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Abstract

We explore combining reinforcementlearning
with a hand-craftedocal controllerin a man-
nersuggestedy the chaoticcontrolalgorithmof

Vincent,SchmittandVincent(1994). A closed-
loop controller is designedusing corventional
meansthat createsa domainof attractionabout
a target state. Chaotic behaior is usedor in-

ducedto bring the systeminto this region, at
which time the local controlleris turnedon to

bring the systemto the target stateand stabilize
it there. We describeexperimentsin which we
usereinforcementearninginsteadof, andin ad-
dition to, chaotic behaior to learn an efficient
policy for driving the systeminto the local con-
troller's domainof attraction.Using a simulated
doublependulumywe illustrate how this method
allows reinforcementearningto be effective in

a problemthat cannotbe easily solved by rein-
forcementearningalone,andwe shav how rein-
forcementearningcanimprove uponthechaotic
control algorithmwhenthe domainof attraction
canonly be approximatelydetermined. Similar
resultsareshavn usingtheHénonmap. Thisis a
simpleandeffective way of extendingreinforce-
mentlearningto moredifficult problems.

1. Intr oduction

For reinforcementearning(RL) methodgo find wider use
as on-line methodsfor improving control performanceof

real systemsit is importantto devise methodsthat take

adwantageof existing control methodologiego 1) reduce
the compleity of the learningproblemand 2) to provide

for acceptablesystembehaior duringlearning.In this pa-

perwe explore combiningRL with analgorithmproposed
by Vincent,Schmitt,andVincent(1994) that switchesbe-

tween chaotic behaiior and a local controllerto bring a

nonlinearsystemto a targetstateandstabilizeit there(see
alsoVincent1997ab; Vincent& Granthaml997).

Vincent’s algorithm appliesto nonlinearsystemsthat are
chaoticor that can be madeto producechaoticbehaior
by an open-loopcontrol. Calledthe chaotic control algo-
rithm, it worksasfollows. A closed-loopcontroller, which
wewill call thelocal controller, is designedisingstandard
designmethodsthat is guaranteedo drive the systemto
the desiredtarget statefrom ary statewithin someneigh-
borhoodof the targetandto stabilizethe systenthere.The
largestsuchneighbourhoodks calledthe controllablesetof
the local controller If the controllableset intersectsthe
systems chaoticattractor then startingfrom ary statein
the domainof attractionof the chaoticattractorwill guar
anteethatthe systemwill eventuallyenterthe controllable
set. The chaoticcontrol algorithm detectswhen the sys-
tementerghecontrollableset,or asubsethereof,andthen
turnson thelocal controller(andat the sametime turnsoff
theopen-loopcontrollerthatmayhave beenusedto induce
chaoticbehavior). Underthis closed-loopcontrol, the sys-
temthenstabilizesatthetametstate.

Thekey requirementsrethatasuitabldocal controllercan
be designedsuchthatits controllablesethasa non-empty
intersectiorwith thechaoticattractorandthatentryinto the
controllableset,or a subsethereof,canbe detected.Vin-
cent(1997b)andVincentandGranthan(1997)startwith a
systemmodel linearizeit aboutthetargetstate, anddesign
alinearquadratiaegulator(LQR) aboutthetargetstateus-
ing standardLQR methods(e.g., Ogata,1987). Various
methodsexist for determiningthe controllableset, but it
is often necessaryo settlefor an approximation.ln some
casenly aroughapproximatiorof the controllablesetis
possibleandit is necessaryo turn on the local controller
several times beforethe systemis capturedto the desired
targetstate turningit off eachtime the systemexits thepu-
tative controllableset(Vincent,Schmitt,& Vincent1994).

This chaoticcontrol algorithm suggestseveral waysthat
RL canbe similarly usedin conjunctionwith chaoticbe-
havior anda hand-craftedocal controller Assumethatwe
have beenableto designalocal controllerfor adesiredtar-
getstateandthatwe have a methodfor determiningwhen
the systementersits controllableset(or areasonablyarge



subseDf it). RL canadjusta closed-loopcontrollerfor use
outsideof the controllablesetwith the objective of reach-
ing the controllablesetin minimum time. If the system
is chaotic, or is madeto exhibit chaoticbehaior via an

open-loopcontrol, this chaotichehaior canbe usedasthe

modeof explorationof the RL system.With this scheme,
the prior knowledgeembodiedin the local controller can
male the learningpart of the taskmuch easierdueto the

increasedaizeof theRL systemsgoalset(now thecontrol-

lable setof the local controller). At the sametime—if the

rewardsare definedappropriately—RLcanimprove upon
the chaotic control algorithm by learningto avoid states
in the putative controllablesetof the local controllerthat
arenotin its actualcontrollableset. Thesearestatesfrom

whichthelocal controllercannotstabilizethe system.

In this paperwe describeseveral experimentsmotivated
by theseideasusing a simulateddouble pendulummoti-
vatedby thework of Vincent,SchmittandVincent(1994).
We thendescribesxperimentswith a simplerbut naturally
chaoticsystem the Hénonmap, motivatedby the work of
Vincent(1997b),thatallowedusto furtherexplore someof
thequestiongaisedby the doublependulunresults.

A varietyof methodshave beenproposedor usingdomain
knowledgeand/orlearnedmodelsfor improving learning
onpendulumswinguptasksrelatedto ourdoublependulum
problem(e.g.,Atkeson& Schaal1997;Atkeson& Santa-
maria,1997;Boone,1997a,b).Switchingcontrolis alsoa
well-known approacho theseandothernonlinearcontrol
problems(e.g., Spong,1995; Spong& Praly, 1996), and
RL hasbeenusedn thecontrolof theHénonmapandother
chaotic systems(Gadaleta& Dangelmayr 1999). How-

ever, we arenot aware of studiesthat considerthe combi-
nationof RL with switchingcontrolthatwe proposehere.

2. Double Pendulum

Thedoublependulunmhastwo links, oneattachedttheend
of theother At thebaseof eachlink is amotorwith limited
power (Figurel).

The system$ equationf motionare:
Oy = [sy(my+m,sir(6,— 65))]
: (‘ $;m, 67 Sin(6; — 6,) co(6; — 6)
—m,s,62sin(, — 6,) + gm,sin6, cos 6, — 6,)
—g(m; +m,)sind, + rl)

-1

% (— 5,0, 046, - 6,) +5,67sin(6, - 6,)

, T,
—gsing, + @)

where 8, and 6, arerespectiely the anglesfrom the first

andsecondinks to vertical;m; = 1 kg andm, = 1 kg are
the respectie masse®f thefirst andsecondinks; s; = 1

meterands, = 1 meterare their lengths;and 1; and 1,

arethetorquesthe controllerappliesat thefirst andsecond
joints. Themaximumtorqueis 8.5newtons,sothatt,, 7, €

[—8.5N,8.5N].

The systemstartswith both
links hanging motionless ‘
downwards._ _ The obj

tiveis to baFﬁH&%ﬁP%%mems °
straight up vertically, i.e., 0
to stabilize about the tar-
getstate(6, = 6, = 1,6, =
8, = 0).  Although the
motors generate sufficient
torque to produce stability
in the neighbourhoodf the
target state, they do not
generatesufficient torqueto
achiese this target directly
from the initial statewithout following an oscillatorytra-
jectory. It is anunderpaverednonlinearsystemfor which
no linearcontrolleris globally effective. We simulatedthis
systenmusinganEulermethodwith a stepsizeof 0.001sec-
onds.

Base of pendulum

Figurel.The Double Pen-
dulum. Thereis a motor at
eachjoint.

3. ReinforcementLearning

Reinforcementearningconsistof a collectionof methods
for approximatingsolutionsto stochasticoptimal control

problems(Sutton& Barto, 1998). Thesemethodsadjust
a closed-loopcontrol rule, or policy, which is a mapping
from systemstatesto control actions. Usually formulated
for discrete-timesystemswith animmediaterewardr,_

being deliveredto the learningsystemin responsdo the
executionof control actiony, in statex;, the mostcom-
monly studiedobjectiveis to maximizefor eachtime stept

theexpecteddiscountedeturndefinedto bethediscounted
sumof rewardsoverfuturetime steps:

(o]
> Wi
K=o

wherey, 0 < y < 1is adiscountfactor

In this study we usethe RL algorithmknown asSarsad)
(Rummery 1995; Sutton& Barto, 1998) with replacing
eligibility traces(Singh& Sutton,1996). This algorithm
works asfollows. Let Q;(x,u) denotethe estimateat time
t of the valueof the state-actiorpair (x,u). Thisis anes-
timate of the expectedreturnstartingfrom statex, execut-
ing controlactionu, andfollowing anoptimalpolicy there-
after At eachtime step, this estimateis updatedfor all



state-actiorpairsusingthe updateequation

Qura(xu) = Q% u) + age(xu),

whereg, is thetemporaldifferenceerrorat stept:

Mo T YQ (% p15Uepg) — Q (%, W),

and g (s,u) is the value of the eligibility tracefor state-
actionpair (x,u) attimet, anda is a positive step-sizgpa-

rameter Theeligibility traceis updatedor all state-action
pairs(s,u) asfollows:

1 if X=X andu=w;
yAg_,(x,u) otherwise

axu = {

whereA, 0 < A < 1,isthetrace-decayparameter

The most up-to-datevalue estimatesof the state-action
pairscontainingthe currentlyobsenedstatex, areusedto
determinethe control action the learning systemtakes at
time stept. Specifically

U = arngL@{Qt (xu')+ni,

where,for the doublependulum,n;, is a randomnumber
drawn uniformly from the interval [—0.00005 0.00008.
The addition of this small noiseterm producessomeex-
ploratorybehaior, especiallyat the beginning of learning
whenthe value estimatesare nearly equal. In our experi-
mentswe seta = 0.1, y = 0.98,andA = 0.99.

In applying Sarsal) to the double pendulum,we let the
learningalgorithmselectfrom a setof ninecontrolactions
consistingof thetorquepairs(t,, 7,), wheret, = £8.50r0
fori € {1,2}. Every 20time stepsof thedoublependulum
simulation, the learningsystemselectedan action (a pair
of torques)andheldit constanfor 20time steps.Thus,the
time stepfor learningcorrespondedo 0.02 sec,whereas
thependulumsimulationtime stepwas0.001sec.We used
a simplerectangularaggrejationmethodto representhe
estimatedvaluesof the state-actiorpairs. For eachof the
nine actions,we createda table with 2,432 entries. Each
entry wasthe valueassociateavith the correspondingac-
tion anda rectangularegion of statespacedeterminedy
thefollowing non-overlappingntervals: for eachof 6, and
6,: 0,+0.6, 2.4, £ rradians;andfor eachof 6, and6,:
0, +£0.25, £0.5, £ radianspersecond.

Onemightattemptasimple,pureRL approacho thisprob-
lem. For example,onecould definetherewardr, to be —1
for eachtime stepin which the stateof the double pen-
dulumis not within somesmall region of the target state,
and setr; = 0 within this region. This would setup the
RL systemto attemptto learnto drive the systemto this
target region in the minimum numberof time stepsand
keepit within that region. This approachhasalmostno

chanceof producinganacceptableolutionwithin ary rea-
sonabletime period. The target state—botHinks motion-
lessupwards—isarepellingstate.For a simpleRL system
to getcloseto this stateat all would be extremelyunlikely.

Thelearningtime for sucha RL systemwould be solong

thatwe couldsaythatthetaskis effectively unlearnabldy

suchasystem.

4. A Local Controller

Following the derivationmethodin Vincentand Grantham
(1997)pp. 91-114 andusingstandard_QR techniques,
we obtaineda saturatingLQR control rule for the dou-
ble pendulumlinearizedaboutthe target state. To obtain
this controlrule, we first foundthe closed-loopcontrolrule
u = u(x) thatminimizes,for thelinearizedsystemthefol-
lowing expression:

J:/OOO [(x—5)T (x— %)+ u"u] t, (1)

wherexis thetamgetstate.Thesecontrolsarethenrestricted
to lie in the appropriateregion of control space. Specifi-
cally, our saturatingLQR control rule for the doublepen-
dulumis givenby

<r1>_ (—19.6243 8.2425 —19.6666 —2.4341>
1,/  \—19.6666 3.4245 19.6243 5.8586
6,—m
6,
6, -6,
62

providedthat |7;| < 8.5, 1 € {1,2}; otherwise,if 1, > 8.5
thent; = 8.5, andif 1; < —8.5thent, = —8.5.

This control rule is guaranteedo bring the systemto the
target stateand stabilizeit therefrom ary statewithin its
controllableset. Characterizinghe actualcontrollableset
is a difficult problemfor this system but thereare several
waysto approximatet. We followed Vincent,Schmittand
Vincent(1994)andusedasan estimateof the controllable
settheregionin whichtheanglesof bothlinks arelessthan
0.75 radiansaway from the target state(i.e., away from
radians). In the chaotic control algorithm the local con-
troller is turnedon whenever both link anglesare within
0.75radiansof .

5. The Chaotic Control Algorithm

As mentionedabove,thechaoticcontrolalgorithmrelieson
inducing chaoticbhehavior that causeghe systemto enter
theestimatedtontrollablesetof thelocal controller When
this is detectedthe local controlleris turnedon to stabi-
lize the systemaboutthe target state. We inducedchaotic
behaior in the double pendulumsystemby driving the it



with thefollowing open-loopcontrolsignal:

1, =8.5coq1.5t) and T1,=8.5c040.7t)

wheret is thetime in seconds.Of several open-loopcon-
trollerswith which we experimentedthis oneis the fastest
on averageto causethe systemto enterthe estimatecton-
trollable setof the local controllerdescribedn Section4.
This open-loopcontrol signalis turnedoff whenthe local
controlleris turnedon whenever the systementersthe es-
timatedcontrollableset. However, becausgheremay be
statesin the estimatedcontrollablesetthat are not in the
actualcontrollableset,we let the open-loopcontrollertake
over againif the systemleavesthe estimatedcontrollable
set.

In our experimentswith a numberof differentopen-loop
controllerswe foundthatthe numberof time stepsit takes
the chaotic control algorithm to stabilize the systemis

1,651(+102) on averagefor a good open-loopcontroller,

andupto 3,000for alessgoodone.We usedthefastestve

found for further experiments. The averagesvheremea-
suredover50runs.

6. Combining the Local Controller and RL

First we combinedthe local controller and the RL con-
troller by letting the RL controller take over the role of

theopen-loopcontrollerin the chaoticcontrolalgorithm:if

the RL controllerdrivesthe doublependuluminto the es-
timatedcontrollableset, the local controllertakesover. If

thelocal controllermakesthe systemleave thecontrollable
set,the RL systenregainscontrol.

How shouldrewardsignalsbesuppliedto the RL controller
to make this schemework? If we just rewardit for getting
the double penduluminto the estimatedcontrollableset,
thenit will be rewardedevenif it drivesthe systemto a
statein the estimatedcontrollablesetthatis notin the ac-
tual controllableset. In this case the local controllerwill
not be ableto stabilizethe systemso thatthe desiredout-
comewill notbeachieved. The methodwe foundto work
well isto rewardtheRL controllerwhenthestateenterghe
estimatectontrollableset,andto punishit slightly moreif
it hasto regaincontrolfrom thelocal controller(i.e., if the
doublependulumdoesnot stabilizeandthe RL controller
hasto take controlagain).Additionally, whenthe RL con-
troller is not in control, its learningalgorithmis shut off
aswell. This meanghatthe RL controllerexperienceghe
timeinterval duringwhichthelocalcontrolleris engageés
if it wereasingletime step.Ilt mayseemalittle strangehat
we punishtheRL controllerfor anothercontrollersfailure,
but the RL controlleris the only adaptingcomponentand
thereforgheonly partthathasachanceof avoiding punish-
mentby placingthe systeminto stateshatarein theactual
controllableset.

Table1 describeghe main pointsin the algorithmfor this
way of combiningthelocal controllerwith RL. It describes
whathappensluringeachlearningtrial, which beginswith
thedoublependulumin its initial state(bothlinks hanging
motionlessdownwards)and endswhen the target stateis
reachedat which we know the local controllercan stabi-
lize thesystem) A learningrun beginswith initialization of
the state-actiorvaluefunction, Q, andthe eligibility func-
tion, e, to zero,andconsistsof a large numberof learning
trials. We adoptedthe approachcommonlyusedin RL of
rewardingthe systemwith a —1 on eachtime stepuntil a
goalstateis reachedin this case until the estimatecdcon-
trollable setis reached}o encouragehe systemlearnto
reachthe goalin the minimumnumberof time steps.

Table1. The main pointsin the combinationof the RL controller
andthelocal controller

1. TheRL controllergenerates controlactionand
update€Q ande.

2. If thesystemhasnot enteredheestimated
controllableset,the RL controllerrecevesa
rewardof —1. Jumpto 1.

3a. Otherwisethe systemhasenteredheestimated
controllableset,andthelocal controllertakes
over. TheRL controllerrecevesarewardof 1.

3b.  Thelocal controllergeneratethenext action.

3c. If thesystemexits from estimatectontrollable
set,theRL controllerrecevesarewardof —2.
Jumpto 1.

3d. If thesystenreachedhetargetstate thetrial
terminates.

3e. Otherwisgumpto 3h.

Figure 2 shaws the learning curve for the RL controller
combinedasdescribedabove with thelocal controller The
numberof time stepsper trial is the total numberinclud-
ing thethoseduringwhich controlis providedby thelocal
controllet

Theseresultsshav thatthis way of combiningthe RL con-
troller with thelocal controllerworksvery well. FromFig-
ure 2 we canseethatthe RL controllercombinedin this
way with the local controller achiezed on averagemuch
fasterstabilizationtimes—Ilesghan 250 time steps—than
the 1,651time stepswe achievedfor the bestchaoticcon-
trol algorithm. An especiallyinterestingresultis thatthe
RL controllerlearnsto avoid statesin the estimatedcon-
trollable setthat are not in the actualcontrollableset of
the local controller Figure 3 shavs the numberof times
thedoublependulumenteredhe estimatedcontrollableset
but thelocal controllerwaslaterturnedoff becausé could
notactuallystabilizethe system Fromthestartof learning,
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Figure2. Learningcurwve for a RL controllercombinedwith the
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Figure3. TheRL controllerlearnsto avoid statesn theestimated
controllablesetthatarenotin theactualcontrollable.Onesecond
consistof 50 time steps.Averageof 100runs.

this numberincreasesisthe RL controllerlearnsto getthe
double penduluminto the estimatedcontrollableset, and
thenit decreaseastheRL controllerlearnswhich statesn
this setwork andwhich shouldbe avoided. This improve-
mentis causedy the RL controllerbeingpunishedor the
local controllersfailureto stabilizethe system.

7. Combining the Chaotic Control Algorithm
with RL

We also experimentedwith combiningthe RL controller
with the chaoticcontrolalgorithm,thatis, with combining
RL with the open-loopcontroller describedin Section4
thatinduceschaoticbehaior, aswell aswith thelocal con-
troller. Heretheideais to let the chaoticbhehavior provide
the exploratorybehaior from which the RL controllercan
learn. Oneway to do thisis to runthe RL controlleratthe
sametime asthe open-loopcontrollerandlet both of their
controldecisiongletermingheactualcontrolactionsentto
thedoublependulum We let the controlactionbea convex
linearcombinatiorof thecontrolchoicesof thechaoticand
RL controllerswith thecoeficientvaryingduringlearning

to adjusttherelative contribution of eachcontroller At the
startof eachlearningrun, controlchoiceswveredueentirely
to theopen-loopcontrolrule, while the RL controllercon-
troller learnedasif thesewereits own decisions.As each
learningrun proceededwe alteredthe coeficient so that
anincreasingproportionof the controlwasdueto the RL
controllerschoices.

We experimentedvith severalmethoddor decayinghein-
fluenceof the open-loopcontroller Our bestresultswere
obtainedwith a linear andan exponentialdecay Specifi-
cally, for thelinearmethod

H t
w = min{1, 1550}
andthecontrolactionis:
T = wTiRL + (1_ w) Tiopen-loop

fori € {1,2}. Fortheexponentialdecay
w=min{1exp (- 1=2%
= &P~ 200

T = (1_ w) TiRL—{— wriopen-loop

and

fori € {1,2}, wheret is thetrial numberin alearningrun.

Figure4 shavs our bestresultsaveragedver 100runs. At
thestartof eachrun, thecontrolactionswveredueentirelyto
theopen-loopcontroller As thenumberof trials increases,
theRL controller'sactionscontributeanincreasingoropor
tion. Comparingrigure4 with Figure2, oneseeghatboth
methoddor phasingn RL eliminatetheverylongtrials at
thebeginningof learning,but they addmoreareaunderthe
learningcurve. In total, theresultis a muchlargernumber
of time stepsheforeagoodlevel of performancés reached
thanachievedusingRL aloneoutsideof the estimatedon-
trollable set.

8. Impr oving over the Local Controller in
terms of Time-to-Target

The local controlleris not a minimum-time controller (it
minimizesa measurdghat combinesdistancefrom thetar
getandthe motorforce needed).Thereforetheoreticallyit
shouldbe possiblefor the RL controllerto do betterthan
thelocal controllerin termsof the time takento reachthe
target state. In termsof the performancdevel eventually
achievable, it might be betterto usea smaller estimated
controllablesetthanalargerone,sincethiswould decrease
theregionin whichthe non-minimum-timdocal controller
would operate.To studythis possibility, we experimented
with decreasingheestimatedontrollablesetduringlearn-
ing, andthencomparedhe local controller's original per
formancewith thatof this new combinationthathasmore
freedomof actionnearthetargetstate.
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Figure4. Learningcurvesfor combination®f the chaoticandRL co
of thechaoticcontrollerdecreaseknearly, andfor theright graphit

Specifically we usedthe combinedRL and local con-
trollersasdescribedn Section6 for the first 12,000trials,
activating the local controllerif both links of the double
pendulumgot within 0.75 radiansfrom the target state!
We decreasedhis activation angleduring trials 12,000to
24,000linearly from 0.75to 0.01 radiansat which setting
the RL controller was allowed to learn for an additional
12,000trials.

After the first 12,000trials the averagenumberof time
stepsfrom the time thatthe 0.75 radiancriterion was met
for the last time until the target was reachedwas 70.12
(£0.03). This numberis the local controller’s original
performance.After decreasinghe estimatedcontrollable
setand learningfor 24,000additionaltrials, the number
of time stepshaddroppedto 69.88(+0.02). Thesenum-
bersare basedon 100 runsandtrials 11,900-12,00@&nd
35,900-36,000.This improvementis not very large, but
it shavsthatthe RL controllercanlearnacontrolrule that
canimproveonacarefullyhand-craftedystem-specifiso-
lution.

9. HénonMap

To further explore some of the obsenations described
above, we followed Vincent(1997b)and conductedaddi-

tional experimentsusing the Hénonmap (Hénon, 1976),
one of the simplestsystemgo exhibit a chaoticattractor

This systemhasa two-dimensionaktatespacewhich al-

lowedusto moreeasilyvisualizetheresultsof variouscon-

trol methodslt is givenby

—14(t) + %,(t) +1
0.3x,(t)

X, (t+1)
X, (t+1)

and is known to have an unstable fixed point X =
[0.63140.1894".

1We useda finer quantizatiorof the statespaceor this experi-
mentthanthatdescribedn Section3. Thequantizatiorthresholds
for 6, and6, were0, £0.6, 2.4, +:2.8, =T radians.
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ntrollersfor thedoublependulum For theleft graph theweighting
decreasesxponentially Both graphsareaveragef 100runs.

We implementedVincents (1997b)saturatingLQR con-
trol rule to stabilizethe systemaboutx. A one-dimensional
control signal,u(t), wasaddedto the equationfor x;, and
the control rule was derived from a local linearizationof
the systemaboutxin amanneranalogougo thatdescribed
above for the double pendulum. The controls were re-
strictedto a interval [—um,Uy]. We useduy, = 0.1. To
investigatethe ability of RL to learnto avoid subregions
of an estimatedcontrollableset, we purposefullyusedan
overly-large estimateof the controllablesetgivenby a cir-
cularregion of radius0.25centeredat .

Weimplementedsereralcontrolschemesor stabilizingthe
Hénonmapat x. In all caseswe initiated trials by ran-
domly selectinginitial statesaccordingto a circular Gaus-
sian distribution with standarddeviation 0.1 centeredat
[-0.2,0.15". Trials endedwhenthe stateentereda tar-

get region of radius0.025aboutx or whenit exited the
region —1.5 < x; < 1.5and-0.4 < x, < 0.4 (Figure7).

We calledtheselatter trials ‘failures’ (althoughit is pos-
sible that someof thesetrials, if continuedlong enough,
would have re-enteredhe region of interest). The control
schemesvere:

LQR: global useof the saturatingLQR controller Al-
thoughthis controllercannotstabilizethe systenfrom
arbitrarystartingstatesevenwith no constraint®onthe
control magnitude(Vincent, 1997b),its performance
providesa usefulbaseline.

Chaos+LQR: saturating LQR control within the esti-
matedcontrollableset,andno control (u = 0) outside
of this set(the chaoticcontrolalgorithmof Vincentet
al.,1994).

global use of RL. We usedSarsa(O)with a reward
of —1 on eachtime stepuntil a trial ended,with an
additionalreward of —1000if the trial wasa failure.
The actionswere —um, 0, or um, so thatthe extreme
valuescoincidedwith LQR’s saturateatontrols. The

RL:



statespacewasrepresentetby a lookup table aggre-
gating statesinto rectangularegions determinedby
a 50 x 50 grid over the region —1.5 < x; < 1.5 and
—0.4 < x, <0.4. We seta = 1, avaluedetermined
by experimentto work well for this problemwhenRL
was combinedwith the local controller We also set
y = 1 sincethe trials wereof finite duration,andwe
did notuserandomexploration,relyinginsteadonthe
systems chaoticbehavior. Note thatglobal RL does
not necessarilstabilizethe systemat x.

RL+LQR: saturatingLQR within the estimatedcontrol-
lable setand Sarsa(O)outsideof it (implementedas
for global RL). Additional rewardswere determined
accordingto the schemagivenin Tablel.

Figure 5 gives performanceor learning curves for these
controllers.Significantimprovements apparenfor theRL
controllers,especiallyfor RL+LQR. Hitting the smalltar
getregion with chaosalonetook on average238 (+8.83)
steps; RL+LQR learnedto take on average6.1 (+0.06)
steps.Not shavn is thedecreasevith learningin the num-
ber of failure trials (e.g.,from an averageof 32.5 (+1.8)
over 10 runs of trials 1-1000f RL+LQR, to an average
of 1.0 (+.31) over 10 runs of trials 4900-5000). Fig-
ure 6 shows that, asin the doublependulumexperiments,
RL+LQR learnsto reducethe frequeng with which tra-
jectoriesreachstatesin the estimatedcontrollablesetthat
arenot in the actualcontrollableset. Figure 7 shavs the
policy learnedby RL+LQR. The shadedsquaresrethose
visitedduringlearning,andtheirgrey levelscodetheaction
selectedby the learnedcontrol rule. Within the estimated
controllableset only the LQR actionsare selected. The
black squaresutsideof the estimatedcontrollablesetare
thosein which the learnedcontrol rule’s actionshappened
to coincidewith thosethat the saturatingLQR controller
would have generatedn thosestates. This allows oneto
seehow thelearnedcontrolrule differsfrom the global ap-
plicationof thesaturating- QR rule.

10. Discussionand Conclusion

The studiesherewere inspiredby the chaoticcontrol al-

gorithm of Vincent, Schmitt, and Vincent (1994), which

suggestedhat a similar combinationof RL with a local

controllermight increasethe rangeof applicability of RL

methods.Exploring this usinga simulateddoublependu-
lum andtheHénonmap,we obsenedthefollowing results.
First, usingan RL controlleraloneuntil control shiftedto

thelocal controllerwasable, afterleaning,to achieve sta-
bilization significantlyfasterthancouldbe achiesedby the
bestchaoticcontrol algorithmwe tried. This is not a sur

prising result becausehe chaotic control algorithm does
notimproveits performancehroughlearning.
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Figure5. Learningcurvesfor combinationof thechaoticandRL
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Figure6. ThecontrollerRL+LQR learnsto avoid statesn thees-
timatedcontrollablesetthatarenotin the actualcontrollableset.
Averageof 10runs.
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A secondresultthatis someavhat more surprisingis that
letting inducedchaoticbehavior of the double pendulum
guidetheexploratorybehaior of the RL controllercanre-
ducethelengthof initial learningtrials, but doesnot nec-
essarilyreducethetotal time neededo learnagoodglobal
controlrule. One possibleexplanationis thatthe RL con-
troller is learningto compensatéor the chaoticcomponent
of the control actionandhasto continuechangingits pol-
icy asthe weight of the chaoticcomponentecreasesOf
course,we experimentedwith just a few methodsfor in-
tegrating RL with chaoticbehaior, and mary othersare
possible.

A third result—andperhapghe mostinteresting—vasob-
sened with both the double pendulumand Hénonmap.
The RL controller learnedto compensatdor our over
estimationof the local controller's controllableset. We
obsered that the RL controller learnedto avoid driving
the systemto statesin the estimatedcontrollablesetfrom
which the local controller could not actually stabilizethe
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Figure7. TheHénonstatespace Theestimatedontrollablesetis
shavn asthelargeellipsecenteredn x= [0.63140.1894" . The
smallellipseis 1 standardieviation of theinitial statedistribution
from [—0.2,0.15T. Grey levels codethe control rule learnedby
RL+LQR.

system.This is importantbecaus¢he mostdifficult aspect
of the chaoticcontrolalgorithm,andour adaptatiorof it, is
theaccuratesstimatiorof thelocal controller'scontrollable
set. Our resultssuggesthatit may be a good strateyy to
male a fairly coarseapproximationof the controllableset
andletlearningadjustfor its inaccuracieskurtherresearch
is neededo determinehow learningtime changeswith in-
creasinglylarge estimateof the controllableset. Finally,
our obsenationsfrom successiely shrinkingtheestimated
controllableset while learningsuggesthat this might be
a good methodfor compensatindgor sub-optimalperfor
manceof thelocal controller But herealsofurtherresearch
is neededo determineif substantiaimprovementscanbe
obtainedn thisway.

Overall, theseresultsprovide additionalevidencethatcon-
ventionalcontrol methodologyprovidesa rich avenuefor

injecting prior knowledgeinto RL systemsandthatRL can
help improve the utility of corventional control methods
whenextendedo complex nonlinearcontrol problems.
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