View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarWorks@UMass Amherst

University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Computer Science Department Faculty Publication

) Computer Science
Series

2000

Veritying Properties of Process Definitions

Jamieson M. Cobleigh
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty pubs

b Part of the Computer Sciences Commons

Recommended Citation
Cobleigh, Jamieson M., "Verifying Properties of Process Definitions" (2000). Computer Science Department Faculty Publication Series.

119.
Retrieved from https://scholarworks.umass.edu/cs_faculty pubs/119

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Ambherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,

please contact scholarworks@library.umass.edu.

https://core.ac.uk/display/13600879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/119?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Verifying Properties of Process Definitions

Jamieson M. Cobleigh, Lori A. Clarke, Leon J. Osterweill
Department of Computer Science
University of Massachusetts at Amherst
Ambherst, MA 01003-6410

[jcobleig, clarke, ljo]J@cs.umass.edu

ABSTRACT

It seems important that the complex processes that symeehgiz
mans and computers to solve widening classes of societallgms
be subjected to rigorous analysis. One approach is to usecass
definition language to specify these processes and to treeanad-
ysis techniques to evaluate these definitions for importantect-
ness properties. Because humans demand flexibility in geair
ticipation in complex processes, process definition laggaanust
incorporate complicated control structures, such as uaremncur-
rency, choice, reactive control, and exception mechanisiise
underlying complexity of these control abstractions, hasveoften
confounds the users’ intuitions as well as complicates aayyais.

Thus, the control abstraction complexity in process definitan-
guages presents analysis challenges beyond those poseatiby t
tional programming languages. This paper explores soméeof t
difficulties of analyzing process definitions. We explosuiss aris-
ing when applying the FLAVERS finite state verification syst®
processes written in the Little-JIL process definition laage and
illustrate these issues using a realistic auction examgliough
we employ a particular process definition language and aiwaly
technique, our results seem more generally applicable.

Categories and Subject Descriptors

D.2.4 [Software Engineerind: Software/Program Verification;
K.6.3 [Management of Computing and Information System§
Software ManagementSeftware process

1. INTRODUCTION

Processes are pervasive in areas of human and computeciier

[5, 8, 9]. At the same time, societal vulnerability to pooitjty in
these processes has become worrisome. Thus, we advoaate rig
ous analysis of process definitions to demonstrate thatatresfree
from faults that could lead to serious failures.

In earlier work it has been suggested that processes ardieuper
kind of software [13] and that they should be developed,fiegti
and evolved using approaches analogous to those used fiir app

cation software. In earlier work it has also been suggested t
static analysis approaches are effective in helping tooreabout
software systems. In this paper, we demonstrate the appitga
and benefits, as well as some of the research challengesjatesio
with applying finite state verification to process definigonAl-
though software processes are software too, process seftves
characteristics that tend to differentiate it from mostwantional
application software in ways that complicate static arialyShus,
while the need for analysis remains strong, the complioatim
doing so are noteworthy.

Ongoing process research suggests that graphical procassian
are useful in raising human awareness and intuition abmdegss
characteristics. Unsurprisingly, the most effective msdacor-
porate high-level abstractions that support concise lizatéon.
While intuitively appealing, we have found that such precesd-
els often entail subtleties that lead to error-prone preadfini-
tions. We have developed a visual language, Little-JIL{ fna-
vides a range of process abstractions that have proven tfidme e
tive for describing human and computer interaction. In thaper
we describe how FLAVERS [4], a finite state verification syste
has been used to verify properties of processes that havedasee
fined using Little-JIL. The paper demonstrates that proabstrac-
tions can be quite effective in supporting precise procesmid
tions, but the underlying semantic complexity poses chghs for
static analysis. Our work addresses those challenges,iraid-
ing so, provides experience that should be of importancéutare
research in both finite state verification and in processuagg
design. Although we present an example in terms of a paaticul
process definition language and a particular analysis tqabnwe
contend that the insights gained are also applicable tor qtfte
cess definition languages [e.g., 1, 5, 6, 11] and other siatitysis
techniques [e.g., 3, 7, 10].

This work expands on the types of analyses that have been ex-
plored for process definition systems. Several processikges,
including IDEFO [11], ProcessWeaver [5], and Statematedligw
limited types of static analysis, such as type checking ahéro
consistency checking. Perhaps the most ambitious stagiysis

is carried out in the FunsoftNets system [1]. This systens use
Petri Net-like model to define processes. The system incate®
analyzers that evaluate well-formedness and detect siebtdeas
deadlocks and traps in the underlying Petri Net.

2. LITTLE-JIL

Little-JIL is an expressive process definition languagé tisgs a
graphical notation that helps users quickly grasp the nmegsnof
process definitions [14]. Here we present a subset of Litile-

Interface Badge

Pre-requisite Badgf Post-requisite Badge
O

V StepNameA

Step Bar—>

Sequencing Badg/e‘ T \Handlers Badge
Reactions Badge

Figure 1: A Little-JIL step

so that the motivating example can be understood. Litllehdis
well defined formal semantics that allow Little-JIL defioitis to

be executed and analyzed. A Little-JIL process definitistdbes

the coordination of activities of agents, whereaentis an entity,
either human or computer, that can be assigned work to do. In
Little-JIL, stepsrepresent work that can be assigned to an agent.

Steps: Each step in a Little-JIL definition is represented by a step
icon as shown in Figure 1. Each step is given a name and haefa set
badges that represent key information about the step,dirgitthe
step’s control flow, the exceptions the step handles, thenpaters
needed by the step, and the resources needed to executefhe st
Each step can only be declared once in a Little-JIL definjtoor a
step can be referenced many times in the process definitiveser
additional references are depicted by a step with its naritalios

and no badges.

Step Execution: The execution semantics of a Little-JIL step are

defined by a finite state machine, whose behavior can be summa-

rized by five states: posted, retracted, started, complatetitermi-
nated. A step is moved into the posted state when it is eidibbe
started. A step is moved into the started state when thessagpnt

begins executing the step. When the work specified by a step is

successfully finished, the step moves to the completed dfate
step cannot be successfully completed, it moves to the hae
state. A step is put into the retracted state if it had beetegout
not started, and is no longer eligible to be started. The'stee-
cution can end when it is in the retracted, completed, oriteated
state.

Sequencing BadgesA Little-JIL process is represented by a tree
structure where children of a step are the substeps thattodesi
done to complete that step. The parent-child relation isctieg
by a line between the child and the parent’s sequencing baklge
non-leaf steps must have a sequencing badge, which desthide
order in which its substeps are performed. The four diffeserp-
ported sequencing types are shown in the key in Figure 2

A sequential stepndicates that its substeps are to be performed
one at a time, from left to right. Avarallel stepindicates that its
substeps can be done concurrently, and that the step is etadpl

if and only if all of its substeps have completed. choice step
indicates that a step’s agent must make a choice among atgy of i
substeps. All of the substeps are available to be perforied,
only one can be selected at a time. If a selected substep eteapl
then the choice step completes.tr stepattempts to perform its
substeps in order, from left to right, until one of them coeatpsk. If

a substep terminates, then the next substep is tried.

Exception Handling: There is considerable evidence that pro-
cesses have complex exception structure. Thus, steps tie-Lit
JIL can throw exceptions, which are caught by the nearestsioc
having a matching handler, as indicated by the ancestoridlaa
badge. To concisely represent complex exception handliiite-
JIL enables handlers to be steps, so they may have a fulrbiéra
cal structure. Our experience also indicates that artiewdapres-
sion of process exceptional flow is facilitated by the attaeht of
any of four different kinds of handler control-flow badgeattndi-
cates how the step catching the exception should proceedthé
handler completes. These are shown in the key of Figure 2.

When a handler with gestartbadge completes, the step catching
the exception is restarted. When a handler wittbatinuebadge
completes, the step catching the exception continues hs Bub-
step that generated the exception completed normally. Véltiem-
dler with acompletebadge completes, the step catching the excep-
tion moves into the completed state. When a handler wigthaow
badge completes, the step catching the exception terrsirate
rethrows the exception. Some handlers consist only of adydulg

no step structure.

Requisites: Process definitions seem to benefit substantially from
the attachment of pre- and post-requisites to steps. Thase c
structs are natural vehicles for monitoring agent perfaroeaof
steps and support the retention of process control, whilgsint-

ing the agent latitude and initiative in step execution. §haistep

in Little-JIL can have pre- and post-requisites. pfe-requisiteis
performed after a step starts, but before the work of the stepbe
initiated. A post-requisitehas to be done before a step can com-
plete. A failure of a requisite for a step throws an exceptioat

is handled by the matching handler at the step’s nearesstomce
This failure terminates the step with the requisite.

Interface Badges: Artifact flow and resource specification have
both been found to be essential to the precise definitionaifsre

tic processes. In Little-JIL, interface badges are usedetade
what parameters a step has, what exceptions it throws, aatl wh
resources it needs. Parameters declared in a Little-Jp_tsdge a
name, type, and mode. The name is used to identify the pazamet
and the type declares what type of object the parameter tde-i
JIL uses copy-in/copy-out semantics for parameter passinga
parameter may have one of four modes. iAparameter denoted

by a down arrow, is passed from the parent and its value stmaild
copied when the step starts. Aot parameterdenoted by an up
arrow, is passed to the parent, which must copy the value wieen
step completes. Am-out parameterdenoted by an up-down ar-
row, indicates the value of the parameter should be copiechen

the step starts and copied out when the step completetcah
parameter indicated by a diamond, is created by a step to allow
passing of parameters between that step and its descendants

3. MOTIVATING EXAMPLE

The utility of these constructs can perhaps be seen bestghran
example. Thus, this section demonstrates the use of Uitlde
define an auction, a process that is gaining increasing jeresa

in ecommerce. In an auction process, a buyer and seller mach
agreement about an acceptable price for an item. The prigess
supervised and controlled by a third party, the auction®ee type

of auction is the Open-Cry Auction. In its most common forial-b
ding starts at a low price and the price is increased as ksduféar
successively higher prices. The auction closes when omebiths
offered a price that is higher than what any other bidder iingi

Sequencing Badges:
— Sequential
= Parallel
- Choice

Handler Control-Flow Badges:
T Rethrow @)
- Continue Close AucnonA
N Complete
pa|

Restart
Vbest: BidReferende

Zhest b

./\L best: BidReference

Open-Cry Auction
\ A

[best: BidReference

Accept Bids From Bidder
V= 8
— NoMoreBidders

/ AuctionClosed
es

Accept Bids From Bidder

AuctlonNotC\osed\Accep[One Bid
A

N/ AuctionClosed

< BidNotHigher
= BidNotBetter
| DeadlineExpired
bes
Odeadline: Duration=1rk \Qm
Vbest: BidReferende
Submit Bid/BldISH'gher Update Best Bid Accept One Bid
BidisBetter Y A

Figure 2: Open-Cry Auction Process

to offer within some time frame. The high bidder is then aveard
the item and has to pay the amount of their highest bid. Witimen
auctions the auctioneer is not a person but a program anddhe b
ders are distributed across a network. At present bidderssrally
humans, but it is expected that bidding will increasinglycheried
out by automated agents. Thus, auctions will be carried roat i
more rapid fashion, with decreasing amounts of human iotiena
and scrutiny. For these reasons, having some way to ensatréhéh
activities of the auctioneer and bidders proceed in expestyys is
important.

Many different properties of an Open-Cry Auction should legiv
fied. For example, no bids should be accepted after an auatisn
been closed. It is also important to verify that the auctésrmon-
siders all bids that are submitted and that the person stibgiihe
highest bid is actually awarded the item and at the highegpitice.
If parts of the auctioneer or bidder are carried out by a caempu
then it is important to check to ensure that the computemsoé
cannot deadlock and does not have any undesirable raceioosdi

While it may be possible to verify these properties by thedir
analysis of the code used to implement such an auction, thle an
ysis of a higher level representation generally offers athges of
scalability and early fault detection. A Little-JIL defiimin is just
such a higher level representation. Figure 2 shows a siraghfer-
sion of an Open-Cry Auction written in Little-JIL [2].

At a high level, this process is very straightforward. Irsthiocess,
performing an auction is broken down into two steps that g h
pen in parallel, “Close Auction” and “Accept Bids From Bidtle
One “Accept Bids From Bidder” step is created for each bidder
the auction. Each bidder is handed off to an “Accept One Biep)s
which is responsible for handling a single bidder’s bidse3é“Ac-
cept One Bid” steps can happen in parallel, so multiple bigldan
be submitting bids simultaneously. The process of accepiire
bid is done by having the bidder submit a bid, and then hawieg t
auctioneer update the best bid depending upon whether dheot
bid just submitted is higher than the current high bid. Thizcpss
recurses on “Accept One Bid” so that each bidder can contioue
submit bids until the auction is closed.

4. FLAVERS

FLAVERS (FL ow Analysis forVERIfication of Systems) is a static
analysis tool that can verify user specified properties gtisatial

and concurrent systems [4]. Like all automated verificagga-
tems, FLAVERS requires an accurate model of the computation
upon which to base the analysis. The model FLAVERS uses is
based on annotate@ontrol Flow Graphs(CFG). Annotations are
placed on nodes of the CFGs to represent events that ocdagdur
execution of the actions associated with a node. Since a ©OFG ¢
responds to the control flow of a sequential system, thisessprta-
tion is not sufficient for modeling a concurrent system. FIERS
uses alrace Flow Graph(TFG) to represent concurrent systems.
The TFG consists of a collection of CFGs witlay Immediately
PrecedgMIP) edges between tasks to show intertask control flow.
A CFG, and thus a TFG, over-approximates the sequencesmfeve
that can occur when executing a system.

FLAVERS requires that a property to be checked be repredente
as a Finite State Automaton (FSA). FLAVERS uses an efficient
state propagation algorithm to determine whether all patehe-
haviors of the system being analyzed are consistent witipribye-
erty. FLAVERS will either returnconclusive meaning the prop-
erty being checked holds for all possible paths through th& T

or inconclusive meaning FLAVERS found some path through the
TFG that causes the property to be violated. FLAVERS analyse
are conservative, meaning FLAVERS will only return conélas
results when the property holds for all TFG paths. If FLAVERS
returns inconclusive results, this can either be because tis an
execution that actually violates the property or becaus@tbperty

is violated on infeasible paths through the TH@easible pathsio

not correspond to any possible execution of the system leuaiar
artifact of the imprecision of the model. If the inconclusiresult

is because of infeasible paths, then the analyst can inteddasi-
bility constraints which are also represented as FSAs, to improve
the precision of the model and thereby eliminate some iitftas
paths from consideration. An analyst might need to iteedyiadd
feasibility constraints and observe the analysis reseitsrsl times
before determining whether a property is conclusive or re@si-
bility constraints give analysts some control over the ysialpro-
cess by letting them determine exactly what parts of a sysiesd

to be modeled in order to prove a property.

FLAVERS' state propagation has worst-case complexity that
@) (N2 -1S[), where N is the number of nodes in the TFG, and
|S| is the product of the number of states in the property and all
constraints. In our experience, a large class of importeopigrties
can be proved by using only a small set of feasibility coristsa

5. MODELING PROCESSES

Earlier we described the sequencing badges supported bg-Lit
JIL. For each of these step kinds, we constructed a CFG mbdel.
Little-JIL, the types of exception handlers on a step caacafthe
model. Space does not permit us to provide all models of apo
ble combinations of steps and exception handlers here.eRatle
illustrate the models of each step kind using one kind of ptica
handler, usually one that simplifies the model for that step.

Leaf Steps: The model for a Leaf Step is shown in Figure 3. Con-
trol flows in from the parent of the Leaf Step and the step isqubs
After being posted, the step can be started. From the ststate]
the step can either complete or terminate. A pre-requisite ke
added by putting its model between the “LeafPosted” and fLea
Started” node. A post-requisite can be added by putting ddeh

LeafPosted

LeafStarted

‘ LeafCompIeted‘ ‘ LeafTerminated

Figure 3: Model of a Leaf Step

immediately before the “LeafCompleted” node. Since steps t
minate if their requisites terminate, the model should haecter-
minated path out of the pre- and post-requisites connectedet
“LeafTerminated” node.

Sequential StepsA sequential step performs the work of all of its
substeps, one at a time, from left to right. Suppose, for kaity
the sequential step has rethrow handlers for any exceptiaavh

by its substeps. This means that when an exception is thrinen,
sequential step terminates. This model, generalized gobsteps,
is shown in Figure 4. As before, flow comes in from the seqaénti
step’s parent and it is posted and then started. At this pdiet
sequential step attempts to do its first substep. This isw@size
model, so the model for the first substep is represented bgwvile
labeled Substep If Substep completes, the process moves on
to the next substep and continues in this fashion until ®yphst
reached. If Substgpcompletes, the sequential step completes. If
any substep terminates, then the sequential step terminate

Parallel Steps: A parallel step allows the work of its substeps to
proceed concurrently. As with the sequential step, we aessiom
simplicity that the parallel step has only rethrow handlérghile
the parallel step may in general havesubsteps, for simplicity we
show a parallel step that has only two substeps. The modaisf t
step, as shown in Figure 5, has a dashed edge in it to repiasamnt
actions that may occur due to concurrency. In particulardédshed

SeqgPosted
SeqStarted

Terminated
Substep

Completed

Terminated

Completed

Terminated

Substep

Completed

SequmpIeted‘ ‘ SeqTerminated

Figure 4: Model of a Sequential Step

moves on to the next substep. If any of the substeps completes
the try step completes; if all of the substeps terminatetrhetep
terminates.

Choice StepsiIf there aren substeps to a choice step, it is possible
that all n substeps might be tried before the choice step finishes.
There are2™ subsets of the substeps. For an analysis to be con-
servative, it may need to consider not only all of these sishbeit

all orderings of the substeps within each subset. Even tnthig

can present a challenge for analysis, experience has sthavhu-
man agents desire the empowerment that such construcisi@rov

Figure 5 shows the CFG for the Choice step. The astute reater w
notice that this model contains many infeasible paths,esthere
is nothing to prevent FLAVERS from considering paths where a
substep is started several times. We use a set of feasibdity
straints, each similar to the one shown in Figure 6, to retsthie

edge represents a set of FLAVERS MIP edges, which are used topaths that will be traversed during analysis. These coinssrare-

represent the ways in which flow can move between differeshista
The dashed edge in this figure represents the addition of klgese
between every pair of nodes in Substemd Substep

In addition, the parallel step cannot finish until all of itsbsteps
have finished. The potential parallelism involved makesasgnt-
ing this behavior directly in a TFG difficult, so we have choge
use FLAVERS' feasibility constraint mechanism to ensuid the
parallel step cannot complete or terminate until all of itbsteps
have finished. This approach is consistent with how FLAVERS
models some of the concurrency constructs in Java [12].

Try Steps: Although our Open-Cry Auction process example does
not include any choice steps or try steps, we briefly desdriye
their semantics can be modeled. Try steps are designed ttaetiry
substeps one at a time, in order, until one completes. Fantuel

vent FLAVERS from starting substeps more than once and from
terminating the Choice Step before all of the substeps haes b
attempted. We chose to use this model because represelttirig a
the orderings of the substeps in the CFG explicitly wouldsegiine
CFG to become prohibitively large.

In the FSA in Figure 6, State 1 represents the state in whieh th
ith substep has not been started. When an event “SyBstefed”
occurs, the constraint moves into state 2. This event doeapio

pear in the model for the Choice step, but will appear in theleho

for the substep. State 2 represents the state of the systetnich

the ith substep has been started at least once. Both states 1 and
2 have transitions on the assertion “SubgsittgsNotStarted”. In
state 1, this transition is a self loop, so encounteringetént does

not affect the analysis. In state 2, this transition goesh&wio-

lation state. FLAVERS treats all of the paths associated e

shown in Figure 5, we assume a try step has only continue excep violation state as infeasible and does not consider thethduin

tion handlers, so that the try step can attempt all of its tyiss
The try step begins by attempting Substepf an attempted sub-
step completes, the step completes, but if it terminatesptbcess

the analysis. In this way, the constraint prevents the aimfyom
considering paths on which a substep is started twice. Emesitr
tions “SubstepHasStarted” behave in a similar fashion and prevent

TryPosted
ParPosted Erril
Completed
Substep
ParStarted
Terminated
Completed
Substep Substep
Completed LTerminated
. Completed
Completed Terminate %
Terminate Terminated
ParCompIeted‘ ‘ ParTerminated‘ ‘TryTerminated‘ ‘ TryCompleted
Parallel Step Try Step

ChoicePosted

ChoiceStarted
—>’7 Substep HasStarted
‘ Substep HasNotStartel# P ‘ Substep HasNotStarth .

Substep

==

Substep, HasStarted

Terminated

Figure 5: Models of Parallel, Try, and Choice Steps

Substep HasNotStarted

Substepy Started
Substep HasStarte

Subste HasStarted Subste HasNotStarted

Figure 6: A Feasibility Constraint for the Choice Step

the Choice step from terminating unless this step has begtedt
This constraint only deals with substepso withn substeps, we
may need to use constraints in the analysis.

The unlabeled node in Figure 5 represents a decision pofrerev
the process can choose between one of isibsteps. From this
point, there is a branch representing each choice, guardezhb
assertion. If the selected substep completes, the chapecsim-
pletes. Otherwise, the process moves back to the deciside. no
Once all substeps have been tried, the process can no |dngese
any substep, so the feasibility constraints allow the ahaiep to
terminate by following the branch with “SubstepHasStarted”
guards. The feasibility constraints ensure that the chstiep can-
not terminate until all substeps have been attempted.

6. EXPERIMENTAL RESULTS

To evaluate our approach to analyzing properties of prode8si-
tions, we used FLAVERS to check several properties of thenOpe
Cry Auction. All experiments were run on a Pentium Il 400 Mhz
PC with 384 MB of memory, running RedHat Linux 5.1 with ker-
nel version 2.0.34. The FLAVERS state propagation algoritias
been written in C and compiled with gcc 2.7.2.3. Currentlg,aan-
not automatically build models directly from Little-JIL@cess def-
initions. The purpose of this experiment was to investighaésfea-
sibility of performing analyses on processes. So, for noa,used

a combination of manual and automated techniques to genemnat

[Chocererminatch
Completed
ChoiceCompIete&
Choice Step
o

Update Best Bid
AuctionNotClose A
BidlsBetter M |:|
Figure 7: Corrected Step

notated CFGs, according to the specification of these CF@s-as
scribed in the previous section. These CFGs were used tdraohs

the TFG automatically. When constructing a TFG, FLAVERS ab-
stracts away parts of the model that are irrelevant to theqnty
being checked, so the size of the TFG changes depending on the
property being evaluated.

As shown in Table 1, the following properties were checked:

e No Late Bids Accepted Checks that no late bids can be
accepted in the auction.

e No Late Bids Accepted Checks the same property, except
checked on the process with the “Update Best Bid” step re-
vised as in Figure 7.

e Possible Race Condition: Checks to see if two steps that use
“best”, which is passed by reference, can be started at the
same time. This might be a race condition.

e No Race Condition (no lock): Checks to see if a race condi-
tion involing “best” can exist without any locking mechamis
in place to restrict access to the paramter.

e No Race Condition (with lock): Checks to see if a race con-
dition involing “best” can exist with a locking mechanism in
place to restrict access to the paramter.

7. CONCLUSIONS

This example shows how important it is to apply validatiochte
nigues, such as finite state verification, to process defirsti Pro-
cess definitions are often written at a high level, whichadlaisers
to quickly obtain an intuitive understanding of the proce3his
rapid conveyance of intuition can cause problems by mishead
people into incorrect understandings because subtlemysirkant,

Property TFG Nodes| TFG Edges Result Time (s)
No Late Bids Accepted 216 11,837 Inconclusive — fault| 6.56
No Late Bids Accepted 316 30,881 Conclusive 41.10
Possible Race Condition 327 35,788 Inconclusive — fault| 143.25
No Race Condition (no lock) 189 7,710 Inconclusive — fault] 15.07
No Race Condition (with lock 269 20,910 Conclusive 17.52

Table 1: FLAVERS Analysis Results

details have been overlooked. The incorrect process showigi

ure 2 was examined by several people who were knowledgeable

about both auctions and Little-JIL. Yet it took several dagéore
anyone realized that there was a defect in the process.

We were pleased that the FLAVERS finite state verificationesys
was able to detect this defect and to verify other properti®st
this verification was not without problems. Little-JIL useur-
sion instead of an explicit looping construct. Finite steaefiers,
such as FLAVERS, however, require that recursive constrbet
converted to finite representations. The exception hagdtiach-
anism of Little-JIL poses still other problems. For exampiea
parallel step, more than one substep may generate an extepti
If this happens, then the exception handlers can executeucon
rently, and the behavior of the process after the handleishfiis

dependent on the types of handlers that were executed. Sbme o

the popular features of Little-JIL, such as the choice steqired
sizeable flow graphs for their representation, which coaltito
increased execution times for FLAVERS' verification. In &abah,
Little-JIL is a factored language, with the resource man&ging
a separate component. Certain analyses might requireithabn-
trol flow of the process and the resource model both be reprede

This means that we need to determine a way to represent the re- [7]

source model for FLAVERS. Feasibility automata may provéde
mechanism for doing this, but possibly at the expense otiadail
complexity and an increase in the time needed for analysis.

In light of this we believe that the constructs in Little-Jland by
implication other advanced process definition languagesyro
be reconsidered in the light of the problems that they may fos
static verification.

8. ACKNOWLEDGEMENTS

The authors would like to thank Aaron Cass, Sandy Wise, and

Hyungwon Lee for their help in preparing the example process

This research was partially supported by the Defense Adaénc

Research Projects Agency and the Air Force Research Labora-
tory/IFTD under agreement F30602-97-2-0032, and by the Na-

tional Science Foundation under Grant CCR-9708184. Thesyie
findings, and conclusions presented here are those of theraut
and should not be interpreted as necessarily represerténgfti-
cial policies or endorsements, either expressed or impbédhe

Defense Advanced Research Projects Agency, the Air Foree Re [13]

search Laboratory/IFTD, or the U.S. Government.

9. REFERENCES
[1] A. Brockers and V. Gruhn. Computer-aided verificatidn o
software process model properties Aroc. of the 5th Int.
Conf. on Advanced Information Systems Engineepages
521-546, 1993.

[2] A. G. Cass, H. Lee, B. S. Lerner, and L. J. Osterweil.
Formally defining coordination process to support contract
negotiations. TR 99-39, University of Massachusetts,
Department of Computer Science, 1999.

[3] J. C. Corbett and G. S. Avrunin. Using integer programgnin
to verify general safety and liveness propertieamal
Methods in System Desigbt97-123, Jan. 1995.

[4] M. B. Dwyer and L. A. Clarke. Data flow analysis for
verifying properties of concurrent programs.Pnoc. of the
ACM SIGSOFT '94 Symp. on the Foundations of Software
Engineering pages 62-75, Dec. 1994.

[5] C. Fernstrom. PROCESS WEAVER: Adding process support
to UNIX. In Second Int. Conf. on the Software Progess
pages 12-26, 1993.

[6] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtul-Trauring, and M. Trakhtenbrot.
STATEMATE: A working environment for the development
of complex reactive systemEEE Trans. on Software
Engineering 16(4):403—-414, Apr. 1990.

G. J. Holzmann. The model checker SPINEE Trans. on
Software Engineering23(5):279-295, May 1997.

[8] R. Kadia. Issues encountered in building a flexible saftwv
development environment: Lessons from the Arcadia
project. InFifth ACM SIGSOFT Symp. on Software
Development Environmentsages 169180, 1992.

[9] M. Kumar and S. I. Feldman. Internet auctions. TR, IBM
Institute for Advanced Commerce, Nov 1998.

[10] K. L. McMillan. Symbolic Model Checking: An Approach to

the State Explosion Problerdluwer Academic, 1993.

=
=

National Institute of Standards and Technoldgyegration
Definition For Function Modeling (IDEFQ)1993. Federal
Information Processing Standards 183.

[12] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data flow
analysis for checking properties of concurrent Java
programs. IrProc. of the Int. Conf. Software Engineerjng

pages 399-410, 1999.

L. Osterweil. Software processes are software to@rc.
of the Int. Conf. on Software Engineerimgages 2—-13, 1987.

[14] A. Wise. Little-JIL 1.0 language report. TR 98-24, Ueisity
of Massachusetts, Department of Computer Science, 1998.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2000

	Verifying Properties of Process Definitions
	Jamieson M. Cobleigh
	Recommended Citation

	tmp.1273242760.pdf.uyrTB

