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Evaluation of a Novel Two-Step Server Selection Metric�
Katrina M. Hannay Nandini Natarajan Brian Neil Levine
Dept. of Computer Science, University of Massachusetts, Amherst, MA 01003fhanna, nnataraj, briang@cs.umass.edu

Abstract

Choosing the best-performing server for a particular
client from a group of replicated proxies is a difficult task.
We offer a novel, two-step technique for server selection
that chooses a small subset of five servers, and isolates
testing to that subset for ten days. We present an empiri-
cal evaluation of both our method and previously proposed
metrics based on traces to 193 commercial proxies. We
show that our technique performs better than any of the
other metrics we studied — often one to two seconds bet-
ter for a one-megabyte file — while requiring considerably
less work over time. Metrics such as round-trip time and
tests using small files usually select servers that are two
to three times worse than the best server. Network-layer
metrics such as minimizing router and autonomous system
count poorly predict which server provides the best per-
formance. These metrics often select servers with transfer
times four to six times that of the best-performing server.

1 Introduction

Sites providing web content, multimedia streaming, net-
worked gaming, or other Internet services commonly need
to scale to large client bases. One solution often adopted
is to replicate the server in numerous locations in the Inter-
net. Presenting numerous mirror servers to a client results
in the difficult problem of finding the server that will per-
form best. Techniques forserver selectionallow a client
to transparently choose one of a set of known replicated
servers — hopefully the best server. Proposals for imple-
menting server selection and the related problems of any-
cast services [20] and Internet distance map creation [12, 8]
are typically based on specificmetrics, such as hop count
or round-trip time.

In current practice, selection of a server from a group
of proxies commonly requires manual choice based on ge-
ographical labels, though this has no correlation with net-
work distances [4]. Commercial mirror selection services�This work is supported in part by a grants from Sprint Advanced
Technology Labs and a grant from the National Science Foundation under
award EIA-0080119.yKatrina Hanna’s work is supported in part by a National Science
Foundation Graduate Research Fellowship.

are commonly based on DNS modifications [1, 11]. Such
commercial solutions use proprietary metrics and tech-
niques, require costly Internet-wide infrastructure deploy-
ment, and have been shown to not select the best server in
a consistent manner [13].

We address the following fundamental question:what
metric for server selection results in the best performance
for clients? We propose a novel technique calledping-
random, which is a two-step process for server selection.
The first step isolates a subset of five well-performing
servers and retains the subset for a period of 10 days; dur-
ing the 10-day period, server selection is random, which
requires significantly less testing than previous approaches.
We compare our technique with four previous approaches
to server selection through experimentation and analy-
sis: minimizing router counts, autonomous system (AS)
counts, round-trip times, and transfer times of small test
files. Our results indicate that:� Our technique ofping-randomcan efficiently select

servers with very good performance; metrics based on
router hops, AS hops, round-trip times, and small files
perform worse.� Our technique works over a variety of server popula-
tion sizes from 20 to 200.� Recent proposals for the use of network-layer metrics
perform very poorly as predictors of the best server
from which to retrieve files;� The best servers maintained very good performance
over time, the average server did not. This corrobo-
rates our ping-random result.

We also examined the effects of large numbers of clients
using our selection technique concurrently. Our method
provides some load-balancing and does not result in client
oscillation among servers.

This paper is organized as follows. Section 2 reviews
previous work on anycast protocols and studies of metrics
for server selection. Section 3 presents our experiment and
methodology. Section 4 discusses our comparison of se-
lection metrics. Section 5 provides characterizations of top
servers. Section 6 offers our concluding remarks.



2 Background

Server selection techniques can meet a number of ob-
jectives. Our goal is to design and evaluate a metric that
allows a client to choose the best-performing server from a
set that provide a needed application-layer service; in this
case, transferring a requested document to the client. We
do not focus on techniques for processor load-balancing or
resource discovery in this paper. We focus instead on situ-
ations where network conditions are the constraints, where
all mirror sites are known, and are exact replicas.

2.1 Previous Work

Past work in server selection can be roughly divided into
protocols based on specific metrics, studies of how well
metrics can perform, and characterizations of server per-
formance. Other work attempts to obviate the need for se-
lection by proposing that files be retrieved in parallel from
all available servers.

Protocol work for server selection, often in the context
of anycast [20], has generally been proposed as a new net-
work layer routing or application layer service. Proposed
network-level protocols [6, 15] — most recently the Global
Internet Anycast protocol (GIA) [14] — focus on discov-
ering the best server by minimizing network distances of
some type. As we show, these approaches are not good
predictors of file transfer times and can result in prob-
lems balancing the client load across servers. Application-
layer protocols [7, 2] consider combinations of network
and server performance in selecting the best server.

In this paper, we examine a new selection metric and
compare it to others. We expect our selection metric would
be applied to application-level architectures; e.g., [2].
Moreover, we believe our contributions can increase the
accuracy of Internet Distance Maps [12, 8].

Several recent proposals improve file transfer per-
formance by retrieving content in parallel from several
servers [3, 21], which reduces the need for server selec-
tion. We believe such protocols result in clients receiving
an unfair share of bandwidth during TCP transfers. As con-
gestion on a link grows, AIMD congestion control in TCP
ensures that all distinct flows receive roughly equal band-
width at a bottleneck. Clients downloading in parallel in-
validate the assumptions of the AIMD algorithm.

2.1.1 Comparison to Past Experiments

In this paper, we compare our ping-random metric with
previous metrics. We also characterize the performance
of the servers in our study in order to gain insight into
these comparisons. There have been several past studies on
server selection metrics [4, 22, 19, 7, 2] and characterizing
server performance [17]. Where those studies produced re-
sults that differ from ours we comment appropriately.

Table 1 summarizes those experiments in comparison to
ours. We felt performing a new study was justified simply
in order to compare our proposed new metric. However, the

size of our experiment also differentiates our study from
those done in the past.

While some studies share some of our experiment’s fea-
tures, no single previous study has all these qualities at
once. Our experiment has the longest measurement period:
41 days. We used larger file sizes than most, up to 1 Meg,
and compared many selection metrics at once. Our study
uses actual transfer times for files of varying sizes where
some have used estimates or not considered transfer times
at all. We are also the first to study both metrics and server
performance characteristics together.

We increase the number of servers by an order of magni-
tude over most studies to 193. Obraczka and Silvi recorded
results from 601 servers, but did not study actual trans-
fer times. Their focus was on the correlation between
hop count and round-trip time. This may be important for
streaming media applications, but it is likely that our cal-
culation of the correlation between hop count and transfer
times is more applicable to supporting file transfer appli-
cations. More importantly, we believe our measure of file
transfer times resulting from these policies (Figs. 1–2) are
more telling and reliable than correlation measures.

In a related study, Myers et al. [17] showed that there
may be consistency in the rankings of servers even when
exact performance changes between sessions. We found
the rankings of the average server to be less stable than re-
ported in their study. However, as we discuss in Section 5
top ranked servers were considerably more stable in rank-
ing than both the average server in our study and in Myers
et al. That result motivated our work on the two-step ping-
random scheme that we propose and analyze in this paper.

3 Experimental Setup and Methodology

Our experimental setup included six client machines lo-
cated at the Univ. of Massachusetts, the Univ. of North Car-
olina, the Univ. of Delaware, Purdue Univ., the U.C. Santa
Cruz, and the Univ. of Southern California (Table 2).
Each of these clients interacted with 193 servers in the tu-
cows.com web mirror network. To avoid inter-continental
links, we used servers located in the U.S. and Canada only.

Data was collected via a script that ran continuously
at each client over the course of 41 days, from Septem-
ber 30 – November 9, 2000. (All logs are available
at http://signl.cs.umass.edu/logs.) The script was imple-
mented in Tcl/Expect. At eachrun of the script, the client
collected several types of data regarding the characteristics
of the network path to each server:� a series of 5 ICMP pings;� a traceroute;� transfer times of files with approximate byte sizes of

10k, 30k, 100k, 250k, 500k, 750k, and 1M.

We then explored several ways to use such data for server
selection. Ping results were used to evaluate the per-
formance of selection schemes that minimize round-trip



Study Client domains Servers Metrics compared Measured Days

Myers et al. [17] 9 20,16, and 11 None File transfer 21 days
Sayal et al. [22] 1 5 and 50 Hop,ping Http-request RTT 2000 requests
Obraczka and Silva [19] 4 601 (worldwide) Hop,AS,ping Roundtrip latency 6 days
Fei et al. [7] 2 4 Hop,small files,server push File transfer 100 requests
Bhattacharjee 2 7 Small files, File transfer Every 3 minutes
et al. [2] push from server for 13 hours
Carter 1 10 Hop,geographic, File transfer Several hours
and Crovella [4] ping, trans. time estimate
This study 6 193 Hop,AS,ping,10k files File transfer Every 3–5 hours

(US & CA) ping-selection for 41 days

Table 1. Summary of some relevant past work.

times. Using traceroutes, we computed both router hop
counts and autonomous system counts. We used these
counts to characterize the performance of schemes that
minimize either metric. AS-hops were calculated by query-
ing a whois database.

The disparity in the numbers of runs completed by
clients is a result of variation in the time required for each
run. This is due to variations in the clients’ system re-
sources as well as the quality of their connections to the
Internet. Rarely were runs aborted due to client failure or
disconnection from the network (Table 2).

For much of the analysis in this paper, we considered
the whole set of 193 servers; we also considered subsets.
For example, we viewed our experiment as ten separate ex-
periments of about 20 servers. The servers in each sub-
set were created by simply partitioning the list of servers
into groups as they appeared in order in the script that each
client ran: the first 20 in the first set, the second 20 in the
second set, and so on. We also consider four experiments of
about 50 servers and two experiments of about 100 servers
in order to measure the effects of different server popu-
lations. We refer to a group ofn servers as ann-subset.
Conducting the analyses on different subsets and averag-
ing the results of the experiments increased our confidence
that results were not due to one particularly good server for
a particular client.

Network conditions may have changed from the begin-
ning to the end of a run during the time it took to con-
tact 193 servers from each client. However, accessing even
small numbers of servers in parallel would have the trans-
fers competing with each other for bandwidth. The exam-
ination of subsets of servers addresses this problem. Our
results were consistent for 10 sets of 20 servers, which took
on average, 9–15 minutes to complete. As we show in Sec-
tion 4, our results for our selection method remain stable
over periods of ten days without re-testing, so we believe
short-term effects were not significant. Additionally, the
consistency of results across subsets leads us to conjecture
that time-of-day effects were not significant either.

We contacted the servers directly, avoiding any redirec-
tion from the main tucows site. It is possible that ISPs host-
ing a server employed DNS rotation techniques to map a
textual address to more than one local server, but our focus

Client File Downloads Failure Rate
UNC 416,168 4.45%
Purdue 337,379 4.96%
U. Delaware 330,685 4.94%
U. Mass 164,843 6.22%
UC Santa Cruz 367,292 4.36%
USC 297,658 4.44%

Table 2. Client sites and data characteristics.

on client performance would not be affected.

4 Server Selection Metrics

Recall that our goal is to compare our proposed metric
with others to determine which is able to predict the server
that will provide the best performance for the lowest cost.
For the file transfer applications we wish to support, we
definebestperformance as follows. As described in the
previous section, each client periodically performs arun
of measurements, contacting each of the 193 servers and
performing five pings, a traceroute, and a series of down-
loads of given file sizes. For a each file size, the “best”
performance is the minimum download time for that file
size from among the 193 contacted for that measurement
run. We compared metrics which select servers based on� ping-random,� round-trip times,� transfer times of a 10k file,� hop counts,� AS counts,� random selection,

Ping-randomis a two-step server selection process that we
designed: first, a subset of five well-performing servers
is selected; second, a server is selected from among the
servers in that subset. The subset is isolated based on
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Figure 1. Performance of server selection
metrics (top: UCSC, 193-set; bottom: UCSC,
48-subset).

ping times and retained for a 10-day period. Over this 10-
day period, a server is chosen at random for a particular
file transfer. Methods other than random can be used for
this secondary selection—we evaluate other possibilitiesin
Section 4.1.3.

Previous work on the performance of mirrors [17] has
shown the past performance of a server is often a reliable
predictor of the future performance. In Section 5 we show
that servers with the best transfer times are more stable than
the average server. This lead us to design the ping-random
technique and is an explanation of its success.

Our study indicates that ping-random performs best and
requires the least work of all metrics. Our results are pre-
sented below. RTT times and transfer times of small files
give some indication of server performance, but are not al-
ways accurate. Network-layer metrics—minimizing hop
count and AS count—perform poorly as predictors of file
transfer times, often as poorly as a random selection.

The performance differences among metrics was not
distinguished for small files. Also, the time spent testing
servers is less justified for small files. Thus, our results are
most applicable for larger file transfers, and when clients
download many files from the same site, e.g., with persis-
tent and pipelined HTTP connections [16].
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Figure 2. Performance of server selection
metrics (top: USC, 193-set; middle: USC, 19-
subset; bottom: Purdue, 193-set).

4.1 Dynamic Selection Methods

In this section, we detail our results for round-trip times
(RTT), small file transfers, and our ping-random technique.

Determining the RTT to a remote server using an ICMP
echo request is normally a simple and quick operation.
RTTs, usually measured by pings, have the additional ad-
vantage over hop counts and AS counts of being responsive
to network conditions. In fact, using RTTs appears more
commonly than other metrics, with the exception of man-



ual, geographic selection. For example, Napster, a popular
peer-to-peer system measures round-trip times to aid users
in selecting the peer from which to retrieve a file.

Our results for some clients1 are shown in Figs. 1–22

for a variety of metrics, each represented with a different
line on the graph. The y-axis of the graphs represent the
average transfer time of the servers selected by a metric; the
performance of the server selection for different file sizes
are shown along the x-axis. Error bars represent a 95%
confidence interval of the averages.

In our experiment, clients sent five pings in immediate
succession to servers. The RTT metric is better-correlated
to actual file transfer time than hop count or AS count.
Moreover, we found that the servers picked by a RTT met-
ric performed significantly better on average than those
picked by minimizing hop count or AS count, but not as
well as our ping-random method. For large files, we found
RTT is not a fully reliable predictor of server performance
as it often picked servers with transfer times 2-5 times that
of the best server. Fig. 3 shows the correlation between av-
erage RTT and transfer times for all file sizes in our study.
For all clients except UNC the correlations are low. We
believe that this is a result of the effect of TCP’s conges-
tion control mechanism on file transfer times. Since ICMP
PING messages are not subject to this mechanism, the re-
sulting round-trip times do not accurately reflect time re-
quired to transfer files.

4.1.1 Round-trip Times

The client at UNC experienced faster transfer times than
most of the other clients. We speculate that lower conges-
tion during most transfers at UNC resulted in better corre-
lation for that client.

To understand why good ping times don’t necessarily
predict good file transfer times, we performed a smallns2
(http://www.isi.edu/nsman/ns) simulation to determine the
effects of current available bandwidth on RTT. The topol-
ogy of the experiment is shown in Fig. 5. We studied
symmetric FTP traffic over a 1.5 or 2.0 Mbs link. We in-
troduced traffic sources sequentially (one from each end)
throughout the experiment. The intermediate links (4–5,
5–6, 6–7 in Fig. 5) had 5 Mbs capacity. We measured the
bandwidth in use by monitoring the traffic across higher-
capacity links. Although not the focus of this paper, even
this small simulation shows that RTTs do give some indi-
cation of current available bandwidth. Fig. 6 shows our re-
sults. As available bandwidth decreases, roundtrip times
tend to increase and the standard deviation of roundtrip
times increases. But there is significant overlap in ping
times among differing levels of available bandwidth. Thus,
a good ping time may be recorded without necessarily
indicating sufficient available bandwidth on the network

1More extensive results can be found in our technical report [10].
2The good performance of RTT for USC 193-set shown in Fig. 2 was

not observed for all smaller sets for USC (e.g., Fig. 2 and Fig9) leading
us to believe there was a single server uncommonly predictable by RTT.

Client 10k 30k 100k 250k 500k 750k 1M Hops

UCSC 0.16 0.20 0.21 0.22 0.21 0.21 0.20 0.07
Purdue 0.18 0.23 0.23 0.23 0.21 0.22 0.22 0.19
UDel 0.14 0.21 0.26 0.30 0.30 0.30 0.29 0.11
UMass 0.21 0.24 0.34 0.39 0.45 0.46 0.45 0.09
UNC 0.39 0.49 0.49 0.50 0.48 0.47 0.45 0.28
USC 0.25 0.34 0.38 0.40 0.40 0.41 0.40 0.23

Figure 3. Correlation coefficients between
average ping times and transfer times or hop
count.

Client 10k 30k 100k 250k 500k 750k

UCSC 0.31 0.53 0.72 0.80 0.88 0.92
Purdue 0.29 0.36 0.50 0.60 0.69 0.72
UDel 0.36 0.54 0.74 0.84 0.89 0.93
UMass 0.24 0.34 0.55 0.66 0.79 0.85
UNC 0.44 0.66 0.80 0.87 0.91 0.95
USC 0.35 0.55 0.75 0.84 0.90 0.92

Figure 4. Correlation coefficients between
1M file transfer and varying file sizes.
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Figure 5. Topology of the ns2 simulation

path. The result also provides intuition into why our ping-
random method, discussed subsequently, produces good re-
sults: in choosing a subset of servers, it’s likely that some
of the choices do accurately characterize the network path.

Unlike other clients, Purdue’s performance with a RTT
selection policy (Fig. 2) was not significantly better than
other metrics. We can explain this result: the relative per-
formance of servers was more similar; the chances of pick-
ing, even randomly, a server with performance comparable
to the best servers was good. At Purdue, the difference
in transfer times on average between consecutively ranked
servers was strikingly small, as shown in Fig. 7 for both 1
Meg and 100k file sizes. Fig. 7 shows the relative server
performance as observed at UCSC for 1 Meg and 100k
files, which is representative of all other clients across all
file sizes. We conjecture that the similar performance of
servers observed at Purdue is likely to have been caused by
a common network bottleneck that limited the peak perfor-
mance of all servers to the client. (We do know that the
Purdue client was a slow Intel 80486 machine with limited
memory on a constantly congested subnet.)

We expect the varied performance shown in Fig. 7 to
be the typical case (if not, server selection is simple). We
also expect that resource limitations of the mirror servers
themselves will generally not be responsible for observed
network performance. We recorded the processor load at
44 servers for one week, and found the loads to be negligi-
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ble and uncorrelated with transfer times; network transfers
are not processor-intensive operations. For commercial de-
ployments, mirror servers can be expected to be moderately
resourceful.

4.1.2 Small Files as Predictors

Choosing a server based on the transfer times of small files
is another metric we analyzed. Fei et al. [7] used a simi-
lar metric, but did not report the size of the file used. To
use this metric, a client initiates small downloads from all
available servers. The server that completes this transfer
first is then used for downloading larger files. This method
is clearly impractical for larger sets of servers, but we found
using a 10k file as a metric for picking the best server
for larger file transfers fared well in our experiment. For
most clients, on average, a 10k experimental transfer usu-
ally picked a server that performed as well as or better than
those picked by best ping times.

Not surprisingly, we found larger files were better pre-
dictors. We found little correlation between the times re-
quired to retrieve small and large files. Fig. 4 shows the
correlations of transfer times of 1M files to times of smaller
files. These correlations are between files during a single
run; i.e., the transfer took place within a minute. We spec-
ulate that the poor correlation is the result of TCP slow-
start dominating small file transfer. There is a steady trend,
and we conjecture that files smaller than 10k will not have
an increase in their correlation or resulting performance in
predicting server file transfer times.

4.1.3 Ping-Random

In Section 4.1.1 we have shown that selecting a server
based on round-trip times as measured by pings does not al-
ways produce very good results. We propose a method that
uses ping results to pre-select a small set of servers, which
we call aping set. This method improves upon ping met-
rics, takes advantage of their light-weight nature, and ex-
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Figure 7. Avg. transfer time of percentile for
ranked servers (top: Purdue, 1M and 10k
files; bottom: UCSC, 1M and 10K files).

ploits the stability of top-ranked servers (discussed in Sec-
tion 5). Applications can create a ping set by pinging avail-
able servers and then selecting then servers with the best
results. From that ping set, some other selection method
is used to choose a server for a particular file transfer. We
found in our study retaining the subset for 10 days main-
tained the same average performance, whereas for longer
time periods, performance began to drop off. Although the
construction of the ping set requires testing between the
client and all available servers, the fact that the set is re-
tained amortizes the overall cost.

We examined two techniques for choosing a server from
a ping set. Withping-random, clients make a random
choice, which requires no signalling or delay and produces
results that are usually better than other metrics. This
method also has an inherent load-balancing property; an
interesting parallel can be drawn to work on processor load
balancing, e.g., Eager et al. [5]. This method is not based
on current network conditions, but it doesn’t result in the
oscillation problem we address in Section 4.3. A large
group of clients forming ping sets at the same time is un-
likely, and therefore it is improbable that all would choose
the same set.

The ping-ping method chooses from the ping set by
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pinging all its members. This method provided slightly
better performance than ping-random (up to one second for
the 1M file) for some of the clients in our study, but had no
difference for others. However, since pinging five servers
is such a light-weight operation, it might prove beneficial
in some instances.

The ping-ping metric is greatly influenced by the size
of a ping set. The results shown in Fig. 9 are for ping sets
of size five, constructed from all 193 servers. Ping sets of
size three performed significantly worse. As expected, the
chances that a server providing good performance is part
of the set increases with the size of the set. We found, on
average, 40% of servers that were ever ranked first (and
were therefore stable performers, see Section 5) were in
the top 20% of ranked pings. Additionally, for four of the
clients, 50% of the first-ranked servers were found within
the top 12% of ranked pings. The results for UNC, which
was a part of the latter group, are given in Fig. 8.

The results for ping sets at UCSC and USC (Fig. 9), in-
cluding 95% confidence intervals, are representative of all
clients. For reference with Figs. 1 and 2, the 10k metric is
repeated. We also recordedping-best, the average perfor-
mance of the best server in the ping set to show an upper
bound on the performance possible in any two-step ping set
selection method in our study. The ping-best is closest to
best of all metrics we tested, e.g., it was usually not more
than one half to one second from the best server for a 1M
file. Ping-random performs better than selection based on
a 10k file transfer with significantly less work required of
the client. And, ping-random performs better than a simple
RTT metric and also requires less work over time. Ping-
ping performed simililary to ping-random for most clients
and better only for some. Ping-random Moreover, it may
not balance load among servers as well as ping-random.

4.2 Static Selection Methods

In this section, we present our evaluation of router and
AS hop count metrics, which are often proposed methods
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Figure 9. Performance of ping set metrics,n = 5 (top: UCSC, 193-set; bottom: USC,
193-set).

of selection. The use of a hop count metric can be either by
direct measurement at the application layer [9, 8, 12, 23],
or by modifications to unicast [6], multicast [15], or BGP
routing [14]. Hop count metrics have been studied at
length, but we know of only one other study [19] that has
studied the AS metric, which has been recently proposed
as part of the GIA protocol. However, that study [19] eval-
uated only the round trip time to selected servers. We
recorded actual transfer times and therefore are able to
comment on the performance of such a metric as used by
GIA. In our analysis, when multiple servers were at min-
imum distance, we averaged their observed transfer times
as no other information would allow a resolver to make a
distinguishing choice in the most generic case.

4.2.1 Hop Counts

The results in Figs. 1–2 suggest that hop-count metrics per-
form less well than other metrics in predicting the server
with the best download time. Often the performance of
hop-count metric was similar to picking a server randomly!

Hop count metrics perform poorly because the location
of the best server varied greatly while the server selected
by minimizing hop count did not. Fig. 13 shows the distri-



bution of hop counts for the best server across all fetches
for all file sizes at UCSC (with 95% confidence intervals).
The nearest server to UCSC was on average 10 router hops
away. This result is representative of all cleints.

Recently, Obraczka and Silva performed a hop count
and round-trip time analysis and found the correlation to
usually be higher than 50% [19]. For completeness, we
computed this correlation as well. The last column of Fig. 3
shows the correlation between RTTs computed as the aver-
age of five pings and hop count in our experiment. Our
results show much less correlation than observed by that
study [19]. Carter and Crovella in 1995 [4] and more re-
cently Sayal et al. [22] found results more similar to our.
Almost half of the 601 servers used by Obraczka and Silva
were on a different continent for 3 of the clients, and almost
500 for a fourth client, which may explain the difference.

4.2.2 Autonomous System Hops

Selection of mirror servers can also be based on minimiz-
ing the number of autonomous systems (ASes) between the
client and server. The recently proposed Global Internet
Anycast (GIA) [14] protocol uses such a metric. Our ex-
periment provides insight into how well GIA might per-
form in practice by analyzing a simulation of its server se-
lection policy, which [14] did not provide, nor could we
find a similar experiment elsewhere.

Our study supports the claim that selecting servers by
minimizing AS hops, like router hops, offers an insufficient
level of granularity to distinguish server performance, cor-
relates poorly with network conditions, and provides per-
formance similar to that of random server selection.

GIA searches for mirror servers belonging to an
Internet-wide anycast address. Border routers query other
Border Gateway Protocol (BGP) peers to resolve the ad-
dress. Peers answer the query if they have registered a
server to the address. Otherwise, the query is passed to
other peers in a breadth-first search. The query can travel
no further than three hops from the BGP router initiating
the query. After collecting replies for a set time, the initi-
ating domain resolves the address to the server that mini-
mizes the number of ASes crossed.

We converted the IP addresses of the routers in
the traceroutes we recorded using a tool provided by
www.radb.net for “whois” database lookups. We then
recorded the transfer times of servers that were closest to
each client in terms of AS counts. We could not find a
specification of how to break ties among responses, so we
averaged the transfer times of all servers that minimized
the AS count. We believe this to be fair because the BGP
routers would have no extra information by which to distin-
guish replies. The quickness of BGP routers in responding
to requests may have little correlation with the traffic con-
ditions on the path to that server. The BGP router may be
delayed with other tasks, but even if the response time of
BGP routers is solely limited by the round-trip time, then
the poor correlation between round-trip time and transfer
time we have observed (see Fig. 3) suggests that picking

the earliest response may not be successful.

Figs. 1–2 show results for UCSC, USC, and Purdue. We
found that the servers that gave the best transfer times were
commonly farther than the closest server and up to 10 AS
hops away. Fig. 14 shows a histogram for UMass of the
distance in AS hops of the best servers averaged over all
file sizes; this histogram is representative of all clients.

GIA suggests sending queries with a maximum hop
count of three AS domains, however we found that for all
clients, this misses about 80% of all servers. Setting the
maximum hop count of search queries in GIA higher to
find the best server would create too much query traffic for
BGP routers to handle efficiently [14].

4.3 Effects of Selection

In considering server selection techniques it is neces-
sary to examine the effect of a large set of clients using a
technique concurrently. Will a particular method result ina
large set of clients choosing the same server, where some of
them would have received better performance elsewhere?
Moreover, will those clients, upon detecting resulting poor
performance, change en masse to another server, and then,
detecting poor performance at the second server, change
again, continuing tooscillateamong servers?

Static server selection methods such as hop count, AS
count and geographical selection do not respond to chang-
ing network conditions, and therefore are not subject to the
problem of oscillation. However, they may result in a large
subset of clients choosing the same server. As we have
shown in section 4.2, these metrics are not good predictors
of performance; their use by a large set of clients could
result in heavy traffic in concentrated areas.

Dynamic selection methods won’t result in either prob-
lem, as they work by detecting current network conditions.
Consider wheni clients are currently conducting file trans-
fers from serverX. Theith+1 client will only chooseX if
the selection method indicates thatX is the best choice. For
good-performing metrics such as ping and ping-random,
we can expect the correct choice, and we have shown these
metrics usually result in good choices and are responsive
to available bandwidth. Furthermore, ping-random evenly
distributes the load among the five.

This would not necessarily be the case if a large group of
clients began testing at exactly the same time. Cross-traffic
notwithstanding, each client would only detect the traffic
generated by the testing mechanism (a few ICMP packets).
If all clients in the group then chose the same server, the
resulting TCP connections could cause enough congestion
to result in poor performance. In this scenario, oscillation
among servers could occur as well, but only if all clients
in the subset re-tested at the same time. Fortunately, it is
highly unlikely that a sizeable group of clients would be
running the testing protocol at exactly the same time.
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Figure 10. Prob. of rank changes (Top:
avg. of 20-subsets for 1M files; bottom:
avg. of 50-subsets for 500k files).

5 The Stability of Top-ranked Servers

In this section we characterize the performance of the
mirror servers in our experiment. We found that the perfor-
mance of top servers is very stable over time and that the
set of top servers is a small fraction of the total number of
servers. This supports our findings that choosing a subset
of well-performing servers and isolating subsequent testing
to that subset results in the best performance for clients.

5.1 Rankings of Top Servers are Stable

We compared servers by creating a ranked list for each
run based on sorted transfer times. All our ranks are re-
ported aspercentiles; a server’s percentile is the percent-
age of servers whose file transfer times were greater than or
equal to its own. We examined the rank changes of servers
over short and long time scales: 0–5 hours and 9–10 days,
respectively. In this section, we compare the rank changes
of top servers to the average server.

Fig. 10–11 show the cumulative probability of rank
changes of top and average servers, for various clients, sub-
set sizes, and file sizes transfered. Each graph presents the
cumulative probability of rank changes for:
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Figure 11. Prob. of rank changes (Top:
avg. of 100-subsets for 10k files; bottom:
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For comparison, each graph shows the cumulative proba-
bilities of differences in ranks when chosen randomly from
a uniform distribution. The results presented in this sec-
tion are typical across all file sizes,n-subset sizes and al-
most all clients; more extensive results can be found in our
technical report [18]. Top servers at UMass and especially
Purdue have a smaller proportion of rank changes between
zero and ten than top servers at the other clients. We sug-
gest reasons for this difference in Section 4.1.1.

Top servers in our experiment consistently maintain
more stable performance than the average of all servers.
In the figures, 70–98% of top servers’ rank changes in both
time scales are between zero and ten. An average server



does not see as large a proportion of small changes; 43–
66% of their rank changes in the same time scales are as
small. Since our construction ofn-subsets creates disjoint
sets of servers, the top servers in differentn-subsets are
actually different servers. The fact that different servers
have similar performance characteristics strongly supports
the general nature of our result.

Meyers, et al. [17] found that rank changes of servers
are independent of the time scale over which they occur.
That study accumulated all pairs of server ranks that were
ten daysor fewerapart and plotted the distribution of rank
changes that had occurred in that time frame; in contrast,
our analysis tracks rank changes that occurred over nine
to ten days exactly. They also computed distributions of
rank changes for one, two and four hour time scales. They
concluded that since all the distributions were very close,
rank changes were independent of time scale. We modeled
the rank changes of average servers for five hour and ten
day time scales using their technique. Although we have
not developed precise theoretical measures for judging the
closeness of the distributions, we did not observe their re-
sult as strongly using our data; i.e., the distributions of the
rank changes in the two time scales were clearly separated
at all clients.

For completeness, we also used their [17] cumulative
time scale technique to model the performance of top
servers using our data. Despite using a different methodol-
ogy, we observed that top servers experienced a larger pro-
portion of small rank changes compared to average servers;
a result that mirrors our own finding.

5.2 Transfer Times of Top Servers Are Stable

In our study, we found that very few servers offer the
best service to a client over the 41-day period. Therefore,
our ping-random selection scheme benefits from narrowing
the field to a smaller subset of stable top servers. In this
section, we show that such a scheme is inherently scalable
with the size of the server population.

Fig. 12 shows the percentage of all servers in 20-, 50-,
100-, and 193-subsets at each client that are in the set of
top servers for both the 1M file and the 10k file. Other file
sizes produced very similar results.

The figures are strikingly similar. The number of top
servers in ann-subset is a small fraction of the size of the
set. In fact, as the size of then-subset increases, the per-
centage of top servers decreases. Less than ten percent of
all servers in the 193-subset are in the set of top servers
for all file sizes at four clients. A larger percentage of
servers are in the sets of top servers for the clients at Pur-
due and UMass; we explain this result in the Section 4.1.1.
However, the same downward trend in the percentage of
top servers with increases inn-subset size witnessed at the
other clients also holds for UMass and Purdue.

Two facts give us confidence that the results presented
in this paper are representative of top server performance
in general. First, there is little overlap between top servers
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Figure 12. Percentage of top servers in sub-
sets (top: 1M files; bottom: 10k files).

at different clients. The majority of top servers are in the
sets of top servers at one or at most two clients. No server
in the 50-, 100- and 193-subset was in the set of top servers
at all six clients. An average of 3% of top servers in 20-
subsets were in the sets of top servers at the six clients.
Second, our construction ofn-subsets creates disjoint sets
of servers; different servers form the set of top servers in
differentn-subsets. Hence, our results reflect the perfor-
mance of several individual servers that provide the best
performance in theirn-subsets.

In comparison, Myers et al. [17] found that on average
less than half of all servers need to be considered to achieve
good performance most of the time. They defined a server’s
performance to begood if it delivered a document within
110% of the best transfer time for the same document in the
same run. In our study, we find that the fraction of servers
that needed to achieve best performance all the time is less
than ten percent for a large server population. In addition,
we find that the percentage of servers that comprise the set
of top servers in ann-subset decreases with increases in
the size of then-subset. We have validated these findings
across all clients, file sizes, andn-subsets.
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6 Conclusion

Our results show that our ping-random server selection
method performs better than any of the previously-
proposed methods we studied. Ping-random takes
advantage of the fact that the ranks of top-performing
servers remain stable over time, allowing us to eliminate
testing over the course of ten days. Moreover, choosing
randomly from the ping set helps to balance the load
among servers. Since the ping set is formed using
round-trip times, a metric that is somewhat sensitive to
network traffic, and the set is retained over time, we avoid
the problem of clients oscillating among servers. Our
experiemnt was extensive and examined server population
sizes from 20 to 193.
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