
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2001

The Right Algorithm at the Right Time:
Comparing Data Flow Analysis Algorithms for
Finite State Verification
Jamieson M. Cobleigh
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Cobleigh, Jamieson M., "The Right Algorithm at the Right Time: Comparing Data Flow Analysis Algorithms for Finite State
Verification" (2001). Computer Science Department Faculty Publication Series. 120.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/120

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13600881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/120?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

The Right Algorithm at the Right Time: Comparing Data Flow An alysis
Algorithms for Finite State Verification

Jamieson M. Cobleigh, Lori A. Clarke, Leon J. Osterweil
Laboratory for Advanced Software Engineering Research

Department of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003-6410
+1 413 545 2013

{jcobleig, clarke, ljo}@cs.umass.edu

Abstract

Finite state verification is emerging as an important
technology for proving properties about software. In our
experience, we have found that analysts have different ex-
pectations at different times. When an analyst is in an ex-
ploratory mode, initially formulating and verifying proper-
ties, analyses usually find inconsistencies because of flaws
in the properties or in the software artifacts being ana-
lyzed. Once an inconsistency is found, the analyst begins
to operate in a fault finding mode, during which meaning-
ful counter example traces are needed to help determine the
cause of the inconsistency. Eventually systems become rel-
atively stable, but still require re-verification as evolution
occurs. During such periods, the analyst is operating in a
maintenance mode and would expect re-verification to usu-
ally report consistent results. Although it could be that one
algorithm suits all three of these modes of use, the hypoth-
esis explored here is that each would be best served by an
algorithm optimized for the expectations of the analyst.

1. Introduction

Finite state verification (FSV) is emerging as an im-
portant technology for proving properties about software
systems. Although there are many approaches for doing
FSV, most support a specification formalism for represent-
ing properties, a model for representing the software sys-
tem, a reasoning engine that attempts to verify if a prop-
erty holds on all possible executions, or traces, through the
model, and a counter example generator that provides traces
through the model if the model is not found to be consistent
with the property.

In our experience with FSV, we have found that analysts

have different expectations at different times. At first ana-
lysts are in anexploratorymode, trying to formulate prop-
erties and attempting to prove them. Whether analyzing a
design or code artifact, the analyst must decide on the im-
portant properties to be evaluated and then represent those
properties in the specification notation. Initially the designs
or code artifacts are likely not to be consistent with a for-
mulated property because of defects in the property, defects
in the artifact, or both. Only after several attempts to for-
mulate and verify a property, and to correct problems that
arise, is an analyst likely to obtain a result indicating that
the property is consistent with the system. Thus, an analyst
in an exploratory mode would expect analysis to usually re-
port an inconsistency between the property and the model.
Therefore during this mode, it would make sense to use a
reasoning engine optimized to find inconsistent results.

After learning that analysis results are inconsistent, an
analyst usually immediately moves to a debugging orfault
findingmode in which the analyst is seeking the cause of the
problem. Finite state verification approaches usually pro-
vide a trace or path through the model (or the correspond-
ing path through the original software system), but these
paths are sometimes long and convoluted [2, 9]. Compli-
cated paths make it more difficult to track down the actual
cause of the inconsistency. Thus, when an analyst is in fault
finding mode, it makes sense to use a reasoning engine op-
timized to produce short paths or user-guided paths that re-
veal the inconsistency.

A more mature software system ideally has many veri-
fied properties. If the system is modified, the analyst should
re-verify that the remaining relevant properties still hold. If
the system has not been modified too extensively, the ana-
lyst should expect that most of the previously verified prop-
erties would continue to be consistent with the evolved soft-
ware system. Thus, when an analyst is in thismaintenance

mode, it makes sense to use a reasoning engine optimized
to produce consistent results.

Although one algorithm might suit all three types of ac-
tivities, our hypothesis is that each would be best served
by an algorithm optimized for the expectations of the ana-
lyst. We have thus been experimenting with different algo-
rithms to determine how well they meet these expectations.
Although the algorithms we explored are specific for the
FLAVERS prototype [6], the general underlying concepts
can be applied to many of the other finite state verification
approaches. Thus, we believe that our results might gener-
alize to other finite state verification approaches as well. In
this paper we describe the algorithms we considered and the
results of our experimentation.

2. FLAVERS

FLAVERS (FLow Analysis for VERification of Sys-
tems) is a static analysis approach that can verify user spec-
ified properties of sequential and concurrent systems. Like
all automated verification systems, FLAVERS requires an
abstract model of the computation upon which to base the
analysis. The model FLAVERS uses is based on annotated
Control Flow Graphs(CFG). Annotations are placed on
nodes of the CFGs to represent events that occur during exe-
cution of the actions associated with a node. For concurrent
systems, FLAVERS uses aTrace Flow Graph(TFG), which
consists of a collection of CFGs with some additional inter-
task edges and nodes to represent the concurrency. Our ex-
periments used FLAVERS to analyze concurrent Ada pro-
grams, so some intertask edges represent intertask commu-
nication via rendezvous. The other intertask edges areMay
Immediately Precede(MIP) edges that represent potential
interleavings of events in different tasks [17]. A CFG, and
thus a TFG, over-approximates the sequences of events that
can occur when executing a system.

FLAVERS requires that a property to be checked be
represented as aFinite State Automaton(FSA). FLAVERS
uses an efficient state propagation algorithm to determine
whether all potential behaviors of the system being ana-
lyzed are consistent with the property. FLAVERS will ei-
ther returnconclusive, meaning the property being checked
holds for all possible paths through the TFG, orinconclu-
sive, meaning FLAVERS found some path through the TFG
that causes the property to be violated. FLAVERS analyses
are conservative, meaning FLAVERS will return conclu-
sive results only when the property holds for all TFG paths.
FLAVERS returns inconclusive results either because there
is an execution that actually violates the property or because
the property is only violated on paths through the TFG that
do not correspond to actual system executions. These so
called infeasible pathsresult from the imprecision of the
model, and their effects can be eliminated by introducing

feasibility constraints, also represented as FSAs. For ex-
ample, an analyst might introduce an FSA to keep track of
the value of a program variable. An analyst might need to
iteratively add feasibility constraints and observe the analy-
sis results several times before determining whether a prop-
erty is conclusive. Feasibility constraints give analystssome
control over the analysis process by letting them determine
what parts of a system need to be modeled more precisely.

FLAVERS’ state propagation has worst-case complexity
that isO

(

N2 · |S|
)

, whereN is the number of nodes in the
TFG, and|S| is the product of the number of states in the
property and the number of states in each of the feasibility
constraints. In our experience, a large class of important
properties can be proved by using only a small set of con-
straints. Experimental results seem to indicate that the cost
of solving most problems is low order polynomial, often
sub-cubic, in the size of the system. Thus, FLAVERS has
the potential to scale to handle realistic software systems.

3. Basic definitions

Formally, a TFG is a labeled directed graphG =
(N, E, ninitial , nfinal, ΣG, L) whereN is a finite set of nodes,
E ⊆ N × N is a set of directed edges,ninitial , nfinal ∈ N
are initial and final nodes of the TFG respectively,ΣG is
an alphabet of event labels associated with the TFG, and
L : N → ΣG is a function mapping nodes to their labels.

Formally, an FSA is a five-tuple,F = (S, δ, s0, A, Σ)
where S is a finite set of states,Σ is a finite alphabet,
δ : S × Σ → S is a total transition function,s0 ∈ S is
an unique start state, andA ⊆ S is a set of accepting states.
Every property and feasibility constraint is specified as an
FSA. Each constraint, however, has an extra state known as
theconstraint violation state, v, that represents an unrecov-
erable constraint violation and is a non-accepting state with
only self-loop transitions.

FLAVERS uses a fixed point algorithm that prop-
agates tuples, each representing a state in the prop-
erty and each of the constraints, through the model of
the system [20]. Suppose we wish to verify a prop-
erty P = (SP , δP , s0

P , AP , ΣP) over a TFG G =
(N, E, ninitial , nfinal, ΣG, L) using a set of constraints
C1, . . . , Ck where Ci = (SCi

, δCi
, s0

Ci
, ACi

, ΣCi
, vCi

).
The set of all tuples isT = SP × SC1

× · · · × SCk
. A

tuple is anyt ∈ T . Define theinitial tuple as the tu-
ple T 0 = (s0

P , s0
C1

, . . . , s0
Ck

). Define a transition function
∆ : T × N → T as follows

∆((sP , sC1
, . . . , sCk

), n) = (s′P , s′C1
, . . . , s′Ck

)

where

s′P = δP (sP , L(n)) and∀1 ≤ i ≤ k : s′Ci
= δCi

(sCi
, L(n))

This transition function takes a tuple and a TFG node and
produces a new tuple by determining the effect the label on
the node has on each FSA in the tuple. In verifying a prop-
erty, we associate a set of tuples with each node. The initial
node starts withT 0 associated with it. From here, tuples
are propagated forward through the TFG using the transi-
tion function∆ to compute the tuples associated with the
nodes of the TFG. To verify a property, we need to consider
every path in the TFG, making state propagation a forward-
flow, any-path data flow problem [15].

State propagation eventually reaches a fixed point where
no new tuples can be associated with any nodes. At this
point, the results of the verification can be determined.
FLAVERS is concerned with terminating program execu-
tions, so only the tuples onnfinal are examined. The tuples
on the final node are all of the combinations of the states of
the property and the states of the constraints that occur on
terminating program executions. We look for violating tu-
ples on the final node. Aviolating tupleis one for which the
property automaton is in a non-accepting state, representing
a property violation, and every constraint is in an accepting
state, ensuring that all feasibility constraints are satisfied.
More formally, a violating tuple ist = (sP , sC1

, . . . , sCk
)

where∀1 ≤ i ≤ k : sCi
∈ ACi

andsP /∈ AP . If there are
violating tuples on the final node, then the property does not
hold and the result is inconclusive. Otherwise, there are no
ways that the property can be violated, so the property holds
and the result is conclusive.

As noted above, each feasibility constraint has a state
called the constraint violation state,v. When propagating
tuples, if a tuplet returned by∆ has any constraintCi in
its constraint violation state, thent need not be propagated
forward. The statev has only self-loop transitions, so any
tuplet′ that reaches the final node as a result of repeated ap-
plications of∆ to t will have Ci in its constraint violation
state. Thus, when we examine the tuples onnfinal, we will
discardt′ since it corresponds to a infeasible path. Conse-
quently, a tuple with a constraint in its constraint violation
state is discarded as soon as it is created. LetTV be the set
of all such tuples with constraint violations.

TV = {(sP , sC1
, . . . , sCk

) | ∃1 ≤ i ≤ k : sCi
= vCi

}

With these formal definitions, we can provide a state
propagation algorithm to verify a propertyP over a TFGG
with constraintsC1, . . . , Ck. Meta-Algorithm MA, shown
in Figure 1, is the state propagation meta-algorithm. It uses
a worklistWlist to keep track of the nodes to be processed.
With each noden in the TFG it associates a set of tuples,
held inTuples[n]. The initial tuple is associated with the
initial node, which is placed on the worklist. The algorithm
iterates until the worklist is empty. During each iteration,
a noden is removed from the worklist (line 2). For each
successorm of n, first the original set of tuples onm is

Initially:

Wlist := ninitial

Tuples[n] :=

{

∅ if n 6= ninitial

{T 0} if n = ninitial

Main Loop:

(1) whileWlist 6= ∅ do
(2) n is a node removed fromWlist
(3) foreachm a successor ofn do
(4) temp := Tuples[m]

(5) Tuples[m] :=



Tuples[m]
⋃

t∈Tuples[n]

∆(t, m)



 \ TV

(6) if Tuples[m] 6= temp then
(7) insertm into Wlist

end if
done

done

Figure 1. Meta-Algorithm MA

saved (line 4), so the algorithm can tell if new tuples are
later added tom. Then every tuple onn is propagated via
the transition function∆ to m, removing any tuples that
have a constraint in a constraint violation state (line 5)1. Fi-
nally, the set of tuples onm is compared to the saved set
(line 6). If they are not the same, then at least one tuple was
added tom, andm is put on the worklist (line 7). After
processing all successors ofn, control returns to the outer
loop to see if the worklist is empty (line 1). When MA ter-
minates,Tuples[nfinal], the set of tuples associated with the
final node, is examined. If there are violating tuples, the
property does not hold, otherwise it does.

To create a counter example trace, we need to find a path
through the TFG that starts at the initial node, ends at the fi-
nal node, and results in a property violation. More formally,
we want a finite pathn1, n2, . . . , nl, such thatn1 = ninitial ,
nl = nfinal and there exist tuplest1, t2, . . . , tl such that
t1 = T 0, tl is a violating tuple, and∀1 < i ≤ l : ti =
∆(ti−1, ni).

4. Algorithmic ontology

MA is a high level description of a general class of state
propagation algorithms. Many details, such as the order in

1Clever bookkeeping can improve the efficiency of line 5 of MA.As
presented, each tuple of noden is propagated to nodem on every loop
iteration. In our implementation, each node keeps track of what tuples it
has propagated to its successors so when line 5 is reached only new tuples
are propagated.

Initially:

Wlist = {m | (ninitial , m) ∈ E}

Main Loop:

(3) temp := Tuples[n]
(4) foreachp a predecessor ofn do

(5) Tuples[n] :=



Tuples[n]
⋃

t∈Tuples[p]

∆(t, n)



 \ TV

done
(6) if Tuples[n] 6= temp then
(7) foreachm a successor ofn do
(8) insertm into Wlist

done
end if

Figure 2. Changes to MA for pull

which nodes are selected for processing (lines 2 and 3), are
not fully specified. These details may have important effects
upon such issues as efficiency. To determine the effects of
these details upon the issues of concern in this paper we
performed some experiments. These experiments can be
viewed as analyses of the effects of making different com-
binations of choices along four dimensions of variability in
the details of MA.

One dimension entails adding appropriate details to lines
2 and 7 of the algorithm of Figure 1. By varying this di-
mension,Wlist could be managed either as a stack or a
queue. When managed as a stack the effect is a depth first
search of the graph nodes. When managed as a queue,
the effect is breadth first. We expected depth first order to
improve cache performance; since recently inserted nodes
are examined first, and are likely to still be cached. Addi-
tionally, a depth first search explores one path deeply, and
thus may find a violation quickly if it serendipitously picks
nodes that lead to some violation. However, if all violations
go through a small set of nodes that are not encountered
on the early selected paths or these nodes get stuck on the
bottom of the worklist, then it may be worse than breadth
first search. Moreover, breadth first search will find a short-
est path, whereas depth first makes no guarantees about the
length of the counter example it will find.

A second dimension entails elaborating on line 3. This
can alter the order successors are visited. This order may be
varied, perhaps even for each time a node is removed from
the worklist. Since this order affects the search order, it can
alter the performance of our algorithms.

A third dimension entails choosing between a push and
a pull algorithm. In MA, when a node is removed from the
worklist on line 2, it has at least one new tuple to be prop-

agated to its children. This algorithmpushestuples from a
parent to its children. An alternative would be to insert a
node onto the worklist when one of its parents has at least
one new tuple to be propagated to it. This can be done
by replacing lines 3-7 in Figure 1 with lines 3-8 in Figure
2. Here, the tuples arepulled by a child from its parents
and that child then inserts its successors onto the worklist.
These two approaches would seem to yield differing perfor-
mance characteristics.

A fourth dimension entails using a different graph
model. MA inserts nodes on a worklist and considers a
node to have a set of tuples associated with it. Thus, this
algorithm works over the graph(N, E), defined over the
node space. Alternatively, we might base our work on a
graph whose nodes are drawn fromN × T , or node-tuple
space. In this space, node-tuples are placed on the work-
list instead of nodes. In this case, verification entails find-
ing a path throughN × T that starts at

〈

ninitial , T
0
〉

and
ends at〈nfinal, tviol〉, wheretviol is any violating tuple. If no
such path exists, the property holds. Walking through node
space is a coarsening of the view of the problem as a walk
through node-tuple space. As a result, there is the typical
space versus computation tradeoff. The number of nodes in
node space is smaller than in node-tuple space but more pro-
cessing is needed for each node removed from the worklist.
Also, information about which tuple propagated informa-
tion into which other tuples is lost. As a result, counter
examples cannot easily be constructed in node space. It
seemed clear that choosing between a node space algorithm
and a node-tuple space algorithm would produce important
differences in performance characteristics.

5. The algorithms

Three of the dimensions in our ontology are binary,
yielding 8 possible algorithms. The remaining dimension,
the order of considering successors, can have many alter-
natives. This yields over 16 possible algorithms, some of
which do not make sense, however, while others have little
affect on behavior.

First, none of the pull algorithms places node-tuples on
the worklist. In node space, we have done a coarsening, so
it is possible to add a node to the worklist and have it derive
its new tuples from its parents. In node-tuple space, to add
a node-tuple to the worklist, the associated tuple must first
be computed, hence a pull version of the algorithm does not
make sense.

Second, the order in which items are added to the work-
list does not greatly affect the performance of the breadth
first algorithms. Suppose two itemss1 ands2 are added to
the worklist in that order. With a depth first worklist,s2 will
be removed, and its successors will be added to the worklist.
As a result,s1 remains trapped on the worklist until every

Finds Push or Search Worklist
Algorithm Paths Pull Order Contents
Push DFS′ No Push DFS′ Nodes
Push BFS′ No Push BFS′ Nodes
Pull DFS′ No Pull DFS′ Nodes
Pull BFS′ No Pull BFS′ Nodes

Push DFS Std Yes Push DFS Node-Tuples
Push DFS Rev Yes Push DFS Node-Tuples
Push DFS Wrp Yes Push DFS Node-Tuples

Push BFS Yes Push BFS Node-Tuples
A∗ Yes Push BFS Node-Tuples

Table 1. Summary of algorithms

path throughs2 is considered. The order of consideration of
s1 ands2 can make a large difference in when they are con-
sidered. With a breadth first order,s1 will be removed from
the worklist, followed immediately bys2. The order these
two items are added to the worklist has a minimal impact
on when they are removed. As a result, the order in which
successor nodes are added to the worklist is only considered
for the depth first worklist algorithms.

Finally, in node-space, the order in which successor
nodes are added to the worklist does not greatly affect the
performance of the depth first algorithms. Since a node is
not inserted onto the worklist if it is already on the work-
list, the worklist is bounded in size. Thus, items do not get
trapped on the worklist as easily. Additionally, the effectof
all new tuples is considered when a node is removed from
the worklist. For example, with push algorithms, several
tuples may be propagated to successors when a node is re-
moved from the worklist. This helps drive the algorithm
forward and helps prevent tuples from being ignored for a
long time.

Table 1 shows the algorithms that we considered.
The first two of these algorithms, Push DFS′ and Push

BFS′ are almost exactly the algorithm shown in Figure 1.
They insert nodes onto the worklist and push tuples from a
parent to its children. As noted above, nodes already on the
worklist are not added to it again. This optimization puts an
upper bound on the worklist size, but changes the behavior
from strict depth first or breadth first. We use DFS′ and
BFS′ to represent this small modification.

The next two algorithms, Pull DFS′ and Pull BFS′ are
analogous to Push DFS′ and Push BFS′ except a node pulls
its tuples down from its parents. These first four algorithms
all walk through node space. As previously discussed, this
coarsening makes constructing a counter example more dif-
ficult, so none of these four algorithms produces counter ex-
amples. The remaining algorithms all search through node-
tuple space and find counter examples if they exist.

The next three algorithms in Table 1 all use a depth first
worklist and insert node-tuples onto it. With a worklist

1

2

3

4

Figure 3. Task automata example

based on node-tuples, a true depth first worklist is used,
since a node-tuple is never revisited once it is processed.

Push DFS Std, Push DFS Rev, and Push DFS Wrp vary
only in the order in which they consider successors. Push
DFS Std uses astandardordering, where nodes are con-
sidered in the order the successor nodes occur in the TFG
(intratask edges before intertask edges). Push DFS Rev uses
a reversedordering that simply reverses the order of stan-
dard. Push DFS Wrp uses awrappedordering, that attempts
to add variety to the search. Suppose a node,n hasm suc-
cessors. The successors are returned in the same order as
standard, except thekth time we encounter a node, we re-
turn thek modm successor first, then the(k + 1) modm
successor, and so on.

The next algorithm, Push BFS is similar to Push DFS Std
except Push BFS uses a breadth first worklist. We found that
breadth first search often required more time to find a path
than depth first search, but returned shortest paths, which
can be important in fault finding mode.

Breadth first search uses no information about the prob-
lem when searching. Aninformed search, such as A∗,
which makes use of problem specific information, might do
better. A∗ search uses a heuristic that estimates the cost
from a node in the search space to a goal node. Items on
the worklist are ordered by the sum of this heuristic esti-
mate and the cost to reach them from the initial node. This
sum is an estimate of the total cost of the shortest path that
goes through a node. If the heuristic isadmissible, meaning
it never overestimates the cost to a goal node, then A∗ is
guaranteed to find a shortest path [5]. Since the worklist is
ordered by the estimate of the cost, the worklist must be a
priority queue.

To make use of A∗ search, a heuristic is needed to esti-
mate cost. Our heuristic is based upontask automatafea-
sibility constraints, which are generated automatically by
FLAVERS and are used to represent the legal flow through
a single task. Consider the TFG fragment in Figure 3. Sup-
pose nodes 1, 2, and 3 are adjacent nodes in one task, and
node 4 is in another task. The solid arrows represent in-
tratask flow, while the dashed edges are MIP edges, repre-

Figure 4. Inconclusive problems

senting possible intertask flows. In this fragment, one pos-
sible path is 1→ 4→ 3, which is not feasible since it skips
node 2. A task automaton can prevent this by ensuring that
nodes within a given task are visited in a legal order. It does
this by keeping track of the last node visited in a task, so
a task automaton has one state for every node in the task.
As a result, we can use a task automaton to determine the
minimum number of nodes within a task that need to be tra-
versed to reach the final node of the TFG. Summing this
estimate for each task automaton in a tuple, yields an esti-
mate of the number of TFG nodes to be traversed before the
final node of the TFG can be reached2. Since this heuris-
tic never overestimates the cost to reach a goal state, it is
admissible and an A∗ search using this heuristic will find a
shortest path. We call this algorithm A∗.

6. Experimental results

To evaluate our algorithms, we used a suite of Ada pro-
grams, mostly drawn from the literature, that we had pre-
viously collected for testing FLAVERS. These included the
Chiron user interface development system [8], several vari-
ants on the dining philosophers problem, a simulation of
a gas station [10], a memory management system [7], and
some communications protocols [19]. Many of these prob-
lems are arbitrarily scalable by adding instances of exist-
ing tasks. Additionally, many of the properties required
constraints to be conclusively verified, so we derived many
of the inconclusive problems by removing constraints from
conclusive problems. This yielded a test suite of 220 prob-
lems: 109 conclusive, 111 inconclusive. These Ada pro-
gram had between 1 and 25 tasks and ranged in size from

2The actual implementation is more complicated than this, because of
intertask nodes that are used to explicitly represent an Adarendezvous.
These nodes belong to multiple tasks and they must not be multiply
counted in the estimate, resulting in a heuristic that is notadmissible.

Figure 5. Inconclusive averages

50 to 6,200 lines of code.
All experiments were run on a Sun Enterprise 3500 with

two 336 MHz processors and 2 GB of memory, running So-
laris 2.6. The FLAVERS toolset is implemented in Java; we
ran our experiments using the Sun JDK version 1.1.7.

Space limitations prevent our providing complete data
here. Instead, for each algorithm, we show the N problems
with longest running times3. In addition, since these prob-
lems vary widely in their cost, showing the actual running
time or path length is not very useful. Instead, we normal-
ized problem times by dividing the actual measured time
of all the algorithms by the average time for that problem.
Path lengths were normalized by dividing by the length of
the shortest path.

6.1. Exploratory mode

Recall that in exploratory mode we seek an algorithm
that has the best performance over inconclusive problems.

Figure 4 shows the running times for the nine algorithms
over six of the largest inconclusive problems. The number
below the problem name is the average running time, in sec-
onds, of the nine algorithms on that problem.

In Figure 4, it is easy to see that there is a large varia-
tion in the running times among the different algorithms on
the same problem. While there appears to be minor varia-
tion on the largest of these, the Chiron example, the range
of times on this problem was from 88 to 128 minutes. So
although the normalization to make the data fit on the plot
hides this difference, there is almost a fifty percent change
in the running time. These variations are also seen in Fig-
ure 5 which shows the averages over the 15 problems that
ran longer than 10 seconds for each algorithm. The vertical
lines show the range of running times for a given algorithm.

3Sometimes this set contained the same property checked on different
sized problems. We eliminated the duplicates by removing the smaller
sizes since they behaved similar to the larger problems in all cases.

Algorithms t P (T ≥ t) σ

Push DFS Std Push DFS Wrp 1.76 0.05 0.03
Push DFS Rev Push DFS Wrp 2.00 0.03 0.06

Push BFS A∗ 2.11 0.03 0.08

Table 2. t-tests for inconclusive problems

The black boxes show the range of the middle 50% of the
running times, and the horizontal line connects the mean
normalized times of the different algorithms.

The large variation among the running times of the dif-
ferent algorithms is easy to explain. With a conclusive prob-
lem, state propagation explores every derivable node-tuple
to ensure that there is no path through the TFG over which
the property is violated. With inconclusive problems, oncea
violating tuple is found, the property is known to be incon-
clusive and the algorithm can stop. Over the inconclusive
problems, chance plays a large factor in determining how
large a subset of the reachable node-tuple space an algo-
rithm explores, leading to a wide variation in performance.

From Figures 4 and 5 it can be seen that of the nine
algorithms, the ones that deal with node-tuple space per-
form better than those that deal with node space. Of the
five node-tuple space algorithms, the Push DFS algorithms
performed better than either Push BFS or A∗. In particu-
lar, it appears that Push DFS Wrp has the best performance
among the Push DFS algorithms. To confirm this, we per-
formed matched pairs t-tests comparing the two other Push
DFS algorithms to Push DFS Wrp. For these t-tests our null
hypothesis is that Push DFS Wrp is not faster than the other
algorithm and the alternative hypothesis is that it is faster.
The results of these tests are shown on the first two rows
of Table 2. Since the likelihood of these t-values is small,
less than or equal to 5%, we can reject the null hypothe-
sis and say that Push DFS Wrp has the best performance
on the inconclusive problems. Thus, we advocate using the
Push DFS Wrp algorithm while in exploratory mode since
it tends to returns inconclusive results the quickest.

6.2. Fault finding mode

In fault finding mode, some of the properties are incon-
clusive and the analyst needs to determine the cause so the
fault can be corrected. This task can be aided by the counter
examples produced by the verification tool. Having a path is
not as important as having a useful path. In our experiment,
we use path length as the metric for the usefulness.

Figure 6 shows path length data for the six problems
from Figure 4, normalized against the length of the short-
est path, which is shown below the problem name in this
figure. This figure omits data for the node-space algorithms
since they do not return counter examples, and A∗ and Push
BFS since they both find shortest paths.

Figure 6. Path lengths

The data in Figure 6 shows that the Push DFS algorithms
have a large variance in the length of their counter exam-
ples. We would not expect these algorithms to find short
paths since they can make no guarantees about the lengths
of the paths they will find. It appears that Push DFS Wrp al-
gorithm, however, tends to find shorter paths than the other
two. This is probably because it considers the children of
a node in a different order each time it visits that node. As
a result, it is not going to loop over the same set of nodes
repeatedly, creating a long path that does not make much
progress towards the goal. Because of the large variance in
path lengths and the small number of problems in our test
set, however, we could not come to any statistically signif-
icant conclusions to show that Push DFS Wrp was the best
Push DFS algorithm in terms of path length.

Thus, one might assume that the Push DFS Wrp algo-
rithm is the best algorithm to use for finding inconclusive
results and creating counter examples. If there can only be
one algorithm associated with FLAVERS, this indeed might
be the case. On average, however, Push DFS Wrp found
paths that were 5.88 times longer than the shortest path.
Since analyst time is probably of more concern than com-
puting time, having a short path is probably worth the addi-
tional computation time of first finding an inconsistency, us-
ing the Push DFS Wrp algorithm, and then finding a short-
est path, using a shortest path algorithm. Of the two shortest
path algorithms we considered, Push BFS and A∗, there is
statistical evidence that A∗ is faster as shown in Table 2.
Even though A∗ runs on average 3.87 times slower than
Push DFS Wrp, we feel that getting significantly shorter
paths is worth this extra time investment.

6.3. Maintenance mode

Eventually, the analyst should be in a maintenance mode
reproving properties for systems that have evolved. In this
mode, we are interested in algorithms that have the best per-

Figure 7. Conclusive problems

Figure 8. Conclusive averages

formance on conclusive problems.
Figure 7 shows the running times for the algorithms over

six of the largest conclusive problems and Figure 8 shows
the averages over the 41 conclusive problems that ran longer
than 10 seconds for each algorithm.

In these two figures, we see that there is less variance
among the different algorithms than among the inconclu-
sive problems. Since these problems are conclusive, all of
the algorithms must consider all reachable node-tuples and
they all do approximately the same amount of work. The al-
gorithms that place nodes on the worklist all perform better
than those that use node-tuples. Since the node-space algo-
rithms maintain less detail, it is understandable that they
require less time. The A∗ algorithm had the worst time
performance, since the operations on the priority queue are
O (log n) compared toO (1) for the other algorithms.

Of the four algorithms that place nodes on the worklist, it
appears that the pushes performed better than the pulls. The
pushes probably performed better because they had a sim-
pler implementation. In the pull algorithms, each node is
responsible for remembering which tuples it has processed

Algorithms t P (T ≥ t) σ

Pull DFS′ Push BFS′ 8.79 0.00 0.02
Pull BFS′ Push BFS′ 5.59 0.00 0.00
Push DFS′ Push BFS′ 3.38 0.00 0.00

Table 3. t-tests for conclusive problems

on each of its parents. In the push algorithms, each node
only needs to keep track of tuples it has propagated to the
children. The more complicated bookkeeping of the pull al-
gorithms probably accounts for the performance difference.
Additionally, the BFS′s performed better than the DFS′s. In
examining the behavior of the two worklists, we discovered
that once a node was inserted onto the worklist, on average
it remained there longer with a BFS′ algorithm than with a
DFS′ algorithm. This means that a node has more time to
“accumulate work” and, thus, more work is done each time
a node is removed from the worklist with a BFS′ algorithm,
so these algorithms have fewer worklist operations.

It appears that Push BFS′ is the best algorithm on
the conclusive problems. To confirm this, we performed
matched pair t-tests comparing Push BFS′ to the other al-
gorithms that put nodes on the worklist. For each pair of
algorithms, we tested the null hypothesis that Push BFS′

is not faster, to the alternative hypothesis that it is faster.
The results of these tests, shown in Table 3, allow us to ac-
cept our hypothesis that Push BFS′ is the best of these four
algorithms and would be our choice for doing analysis in
maintenance mode.

6.4. Threats to validity

While we did a careful study of these nine algorithms
over the suite of test problems, there are serious threats to
the validity of this research. First, although our test suite
included 220 different problems, many are derived from a
small base set and most were developed to evaluate verifi-
cation systems. As a result, they may not reflect the types
of problems that will occur in real world industrial prob-
lems. The Chiron user interface system, on the other hand,
is not a contrived problem. Since the performance of our
algorithms on Chiron was similar to the performance on the
other problems, we have reason to believe that we will see
comparable performance on real world problems.

Another issue is the metric we used for judging the use-
fulness of the path for the fault finding mode. For our study,
we used the length of the path as a measure of usefulness.
While it is clear that long paths will be of limited use in
finding a fault, it is not clear that shortest paths will be the
most useful. Unfortunately, we do not have any better met-
ric for measuring the usefulness of a path, although we feel
that other metrics need to be developed and investigated.

Finally, we have some concern over the validity of our

inconclusive data. The majority of our inconclusive prob-
lems do not contain any faults. They are inconclusive due
to the removal of some feasibility constraints that were used
to obtain conclusive results. Our intuition was that these in-
conclusive problems have many paths through the TFG that
would result in a violating tuple. We would expect that for
a real program with a real fault, that this percentage would
be low. That is only a limited number of paths would ex-
ercise the fault. For a given problem, we wanted to deter-
mine the percentage of paths through the TFG that lead to
a violating tuple. Since there can be an infinite number of
paths through a TFG, we restricted our interest to only sim-
ple paths with no repeating node-tuples. If this percentage
is high, then it could indicate that our Push DFS searches
performed well because many paths lead to violations. Un-
fortunately, counting the number of paths is a #P-complete
problem, making the problem at least as hard as satisfia-
bility [21]. To get a sense of this percentage, however, we
enumerated all the paths of a small example that contains
a real fault but has less than 40 node-tuples. There is 1
simple violating path and there are 27 simple non-violating
paths. However, in a set of 10,000 random walks through
this space, none of the non-violating paths was found. This
is because the 1 violating path was less than half the length
of the shortest non-violating path, and as a result the algo-
rithm was more likely to find the short violating path. On
another example, with around 3,000 node-tuples, we could
not enumerate all the paths due to a lack of computing re-
sources. Surprisingly, however, the first 3,000,000 paths
found were all non-violating. Clearly, more work needs to
be done to evaluate this threat. Since one experiment found
lots of violating paths and the second found none, it is hard
to see what conclusions can be drawn.

7. Related work

Much work has been done in comparing different
data flow algorithms, especially algorithms for perform-
ing points-to analysis [11, 14]. The problem of comparing
verification-based algorithms or of finding counter exam-
ples through a data flow analysis problem does not seem to
have been studied.

Some work has been done on counter example gener-
ation for testing [1, 3]. In [9], model checking is used to
create counter examples for the inverse of a property. This
returns traces that are paths over which the property holds.
These traces are then used to select tests for the system.
In this work, two different model checkers, SMV [16] and
SPIN [12] were used to create several counter examples for
each property. For this study, SMV, which uses a BFS al-
gorithm, generated a large set of short traces, while SPIN,
which uses a DFS algorithm, took less time and generated a
small set of long traces. A more direct comparison of SMV

and SPIN was made in [2] with comparable results.
Chan et al showed that different algorithms can effect the

performance of symbolic model checking [4]. They mod-
ified SMV so that it could search either forwards or back-
wards. In their experiments on a software system, the back-
wards search worked better. Others, however, have reported
that forward search works better on hardware systems [13].
In our work, we do a direct comparison of algorithms to
determine which is most useful at which point in time.

8. Conclusions

We believe that there are three different modes that an
analyst goes through while studying a system, exploratory
mode, fault finding mode, and maintenance mode. Of
course, in practice, an analyst may move from any mode
to another or even be in several modes concurrently at the
same for the same system. We believe, however, that for a
given property, an analyst has a good sense of what the cur-
rent mode is, and has corresponding expectations. In each
mode an analyst would be best served by an algorithm opti-
mized to meet these expectations.

When in exploratory mode, the goal is to get fast results
for inconclusive problems. Push DFS Wrp would be the
algorithm of choice here because it was the fastest algo-
rithm on average on our test suite. In fault finding mode,
inconclusive results are still expected, but the counter ex-
amples should be short. In our experiments, A∗ returned
the shortest paths in the shortest time. Finally, in mainte-
nance mode, conclusive results are expected. The algorithm
that performed best on conclusive problems was Push BFS′.
Thus, it appears that different algorithms are best suited for
each of these three modes.

We believe that having a separate exploratory and fault
finding mode is important. In our experimentation, we have
often found that the correct specification of properties is a
difficult problem. In exploratory mode, faults with prop-
erty specification can sometimes be detected. We believe
that using an algorithm that can identify faults quickly can
aid the correction of property specification errors. Using a
more expensive shortest path algorithm to find a path for
an incorrect property is wasted time. More experimentation
is needed, though, to determine what information is most
useful to users in detecting incorrectly specified properties.

Even though our experiments were done using
FLAVERS on Ada programs, we believe our results
have broader applicability. For example, we would expect
similar performance results for programs written in other
languages [18]. Additionally, we believe our results
have broader applicability to other finite state verification
approaches. Two studies [2, 9] reported results that are
consistent with our results. From this, we expect that
other verification tools will have similar performance

profiles based on the type of search they use. Designers
of these tools might want to consider providing users with
alternative algorithms so they can make a choice based on
their expectations.

We plan to continue this work and conduct experiments
over a wider range of problems and algorithms. In partic-
ular, the problem of counter example selection requires ad-
ditional investigation. While the A∗ algorithm was an im-
provement over Push BFS, other heuristics should be con-
sidered. A∗ examined the state of task automata, but per-
haps the state of the property or other feasibility constraints
should be used to further improve performance. Although
path length is an important metric, we suspect that more
powerful and interesting metrics are needed in this area.
For example, the analyst might want to have some input in
the path selection process, perhaps by providing hints as to
what portions of the system should be explored or avoided.
We believe that feasibility constraints could be used to sup-
port this guidance and plan to investigate this issue further.

9. Acknowledgements

We would like to thank Kirk J. Macolini, whose Masters’
Project was the inspiration for this work.

This research was partially supported by the Air Force
Research Laboratory/IFTD and the Defense Advanced Re-
search Projects Agency under Contract F30602-97-2-0032
by the National Science Foundation under Grant CCR-
9708184 and by IBM Faculty Partnership Awards dated
5/21/99 and 6/20/2000. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either
expressed or implied of the Defense Advanced Research
Projects Agency, the Air Force Research Laboratory/IFTD,
the U.S. Government, of the National Science Foundation,
or of IBM.

References

[1] P. E. Ammann, P. E. Black, , and W. Majurski. Using model
checking to generate tests from specifications. InProc. of
the Second IEEE Int. Conf. on Formal Eng. Methods, pages
46–54, Dec. 1998.

[2] R. Bharadwaj and C. L. Heitmeyer. Model checking com-
plete requirements specifications using abstraction.Auto-
mated Soft. Eng., 6(1):37–68, Jan. 1999.

[3] J. Callahan, F. Schneider, and S. Easterbrook. Automated
software testing using model-checking. InProc. of the Sec-
ond SPIN Workshop, Aug. 1996.

[4] W. Chan, R. J. Anderson, P. Beame, and D. Notkin. Improv-
ing efficiency of symbolic model checking for state-based

system requirements. InProc. of the 1998 Int. Symp. on
Soft. Testing and Analysis, pages 102–112, Mar. 1998.

[5] R. Dechter and J. Pearl. Generalized best-first search strate-
gies and the optimality of A∗. J. of the Assoc. of Computing
Machinery, 32(3):505–536, July 1985.

[6] M. B. Dwyer and L. A. Clarke. Data flow analysis for ver-
ifying properties of concurrent programs. InProc. of the
Second ACM SIGSOFT Symp. on the Found. of Soft. Eng.,
pages 62–75, Dec. 1994.

[7] R. Ford. Concurrent algorithms for real-time memory man-
agement.IEEE Software, pages 10–23, Sept. 1988.

[8] K. Forester, C. MacFarlane, M. Cameron, and G. Bolcer.
Chiron-1 user manual. Arcadia Document UCI-93-07, U. of
California, Irvine, Sept. 1993.

[9] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. InProc. of
the Seventh European Soft. Eng. Conf. held jointly with the
Seventh ACM SIGSOFT Symp. on the Found. of Soft. Eng.,
pages 146–162, Sept. 1999.

[10] D. Helmbold and D. Luckham. Debugging Ada tasking pro-
grams.IEEE Software, 2(2):47–57, Mar. 1985.

[11] M. Hind and A. Pioli. Which pointer analysis should I use?
In Proc. of the 2000 Int. Symp. on Soft. Testing and Analysis,
pages 113–123, Aug. 2000.

[12] G. J. Holzmann.Design and Validation of Computer Proto-
cols. Prentice-Hall, Inc., 1991.

[13] H. Iwashita, T. Nakata, and F. Hirose. CTL model check-
ing based on forward state traversal. InProc. of the 1996
IEEE/ACM Int. Conf. on Computer-Aided Design, pages 82–
86, Nov. 1996.

[14] D. Liang and M. J. Harrold. Efficient points-to analysisfor
whole-program analysis. InProc. of the Seventh European
Soft. Eng. Conf. held jointly with the Seventh ACM SIG-
SOFT Symp. on the Found. of Soft. Eng., pages 199–215,
Sept. 1999.

[15] T. J. Marlowe and B. G. Ryder. Properties of data flow
frameworks: A unified model.Acta Infomatica, 28:121–
163, 1990.

[16] K. L. McMillan. Symbolic Model Checking: An Approach to
the State Explosion Problem. Kluwer Academic Publishers,
1993.

[17] G. Naumovich and G. S. Avrunin. A conservative data flow
algorithm for detecting all pairs of statements that may hap-
pen in parallel. InProc. of the Sixth ACM SIGSOFT Symp.
on the Found. of Soft. Eng., pages 24–34, Nov. 1998.

[18] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data
flow analysis for checking properties of concurrent Java pro-
grams. InProc. of the22nd Int. Conf. on Soft. Eng., pages
399–410, May 1999.

[19] G. Naumovich, L. A. Clarke, and L. J. Osterweil. Verifica-
tion of communication protocols using data flow analysis. In
Proc. of the Fourth ACM SIGSOFT Symp. on the Found. of
Soft. Eng., pages 93–105, Oct. 1996.

[20] G. Naumovich, L. A. Clarke, and L. J. Osterweil. Effi-
cient composite data flow analysis applied to concurrent pro-
grams. InProc. of the ACM SIGPLAN-SIGSOFT Workshop
on Prog. Analysis For Soft. Tools and Eng., pages 51–58,
June 1998.

[21] C. H. Papadimitriou.Computational Complexity. Addison-
Wesley, 1994.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2001

	The Right Algorithm at the Right Time: Comparing Data Flow Analysis Algorithms for Finite State Verification
	Jamieson M. Cobleigh
	Recommended Citation

	tmp.1273242991.pdf.sbcip

