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Abstract
We explore combining reinforcementlearning
with a hand-craftedlocal controller in a man-
nersuggestedby thechaoticcontrolalgorithmof
Vincent,SchmittandVincent(1994). A closed-
loop controller is designedusing conventional
meansthat createsa domainof attractionabout
a target state. Chaoticbehavior is usedor in-
ducedto bring the systeminto this region, at
which time the local controller is turnedon to
bring the systemto the targetstateandstabilize
it there. We describeexperimentsin which we
usereinforcementlearninginsteadof, andin ad-
dition to, chaoticbehavior to learn an efficient
policy for driving the systeminto the local con-
troller’s domainof attraction.Usinga simulated
doublependulum,we illustratehow this method
allows reinforcementlearningto be effective in
a problemthat cannotbe easilysolved by rein-
forcementlearningalone,andweshow how rein-
forcementlearningcanimproveuponthechaotic
controlalgorithmwhenthedomainof attraction
canonly be approximatelydetermined.Similar
resultsareshown usingtheHénonmap.This is a
simpleandeffectiveway of extendingreinforce-
mentlearningto moredifficult problems.

1. Intr oduction

For reinforcementlearning(RL) methodsto find wideruse
ason-line methodsfor improving control performanceof
real systemsit is important to devise methodsthat take
advantageof existing control methodologiesto 1) reduce
the complexity of the learningproblemand2) to provide
for acceptablesystembehavior duringlearning.In this pa-
perwe explorecombiningRL with analgorithmproposed
by Vincent,Schmitt,andVincent(1994)thatswitchesbe-
tweenchaoticbehavior and a local controller to bring a
nonlinearsystemto a targetstateandstabilizeit there(see
alsoVincent1997a,b; Vincent& Grantham1997).

Vincent’s algorithm appliesto nonlinearsystemsthat are
chaoticor that can be madeto producechaoticbehavior
by an open-loopcontrol. Calledthe chaotic control algo-
rithm, it worksasfollows. A closed-loopcontroller, which
we will call thelocal controller, is designedusingstandard
designmethodsthat is guaranteedto drive the systemto
the desiredtarget statefrom any statewithin someneigh-
borhoodof thetargetandto stabilizethesystemthere.The
largestsuchneighbourhoodis calledthecontrollablesetof
the local controller. If the controllableset intersectsthe
system’s chaoticattractor, thenstartingfrom any statein
the domainof attractionof thechaoticattractorwill guar-
anteethat thesystemwill eventuallyenterthecontrollable
set. The chaoticcontrol algorithm detectswhen the sys-
tementersthecontrollableset,or asubsetthereof,andthen
turnson thelocal controller(andat thesametime turnsoff
theopen-loopcontrollerthatmayhavebeenusedto induce
chaoticbehavior). Underthis closed-loopcontrol,thesys-
temthenstabilizesat thetargetstate.

Thekey requirementsarethatasuitablelocalcontrollercan
bedesignedsuchthat its controllablesethasa non-empty
intersectionwith thechaoticattractorandthatentryinto the
controllableset,or a subsetthereof,canbedetected.Vin-
cent(1997b)andVincentandGrantham(1997)startwith a
systemmodel,linearizeit aboutthetargetstate,anddesign
a linearquadraticregulator(LQR) aboutthetargetstateus-
ing standardLQR methods(e.g., Ogata,1987). Various
methodsexist for determiningthe controllableset, but it
is oftennecessaryto settlefor an approximation.In some
casesonly a roughapproximationof thecontrollablesetis
possible,andit is necessaryto turn on the local controller
several timesbeforethe systemis capturedto the desired
targetstate,turningit off eachtimethesystemexits thepu-
tativecontrollableset(Vincent,Schmitt,& Vincent1994).

This chaoticcontrol algorithmsuggestsseveral waysthat
RL canbe similarly usedin conjunctionwith chaoticbe-
havior anda hand-craftedlocal controller. Assumethatwe
havebeenableto designa localcontrollerfor adesiredtar-
getstateandthatwe have a methodfor determiningwhen
thesystementersits controllableset(or a reasonablylarge



subsetof it). RL canadjustaclosed-loopcontrollerfor use
outsideof thecontrollablesetwith the objective of reach-
ing the controllableset in minimum time. If the system
is chaotic,or is madeto exhibit chaoticbehavior via an
open-loopcontrol,this chaoticbehavior canbeusedasthe
modeof explorationof theRL system.With this scheme,
the prior knowledgeembodiedin the local controllercan
make the learningpart of the taskmucheasierdueto the
increasedsizeof theRL system’sgoalset(now thecontrol-
lablesetof the local controller). At thesametime—if the
rewardsaredefinedappropriately—RLcanimprove upon
the chaoticcontrol algorithm by learningto avoid states
in the putative controllablesetof the local controller that
arenot in its actualcontrollableset. Thesearestatesfrom
which thelocal controllercannotstabilizethesystem.

In this paperwe describeseveral experimentsmotivated
by theseideasusing a simulateddoublependulummoti-
vatedby thework of Vincent,SchmittandVincent(1994).
We thendescribeexperimentswith a simplerbut naturally
chaoticsystem,theHénonmap,motivatedby thework of
Vincent(1997b),thatallowedusto furtherexploresomeof
thequestionsraisedby thedoublependulumresults.

A varietyof methodshavebeenproposedfor usingdomain
knowledgeand/orlearnedmodelsfor improving learning
onpendulumswinguptasksrelatedtoourdoublependulum
problem(e.g.,Atkeson& Schaal,1997;Atkeson& Santa-
maría,1997;Boone,1997a,b).Switchingcontrol is alsoa
well-known approachto theseandothernonlinearcontrol
problems(e.g.,Spong,1995; Spong& Praly, 1996),and
RL hasbeenusedin thecontrolof theHénonmapandother
chaoticsystems(Gadaleta& Dangelmayr, 1999). How-
ever, we arenot awareof studiesthatconsiderthe combi-
nationof RL with switchingcontrolthatwe proposehere.

2. DoublePendulum

Thedoublependulumhastwo links,oneattachedattheend
of theother. At thebaseof eachlink is amotorwith limited
power (Figure1).

Thesystem’sequationsof motionare:

θ̈1
� �

s1 � m1 � m2sin2 � θ1 � θ2 �����
	 1�� � s1m2θ̇ 2
1 sin� θ1 � θ2 � cos� θ1 � θ2 �� m2s2θ̇ 2

2 sin� θ1 � θ2 ��� gm2sinθ2cos� θ1 � θ2 �� g � m1 � m2 � sinθ1 � τ1 �
and

θ̈2
� 1

s2

� � s1θ̈1cos� θ1 � θ2 ��� s1θ̇ 2
1 sin� θ1 � θ2 �� gsinθ2 � τ2

m2
�

whereθ1 andθ2 arerespectively the anglesfrom the first
andsecondlinks to vertical;m1

� 1 kg andm2
� 1 kg are

the respective massesof the first andsecondlinks; s1
� 1

meterand s2
� 1 meterare their lengths;and τ1 and τ2

arethetorquesthecontrollerappliesat thefirst andsecond
joints. Themaximumtorqueis 8.5newtons,sothatτ1 � τ2 �� � 8 � 5N � 8 � 5N� .

Base of pendulum

PSfragreplacements s1

s2

m1

m2

θ1

θ2

Figure1. The Double Pen-
dulum. Thereis a motor at
eachjoint.

The systemstartswith both
links hanging motionless
downwards. The objec-
tive is to balanceboth links
straight up vertically, i.e.,
to stabilize about the tar-
getstate � θ1

� θ2
� π � θ̇1

�
θ̇2
� 0� . Although the

motors generate sufficient
torque to producestability
in theneighbourhoodof the
target state, they do not
generatesufficient torqueto
achieve this target directly
from the initial statewithout following an oscillatory tra-
jectory. It is anunderpowerednonlinearsystemfor which
no linearcontrolleris globallyeffective. We simulatedthis
systemusinganEulermethodwith astepsizeof 0.001sec-
onds.

3. ReinforcementLearning

Reinforcementlearningconsistsof acollectionof methods
for approximatingsolutionsto stochasticoptimal control
problems(Sutton& Barto, 1998). Thesemethodsadjust
a closed-loopcontrol rule, or policy, which is a mapping
from systemstatesto control actions.Usually formulated
for discrete-timesystemswith an immediatereward rt � 1
beingdeliveredto the learningsystemin responseto the
executionof control action ut in statext , the most com-
monlystudiedobjectiveis to maximizefor eachtimestept
theexpecteddiscountedreturndefinedto bethediscounted
sumof rewardsover futuretime steps:

∞

∑
k � 0

γkrt � k � 1 �
whereγ, 0 � γ � 1 is adiscountfactor.

In this study, we usetheRL algorithmknown asSarsa(λ )
(Rummery, 1995; Sutton& Barto, 1998) with replacing
eligibility traces(Singh& Sutton,1996). This algorithm
worksasfollows. Let Qt � x � u � denotethe estimateat time
t of thevalueof the state-actionpair � x � u � . This is an es-
timateof theexpectedreturnstartingfrom statex, execut-
ing controlactionu, andfollowing anoptimalpolicy there-
after. At eachtime step, this estimateis updatedfor all



state-actionpairsusingtheupdateequation

Qt � 1 � x � u � � Qt � x � u ��� αδtet � x � u � �
whereδt is thetemporaldifferenceerroratstept:

rt � 1 � γQt � xt � 1 � ut � 1 ��� Qt � xt � ut � �
and et � s � u � is the value of the eligibility trace for state-
actionpair � x � u � at time t, andα is a positivestep-sizepa-
rameter. Theeligibility traceis updatedfor all state-action
pairs � s � u � asfollows:

et � x � u � ��� 1 if x � xt andu � ut ;
γλ et 	 1 � x � u � otherwise�

whereλ , 0 � λ � 1, is thetrace-decayparameter.

The most up-to-datevalue estimatesof the state-action
pairscontainingthecurrentlyobservedstatext areusedto
determinethe control action the learningsystemtakesat
timestept. Specifically,

ut
� argmax

u � �Qt � x � u � ��� ηt � �
where,for the doublependulum,ηt is a randomnumber
drawn uniformly from the interval

� � 0 � 00005� 0 � 00005� .
The addition of this small noiseterm producessomeex-
ploratorybehavior, especiallyat the beginningof learning
whenthe valueestimatesarenearlyequal. In our experi-
ments,wesetα � 0 � 1, γ � 0 � 98,andλ � 0 � 99.

In applying Sarsa(λ ) to the doublependulum,we let the
learningalgorithmselectfrom a setof ninecontrolactions
consistingof thetorquepairs � τ1 � τ2 � , whereτi

� � 8 � 5 or 0
for i �"! 1 � 2 # . Every20 time stepsof thedoublependulum
simulation,the learningsystemselectedan action (a pair
of torques)andheldit constantfor 20 timesteps.Thus,the
time stepfor learningcorrespondedto 0.02 sec,whereas
thependulumsimulationtimestepwas0.001sec.Weused
a simple rectangularaggregationmethodto representthe
estimatedvaluesof the state-actionpairs. For eachof the
nine actions,we createda tablewith 2,432entries. Each
entrywasthe valueassociatedwith the correspondingac-
tion anda rectangularregion of statespacedeterminedby
thefollowing non-overlappingintervals: for eachof θ1 and
θ2: 0, � 0 � 6, � 2 � 4, � π radians;andfor eachof θ̇1 andθ̇2:
0, � 0 � 25, � 0 � 5, � ∞ radianspersecond.

Onemightattemptasimple,pureRL approachto thisprob-
lem. For example,onecoulddefinetherewardrt to be � 1
for eachtime stepin which the stateof the doublepen-
dulum is not within somesmall region of the target state,
and set rt

� 0 within this region. This would set up the
RL systemto attemptto learn to drive the systemto this
target region in the minimum numberof time stepsand
keepit within that region. This approachhasalmostno

chanceof producinganacceptablesolutionwithin any rea-
sonabletime period. The targetstate—bothlinks motion-
lessupwards—isa repellingstate.For a simpleRL system
to getcloseto this stateat all would beextremelyunlikely.
The learningtime for sucha RL systemwould beso long
thatwecouldsaythatthetaskis effectively unlearnableby
sucha system.

4. A Local Controller

Following thederivationmethodin VincentandGrantham
(1997)pp. 91–114 andusingstandardLQR techniques,
we obtaineda saturatingLQR control rule for the dou-
ble pendulumlinearizedaboutthe target state. To obtain
thiscontrolrule,wefirst foundtheclosed-loopcontrolrule
u � u � x � thatminimizes,for thelinearizedsystem,thefol-
lowing expression:

J �%$ ∞

0

� � x � x̄ � T � x � x̄ ��� uT u � dt � (1)

wherex̄ is thetargetstate.Thesecontrolsarethenrestricted
to lie in the appropriateregion of control space.Specifi-
cally, our saturatingLQR control rule for the doublepen-
dulumis givenby&

τ1
τ2 ' � & � 19� 6243 8 � 2425 � 19� 6666 � 2 � 4341� 19� 6666 3 � 4245 19� 6243 5 � 8586 '�)(**+ θ1 � π

θ̇1
θ1 � θ2

θ̇2

,.--/
provided that 0 τi 0�� 8 � 5, i �1! 1 � 2 # ; otherwise,if τi 2 8 � 5
thenτi

� 8 � 5, andif τi � � 8 � 5 thenτi
� � 8 � 5.

This control rule is guaranteedto bring the systemto the
target stateandstabilizeit therefrom any statewithin its
controllableset. Characterizingtheactualcontrollableset
is a difficult problemfor this system,but thereareseveral
waysto approximateit. We followedVincent,Schmittand
Vincent(1994)andusedasanestimateof thecontrollable
settheregionin whichtheanglesof bothlinks arelessthan
0 � 75 radiansaway from the targetstate(i.e., away from π
radians). In the chaoticcontrol algorithm the local con-
troller is turnedon whenever both link anglesare within
0.75radiansof π .

5. The Chaotic Control Algorithm

Asmentionedabove,thechaoticcontrolalgorithmrelieson
inducingchaoticbehavior that causesthe systemto enter
theestimatedcontrollablesetof thelocal controller. When
this is detected,the local controller is turnedon to stabi-
lize the systemaboutthe targetstate.We inducedchaotic
behavior in the doublependulumsystemby driving the it



with thefollowing open-loopcontrolsignal:

τ1
� 8 � 5cos� 1 � 5 t � and τ2

� 8 � 5cos� 0 � 7 t �
wheret is the time in seconds.Of severalopen-loopcon-
trollerswith whichwe experimented,this oneis thefastest
on averageto causethesystemto entertheestimatedcon-
trollable setof the local controllerdescribedin Section4.
This open-loopcontrol signalis turnedoff whenthe local
controlleris turnedon whenever the systementersthe es-
timatedcontrollableset. However, becausetheremay be
statesin the estimatedcontrollableset that arenot in the
actualcontrollableset,we let theopen-loopcontrollertake
over againif the systemleavesthe estimatedcontrollable
set.

In our experimentswith a numberof differentopen-loop
controllers,we foundthatthenumberof timestepsit takes
the chaotic control algorithm to stabilize the systemis
1,651( � 102)on averagefor a goodopen-loopcontroller,
andup to 3,000for a lessgoodone.Weusedthefastestwe
found for further experiments.The averageswheremea-
suredover50 runs.

6. Combining the Local Controller and RL

First we combinedthe local controller and the RL con-
troller by letting the RL controller take over the role of
theopen-loopcontrollerin thechaoticcontrolalgorithm:if
the RL controllerdrivesthe doublependuluminto the es-
timatedcontrollableset,the local controllertakesover. If
thelocalcontrollermakesthesystemleavethecontrollable
set,theRL systemregainscontrol.

How shouldrewardsignalsbesuppliedto theRL controller
to make this schemework? If we just rewardit for getting
the doublependuluminto the estimatedcontrollableset,
then it will be rewardedeven if it drivesthe systemto a
statein theestimatedcontrollablesetthat is not in theac-
tual controllableset. In this case,the local controllerwill
not beableto stabilizethe systemso that the desiredout-
comewill not beachieved. Themethodwe foundto work
well is to rewardtheRL controllerwhenthestateentersthe
estimatedcontrollableset,andto punishit slightly moreif
it hasto regaincontrol from thelocal controller(i.e., if the
doublependulumdoesnot stabilizeandthe RL controller
hasto take controlagain).Additionally, whentheRL con-
troller is not in control, its learningalgorithm is shutoff
aswell. This meansthat theRL controllerexperiencesthe
timeintervalduringwhichthelocalcontrolleris engagedas
if it wereasingletimestep.It mayseemalittle strangethat
wepunishtheRL controllerfor anothercontroller’sfailure,
but theRL controlleris theonly adaptingcomponent,and
thereforetheonly partthathasachanceof avoidingpunish-
mentby placingthesysteminto statesthatarein theactual
controllableset.

Table1 describesthemainpointsin thealgorithmfor this
wayof combiningthelocalcontrollerwith RL. It describes
whathappensduringeachlearningtrial, whichbeginswith
thedoublependulumin its initial state(bothlinks hanging
motionlessdownwards)andendswhen the target stateis
reached(at which we know the local controllercanstabi-
lize thesystem).A learningrun beginswith initializationof
thestate-actionvaluefunction,Q, andtheeligibility func-
tion, e, to zero,andconsistsof a largenumberof learning
trials. We adoptedtheapproachcommonlyusedin RL of
rewardingthe systemwith a � 1 on eachtime stepuntil a
goalstateis reached(in this case,until theestimatedcon-
trollable set is reached)to encouragethe systemlearn to
reachthegoalin theminimumnumberof timesteps.

Table1. Themainpointsin thecombinationof theRL controller
andthelocalcontroller.

1. TheRL controllergeneratesacontrolactionand
updatesQ ande.

2. If thesystemhasnot enteredtheestimated
controllableset,theRL controllerreceivesa
rewardof � 1. Jumpto 1.

3a. Otherwisethesystemhasenteredtheestimated
controllableset,andthelocal controllertakes
over. TheRL controllerreceivesa rewardof 1.

3b. Thelocal controllergeneratesthenext action.
3c. If thesystemexits from estimatedcontrollable

set,theRL controllerreceivesa rewardof � 2.
Jumpto 1.

3d. If thesystemreachedthetargetstate,thetrial
terminates.

3e. Otherwisejump to 3b.

Figure 2 shows the learningcurve for the RL controller
combinedasdescribedabovewith thelocalcontroller. The
numberof time stepsper trial is the total numberinclud-
ing thethoseduringwhich control is providedby thelocal
controller.

Theseresultsshow thatthiswayof combiningtheRL con-
troller with thelocalcontrollerworksverywell. FromFig-
ure 2 we canseethat the RL controllercombinedin this
way with the local controller achieved on averagemuch
fasterstabilizationtimes—lessthan250 time steps—than
the1,651time stepswe achievedfor thebestchaoticcon-
trol algorithm. An especiallyinterestingresult is that the
RL controller learnsto avoid statesin the estimatedcon-
trollable set that are not in the actualcontrollableset of
the local controller. Figure3 shows the numberof times
thedoublependulumenteredtheestimatedcontrollableset
but thelocalcontrollerwaslaterturnedoff becauseit could
notactuallystabilizethesystem.Fromthestartof learning,
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Figure2. Learningcurve for a RL controllercombinedwith the
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Figure3. TheRL controllerlearnsto avoid statesin theestimated
controllablesetthatarenot in theactualcontrollable.Onesecond
consistsof 50 timesteps.Averageof 100runs.

this numberincreasesastheRL controllerlearnsto getthe
doublependuluminto the estimatedcontrollableset, and
thenit decreasesastheRL controllerlearnswhichstatesin
this setwork andwhich shouldbeavoided. This improve-
mentis causedby theRL controllerbeingpunishedfor the
local controller’s failureto stabilizethesystem.

7. Combining the Chaotic Control Algorithm
with RL

We also experimentedwith combiningthe RL controller
with thechaoticcontrolalgorithm,that is, with combining
RL with the open-loopcontroller describedin Section4
thatinduceschaoticbehavior, aswell aswith thelocalcon-
troller. Heretheideais to let thechaoticbehavior provide
theexploratorybehavior from which theRL controllercan
learn.Oneway to do this is to run theRL controllerat the
sametime astheopen-loopcontrollerandlet bothof their
controldecisionsdeterminetheactualcontrolactionsentto
thedoublependulum.Welet thecontrolactionbeaconvex
linearcombinationof thecontrolchoicesof thechaoticand
RL controllers,with thecoefficientvaryingduringlearning

to adjusttherelativecontributionof eachcontroller. At the
startof eachlearningrun,controlchoicesweredueentirely
to theopen-loopcontrol rule,while theRL controllercon-
troller learnedasif thesewereits own decisions.As each
learningrun proceeded,we alteredthe coefficient so that
an increasingproportionof the controlwasdueto the RL
controller’schoices.

Weexperimentedwith severalmethodsfor decayingthein-
fluenceof the open-loopcontroller. Our bestresultswere
obtainedwith a linear andan exponentialdecay. Specifi-
cally, for thelinearmethod

ω � min ! 1 � t
1000 #

andthecontrolactionis:

τi
� ωτRL

i �5� 1 � ω � τopen-loop
i

for i �"! 1 � 2 # . For theexponentialdecay

ω � min � 1 � exp

& � t � 500
200 '76

and

τi
� � 1 � ω � τRL

i � ωτopen-loop
i

for i �"! 1 � 2 # , wheret is thetrial numberin a learningrun.

Figure4 showsourbestresultsaveragedover100runs.At
thestartof eachrun,thecontrolactionsweredueentirelyto
theopen-loopcontroller. As thenumberof trials increases,
theRL controller’sactionscontributeanincreasingpropor-
tion. ComparingFigure4 with Figure2, oneseesthatboth
methodsfor phasingin RL eliminatethevery long trials at
thebeginningof learning,but they addmoreareaunderthe
learningcurve. In total, theresultis a muchlargernumber
of timestepsbeforeagoodlevel of performanceis reached
thanachievedusingRL aloneoutsideof theestimatedcon-
trollableset.

8. Impr oving over the Local Controller in
terms of Time-to-Target

The local controller is not a minimum-timecontroller (it
minimizesa measurethat combinesdistancefrom the tar-
getandthemotorforceneeded).Thereforetheoreticallyit
shouldbe possiblefor the RL controller to do betterthan
the local controllerin termsof the time taken to reachthe
target state. In termsof the performancelevel eventually
achievable, it might be better to usea smaller estimated
controllablesetthanalargerone,sincethiswoulddecrease
theregionin which thenon-minimum-timelocalcontroller
would operate.To studythis possibility, we experimented
with decreasingtheestimatedcontrollablesetduringlearn-
ing, andthencomparedthe local controller’s original per-
formancewith thatof this new combinationthathasmore
freedomof actionnearthetargetstate.
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Figure4. Learningcurvesfor combinationsof thechaoticandRL controllersfor thedoublependulum.For theleft graph,theweighting
of thechaoticcontrollerdecreaseslinearly, andfor theright graphit decreasesexponentially. Bothgraphsareaveragesof 100runs.

Specifically, we used the combinedRL and local con-
trollersasdescribedin Section6 for thefirst 12,000trials,
activating the local controller if both links of the double
pendulumgot within 0 � 75 radiansfrom the target state.1

We decreasedthis activation angleduring trials 12,000to
24,000linearly from 0 � 75 to 0 � 01 radians,at which setting
the RL controller was allowed to learn for an additional
12,000trials.

After the first 12,000 trials the averagenumberof time
stepsfrom the time that the 0 � 75 radiancriterion wasmet
for the last time until the target was reached,was 70� 12
( � 0 � 03). This number is the local controller’s original
performance.After decreasingthe estimatedcontrollable
set and learningfor 24,000additional trials, the number
of time stepshaddroppedto 69.88( � 0 � 02). Thesenum-
bersarebasedon 100 runsand trials 11,900–12,000and
35,900–36,000.This improvementis not very large, but
it shows thattheRL controllercanlearna controlrule that
canimproveonacarefullyhand-craftedsystem-specificso-
lution.

9. HénonMap

To further explore some of the observations described
above, we followed Vincent(1997b)and conductedaddi-
tional experimentsusing the Hénonmap (Hénon,1976),
oneof the simplestsystemsto exhibit a chaoticattractor.
This systemhasa two-dimensionalstatespacewhich al-
lowedusto moreeasilyvisualizetheresultsof variouscon-
trol methods.It is givenby

x1 � t � 1� � � 1 � 4x2
1 � t ��� x2 � t ��� 1

x2 � t � 1� � 0 � 3x1 � t �
and is known to have an unstable fixed point x̄ ��
0 � 6314� 0 � 1894� T.

1Weusedafinerquantizationof thestatespacefor thisexperi-
mentthanthatdescribedin Section3. Thequantizationthresholds
for θ1 andθ2 were0, 8 0 9 6, 8 2 9 4, 8 2 9 8, 8 π radians.

We implementedVincent’s (1997b)saturatingLQR con-
trol rule to stabilizethesystemaboutx̄. A one-dimensional
control signal,u � t � , wasaddedto theequationfor x1, and
the control rule wasderived from a local linearizationof
thesystemaboutx̄ in amanneranalogousto thatdescribed
above for the double pendulum. The controls were re-
stricted to a interval

� � um � um � . We usedum
� 0 � 1. To

investigatethe ability of RL to learn to avoid subregions
of an estimatedcontrollableset,we purposefullyusedan
overly-largeestimateof thecontrollablesetgivenby a cir-
cularregionof radius0.25centeredat x̄.

Weimplementedseveralcontrolschemesfor stabilizingthe
Hénonmap at x̄. In all cases,we initiated trials by ran-
domly selectinginitial statesaccordingto a circularGaus-
sian distribution with standarddeviation 0.1 centeredat� � 0 � 2 � 0 � 15� T . Trials endedwhen the stateentereda tar-
get region of radius0.025about x̄ or when it exited the
region � 1 � 5 � x1 � 1 � 5 and � 0 � 4 � x2 � 0 � 4 (Figure7).
We called theselatter trials ‘f ailures’ (althoughit is pos-
sible that someof thesetrials, if continuedlong enough,
would have re-enteredthe region of interest).Thecontrol
schemeswere:

LQR: global useof the saturatingLQR controller. Al-
thoughthiscontrollercannotstabilizethesystemfrom
arbitrarystartingstatesevenwith noconstraintsonthe
control magnitude(Vincent,1997b),its performance
providesa usefulbaseline.

Chaos+LQR: saturating LQR control within the esti-
matedcontrollableset,andno control(u � 0) outside
of this set(thechaoticcontrolalgorithmof Vincentet
al., 1994).

RL: global useof RL. We usedSarsa(0)with a reward
of � 1 on eachtime stepuntil a trial ended,with an
additionalreward of � 1000if the trial wasa failure.
The actionswere � um, 0, or um, so that the extreme
valuescoincidedwith LQR’s saturatedcontrols. The



statespacewasrepresentedby a lookup tableaggre-
gating statesinto rectangularregions determinedby
a 50 : 50 grid over the region � 1 � 5 � x1 � 1 � 5 and� 0 � 4 � x2 � 0 � 4. We setα � 1, a valuedetermined
by experimentto work well for thisproblemwhenRL
wascombinedwith the local controller. We alsoset
γ � 1 sincethe trials wereof finite duration,andwe
did notuserandomexploration,relying insteadon the
system’s chaoticbehavior. Note that global RL does
not necessarilystabilizethesystemat x̄.

RL+LQR: saturatingLQR within the estimatedcontrol-
lable set and Sarsa(0)outsideof it (implementedas
for global RL). Additional rewardsweredetermined
accordingto theschemegivenin Table1.

Figure 5 gives performanceor learningcurves for these
controllers.Significantimprovementis apparentfor theRL
controllers,especiallyfor RL+LQR. Hitting the small tar-
get region with chaosalonetook on average238 ( � 8 � 83)
steps;RL+LQR learnedto take on average6.1 ( � 0 � 06)
steps.Not shown is thedecreasewith learningin thenum-
ber of failure trials (e.g., from an averageof 32.5 ( � 1 � 8)
over 10 runs of trials 1–100of RL+LQR, to an average
of 1.0 ( � � 31) over 10 runs of trials 4900-5000). Fig-
ure 6 shows that, asin the doublependulumexperiments,
RL+LQR learnsto reducethe frequency with which tra-
jectoriesreachstatesin the estimatedcontrollablesetthat
arenot in the actualcontrollableset. Figure7 shows the
policy learnedby RL+LQR. Theshadedsquaresarethose
visitedduringlearning,andtheirgrey levelscodetheaction
selectedby the learnedcontrol rule. Within the estimated
controllableset only the LQR actionsare selected. The
blacksquaresoutsideof the estimatedcontrollablesetare
thosein which the learnedcontrol rule’s actionshappened
to coincidewith thosethat the saturatingLQR controller
would have generatedin thosestates.This allows oneto
seehow thelearnedcontrolrulediffersfrom theglobalap-
plicationof thesaturatingLQR rule.

10.Discussionand Conclusion

The studiesherewere inspiredby the chaoticcontrol al-
gorithm of Vincent, Schmitt, and Vincent (1994), which
suggestedthat a similar combinationof RL with a local
controllermight increasethe rangeof applicability of RL
methods.Exploring this usinga simulateddoublependu-
lum andtheHénonmap,weobservedthefollowing results.
First, usingan RL controlleraloneuntil control shiftedto
the local controllerwasable,after leaning,to achieve sta-
bilizationsignificantlyfasterthancouldbeachievedby the
bestchaoticcontrol algorithmwe tried. This is not a sur-
prising result becausethe chaoticcontrol algorithm does
not improveits performancethroughlearning.
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A secondresult that is somewhat more surprisingis that
letting inducedchaoticbehavior of the doublependulum
guidetheexploratorybehavior of theRL controllercanre-
ducethe lengthof initial learningtrials, but doesnot nec-
essarilyreducethetotal timeneededto learnagoodglobal
control rule. Onepossibleexplanationis that theRL con-
troller is learningto compensatefor thechaoticcomponent
of thecontrolactionandhasto continuechangingits pol-
icy asthe weight of the chaoticcomponentdecreases.Of
course,we experimentedwith just a few methodsfor in-
tegrating RL with chaoticbehavior, and many othersare
possible.

A third result—andperhapsthemostinteresting—wasob-
served with both the doublependulumand Hénonmap.
The RL controller learnedto compensatefor our over-
estimationof the local controller’s controllableset. We
observed that the RL controller learnedto avoid driving
the systemto statesin the estimatedcontrollablesetfrom
which the local controllercould not actuallystabilizethe
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system.This is importantbecausethemostdifficult aspect
of thechaoticcontrolalgorithm,andouradaptationof it, is
theaccurateestimationof thelocalcontroller’scontrollable
set. Our resultssuggestthat it may be a goodstrategy to
make a fairly coarseapproximationof thecontrollableset
andlet learningadjustfor its inaccuracies.Furtherresearch
is neededto determinehow learningtime changeswith in-
creasinglylarge estimatesof the controllableset. Finally,
ourobservationsfrom successively shrinkingtheestimated
controllableset while learningsuggestthat this might be
a good methodfor compensatingfor sub-optimalperfor-
manceof thelocalcontroller. But herealsofurtherresearch
is neededto determineif substantialimprovementscanbe
obtainedin this way.

Overall, theseresultsprovideadditionalevidencethatcon-
ventionalcontrol methodologyprovidesa rich avenuefor
injectingprior knowledgeinto RL systemsandthatRL can
help improve the utility of conventionalcontrol methods
whenextendedto complex nonlinearcontrolproblems.
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