
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2000

Verifying Properties of Process Definitions
Jamieson M. Cobleigh
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Cobleigh, Jamieson M., "Verifying Properties of Process Definitions" (2000). Computer Science Department Faculty Publication Series.
119.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/119

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13600879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/119?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Verifying Properties of Process Definitions

Jamieson M. Cobleigh, Lori A. Clarke, Leon J. Osterweil
Department of Computer Science

University of Massachusetts at Amherst
Amherst, MA 01003-6410

[jcobleig, clarke, ljo]@cs.umass.edu

ABSTRACT
It seems important that the complex processes that synergize hu-
mans and computers to solve widening classes of societal problems
be subjected to rigorous analysis. One approach is to use a process
definition language to specify these processes and to then use anal-
ysis techniques to evaluate these definitions for importantcorrect-
ness properties. Because humans demand flexibility in theirpar-
ticipation in complex processes, process definition languages must
incorporate complicated control structures, such as various concur-
rency, choice, reactive control, and exception mechanisms. The
underlying complexity of these control abstractions, however, often
confounds the users’ intuitions as well as complicates any analysis.

Thus, the control abstraction complexity in process definition lan-
guages presents analysis challenges beyond those posed by tradi-
tional programming languages. This paper explores some of the
difficulties of analyzing process definitions. We explore issues aris-
ing when applying the FLAVERS finite state verification system to
processes written in the Little-JIL process definition language and
illustrate these issues using a realistic auction example.Although
we employ a particular process definition language and analysis
technique, our results seem more generally applicable.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification;
K.6.3 [Management of Computing and Information Systems]:
Software Management—Software process

1. INTRODUCTION
Processes are pervasive in areas of human and computer interaction
[5, 8, 9]. At the same time, societal vulnerability to poor quality in
these processes has become worrisome. Thus, we advocate rigor-
ous analysis of process definitions to demonstrate that theyare free
from faults that could lead to serious failures.

In earlier work it has been suggested that processes are a particular
kind of software [13] and that they should be developed, verified,
and evolved using approaches analogous to those used for appli-

cation software. In earlier work it has also been suggested that
static analysis approaches are effective in helping to reason about
software systems. In this paper, we demonstrate the applicability
and benefits, as well as some of the research challenges, associated
with applying finite state verification to process definitions. Al-
though software processes are software too, process software has
characteristics that tend to differentiate it from most conventional
application software in ways that complicate static analysis. Thus,
while the need for analysis remains strong, the complications in
doing so are noteworthy.

Ongoing process research suggests that graphical process models
are useful in raising human awareness and intuition about process
characteristics. Unsurprisingly, the most effective models incor-
porate high-level abstractions that support concise visualization.
While intuitively appealing, we have found that such process mod-
els often entail subtleties that lead to error-prone process defini-
tions. We have developed a visual language, Little-JIL, that pro-
vides a range of process abstractions that have proven to be effec-
tive for describing human and computer interaction. In thispaper
we describe how FLAVERS [4], a finite state verification system,
has been used to verify properties of processes that have been de-
fined using Little-JIL. The paper demonstrates that processabstrac-
tions can be quite effective in supporting precise process defini-
tions, but the underlying semantic complexity poses challenges for
static analysis. Our work addresses those challenges, and,in do-
ing so, provides experience that should be of importance forfuture
research in both finite state verification and in process language
design. Although we present an example in terms of a particular
process definition language and a particular analysis technique, we
contend that the insights gained are also applicable to other pro-
cess definition languages [e.g., 1, 5, 6, 11] and other staticanalysis
techniques [e.g., 3, 7, 10].

This work expands on the types of analyses that have been ex-
plored for process definition systems. Several process languages,
including IDEF0 [11], ProcessWeaver [5], and Statemate [6], allow
limited types of static analysis, such as type checking and other
consistency checking. Perhaps the most ambitious static analysis
is carried out in the FunsoftNets system [1]. This system uses a
Petri Net-like model to define processes. The system incorporates
analyzers that evaluate well-formedness and detect such defects as
deadlocks and traps in the underlying Petri Net.

2. LITTLE-JIL
Little-JIL is an expressive process definition language that uses a
graphical notation that helps users quickly grasp the meanings of
process definitions [14]. Here we present a subset of Little-JIL,

Reactions Badge

StepName

Handlers Badge

Post−requisite Badge

Interface Badge

Sequencing Badge

Step Bar

Pre−requisite Badge

Figure 1: A Little-JIL step

so that the motivating example can be understood. Little-JIL has
well defined formal semantics that allow Little-JIL definitions to
be executed and analyzed. A Little-JIL process definition describes
the coordination of activities of agents, where anagentis an entity,
either human or computer, that can be assigned work to do. In
Little-JIL, stepsrepresent work that can be assigned to an agent.

Steps: Each step in a Little-JIL definition is represented by a step
icon as shown in Figure 1. Each step is given a name and has a setof
badges that represent key information about the step, including the
step’s control flow, the exceptions the step handles, the parameters
needed by the step, and the resources needed to execute the step.
Each step can only be declared once in a Little-JIL definition, but a
step can be referenced many times in the process definition. These
additional references are depicted by a step with its name initalics
and no badges.

Step Execution: The execution semantics of a Little-JIL step are
defined by a finite state machine, whose behavior can be summa-
rized by five states: posted, retracted, started, completed, and termi-
nated. A step is moved into the posted state when it is eligible to be
started. A step is moved into the started state when the step’s agent
begins executing the step. When the work specified by a step is
successfully finished, the step moves to the completed state. If the
step cannot be successfully completed, it moves to the terminated
state. A step is put into the retracted state if it had been posted, but
not started, and is no longer eligible to be started. The step’s exe-
cution can end when it is in the retracted, completed, or terminated
state.

Sequencing Badges:A Little-JIL process is represented by a tree
structure where children of a step are the substeps that needto be
done to complete that step. The parent-child relation is depicted
by a line between the child and the parent’s sequencing badge. All
non-leaf steps must have a sequencing badge, which describes the
order in which its substeps are performed. The four different sup-
ported sequencing types are shown in the key in Figure 2

A sequential stepindicates that its substeps are to be performed
one at a time, from left to right. Aparallel stepindicates that its
substeps can be done concurrently, and that the step is completed
if and only if all of its substeps have completed. Achoice step
indicates that a step’s agent must make a choice among any of its
substeps. All of the substeps are available to be performed,but
only one can be selected at a time. If a selected substep completes,
then the choice step completes. Atry stepattempts to perform its
substeps in order, from left to right, until one of them completes. If
a substep terminates, then the next substep is tried.

Exception Handling: There is considerable evidence that pro-
cesses have complex exception structure. Thus, steps in Little-
JIL can throw exceptions, which are caught by the nearest ancestor
having a matching handler, as indicated by the ancestor’s handler
badge. To concisely represent complex exception handling,Little-
JIL enables handlers to be steps, so they may have a full hierarchi-
cal structure. Our experience also indicates that articulate expres-
sion of process exceptional flow is facilitated by the attachment of
any of four different kinds of handler control-flow badges that indi-
cates how the step catching the exception should proceed after the
handler completes. These are shown in the key of Figure 2.

When a handler with arestart badge completes, the step catching
the exception is restarted. When a handler with acontinuebadge
completes, the step catching the exception continues as if the sub-
step that generated the exception completed normally. Whena han-
dler with acompletebadge completes, the step catching the excep-
tion moves into the completed state. When a handler with arethrow
badge completes, the step catching the exception terminates and
rethrows the exception. Some handlers consist only of a badge, but
no step structure.

Requisites: Process definitions seem to benefit substantially from
the attachment of pre- and post-requisites to steps. These con-
structs are natural vehicles for monitoring agent performance of
steps and support the retention of process control, while still grant-
ing the agent latitude and initiative in step execution. Thus, a step
in Little-JIL can have pre- and post-requisites. Apre-requisiteis
performed after a step starts, but before the work of the stepcan be
initiated. A post-requisitehas to be done before a step can com-
plete. A failure of a requisite for a step throws an exceptionthat
is handled by the matching handler at the step’s nearest ancestor.
This failure terminates the step with the requisite.

Interface Badges: Artifact flow and resource specification have
both been found to be essential to the precise definition of realis-
tic processes. In Little-JIL, interface badges are used to declare
what parameters a step has, what exceptions it throws, and what
resources it needs. Parameters declared in a Little-JIL step have a
name, type, and mode. The name is used to identify the parameter
and the type declares what type of object the parameter is. Little-
JIL uses copy-in/copy-out semantics for parameter passingand a
parameter may have one of four modes. Anin parameter, denoted
by a down arrow, is passed from the parent and its value shouldbe
copied when the step starts. Anout parameter, denoted by an up
arrow, is passed to the parent, which must copy the value whenthe
step completes. Anin-out parameter, denoted by an up-down ar-
row, indicates the value of the parameter should be copied inwhen
the step starts and copied out when the step completes. Alocal
parameter, indicated by a diamond, is created by a step to allow
passing of parameters between that step and its descendants.

3. MOTIVATING EXAMPLE
The utility of these constructs can perhaps be seen best through an
example. Thus, this section demonstrates the use of Little-JIL to
define an auction, a process that is gaining increasing prevalence
in ecommerce. In an auction process, a buyer and seller reachan
agreement about an acceptable price for an item. The processis
supervised and controlled by a third party, the auctioneer.One type
of auction is the Open-Cry Auction. In its most common form, bid-
ding starts at a low price and the price is increased as bidders offer
successively higher prices. The auction closes when one bidder has
offered a price that is higher than what any other bidder is willing

Continue

Rethrow

Restart

Complete

Sequential

Parallel

Choice

Try

Sequencing Badges:

Handler Control−Flow Badges:

Accept Bids From Bidder

NoMoreBidders
AuctionClosed

Accept Bids From Bidder

Close Auction

Accept One Bid

Open−Cry Auction

NoMoreBidders

best: BidReference

best: BidReference

best: BidReference

best: BidReference

AuctionClosed
BidNotHigher
BidNotBetter
DeadlineExpired

best

bestbest

best

best

AuctionNotClosed
Accept One Bid

Update Best BidSubmit Bid
BidIsHigher

BidIsBetter

deadline: Duration=1m

Figure 2: Open-Cry Auction Process

to offer within some time frame. The high bidder is then awarded
the item and has to pay the amount of their highest bid. With online
auctions the auctioneer is not a person but a program and the bid-
ders are distributed across a network. At present bidders are usually
humans, but it is expected that bidding will increasingly becarried
out by automated agents. Thus, auctions will be carried out in a
more rapid fashion, with decreasing amounts of human interaction
and scrutiny. For these reasons, having some way to ensure that the
activities of the auctioneer and bidders proceed in expected ways is
important.

Many different properties of an Open-Cry Auction should be veri-
fied. For example, no bids should be accepted after an auctionhas
been closed. It is also important to verify that the auctioneer con-
siders all bids that are submitted and that the person submitting the
highest bid is actually awarded the item and at the highest bid price.
If parts of the auctioneer or bidder are carried out by a computer,
then it is important to check to ensure that the computer software
cannot deadlock and does not have any undesirable race conditions.

While it may be possible to verify these properties by the direct
analysis of the code used to implement such an auction, the anal-
ysis of a higher level representation generally offers advantages of
scalability and early fault detection. A Little-JIL definition is just
such a higher level representation. Figure 2 shows a simplified ver-
sion of an Open-Cry Auction written in Little-JIL [2].

At a high level, this process is very straightforward. In this process,
performing an auction is broken down into two steps that can hap-
pen in parallel, “Close Auction” and “Accept Bids From Bidder”.
One “Accept Bids From Bidder” step is created for each bidderin
the auction. Each bidder is handed off to an “Accept One Bid” step,
which is responsible for handling a single bidder’s bids. These “Ac-
cept One Bid” steps can happen in parallel, so multiple bidders can
be submitting bids simultaneously. The process of accepting one
bid is done by having the bidder submit a bid, and then having the
auctioneer update the best bid depending upon whether or notthe
bid just submitted is higher than the current high bid. This process
recurses on “Accept One Bid” so that each bidder can continueto
submit bids until the auction is closed.

4. FLAVERS
FLAVERS (FLowAnalysis forVERification ofSystems) is a static
analysis tool that can verify user specified properties of sequential
and concurrent systems [4]. Like all automated verificationsys-
tems, FLAVERS requires an accurate model of the computation
upon which to base the analysis. The model FLAVERS uses is
based on annotatedControl Flow Graphs(CFG). Annotations are
placed on nodes of the CFGs to represent events that occur during
execution of the actions associated with a node. Since a CFG cor-
responds to the control flow of a sequential system, this representa-
tion is not sufficient for modeling a concurrent system. FLAVERS
uses aTrace Flow Graph(TFG) to represent concurrent systems.
The TFG consists of a collection of CFGs withMay Immediately
Precede(MIP) edges between tasks to show intertask control flow.
A CFG, and thus a TFG, over-approximates the sequences of events
that can occur when executing a system.

FLAVERS requires that a property to be checked be represented
as a Finite State Automaton (FSA). FLAVERS uses an efficient
state propagation algorithm to determine whether all potential be-
haviors of the system being analyzed are consistent with theprop-
erty. FLAVERS will either returnconclusive, meaning the prop-
erty being checked holds for all possible paths through the TFG,
or inconclusive, meaning FLAVERS found some path through the
TFG that causes the property to be violated. FLAVERS analyses
are conservative, meaning FLAVERS will only return conclusive
results when the property holds for all TFG paths. If FLAVERS
returns inconclusive results, this can either be because there is an
execution that actually violates the property or because the property
is violated on infeasible paths through the TFG.Infeasible pathsdo
not correspond to any possible execution of the system but are an
artifact of the imprecision of the model. If the inconclusive result
is because of infeasible paths, then the analyst can introduce feasi-
bility constraints, which are also represented as FSAs, to improve
the precision of the model and thereby eliminate some infeasible
paths from consideration. An analyst might need to iteratively add
feasibility constraints and observe the analysis results several times
before determining whether a property is conclusive or not.Feasi-
bility constraints give analysts some control over the analysis pro-
cess by letting them determine exactly what parts of a systemneed
to be modeled in order to prove a property.

FLAVERS’ state propagation has worst-case complexity thatis
O

�
N2 · |S|

�
, whereN is the number of nodes in the TFG, and

|S| is the product of the number of states in the property and all
constraints. In our experience, a large class of important properties
can be proved by using only a small set of feasibility constraints.

5. MODELING PROCESSES
Earlier we described the sequencing badges supported by Little-
JIL. For each of these step kinds, we constructed a CFG model.In
Little-JIL, the types of exception handlers on a step can affect the
model. Space does not permit us to provide all models of all possi-
ble combinations of steps and exception handlers here. Rather, we
illustrate the models of each step kind using one kind of exception
handler, usually one that simplifies the model for that step.

Leaf Steps:The model for a Leaf Step is shown in Figure 3. Con-
trol flows in from the parent of the Leaf Step and the step is posted.
After being posted, the step can be started. From the startedstate,
the step can either complete or terminate. A pre-requisite can be
added by putting its model between the “LeafPosted” and “Leaf-
Started” node. A post-requisite can be added by putting its model

LeafPosted

LeafStarted

LeafTerminatedLeafCompleted

Figure 3: Model of a Leaf Step

immediately before the “LeafCompleted” node. Since steps ter-
minate if their requisites terminate, the model should havethe ter-
minated path out of the pre- and post-requisites connected to the
“LeafTerminated” node.

Sequential Steps:A sequential step performs the work of all of its
substeps, one at a time, from left to right. Suppose, for simplicity,
the sequential step has rethrow handlers for any exception thrown
by its substeps. This means that when an exception is thrown,the
sequential step terminates. This model, generalized ton substeps,
is shown in Figure 4. As before, flow comes in from the sequential
step’s parent and it is posted and then started. At this point, the
sequential step attempts to do its first substep. This is a recursive
model, so the model for the first substep is represented by theoval
labeled Substep1. If Substep1 completes, the process moves on
to the next substep and continues in this fashion until Substepn is
reached. If Substepn completes, the sequential step completes. If
any substep terminates, then the sequential step terminates.

Parallel Steps: A parallel step allows the work of its substeps to
proceed concurrently. As with the sequential step, we assume for
simplicity that the parallel step has only rethrow handlers. While
the parallel step may in general haven substeps, for simplicity we
show a parallel step that has only two substeps. The model of this
step, as shown in Figure 5, has a dashed edge in it to representinter-
actions that may occur due to concurrency. In particular, the dashed
edge represents a set of FLAVERS MIP edges, which are used to
represent the ways in which flow can move between different tasks.
The dashed edge in this figure represents the addition of MIP edges
between every pair of nodes in Substep1 and Substep2.

In addition, the parallel step cannot finish until all of its substeps
have finished. The potential parallelism involved makes represent-
ing this behavior directly in a TFG difficult, so we have chosen to
use FLAVERS’ feasibility constraint mechanism to ensure that the
parallel step cannot complete or terminate until all of its substeps
have finished. This approach is consistent with how FLAVERS
models some of the concurrency constructs in Java [12].

Try Steps: Although our Open-Cry Auction process example does
not include any choice steps or try steps, we briefly describehow
their semantics can be modeled. Try steps are designed to trytheir
substeps one at a time, in order, until one completes. For themodel
shown in Figure 5, we assume a try step has only continue excep-
tion handlers, so that the try step can attempt all of its substeps.
The try step begins by attempting Substep1. If an attempted sub-
step completes, the step completes, but if it terminates, the process

SeqPosted

SeqStarted

Substep1

SeqTerminated

Substepn

Terminated

Completed

Terminated

Completed

SeqCompleted

..

.. Terminated

Completed

Figure 4: Model of a Sequential Step

moves on to the next substep. If any of the substeps completes,
the try step completes; if all of the substeps terminate, thetry step
terminates.

Choice Steps:If there aren substeps to a choice step, it is possible
that all n substeps might be tried before the choice step finishes.
There are2n subsets of then substeps. For an analysis to be con-
servative, it may need to consider not only all of these subsets, but
all orderings of the substeps within each subset. Even though this
can present a challenge for analysis, experience has shown that hu-
man agents desire the empowerment that such constructs provide.

Figure 5 shows the CFG for the Choice step. The astute reader will
notice that this model contains many infeasible paths, since there
is nothing to prevent FLAVERS from considering paths where a
substep is started several times. We use a set of feasibilitycon-
straints, each similar to the one shown in Figure 6, to restrict the
paths that will be traversed during analysis. These constraints pre-
vent FLAVERS from starting substeps more than once and from
terminating the Choice Step before all of the substeps have been
attempted. We chose to use this model because representing all of
the orderings of the substeps in the CFG explicitly would cause the
CFG to become prohibitively large.

In the FSA in Figure 6, State 1 represents the state in which the
ith substep has not been started. When an event “SubstepiStarted”
occurs, the constraint moves into state 2. This event does not ap-
pear in the model for the Choice step, but will appear in the model
for the substep. State 2 represents the state of the system inwhich
the ith substep has been started at least once. Both states 1 and
2 have transitions on the assertion “SubstepiHasNotStarted”. In
state 1, this transition is a self loop, so encountering thisevent does
not affect the analysis. In state 2, this transition goes to the vio-
lation state. FLAVERS treats all of the paths associated with the
violation state as infeasible and does not consider them further in
the analysis. In this way, the constraint prevents the analysis from
considering paths on which a substep is started twice. The transi-
tions “SubstepiHasStarted” behave in a similar fashion and prevent

Completed

Completed Terminated

Terminated

ParCompleted

ParStarted

ParPosted

ParTerminated

1Substep 2Substep

Substep1

Substepn

..

..

TryPosted

TryStarted

TryTerminated TryCompleted

Terminated

Completed

Completed

Completed

Terminated

Terminated
ChoiceTerminated

. . . .

..

.

.
n

ChoicePosted

ChoiceStarted

1 n

1

n

ChoiceCompleted

Completed

HasNotStarted HasNotStarted

HasStarted

HasStarted

Terminated

1 SubstepSubstep

Substep Substep

Substep

Substep

Parallel Step Try Step Choice Step

Figure 5: Models of Parallel, Try, and Choice Steps

Substep Startedi

Substep HasNotStartedi

viol.

Substep HasNotStartediSubstep HasStartedi

Substep Startedi
Substep HasStartedi

1 2

Figure 6: A Feasibility Constraint for the Choice Step

the Choice step from terminating unless this step has been started.
This constraint only deals with substepi, so withn substeps, we
may need to usen constraints in the analysis.

The unlabeled node in Figure 5 represents a decision point, where
the process can choose between one of itsn substeps. From this
point, there is a branch representing each choice, guarded by an
assertion. If the selected substep completes, the choice step com-
pletes. Otherwise, the process moves back to the decision node.
Once all substeps have been tried, the process can no longer choose
any substep, so the feasibility constraints allow the choice step to
terminate by following the branch withn “SubstepiHasStarted”
guards. The feasibility constraints ensure that the choicestep can-
not terminate until all substeps have been attempted.

6. EXPERIMENTAL RESULTS
To evaluate our approach to analyzing properties of processdefini-
tions, we used FLAVERS to check several properties of the Open-
Cry Auction. All experiments were run on a Pentium II 400 Mhz
PC with 384 MB of memory, running RedHat Linux 5.1 with ker-
nel version 2.0.34. The FLAVERS state propagation algorithm has
been written in C and compiled with gcc 2.7.2.3. Currently, we can-
not automatically build models directly from Little-JIL process def-
initions. The purpose of this experiment was to investigatethe fea-
sibility of performing analyses on processes. So, for now, we used
a combination of manual and automated techniques to generate an-

Update Best Bid

AuctionNotClosed
BidIsBetter

Figure 7: Corrected Step

notated CFGs, according to the specification of these CFGs asde-
scribed in the previous section. These CFGs were used to construct
the TFG automatically. When constructing a TFG, FLAVERS ab-
stracts away parts of the model that are irrelevant to the property
being checked, so the size of the TFG changes depending on the
property being evaluated.

As shown in Table 1, the following properties were checked:

• No Late Bids Accepted1: Checks that no late bids can be
accepted in the auction.

• No Late Bids Accepted2: Checks the same property, except
checked on the process with the “Update Best Bid” step re-
vised as in Figure 7.

• Possible Race Condition: Checks to see if two steps that use
“best”, which is passed by reference, can be started at the
same time. This might be a race condition.

• No Race Condition (no lock): Checks to see if a race condi-
tion involing “best” can exist without any locking mechanism
in place to restrict access to the paramter.

• No Race Condition (with lock): Checks to see if a race con-
dition involing “best” can exist with a locking mechanism in
place to restrict access to the paramter.

7. CONCLUSIONS
This example shows how important it is to apply validation tech-
niques, such as finite state verification, to process definitions. Pro-
cess definitions are often written at a high level, which allows users
to quickly obtain an intuitive understanding of the process. This
rapid conveyance of intuition can cause problems by misleading
people into incorrect understandings because subtle, yet important,

Property TFG Nodes TFG Edges Result Time (s)
No Late Bids Accepted1 216 11,837 Inconclusive – fault 6.56

No Late Bids Accepted2 316 30,881 Conclusive 41.10

Possible Race Condition 327 35,788 Inconclusive – fault 143.25

No Race Condition (no lock) 189 7,710 Inconclusive – fault 15.07

No Race Condition (with lock) 269 20,910 Conclusive 17.52

Table 1: FLAVERS Analysis Results

details have been overlooked. The incorrect process shown in Fig-
ure 2 was examined by several people who were knowledgeable
about both auctions and Little-JIL. Yet it took several daysbefore
anyone realized that there was a defect in the process.

We were pleased that the FLAVERS finite state verification system
was able to detect this defect and to verify other properties. But
this verification was not without problems. Little-JIL usesrecur-
sion instead of an explicit looping construct. Finite stateverifiers,
such as FLAVERS, however, require that recursive constructs be
converted to finite representations. The exception handling mech-
anism of Little-JIL poses still other problems. For example, in a
parallel step, more than one substep may generate an exception.
If this happens, then the exception handlers can execute concur-
rently, and the behavior of the process after the handlers finish is
dependent on the types of handlers that were executed. Some of
the popular features of Little-JIL, such as the choice step,required
sizeable flow graphs for their representation, which could lead to
increased execution times for FLAVERS’ verification. In addition,
Little-JIL is a factored language, with the resource manager being
a separate component. Certain analyses might require that the con-
trol flow of the process and the resource model both be represented.
This means that we need to determine a way to represent the re-
source model for FLAVERS. Feasibility automata may providea
mechanism for doing this, but possibly at the expense of additional
complexity and an increase in the time needed for analysis.

In light of this we believe that the constructs in Little-JIL(and by
implication other advanced process definition languages) need to
be reconsidered in the light of the problems that they may pose for
static verification.

8. ACKNOWLEDGEMENTS
The authors would like to thank Aaron Cass, Sandy Wise, and
Hyungwon Lee for their help in preparing the example process.

This research was partially supported by the Defense Advanced
Research Projects Agency and the Air Force Research Labora-
tory/IFTD under agreement F30602-97-2-0032, and by the Na-
tional Science Foundation under Grant CCR-9708184. The views,
findings, and conclusions presented here are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency, the Air Force Re-
search Laboratory/IFTD, or the U.S. Government.

9. REFERENCES
[1] A. Bröckers and V. Gruhn. Computer-aided verification of

software process model properties. InProc. of the 5th Int.
Conf. on Advanced Information Systems Engineering, pages
521–546, 1993.

[2] A. G. Cass, H. Lee, B. S. Lerner, and L. J. Osterweil.
Formally defining coordination process to support contract
negotiations. TR 99-39, University of Massachusetts,
Department of Computer Science, 1999.

[3] J. C. Corbett and G. S. Avrunin. Using integer programming
to verify general safety and liveness properties.Formal
Methods in System Design, 6:97–123, Jan. 1995.

[4] M. B. Dwyer and L. A. Clarke. Data flow analysis for
verifying properties of concurrent programs. InProc. of the
ACM SIGSOFT ’94 Symp. on the Foundations of Software
Engineering, pages 62–75, Dec. 1994.

[5] C. Fernström. PROCESS WEAVER: Adding process support
to UNIX. In Second Int. Conf. on the Software Process,
pages 12–26, 1993.

[6] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtul-Trauring, and M. Trakhtenbrot.
STATEMATE: A working environment for the development
of complex reactive systems.IEEE Trans. on Software
Engineering, 16(4):403–414, Apr. 1990.

[7] G. J. Holzmann. The model checker SPIN.IEEE Trans. on
Software Engineering, 23(5):279–295, May 1997.

[8] R. Kadia. Issues encountered in building a flexible software
development environment: Lessons from the Arcadia
project. InFifth ACM SIGSOFT Symp. on Software
Development Environments, pages 169–180, 1992.

[9] M. Kumar and S. I. Feldman. Internet auctions. TR, IBM
Institute for Advanced Commerce, Nov 1998.

[10] K. L. McMillan. Symbolic Model Checking: An Approach to
the State Explosion Problem. Kluwer Academic, 1993.

[11] National Institute of Standards and Technology.Integration
Definition For Function Modeling (IDEF0), 1993. Federal
Information Processing Standards 183.

[12] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data flow
analysis for checking properties of concurrent Java
programs. InProc. of the Int. Conf. Software Engineering,
pages 399–410, 1999.

[13] L. Osterweil. Software processes are software too. InProc.
of the Int. Conf. on Software Engineering, pages 2–13, 1987.

[14] A. Wise. Little-JIL 1.0 language report. TR 98-24, University
of Massachusetts, Department of Computer Science, 1998.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2000

	Verifying Properties of Process Definitions
	Jamieson M. Cobleigh
	Recommended Citation

	tmp.1273242760.pdf.uyrTB

