a log2N 3 log2N submesh as follows.

Each submesh node is emulated by a distinct subbutterfly node. For each guest
time step, the subbutterfly node performs the local computation of the corre-
sponding submesh node. In addition, for each guest time step, each submesh
edge is emulated by routing a packet in the subbutterfly.
Routing in the subbutterfly is accomplished as follows: Suppose that we want

to route packets in an arbitrary one-to-one fashion among all n(1 1 log
n)-nodes of an n-input butterfly. For the moment, let us ignore the level of the
destination of each packet. Viewed this way, an arbitrary permutation of packets
among the nodes is a (1 1 log n)-to-(1 1 log n) pattern among the columns. It is
well known that any such pattern can be decomposed into 1 1 log n disjoint
one-to-one patterns (permutations) among the columns (for a nice proof, see
Pippenger [1982]). It is also well known that it is possible to establish paths with
congestion 2 between the inputs of a butterfly network in any permutation (the
butterfly emulates a Beneš network [Beneš 1965; Waksman 1968]). As a conse-
quence, it is possible to route any one permutation in O(log n) steps by first
routing each packet to the input in the column of its origin, then to the input in

FIG. 2. The division of the mesh into
submeshes. Each log2N 3 log2N sub-
mesh overlaps its neighbors in either 2
log N rows or 2 log N columns.
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the column of its destination, and then to its final destination. Furthermore, the
routing of these permutations can be pipelined so that all (log n) 1 1
permutations are routed in O(log n) steps.
Each node ( x, y) in a submesh has (at most) four outgoing edges. These edges

lead to the nodes labeled ( x, y 1 1), ( x, y 2 1), ( x 1 1, y), and ( x 2 1, y) (if
these nodes exist). We call these edges the North, South, East, and West edges.
The set of North edges (or South, or East, or West edges), form a permutation.
Hence, since an O(log4N)-node subbutterfly can route any permutation of
O(log4N) packets in O(log log N) steps, the time to emulate the North edges for
one submesh step is O(log log N). The other three types of edges (South, East,
or West) can also be emulated in O(log log N) steps. Hence, the time to emulate
one step of a submesh on the butterfly is O(log log N).
There is one small problem with this emulation scheme: the nodes on the

borders of a submesh cannot be emulated by the corresponding subbutterfly
nodes because they require inputs from mesh neighbors that the subbutterfly
does not emulate. As a consequence, nodes at distance d from the border can be
emulated for only d steps. Fortunately, every node at distance d # log N from the
border of one submesh has a mate at a distance of 2 log N 2 d $ log N in a
neighboring submesh. Thus, every mesh node can be emulated (in at least one
place) for at least log N steps in some subbutterfly.
In order to supply the missing inputs, we will route a path in the butterfly to

each node on the border of each submesh from one of its mates that is a distance
of 2 log N from the corresponding border in another submesh (and a distance of
at least log N from any other border of that submesh). With a little work, we can
route these paths with constant congestion. The trick is to find a mapping of the
submesh nodes to the subbutterfly nodes in which at most one path endpoint lies
in any column of the N-node butterfly. If such a mapping can be found, then we
can route constant congestion paths by first routing the path from its origin to
the input node in the same column, then routing the path to the column of its
destination using Beneš-style routing, and then routing within that column to its
destination.
One way to find the mapping is to choose it at random. In each log2N 3 log2N

submesh, at most 8 log2N nodes are endpoints of paths (the 4 log2N 2 4 on the
border, and the 4 log2N 2 4 at distance 2 log N from the border). Suppose that
in each Q(log4N)-node subbutterfly, we randomly select 16 log2N of the
Q(log4N/log log N) columns as candidates for the origins or destinations of
paths, and then discard any candidate that is selected by more than one
subbutterfly. What is the expected number of discarded columns? Each column
passes through Q(log N/log log N) different subbutterflies. Each of these
subbutterflies selects the column as a candidate with probability Q(log log
N/log2N). Thus, the probability that any one column is discarded is at most
Q(1/log N), and the expected number of columns that are discarded is Q(log N).
One nice structural property of the butterfly network is that if two columns both
pass through the same subbutterfly, then they will not both pass through any
other subbutterfly. Thus, within one subbutterfly, whether or not one candidate is
discarded is independent of whether or not any other candidates are discarded.
As a consequence, the number of discarded candidates will be Q(log N) in every
subbutterfly, with high probability, and the number of remaining candidates in
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each subbutterfly will be 16 log2N 2 o(log2N) $ 8 log2N (for N larger than
some constant).
To emulate T $ log N/log log N steps of the mesh, the T steps are broken

into blocks of log N/log log N consecutive steps. A block is emulated as follows.
Each subbutterfly begins to emulate the corresponding submesh in a step-by-step
fashion. The time to emulate a single step of a submesh is O(log log N). After
each step, the nodes that are at distance 2 log N from the borders of the
submeshes send copies of the inputs that they have received from their neighbors
down the paths to their mates. These inputs will move along the paths towards
their mates in a pipelined fashion, advancing across one butterfly edge every
O(1) butterfly steps. After O(log N) butterfly steps, the butterfly nodes
emulating mesh nodes on the borders of the submeshes begin to receive their
missing inputs, and begin to emulate those nodes. The emulation of a border
node, and hence of an entire submesh, is completed O(log N) steps later. Thus,
the time to emulate a block of log N/log log N steps is O(log N). Iterating this
process as necessary yields the desired result. e

5.3.2. A Constant Slowdown Emulation. In this section, we show that an
N-input butterfly network can emulate an N log N-node mesh with constant
slowdown. As in Theorem 5.3.1.1, the mesh is mapped to the butterfly in a
redundant fashion. The emulation differs from that of Theorem 5.3.1.1, however,
in two respects. First, subbutterflies recursively emulate submeshes. Second, the
mapping is much more sophisticated, and has only constant load and congestion.
The mapping is described in the following pair of lemmas.

LEMMA 5.3.2.1. For any positive integer k, there is an embedding of an m0-node
mesh in an n0-input butterfly, where n0 5 2(2

2k) and m0 5 n0 log n0 5 (2(2
2k211k))2,

with load 1, congestion 12m0, and dilation at most 3 log n0 in which, for each mesh
node, 10 additional paths are routed to arbitrarily chosen butterfly outputs.

PROOF. The nodes of the mesh can be mapped to the nodes of the butterfly
in an arbitrary one-to-one pattern. For each mesh node, it is necessary to route
paths to two neighbors (e.g., to the North and East neighbors). If shortest paths
are used, then these edges will have dilation at most 3 log n0. Furthermore, since
the total number of mesh nodes is m0, the congestion due to these paths is at
most 2m0. In addition, we must route 10 paths from each mesh node to arbitrary
butterfly outputs. These paths also have dilation at most 3 log n0, and, since
there are 10m0 of them, congestion at most 12m0. e

LEMMA 5.3.2.2. For i $ 0, it is possible to find a mapping of an mi11-node
mesh to an ni11-input butterfly with the following properties.

(1) (a) ni11 5 ni
2,

(b) mi11 5 2nimi 2 (nimi)
o(1), and

(c) ni11 # mi11 # ni11 log ni11, and

(2) the mi11-node mesh is covered with overlapping mi-node submeshes where
neighboring submeshes overlap in ki 5 ni

1/3 6 o(ni
1/3) rows or columns, and

(3) (a) a path is routed from each node on a border column of a submesh to its
mate in the interior of another submesh, and
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(b) a path is routed from each node on a border row of a submesh to its mate in
the interior of another submesh, and

(4) (a) a path is routed from each node on a border column of the mi11-node
mesh to an output of the ni11-input butterfly, and

(b) a path is routed from each node on a border row of the mi11-node mesh to
an output of the ni11-input butterfly, and

(5) for some value ki11 5 ni11
1/3 6 o(ni11

1/3 ),

(a) two paths are routed from each node at a distance of ki11 from a border
column of the mi11-node mesh to outputs of the ni11-input butterfly, and

(b) two paths are routed from each node at a distance of ki11 from a border
row of the mi11-node mesh to outputs of the ni11-input butterfly, and

(6) (a) two paths are routed from each node in the middle column of the
mi11-node mesh to outputs of the ni11-input butterfly, and

(b) two paths are routed from each node in the middle row of the mi11-node
mesh to outputs of the ni11-input butterfly, and

(7) each of the preceding eight sets of paths can be routed to any set of ni11
3/4

consecutive outputs of the ni11-input butterfly in any permutation, and
(8) the mapping has dilation di11 5 7 log ni11, and congestion ci11 # max{40,

12m0}, and
(9) the mapping has load 1 at the inputs and outputs of the ni11-input butterfly and

load li11 # 2 elsewhere.

PROOF. The construction is recursive. Assume that we have a mapping of an
mi-node mesh to an ni-input butterfly that satisfies Properties (1) through (9).
For i 5 0, these properties are satisfied by the embedding of Lemma 5.3.2.1,
which provides 10 paths from each mesh node to butterfly outputs, thus satisfying
Properties (4) through (7).
To satisfy Property (1)(a), we set ni11 5 ni

2. We can view the ni11-input
butterfly as two back-to-back collections of ni ni-input subbutterflies. We call
these two groups the top group and the bottom group. Let t i denote the ith
butterfly in the top group, for 0 # i # ni 2 1, and let bj denote the jth butterfly
in the bottom group, for 0 # j # ni 2 1. The top group spans levels 0 through
log ni of the ni11-input butterfly, and the bottom group spans levels log ni
through levels 2 log ni. The subbutterflies in each group have their outputs on
level log ni. Thus, all of the inputs of the ni11-input butterfly are inputs of
subbutterflies in the top group, and all of the outputs are inputs of subbutterflies
in the bottom group. Note that the nodes on level log ni appear as outputs in
subbutterflies in both the top and bottom groups. In particular, the jth output of
t i is the same node as the ith output of bj.
The first ni

7/8 subbutterflies in the top group, t0, . . . , tni7/821, and the first ni
7/8

subbutterflies in the bottom group, b0, . . . , bni7/821, will be used only for routing
new paths. (In fact, we could pick any set of ni

7/8 consecutive subbutterflies.)
Let us call these subbutterflies the routing subbutterflies. In every other ni-input
subbutterfly, we will recursively map an mi-node mesh. Let us call these
subbutterflies the computing subbutterflies.
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The routing subbutterflies by themselves form a capable routing network.
First, within each subbutterfly, it is possible to route paths between the outputs
in any permutation with congestion 2 and dilation 2 log ni using Beneš-style
routing [Beneš 1965; Waksman 1968]. In addition, each subbutterfly t i shares one
node with each bottom subbutterfly bj. We call the nodes in level log ni that are
outputs of routing butterflies in both the top and the bottom groups shared
nodes. Since there are ni

7/8 routing subbutterflies in the top group, and each of
these shares a distinct output with each of the ni

7/8 routing subbutterflies in the
bottom group, there are a total of ni

7/4 shared nodes. Suppose that we wish to
route a collection of paths from the ni

7/4 shared nodes back to themselves in
some arbitrary permutation. Let us view these nodes as being arranged on an
ni
7/8 3 ni

7/8 grid, where the nodes in each row of the grid belong to the same top
subbutterfly and the nodes in each column belong to the same bottom subbutter-
fly. It is well known that any permutation on the nodes of the grid can be written
as the composition of three permutations: one on the rows, one on the columns,
and one more on the rows. The first and third permutations can be performed by
the top subbutterflies, and the second by the bottom subbutterflies. The routing
paths will have congestion 4 and dilation at most 6 log ni, and will reside entirely
within the routing subbutterflies.
In order to satisfy Property (2), we cover the mi11-node mesh with mi-node

meshes in an overlapping fashion. Let us call the mi-node meshes submeshes.
Each submesh in the covering overlaps each of its (at most) 8 neighboring
submeshes in ki 5 ni

1/3 6 o(ni
1/3) rows or columns. We place the first mi-node

submesh on the mi11-node mesh so that its middle row and column coincide with
the middle row and column of the mi11-node mesh, and proceed outward. Let hi
denote the number of submeshes used to cover the entire mi11-node mesh. Since
there are 2(ni 2 ni

7/8) computing subbutterflies, hi 5 2(ni 2 ni
7/8). Using hi

submeshes, we can cover a mesh of size at least

mi11 $ hi~ Îmi 2 ni
1/3 2 o~ni

1/3!!2 (1)

$ hi~ Îmi 2 2ni
1/3!2 (2)

$ 2nimi 2 2ni
7/8mi 2 8Îmi ni

4/3 2 8ni
37/ 24 (3)

$ 2nimi 2 ~nimi!
o(1). (4)

Inequality (2) holds provided that n0 and m0 (and hence ni and mi) are
sufficiently large, and Inequality (4) holds because inductively mi # ni log ni by
Property (1)(c). The largest mesh that can be constructed from hi mi-node
submeshes has size at most

mi11 # himi (5)

5 2~ni 2 ni
7/8!mi (6)

# 2~ni 2 ni
7/8!ni log ni (7)

# ni11 log ni11. (8)
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Inequalities (4) and (6) imply Property (1)(b). Furthermore, since mi $ ni and
ni11 5 ni

2, Inequalities (4) and (8) imply Property (1)(c), for sufficiently large ni
and mi.
In order to satisfy Property (3)(a), a path must be routed between each node

that is on a border column in one mi-node submesh and the corresponding copy
of the node that is a distance of ni

1/3 6 o(ni
1/3) from the border column of an

overlapping submesh. Each submesh has 2=mi nodes on its border columns and
2=mi nodes that are a distance of ki 5 ni

1/3 6 o(ni
1/3) from the border columns.

A node that is a distance of ki from a border column may have a mate on the
border column of two different submeshes (and three if the node is also a
distance of ki from a border row). Hence, to satisfy Property (3)(a), we may have
to route

6Îmi # 6Îni log ni (9)

#
ni
3/4

2
(10)

paths out of each submesh. (Inequality (10) holds provided that n0 and m0, and
hence ni and mi, are sufficiently large.) Since the number of submeshes, hi is
smaller than 2ni, the total number of paths to route is at most ni

7/4.
We can assume inductively (via Properties (4)(a), (5)(a), and (7)) that, for

each submesh, it is possible to route these paths in any permutation to any set of
ni
3/4/ 2 consecutive outputs of the corresponding ni-input subbutterfly. So, in each
computing subbutterfly we choose to route these paths to the first set of ni

3/4/ 2
subbutterfly outputs, which are shared with the routing subbutterflies. In choos-
ing the outputs, we must also ensure that at most ni

7/8 paths are sent to any one
routing subbutterfly, but this is easy. Hence, we can use the routing subbutterflies
to connect corresponding pairs of paths with dilation 6 log ni, and congestion (4).
Thus, Property (3)(a) is satisfied. Property (3)(b) can be satisfied in a similar
fashion.
In order to satisfy Property (4)(a), we must route a path from each node that is

on a border column of the mi11-node mesh to one of the first ni11
3/4 outputs of the

ni11-input butterfly. A node on a border column of the mi11-node mesh is also
on a border column of some mi-node submesh. Because a node on a border
column of the mi11-node mesh is missing a neighbor on either its East or West
side, the corresponding node on the border column of the mi-node submesh does
not have a mate that is a distance of ki from the border column of another
mi-node submesh. (Unless that mate also happens to be a distance of ki from a
border row of another submesh.) Hence, inductively there is a path from each
node on a border column of the mi-node mesh to an output of the corresponding
ni-input subbutterfly that was not used when we established Property (3)(a)
earlier. This spare path is used to reach an input of a routing subbutterfly. The
routing subbutterflies are then used to connect the path to an output of the
ni11-input butterfly. The paths have dilation 7 log ni and congestion (5). Thus,
Property (4)(a) is established. The proof for Property (4)(b) is similar.
To satisfy Property (5)(a), we must route paths from the nodes that are at a

distance of ki11 5 ni11
1/3 6 o(ni11

1/3 ) from a border column of the mi11-node
mesh to outputs of the ni11-input butterfly. Here we have some freedom in
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choosing ki11, and we will choose a value that maps each node at distance ki11
from a border column of the mesh onto the middle column of an mi-node
submesh. We will then use the fact that we can inductively route two paths from
each node on the middle column of any submesh to the outputs of the
corresponding subbutterfly. In particular, we route paths from the nodes in the
middle column of the submesh that contains the column that is at a distance of
ni11
1/3 from the border of the mi11-node mesh. This column is at a distance of
ni11
1/3 6 (=mi/ 2) 5 ni11

1/3 6 o(ni11
1/3 ) from a border column of the mi11-node

mesh. The paths from these nodes to the outputs of the corresponding subbut-
terflies exist due to the inductive assumption of Properties (6)(a) and (7).
Extending these paths via the routing butterflies establishes Property (5)(a).
Property (5)(b) can be proved in a similar way.
To satisfy Property (6)(a), it is necessary to route paths from the nodes in the

middle column of the mi11-node mesh to outputs of the butterfly. By our
arrangement of the overlapping submeshes, these nodes also lie in the middle
columns of submeshes, and hence we again use the fact that we can recursively
route paths from the middle column of any submesh to the outputs of the
corresponding subbutterfly. We note that particular nodes from which we route
are all distinct from those used in the previous paragraph to establish Property
(5)(a), so that none of the paths in the subbutterflies are reused. Thus, we ensure
Property (6)(a). The proof for Property (6)(b) is similar.
Now that all of the paths required in Properties (4) through (6) have been

routed to the routing butterflies, we note that they can be permuted arbitrarily
within the routing butterflies to ensure Property (7).
The bounds on the congestion, dilation, and load required by Properties (8) and

(9) are derived as follows: The new paths in the embedding use edges only in the
routing subbutterflies. The congestion due to these paths is at most 40, since
establishing each of the 8 sets of paths specified by Properties (3) through (6)
requires congestion at most 5. Since nothing else is embedded in these subbutter-
flies, the total congestion is ci11 5 max{40, 12m0}. The dilation is 7 log ni 1 7 log
ni 5 7 log ni11, since each recursively-defined path was of length 7 log ni and no
path was extended by more than an additional 7 log ni. The load at the input and
output nodes of the ni11-input butterfly is 1, because these nodes are also inputs and
outputs of ni-input subbutterflies, which by induction have load 1. The load of the
shared nodes in level log ni is at most 2 because although each of these nodes
appears in both a top and bottom subbutterfly, they are outputs in both. e

THEOREM 5.3.2.3. An N-input butterfly can emulate an N log N-node mesh with
constant slowdown.

PROOF. For simplicity, let us assume that N 5 2(2
2k), for some positive

integer k. With some effort, it is possible to remove this assumption, but the
details of the proof become (even more) messy.
The proof uses Lemma 5.3.2.2 to recursively map an N log N-node mesh to an

N-input butterfly. For i $ 0, the sizes of the butterfly and mesh are given by the
recurrences

ni11 5 ni
2 (11)

mi11 5 2nimi 2 ~nimi!
o(1). (12)
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Solving these recurrences yields mi 5 ni log ni 2 o(ni log ni). Hence, for N 5
ni, an (N log N 2 o(N log N))-node mesh is embedded in an N-input butterfly.
(The mesh can easily emulate an N log N-node mesh with constant slowdown.)
The running time can be bound as follows. Let T(N) denote the time to

emulate N1/3/ 2 mesh steps on an N-input butterfly. Then T(N) is given by the
recurrence T(1) 5 O(1) and T(N) 5 N1/6T(=N) 1 O(log N). This
recurrence has the following derivation. The N-input butterfly begins to emulate
each mi21-node submesh in an ni21-input subbutterfly, where ni21 5 =N and
mi21 5 ni21 log ni21 2 o(ni21 log ni21) 5 (=N log N)/ 2 2 o(=N log N).
Nodes that are a distance of ki21 from the border of a submesh, where ki21 5
ni21
1/3 6 o(ni21

1/3 ) 5 N1/6 6 o(N1/6), immediately begin to send packets to their
mates on the borders of other submeshes. These packets begin to arrive at the
border nodes after O(log N) steps, and the emulation ends after each of the
border nodes has completed its computation. The border nodes complete their
computations within (N1/3/ 2)/(N1/6/ 2))T(=N) 5 N1/6T(=N) steps, because
this is the time for the =N-input subbutterflies to recursively emulate N1/3/ 2
steps of the corresponding submeshes. This recurrence has solution T(N) 5
O(N1/3). e

5.4. EMBEDDING THE SHUFFLE-EXCHANGE NETWORK IN THE BUTTERFLY. In
this section, we show how to embed an N-node shuffle-exchange network in an
O(N)-node butterfly network with constant load and congestion, and O(log N)
dilation.
In a constant congestion embedding, very few edges of the shuffle-exchange

network can be mapped to long (i.e., greater than constant length) paths in the
butterfly. In addition, the long paths must not overlap each other very often. To
this end, our embedding satisfies the following two Conditions:

(1) At most two shuffle-exchange nodes are embedded in any one butterfly
node, and

(2) in each butterfly column, at most 16 shuffle-exchange nodes have a neighbor
that is embedded more than distance 2 away in the butterfly.

Condition (1) ensures that the load is constant. To see why Condition (2) ensures
that the congestion is constant, it helps to consider the long (i.e., dilation greater
than 2) and short paths separately. The short paths contribute only constant
congestion because the load of the embedding is constant, the degrees of the
shuffle-exchange and butterfly networks are constant, and the lengths of the
short paths are constant. Hence, at most a constant number of short paths can
reach any butterfly edge. The long paths can be routed with constant congestion
(and O(log N) dilation) because the inputs and outputs of a Beneš network can
be connected in any permutation by a set of disjoint paths [Beneš 1965], and a
Beneš network is simply two back-to-back butterfly networks. Thus, if the set of
long paths can be decomposed into a constant number of (partial) permutations
of the inputs of the butterfly, the long paths can be embedded with constant
congestion. When there are at most a constant number of endpoints of long
paths in any single butterfly column, we can first route a path from each endpoint
to the input of its column, which leaves us with a constant number of permuta-
tions to route from the inputs.
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Our embedding maps the nodes of an N-node shuffle-exchange network
(where N 5 2n) to the nodes of an (n 1 3 2 log n)2n132log n-node butterfly
(with wraparound). Note that (n 1 3 2 log n)2n132log n ' 8N. Each node in
the N-node shuffle-exchange network has n bits in its label. A node in the
butterfly can be specified by a column represented by an (n 1 3 2 log n)-bit
string xn122log n

. . . x0, and a level in the range [0, n 1 2 2 log n]. An edge
from level i to level i 1 1 in the butterfly network connects two nodes whose
column strings differ only in the bit with index n 1 2 2 log n 2 i.
The key to proving that the mapping of the shuffle-exchange network to the

butterfly network has load 2 is to show how to invert the embedding. Hence, in
defining the rules for mapping shuffle-exchange nodes to butterfly nodes, we
want to use operations that are easy to undo. We begin by associating a
shuffle-exchange node with a particular column of the butterfly. The column is
chosen by removing log n consecutive bits from the node’s label, none of which is
the least significant bit. The level in the butterfly is then determined by the
position of the string that was removed. In particular, we associate a shuffle-
exchange node w with a column C of the butterfly as follows,

(1) Find the longest string of consecutive zeros in w that does not include the
least significant bit. Break ties by choosing the leftmost.

(2) Pick out a string as of log n bits as follows:

(a) If possible, choose the log n bits following the zeros and preceding the
least significant bit,

(b) otherwise, if possible, choose the log n bits preceding the longest string
of zeros,

(c) otherwise, choose the last log n bits of the string of zeros. (Note that, in
this case, there is a unique longest string of zeros, and it has length at
least n 2 2 log n.)

(3) Remove as from w. (Note that if as lies inside the longest string of zeros,
then after its removal there remains a string of at least n 2 3 log n
consecutive zeros.)

(4) Extend the string of zeros on the left by a 1 and on the right by 01. (The
string now has length n 1 3 2 log n and contains a unique longest string of
zeros.) Call the new string x.

(5) Treat the bits of as as a number, s. (Since there are log n bits in s, the
number will lie in the range [0, n 2 1].) Perform a cyclic shift on x so that
exactly s 1 1 bits appear after the string of zeros. The resulting string is C.

Symbolically, we map a shuffle-exchange node with label w 5 z0kas yb to
column C 5 u10k111v, where u, v, w, z, as, and C are strings, k is an integer,
b is a single bit, ybz 5 vu, and uv u 5 s, or we map w 5 zas0

kyb to column C 5
u10k111v. Note that, by construction, C contains a unique longest string of zeros
(allowing wraparound) of length k 1 1, and the bit b does not lie inside the
string of zeros.
In mapping a shuffle-exchange node to a butterfly node, we choose the level l

to mark the position of the least significant bit b in C. In particular, if b is in bit
position p, then l 5 n 1 3 2 log n 2 p.
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Before proceeding, let us introduce a little notation. We define a necklace to
be a maximal set of shuffle-exchange nodes that are connected only by shuffle
edges. Alternatively, a necklace can be viewed as a set of nodes whose labels are
identical up to cyclic shifts. The label of a necklace is the lexicographical
minimum of the labels of its nodes. We can specify a shuffle-exchange node by
the label of its necklace and the position in the necklace’s label of the nodes’
least significant bit. We define the domain of a butterfly node to be the set of
shuffle-exchange nodes that are mapped to it.
We now prove that Condition (1) is satisfied. That is, given a butterfly node ^l,

C& we show that at most two shuffle-exchange nodes can possibly be mapped to
^l, C&. Recall that if a shuffle-exchange node labeled w is mapped to a butterfly
node labeled ^l, C&, then all of the bits of w appear in the string C except for as.
The missing bits can be recovered by finding the length, s, of the string that lies
between the longest string of consecutive zeros and the pth bit of C (where p 5
n 1 3 2 log n 2 l ). We know that as belongs either directly before or directly
after the zeros. Thus, there are at most two possible choices for the bits in w
(ignoring cyclic shifts). The domain of ^l, C&, therefore, consists of nodes from at
most two necklaces. The value and position of the least significant bit, b, of a
node’s label can be determined by examining the pth bit of C. Thus only two
shuffle-exchange nodes can be mapped to any node in the butterfly.
To conclude, we show that, within any column of the butterfly, at most 16

edges lead from shuffle-exchange nodes to distant neighbors.
The exchange edges can easily be shown to have dilation two. Notice that when

mapping a shuffle-exchange node to a butterfly node, the value of the least
significant bit in the shuffle-exchange node is ignored. Thus, if two shuffle-
exchange nodes are connected by an exchange edge, their images in the butterfly
are ^C, l& and ^C9, l&, where C and C9 differ only in bit position p 5 n 1 3 2
log n 2 l ). The bit that differs can be changed by traversing a cross edge from
level l in column C to level l 1 1 in column C9, then a straight edge within
column C9 to return to level l. Thus, an exchange edge is embedded in a path of
length 2, where the first edge on the path is used to change the least significant
bit and the second edge is used to return to the original level in the butterfly.
We now prove that at most 16 shuffle edges leave any column of the butterfly.

A shuffle edge connects two nodes in a necklace whose labels differ by a rotation
of one bit position. The two nodes are mapped to the same necklace if the
rotation does not affect the choice of the longest string of consecutive zeros, and
does not change the position of as relative to the zeros. In this case, the two
nodes are mapped to a pair of butterfly nodes in the same column that are
connected by a butterfly edge. There are eight possible circumstances, however,
in which two nodes connected by a shuffle edge may be mapped to different
columns. First, if the leftmost bit of a node’s label belongs to the longest string of
zeros, then a left rotation may change the length or position of the longest string
of zeros. Second, if exactly log n bits precede the zeros, then a left rotation may
change the position of as. Third, if the bit immediately to the left of the least
significant bit b belongs to the string of zeros, then a right rotation may change
the length or position of the longest string of zeros. Finally, if there are precisely
log n bits between the string of zeros and b, then a right rotation may change the
position of as. In addition to these four cases, the opposite rotation in each case
may also lead to a different column. Hence, for any necklace mapped to C, there
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are at most 8 shuffle edges that leave the column. Since at most two necklaces
are mapped to any column, the number of shuffle edges that leave the column is
at most 16.
The result of this section is summarized in the following theorem:

THEOREM 5.4.1. An N-node shuffle-exchange network can be embedded in a
Q(N)-node butterfly network with load O(1), congestion O(1), and dilation O(log
N).

5.5. LAYOUTS FOR THE SHUFFLE-EXCHANGE NETWORK WITH OPTIMAL AREA
AND VOLUME. The N-node butterfly can be laid out in O(N2/log2 N) area
(trivially) and in O(N3/ 2/log3/2 N) volume [Wise 1981]. Since the N-node
shuffle-exchange network can be embedded in the N-node butterfly with constant
congestion, we can simply blowup these layouts by a constant factor to obtain
layouts for the shuffle-exchange network with equivalent area and volume.

5.6. A REAL-TIME EMULATION OF THE SHUFFLE-EXCHANGE NETWORK. In this
section, we prove the following theorem:

THEOREM 5.6.1. T steps of an arbitrary computation on an N-node shuffle-
exchange network can be emulated in O(T) steps on an N-node butterfly, for any T.

PROOF. We will show how to map the initial states of the shuffle-exchange
network nodes to the nodes of the butterfly so that after O(n) steps, each node
that originally had the state of shuffle-exchange node X at time 0 will contain the
state of shuffle-exchange node X at time n/8. By iterating this procedure as many
times as is necessary, we can simulate any T-step computation in O(T) steps.
Let 6 be the set of strings of length n/8 such that one of their longest runs of

zeroes is either at the extreme left or the extreme right of the string. Since the
mapping Y ° 0Y1 maps strings with one of their longest runs of zeroes at the
extreme left to strings of length n/8 1 2 that have a unique longest run of zeroes
and are lexicographically least among their cyclic shifts, the number of strings in
6 is O(2n/8/n) 5 O(N1/8/log N).
Next we observe that O(N1/8/log N) butterflies without wraparound consisting

of (7/8)log N 1 1 levels and 2(7/8)log N 5 N7/8 columns each can be embedded in
an O(N)-node butterfly with unit load, dilation and congestion in such a way that
the nodes in level i of each small butterfly are all mapped to level i of the larger
butterfly. This is done by lining up the butterflies, with their columns interleaved,
as the top (7/8)log N 1 1 levels of a butterfly with O(N/log N) columns and
hooking them up with (1/8)log N 2 log log N (plus some constant) additional
levels of nodes. Figure 3 illustrates this embedding of the collection of butterflies
into one large butterfly; for the sake of clarity, the small butterflies are not
interleaved in the figure.
We will map the nodes of the shuffle-exchange network to the nodes of such a

collection of O(N1/8/log N) butterflies, indexed by the strings in 6. Node X 5
xn . . . x1 of the shuffle-exchange network is mapped to several locations in this
collection of butterflies, depending on which of its substrings are in 6. Suppose
that for j [ {n/4, . . . , 7n/8}, the substring xj . . . xj112n/8 is in 6; then X is
mapped to node ^ j 2 n/8, xj2n/8 . . . x1xn . . . xj11& in butterfly xj . . . xj112n/8.
Thus, X is mapped to as many locations as there are values of j that satisfy this
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condition. Let G(X) be the set of locations to which X is mapped; we refer to
this as the set of images of X.
To show that at most one shuffle-exchange node X is mapped to each node in

the collection of butterflies, let Y [ 6, l [ {0, . . . , 7n/8} and C [ {0, 1}7n/8

be given. It is clear from the mapping defined in the previous paragraph that for
any X mapped to location ^l, C& in butterfly Y, xl1n/8 . . . xl11 5 Y. Further-
more, we must have xl . . . x1xn . . . xl1n/811 5 C, which determines the remain-
ing bits of X. Thus, for each node in the collection of butterflies, there is only
one shuffle-exchange node X that could possibly be mapped to that node (though
there may in fact be none mapped there).
The following lemma shows that any image of a node that does not reside on

the boundary of the region containing the images (levels n/8, . . . , 3n/4 of each
butterfly) has images of all that node’s neighbors nearby.

LEMMA 5.6.2. Let g(X) be an image of shuffle-exchange node X in butterfly Y
that is in a level other than n/8 or 3n/4 of Y. Then all the neighbors of X in the
shuffle-exchange network have images in butterfly Y within one level and distance
two of g(X).

PROOF. Let X be such a node. Then for some j [ {n/4 1 1, . . . , 7n/8 2
1}, Y 5 xj . . . xj112n/8; in butterfly Y, this node is mapped to level j 2 n/8 and
column C 5 xj2n/8 . . . x1xn . . . xj11. It is easy to verify that xn21

. . . x1xn and
x1xn . . . x2 (the neighbors of X across shuffle edges) are mapped to ^ j 2 n/8 1
1, C& and ^ j 2 n/8 2 1, C& in butterfly Y, and that xn . . . x2x1 (the neighbor of
X across an exchange edge) is mapped to ^ j 2 n/8, C9& in butterfly Y, where C9
differs from C in only the ( j 2 n/8 1 1)th bit from the left. This proves the
lemma. e

For each X, assign the initial state of node X to all the nodes in G(X). From
Lemma 5.6.2, it follows that all images in levels 3n/8, . . . , n/ 2 of the butterfly
can simulate n/8 steps of their nodes’ computations correctly in O(n) steps, since
they are more than n/8 levels away from either boundary. Let the images that are
in these n/8 1 1 levels be called good images of the nodes they are simulating.

CLAIM 5.6.3. Every node X has a good image.

PROOF. Consider the middle n/4 bits of X, x5n/8 . . . x3n/811, and look at one
of its longest runs of zeroes. We can always choose a substring of length n/8 with

FIG. 3. Embedding the set of butterflies indexed by 6 in one large butterfly (n 5 log N).
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this run of zeroes at its extreme left or right; letting this substring be Y yields an
image of X in one of the levels 3n/8, . . . , n/ 2 of butterfly Y, proving the claim.
We can simulate n/8 steps of computation on each of the small butterflies in

O(n) steps on an O(N)-node butterfly. After this, each good image of a node X
will have calculated the state of X at time n/8; it follows that for T # n/8,
simulating T steps of computation on each of the small butterflies is all that is
necessary to effect the desired simulation. In order for us to be able to continue
the simulation beyond n/8 steps, we must show how to update the other images,
so that every location which began with the initial state of X will contain the state
of X at time n/8.
Each good image of a node can calculate the pebbles (e, 1), . . . , (e, n/8) for

all edges incident to that node. In order to update the images in levels n/8, . . . ,
n/4 and 5n/8, . . . , 3n/4 of the butterfly, the good image of each node with an
image on the boundary can send these pebbles in turn to the boundary image.
The images in levels n/8, . . . , n/4 and 5n/8, . . . , 3n/4 can save their input
pebbles and perform their computations as the needed pebbles arrive at the
boundary. As long as the paths connecting the good images and the boundary
images are of length at most O(n) and have constant total congestion, this
update will take O(n) steps.
If we could find a good image for each node with an image on a boundary such

that only a constant number of these good images were in any column, then this
could be accomplished by routing a constant number of permutations on the
columns of this butterfly. Unfortunately, we cannot guarantee that such good
images can be found. Instead we will adjust the boundary so that such good
images exist for all shuffle-exchange nodes mapped to a boundary level.
Consider a shuffle-exchange node X whose image is in a boundary level of its

butterfly (without loss of generality, say level 3n/4), and let 5 be the set of
nodes which differ from X only in the n/8 least significant bits. Then, the images
of the nodes of 5 on the boundary form the inputs of a subbutterfly of depth
n/8. Let c be such that X has a good image in level 3n/8 1 c of some butterfly;
it follows that each node in 5 has a good image in that level of the same
butterfly. On the columns containing the boundary images of the nodes of 5,
push the boundary up to level 3n/4 2 c; this has the effect of ‘unembedding’
some images of nodes, but leaves the good images undisturbed (this operation is
illustrated in Figure 4). Each of the nodes with images on this new boundary will
have a good image in level 3n/8. Repeat this process for each of the O(N7/8/log
N) possible sets 5, and perform the corresponding operation on boundary level
n/8.
All the nodes with images on this modified boundary will have good images in

either level 3n/8 or n/ 2; furthermore, all these good images will still be at least
n/8 levels from either boundary, allowing them to calculate their nodes’ states
and the pebbles (e, 1), . . . , (e, n/8) for all edges e incident to X correctly in
O(n) steps. Since there are a constant number of boundary images and good
images corresponding to those boundary images in any column of the O(N)-node
butterfly, we can choose a set of one-to-many routing paths connecting each
good image to its corresponding boundary images. These paths will have length
O(n) and constant total congestion. Thus, we can in O(n) steps update each
location which began with the initial state of shuffle-exchange node X to contain
the state of X at time n/8.
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Since the above procedure takes O(n) steps, iterating it will allow us to
simulate any T-step shuffle-exchange calculation in O(T) steps an O(N)-node
butterfly. This suffices to prove the theorem. e

The following corollary to this theorem shows that an N-node shuffle-exchange
network can be emulated in real time by a hypercube with the same number of
nodes (The N-node hypercube, where N 5 2n, has nodes consisting of all n-bit
strings, where there is an edge between two nodes if and only if the two nodes
differ in exactly one bit).

COROLLARY 5.6.4. T steps of an N-node shuffle-exchange network computation
can be emulated in O(T) steps on an N-node hypercube, for any T.

PROOF. Immediate from Theorem 5.4.1 and the fact that an N-node butterfly
can be embedded in an N-node hypercube with constant load, dilation and
congestion [Greenberg et al. 1990]. e

6. Emulations by Shuffle-Exchange Networks

6.1. WORK-PRESERVING EMULATIONS OF LARGER SHUFFLE-EXCHANGE NET-
WORKS

THEOREM 6.1.1 [FISHBURN AND FINKEL 1982]. For any M $ N, an N-node
shuffle-exchange network can perform a work-preserving emulation of an M-node
shuffle-exchange network.

PROOF. An M-node shuffle-exchange network can be embedded in an N-node
shuffle-exchange network with load O(M/N), dilation 2, and congestion
O(M/N). e

6.2. WORK-PRESERVING EMULATIONS OF ARBITRARY BINARY TREES. It is well
known that the shuffle-exchange network can emulate a complete binary tree in
real time. Thus, by the results of Section 4, we know that there is an O(log log

FIG. 4. Adjusting the boundary for X and those nodes that differ from X in the n/8 lowest order
bits. Note that all good images remain at distance at least n/8 from the boundary.
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N)-time work-preserving emulation of the class of bounded-degree trees on the
shuffle-exchange network. Whether or not this emulation can be made real-time
remains an open question.

6.3. EMBEDDING SMALL BUTTERFLIES IN THE SHUFFLE-EXCHANGE NETWORK.
In this section, we show how to embed M/log M distinct M log M-node butterfly
networks in an N 5 M2 shuffle-exchange network with load l 5 2, congestion
c 5 O(1), and dilation d 5 3. A similar result was proved by Raghunathan and
Saran [1988]. We assume that M 5 2k, so that each column of the butterfly can
be represented by a k-bit string, and each node of the shuffle-exchange network
can be represented by a 2k-bit string.
To map M/log M butterflies to the shuffle-exchange network, we use the

following easily proved lemma:

LEMMA 6.3.1. The set of log M-bit strings has at least M/2 (log M) disjoint
subsets each containing log M distinct strings that are cyclic shifts of each other.

For each of these subsets we pick the lexicographically minimum string to
represent the subset. We associate the M/log M butterflies two to one with the
M/ 2 log M representative strings. Say butterfly i is associated with string W i. We
map a node ^p, C& in butterfly i to a shuffle-exchange node by shuffling the bits
of W i with the bits of C’s representation c log M21

. . . c0, and cyclically shifting
the string so that the image of c log M2p21 is at the rightmost bit position. In other
words, for W i 5 w log M21

i . . . w0
i , node ^p, C& of butterfly i is mapped to

shuffle-exchange node

w log M 2 p 2 2
i c log M 2 p 2 2 · · · w0

i c0w log M 2 1
i c log M 2 1 · · · w log M 2 p 2 1

i c log M 2 p 2 1.

From a shuffle-exchange node, we can recover the representative string W i by
picking out every other bit and shifting to the lexicographically minimum string.
We find the column by picking out the other bits and shifting by the same
amount. The position in the column is clearly the number of cyclic shifts needed
to get to W i and the column number.
To finish, we observe that each edge in any of the butterflies is mapped to a

path of length at most three in the shuffle-exchange network since we either shift
twice to reach the image of ^p 1 1, C&, or we complement the rightmost bit and
shift twice to reach the image of ^p 1 1, c log M21

. . . c log M2p21
. . . c0&.

Thus we can embed 2=N/log N butterflies with 12 =N log N nodes each in an
N-node shuffle-exchange network with load 2, congestion O(1), and dilation 3.
This technique can be extended to prove that for any constant 0 , e , 1, Ne

distinct N12e-node butterflies can be embedded in an N-node shuffle-exchange
with constant dilation, and load and congestion O(1/e).

6.4. A REAL-TIME EMULATION OF THE BUTTERFLY. In this section, we prove
the following theorem:

THEOREM 6.4.1. T steps of an arbitrary computation on an N-node butterfly can
be emulated in O(T) steps on an N-node shuffle-exchange network, for any T.

PROOF. We will show how to map the initial states of the butterfly nodes to
the nodes of the shuffle-exchange network so that after O(r) steps, each node
that originally had the state of butterfly node v at time 0 will contain the state of
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butterfly node v at time r/8. By iterating this procedure as many times as is
necessary, we can simulate any T-step computation in O(T) steps.
Without loss of generality, assume r is even. Consider the network that results

from restricting the N-node butterfly to its first r/ 2 levels; we call this a
half-butterfly. The following lemma will allow us to embed multiple half-butter-
flies in an O(N)-node shuffle-exchange network for the purpose of our simula-
tion.

LEMMA 6.4.2. An M-node butterfly (M 5 s2s, s even) can be embedded in an
O(M)-node shuffle-exchange network with constant congestion and load, and
constant dilation except for the edges from levels s/2 2 1 to s/2 and from levels s 2
1 to 0 (which will have dilation O(log M)).

PROOF. In the previous section, we showed that 2=N/log N distinct butter-
flies with 1

2
=N log N nodes each can be embedded in an N-node shuffle-

exchange network with constant load, dilation and congestion.
Call the two butterflies embedded using the string W i upper and lower butterfly

i. We will form a single butterfly in which the upper butterflies serve as the first
(1/2) log N levels and the lower butterflies supply the remaining levels (while
also duplicating some levels already present in the upper butterflies). Thus, for
k 5 1, . . . , =N , we must connect the set consisting of the kth output of each
upper butterfly to some set of =N/log N consecutive inputs of one of the lower
butterflies; each lower butterfly will receive log N such sets. After this is done for
each k, the jth set of log N outputs from upper butterfly i will be mapped to the
ith set of log N inputs of lower butterfly j, so that the first log N 2 log log N
levels of the lower butterflies will form the needed connections (the remaining
levels will duplicate the first log log N levels of the upper butterflies).
Since we can permute the inputs of each butterfly with O(log N) dilation and

constant congestion, it suffices to show that we can choose log N paths from each
upper butterfly to each lower butterfly such that over all the paths, the total
number of endpoints in any column of an upper or lower butterfly is constant
and the total congestion is constant. Routing the =N outputs (inputs) of each
upper (lower) butterfly to the endpoints of these paths as necessary will result in
a network of N/log N by log N nodes which is a butterfly with log log N
duplicated levels and no wraparound edges. This network will be embedded with
constant load and congestion, and constant dilation in all levels but one, which
will have dilation O(log N). Removing the duplicated levels equally from the
upper and the lower butterflies and routing a permutation on the columns for the
wraparound edges will yield a butterfly with M 5 V(N) nodes which is
embedded in a shuffle-exchange network with O(M) 5 N nodes, thus satisfying
the conditions of the lemma.
All that remains is to show that we can choose such paths between the upper

and lower butterflies. In the following, we use sk(X) to denote the result of
cyclically shifting the bits of the string X to the left k positions. For each i, j [
{1, . . . , m} and h [ {0, . . . , (1/ 2)log M 2 1}, let pi, j,h be the result of
shuffling the bits of W i with those of sh(W

j), and let qi, j,h be the result of
shuffling the bits of sh(W

j) with those of s1(W
i). Then pi, j,h is in upper

butterfly i and qi, j,h is in lower butterfly j, and these two nodes are adjacent in
the shuffle-exchange network. Since all the W i’s and W j’s are from distinct
nondegenerate necklaces (i.e., from distinct necklaces each containing log M
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distinct shuffle-exchange nodes), at most one pi, j,h exists in each column of upper
butterfly i and at most one qi, j,h exists in each column of lower butterfly j. Using
each path from pi, j,h to qi, j,h twice yields the desired set of paths, and the lemma
follows. e

Now we note that a butterfly with (r 1 1)2 r11 5 O(N) nodes contains as
subnetworks four disjoint half-butterflies, two in its upper half and two in its
lower half. It follows that four half-butterflies can be embedded in an O(N)-node
shuffle-exchange network with constant load, dilation and congestion.
We begin the simulation of the N-node butterfly by assigning the butterfly

nodes to the four half-butterflies, as illustrated in Figure 5. One half-butterfly
receives levels 0, . . . , r/ 2 2 1 of the butterfly; the others receive levels r/4, . . . ,
3r/4 2 1, r/ 2, . . . , r 2 1 and 3r/4, . . . , r/4 2 1 respectively. Note that each
node of the butterfly is assigned to two different half-butterflies, and therefore to
two different locations in the shuffle-exchange network. For each butterfly node
v, we begin with the initial state of v at the two locations in the shuffle-exchange
network to which v is mapped.
It is clear that in O(r) steps, we can simulate r/8 steps of computation on each

half-butterfly. Once this is done, the middle r/4 levels of each embedded
half-butterfly will have calculated the states of their butterfly nodes for time t 5
r/8. Thus, for each butterfly node v, its state at time r/8 will be calculated at one
of its two embedded locations; it follows that in the case where T # r/8,
simulating T steps of computation on each half-butterfly is all that is necessary to
effect the desired simulation. However, the first and last r/8 levels of each
half-butterfly will not have calculated the correct states for their embedded
butterfly nodes. In order to continue the simulation beyond r/8 steps, we must
insure that for each butterfly node v, both embedded locations of v in the
shuffle-exchange network contain the state of v at time r/8.
Consider the nodes v 5 ^l, C& of the butterfly that are embedded to a node on

the boundary of one of the half-butterflies; for all such v, l mod r/4 is either 0 or
r/4 2 1. Thus, every such v is also embedded to a node within the middle r/4
levels of some other half-butterfly, which successfully calculates the state of node
v at t 5 1, . . . , r/8. Suppose that as these states were calculated, the pebbles

FIG. 5. Mapping the butterfly nodes to the four half-butterflies.
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(e, 1), . . . , (e, r/8) for the edges e incident to v were created and sent to the
boundary location simulating v. If this was done for each such v, then the
remaining levels of the half-butterflies could calculate their states for t 5 1, . . . ,
r/8 by saving their initial states and performing their calculations as the needed
pebbles arrived at the boundary.
In order for this updating of the outer r/4 levels of each half-butterfly to take

only O(r) steps, we must choose paths between the two embedded locations of v
for each v 5 ^l, C& such that l mod r/4 is either 0 or r/4 2 1. Furthermore, each
path must be of length O(r) and no edge can be used more than a constant
number of times by all the paths together. This will guarantee that all the pebbles
(e, t) for the edges incident to such a v and t 5 1, . . . , r/8 can be delivered
along these paths in O(r) steps.
Since all the endpoints of these paths are contained in only eight levels of the

embedded butterfly, choosing these paths reduces to the problem of routing a
constant number of permutations on the columns of the butterfly, which can be
accomplished with constant congestion. Since these routing paths use each level
of the butterfly a constant number of times, they will have dilation O(log N) 5
O(r) in the shuffle-exchange network (by Lemma 6.4.2).
Thus, the complete simulation for r/8 steps proceeds as follows: Assign the

initial states as described previously. Simulate r/8 steps of computation on each
half-butterfly, calculating the states for t 5 1, . . . , r/8 for those nodes in the
middle r/4 levels of each half-butterfly. As these states are calculated, those
locations simulating nodes that also have images on the boundaries of the
half-butterflies create the pebbles (e, 1), . . . , (e, r/8) for the edges incident to
v and send them to the boundaries along the paths described above. As they
arrive at the boundaries, perform the computations for the first and last r/8
levels of each half-butterfly. When this is complete, all locations which began
with the initial state of node v will now contain the state of v at time r/8.
Since the above procedure takes O(r) steps, iterating it will allow us to

simulate any T-step butterfly computation in O(T) steps on an O(N)-node
shuffle-exchange network. This suffices to prove the theorem. e

6.5. APPLICATION TO SORTING ON A SHUFFLE-EXCHANGE NETWORK. It is
known that an N-node butterfly can sort N packets with high probability in O(log
N) steps [Leighton et al. 1994; Pippenger 1984; Reif and Valiant 1987]. The
result does not directly extend to the shuffle-exchange network because the
shuffle-exchange network does not have the nice recursive structure possessed by
the butterfly. However, the emulation result of the previous section allows us to
emulate this sorting algorithm on the shuffle-exchange network and thus yields
an algorithm for sorting N packets on an N-node shuffle-exchange network in
O(log N) steps with high probability.

6.6. REAL-TIME EMULATIONS OF ARRAYS. By combining the emulation result
of Section 6.4 with the real-time emulation of a mesh on a butterfly in Section
5.3, we obtain an algorithm for emulating an array in real time on a shuffle-
exchange network. This is despite the fact that any O(1)-to-1 embedding of an
N-node array (with dimension 2 or more) in a shuffle-exchange network has
dilation V(log log N) [Bhatt et al. 1996].
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