View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarWorks@UMass Amherst

University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Computer Science Department Faculty Publication

) Computer Science
Series

1994

Connectivity and Performance Tradeofts in the
Cascade Correlation Learning Architecture

D. S. Phatak
University of Massachusetts - Amherst

I. Koren
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty pubs

b Part of the Computer Sciences Commons

Recommended Citation

Phatak, D. S. and Koren, I, "Connectivity and Performance Tradeoffs in the Cascade Correlation Learning Architecture” (1994).
Computer Science Department Faculty Publication Series. 197.
Retrieved from https://scholarworks.umass.edu/cs_faculty pubs/197

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Ambherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,

please contact scholarworks@library.umass.edu.

https://core.ac.uk/display/13600878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/197?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Connectivity and Performance Tradeoffs in the
Cascade Correlation Learning Architecture

D. S. Phatak and |I. Koren
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

(IEEE Transactions on Neural Nets, vol 5, no. 6, Nov. 19943{p-935.)

ABSTRACT

The Cascade Correlation [1] is a very flexible, efficient anddst algorithm for supervised learning. It incre-
mentally builds the network by adding hidden units one at a time, until the desired input/output mapping is
achieved. It connects all the previously installed units tadhe new unit being added. Consequently, each new
unit in effect adds a new layer and the fan—in of the hidden anautput units keeps on increasing as more units
get added. The resulting structure could be hard to implemetin VLSI, because the connections are irregular
and the fan-in is unbounded. Moreover, the depth or the propgation delay through the resulting network is
directly proportional to the number of units and can be excesive.

We have modified the algorithm to generate networks with regicted fan-in and small depth (propagation
delay) by controlling the connectivity. Our results revealthat there is a tradeoff between connectivity and
other performance attributes like depth, total number of independent parameters, learning time, etc. When
the number of inputs or outputs is small relative to the size bthe training set, a higher connectivity usually
leads to faster learning, and fewer independent parametersut it also results in unbounded fan-in and depth.
Strictly layered architectures with restricted connectivity, on the other hand, need more epochs to learn and use
more parameters, but generate more regular structures, wi smaller, limited fan-in and significantly smaller
depth (propagation delay), and may be better suited for VLSlimplementations. When the number of inputs or
outputs is not very small compared to the size of the trainingset, however, a strictly layered topology is seen to
yield an overall better performance.

* This work was supported in part by NSF Grant MIP 90-13013.

| Introduction

Algorithms like the Cascade Correlation [1] or the ContinsidD3 (CID3, which is derived from a ma-
chine learning paradigm [2]), incrementally build a neural. These algorithms take the guess work out of
the training process: there is no need to guess the numbeid#runits or their connections ahead of time.
The algorithms themselves add units and connections agredgualuring the training process. However,
these algorithms can lead to unrestricted fan—in and lagg¢hdpropagation delay). Also, the connections
generated are irregular and unsuitable for VLSI implemigmta(an efficient VLS| implementation requires
regularity and local interconnects). In this paper, we pg#pa modified version of the Cascade Correlation
algorithm which leads to restricted fan—in, more regularreections and significantly smaller depth.

We begin with a brief introduction to the Cascade Correfatidgorithm [1]. In this method, all the
inputs and outputs are directly connected first and theseemtions are trained to minimize the error (i.e.,
squared error summed over all outputs over all I/O patterkjiden units are then installed one by one,
incrementally reducing the error, till the desired erroubd is met. Each unit is installed in two steps. In
step 1, all the inputs and previously installed hidden waiésconnected to the input of the new hidden unit.
Its output is not yet connected anywhere in the net. The isfué connections of the new unit are then
trained tomaximizethe correlation between its output and the residual erréh@mnetwork outputs. This
can be thought of as a maximal “alignment” with the residuadre The input side connection weights are
frozen hereafter. In the 2nd phase of installing the hiddeit, its output is connected to all the network
output units. All the connections feeding the output unitsthen trained toninimizethe error. This can be
thought of as “canceling” the error as much as possible byoékpy the “alignment” accomplished in step
1. This process is continued, and new units are added uatdéiired error bound is met.

This turns out to be an extremely efficient, very flexible, &t training procedure. However, each new
unit in effect adds a new layer, which leads to a very deeptstra with a long propagation delay. It should
be noted that the presence of layer(s) skipping or shortmutectiongloes not reducehe propagation delay
because the delay is proportional to thegestpath through the network which is unaffected by the presence
of shortcut connections. The propagation delay is an ingpbperformance parameter especially for high-
speed applications. Moreover, learning is likely to ocaufrdquently and perhaps off-line. Hence, it is
worthwhile to spend more time in learning if the resultarthmes a much smaller propagation delay. Another
drawback of the Cascade Correlation algorithm is that tiheifaof the hidden and output units keeps on
increasing as more units are added. The resulting struatitingrregular connections and unbounded fan—in
might be hard to implement in VLSI.

Attempts have been made to reduce the connectivity [3] o€Cdmcade Correlation algorithm. Smotroff
et. al. [3] used “iterative atrophy” to prune less importaonnections. They came up with a saliency
measure for each weight and used saliency windows to eltmman-useful connections. Such an approach
becomes computation intensive. Estimating the corre@rsal for each weight can itself be a non-trivial
task. This type of algorithm therefore spends effort firstinging all the connection weights and then in
trying to undo a part of what it did and remove the non-sal@ninections. Another drawback of weight-
pruning by saliency is that it does not lead to any improvenierthe depth. In fact, the use of saliency
windows would imply that the nets derived by weight prunirande as deep as those obtained by the
original version.

We have approached the problem differently and modified thec@de Correlation algorithm to yield
architectures with restricted fan-in and much smaller depin obvious way of controlling the fan—in and
depth is to generate a “strictly layered” structure. Bycslyilayered, it is meant that there are no connections

that skip a layer. Thus, the fan—in of a unit is limited to thember of units in the previous layer. If the
number of units in each layer is sufficiently large, the numtifdayers needed (i.e., the depth) is usually
very small as well. Next, we describe the algorithm(s) theiayate the various layered topologies.

Il The Training Procedure

Step 1. Train the biases of the output urgtsbest as possible, to minimize the error. Note that thetsnpu
and outputs are not connected at this time. This is illustian Figure 1-a.

Step 2. Install the first hidden layer, adding one unit at gtirdidden units in this layer receive connections
only from the input units and are not connected to other mdddats.

To install a hidden unit, it is connected to all of the netwimuts and the connections are trained
to maximize the correlatiorbetween its output and the residual error. Note that all thigihts (input
as well as output weights) associated with previously llestehidden units are held fixed when the
input connections of the new unit are being trained. As altethe new unit sees smaller residual
error (at installation time) than previous units, becausegrevious units have already reduced the
total error. The input—side weights of the new hidden unitae frozen hereatfter, as in the original
Cascade Correlation algorithm.

In the second phase of installing a unit, its output is coteteto all the network output units.
All the fan—in connections of the output-layer units (theseanating from previously installed hidden
units as well as those connected to the hidden unit beingilyrinstalled), and their biases are then
trained tominimize the error.

In order to restrict the fan—in and achieve regularity, tamber of units in each layer is held fixed
at a predetermined value. Thus, all hidden layers (exceggibly the last) have the same number of
units. The creation of the first layer is illustrated in Figur-b.

Step 3. Collapse the output layer into the next hidden Ialeis means that thH units which were output
units so far, are now deemed to be the fMatinits in the next hidden layer. The old output layer thus
becomes a part of the next hidden layer.néw output layer is created and all the previous output
units (which are now a part of the new hidden layer) are coteueto all the new output units. These
connections are trained to minimize the error. This steg@ated in Figure 1-c.

The motivation for utilizing the old output units and thegrmections in this manner is threefold.
First, this reduces the training time. Second, the set ofjltsifeeding these (previous output, now
hidden) units are repeatedly trained many times, duringtbation of the previous (just completed)
hidden layer. Hence, the possibility of incorporating suimal and wasteful connections is reduced.
Third, this facilitates good initial guesses of weights mecting this layer to the new output layer as
explained next.

Denote the previous output units byl --.i,---,N; the new output units by 12, -- - i,
..-N'; and the weight of the link from unitto uniti’ biji/. The biases of all the new output units are
initialized to 0. The magnitude of weigwji: is set proportional to the correlation between the output

of unit j and the target values of thilh network output. If the magnitude is above a preset thidsho
the sign is set positive, otherwise the sign is set negaiikies way, if theith unit had produced correct

3

outputs for most patterns, th&4 (weight of the link from unit to thecorrespondingputput uniti')

would be initialized to a large positive value, which wousdr uniti' to turn on whenever unit is
on. On the other hand, if thih unit produced wrong outputs for most patterns, tiénwould be

initialized to a large negative value, which would favortinto turnoff whenever unit is on. Thus,
this choice of initial values leads to a reduction in the atitprror. It was found to result in faster
convergence in most cases.

Step 4. Expand the newly formed hidden layer by adding mddehiunits one at a time, exactly as in step
2.

Step 5. Repeat steps 3 and 4 creating new layamsil the training is successful or until a predetermined
number of iterations where the trial is declared unsuccéssfd is abandoned.

It should be emphasized that creating a layered topologystsgne of a large number of possible ways
of limiting the depth and fan—in. Even the layered topolagglf can have several different variations, each
of which in turn can be generated in many different ways. éubihe Cascade Correlation is a very flexible
algorithm and it is not feasible to try out all possible matfifions or even a significant fraction thereof. We
have tested several possibilities [4] and selected theeabmthod for the purpose of illustration because it
performs well and is relatively simple.

1l Results and Discussion

We have run this algorithm on a large number of problems amtpemed its performance to the original
Cascade Correlation algorithm. For the sake of brevity, axehllustrated the results for 3 benchmarks viz.,
the Two Spirals, Vowel and the NETTalk benchmarks from thelCtbllection [5], in Tables 1, 2 and 3,
respectively. We ran 100 trials (10 sets of 10 trials eaclf) each algorithm, for the first 2 benchmarks and
10 trials with each algorithm for the NETTalk benchmark. TET Talk nets are big and take a formidable
amount of time to learn. The time required for running morathiO trials is prohibitive. For each set, we
used the same seed to initialize the random number gendémadtralgorithms.

Relevant parameters of interest are : maximum fan—in, nurabenits, total number of independent
adjustable parameters (all weights and biases in the nepthdnumber of epochs needed for training,
number of connection crossings (please refer to [1] for dédimand description of this parameter. It is a
better measure of the overall learning complexity and tinaatthe number of epochs) and the number of bit
errors on the test set. These parameters were stored fooé#ehruns, but only the values from successful
runs were used to accrue the statistics (the success raaelwbéthe algorithms on each of the benchmarks
illustrated in the tables was 100%, i.e., all the trials warecessful).

(a) The Two spirals Benchmark [5, 6] : Table 1 shows the results for the Two Spirals classification
problem where asymmetric sigmoidal units (outguf0, 1)) were used. The problem specification has 2
inputs and 1 output and 194 training patterns (97 points feach spiral).

Note that the table also shows a “loosely layered” versiosides the strictly layered version. In the
loosely layered version, all the units in a hidden layer receonnections from the original (external) inputs
as well, besides the connections from the previous hiddgar.ld he motivation for adding the connections
to the network inputs is twofold. First, note that in a styidayered structure, the units in a layer “see” the
inputs only through the previous layer. Here, it is conceigahat there could be a “loss of information” in
the earlier (closer to input) layer(s) which may preventldéter (closer to output) layers from successfully
learning the task. This may happen if, for example, a laysrtba few units (or independent parameters) to
capture all the features associated with the inputs or thaecombinations of weight values evolve during
training. We encountered this situation in practice. Inisiitively clear that if the hidden units have access
to the original external inputs, this kind of “irrecoverahibss of information” is not possible. Second, these
connections considerably speed up the learning proeagsut increasing the depth, while maintaining the
restricted fan—in.Note that the number of inputs iscanstant Adding connections to the inputs therefore
increases the maximum fan—in by a constant amount. Therfassiill independent of the number of hidden
units installed, and is not unbounded as in the originalivars

We used 15 units per hidden layer in this version. As mentiaimve, the number of units (parameters)
in a layer should be large enough to capture all the featur#eednputs, otherwise there could be a loss of
information leading to an unsuccessful run. After somd &rad error, it was found that the strictly layered
algorithm can converge if the number of units per layer igdathan 5. At this extreme, (5 units per layer)
the algorithm uses too many layers and defeats the purpdsgrgg to limit the depth. On the other hand,
we wanted to limit the maximum fan—in to about half that of tieds generated by the original version. It
was therefore decided to use 15 units per layer.

As seen in the table, the maximum fan-in (average value adasuer 100 trials) for the original Cascade
Correlation algorithm is 32.2 ; while that for the strictigyfered version is 15 ; and for the loosely layered

version, it is 17. Thus, the fan-in is reduced by abéutSimiIarIy, the depths (average) for the layered

versions are 6.3 and 5.2 while the depth generated by thealkigersion is 31.2. This demonstrates a
significant reduction in the depth or the propagation de&bo(t 5 times smaller depth). The number of
units used by the layered versions, on the other hand, isesday a factor between 2 and 2.5. However, the
total number of independent parameters (weights and Bigsadetter measure of the overall complexity
than the number of units alone, because it incorporatesthethumber of units and their connectivity. It is
seen that the strictly layered version uses about 1.6 tiarasthe loosely layered version uses about 1.37
times the number of parameters used by the original algarith

Cios and Liu [2] have also used the two spirals benchmarlustiate their CID3 algorithm. The net
reported in [2] has 30 hidden units distributed in 5 hiddgreta(depth = 6), a maximum fan—in of 32, and
requires 431 independent parameters. Thus, the numberarhpéers utilized by CID3 is smaller than that
utilized by the loosely layered version(527), but the maxmfan—in is about double that of the loosely
layered version(17). The depths of the generated nets anpamable. In fact, the CID3 has some of the
same drawbacks as the Cascade Correlation algorithm: iitemt® all previously installed hidden layers to
the new layer being created, which leads to an unboundedhfame irregular connections.

The spirals used to generate Table 1 had a raRius2.0 and were centered at (2,2) in thg plane.
Consequently, they were contained in the square with wt{@,0), (0,4), (4,4), (4,0) which lies entirely in
the 1st quadrant. The net reported in [2], on the other haad,tvained on spirals centered at the origin. For
a proper comparison with CID3, we therefore used spiralseted at the origin (0,0) with a radil®= 6.5.
This way thex andy coordinates of the points on the spirals take both positigereegative values and are
symmetric with respect to the origin. For this training datse loosely layered version of our algorithm
generated nets with 7 hidden units per layer, with an aveoddehidden layers (depth = 7), and utilized
436 independent parameters on the average (the table pondiag to this data had to be excluded from
the manuscript for the sake of brevity). These nets are it the net generated by the CID3 algorithm
since the depth and number of independent parameters uabdisthe same, but the the maximum fan—in

is restricted to the fixed value 9 (abo%td), and the connections are more regular.

(b) The Vowel Benchmark [5, 7] : Table 2 shows the results for the Vowel Benchmark with symimet
sigmoidal units (output [-0.5,40.5]). The net has 10 inputs and 11 outputs, where exactly one out
of the 11 output units is “on” at a time, to indicate the spokemel. This corresponds to a localized
output encoding. As seen in the table, the number of hiddés employed is usually very small (in fact,
smaller than the number of input or output units). The maxmfan—in is therefore dominated by the
number of input connections. Just one hidden layer with dlsmanber of hidden units was found to be
sufficient for this task. Hence, is not necessary to try tlosédy layered version. Note that the total number
of parameters(average value) used by the layered versisigrifficantly smaller than that of the original
version.

(c) The NETTalk benchmark [5, 8] : Table 3 shows the results for this benchmark for which theee a
196 input and 26 output units. We randomly chose a set of 268sv@&rom the 1000 available in the CMU
version), which generated 1114 training patterns. Heréathen is dominated by the number of input units.
It it interesting to note that the strictly layered versioses a much larger number of hidden units but a
smaller total number of independent parameters. This ida@ltlee restricted connectivity. Also, the depth is

much smaller than that generated by the original versiom(la%th). An examination of the nets revealed

that the direct input-output connections in the originakian is the single most dominant contributor to the
total number of independent parameters (%986 = 5096 or about 50% of the total number of parameters.

Please refer to Table 3). Since the strictly layered verpenfiorms better without these connections, there
is no need to try the loosely layered version where theseastiioms are present.

(d) Tradeoffs : Our results indicate that the layered version always regumore hidden units. This is
expected, since the unit being installed has fewer cororetilt can only see units in the previous hidden
layer and thus has less information to work with than a unib&original version, which is connected to all
the previous units and network inputs.

The number of independent parameters, which is a betterureeas$ the overall network complexity,
however, shows an interesting behavior. When the numbemdfing patterns is large compared to the
number of inputs or outputs, the original version utilizea/&ér parameters than the layered version. This is
illustrated by the two spirals benchmark where the numbérmit units is two, and the number of 1/O pairs
to be learned is 194 or about 100 times larger. For such pmodl¢éhere is a tradeoff between connectivity
and other performance attributes. The original versiorhviull connectivity is at one extreme. It yields
faster convergence and a smaller number of parametersduuleslds to very deep nets with arbitrarily large
fan—in. The strictly layered version is at the other extreme requires more parameters and longer learning
time, but yields restricted fan—in and much smaller deptie [Bosely layered version falls in between these
extremes, trading off more connectivity for fewer parametnd equal or smaller depth, and may be the
best compromise.

When the input or output dimensionality is not so small coragawith the size of the training set, the
layered version utilizes fewer parameters and yields dvbedter performance. This is illustrated by the
Vowel and the NETTalk benchmarks. The ratio of the numberaihing patterns to the number of input
units is about 9 and 5, for the Vowel and NETTalk benchmar&spectively. In such cases, connecting
the network inputs to the outputs results in a large (in faagér than required) number of connections.
Furthermore, training all of them simultaneously turnstoube less efficient than incrementally introducing
hidden units and training the small number of associated@ctions at a time.

In conclusion, we have proposed a modified version of the&kes€Correlation algorithm which controls
the connectivity of the units being added to restrict the-farand generates layered nets with a very small
depth and regular connections. Our data illustrates tloetdfs between connectivity and other performance
attributes.

Several future extensions are possible. For instance,uh#ar of units per layer need not be fixed. It
can be decided dynamically and the creation of a new layebeastarted if the error reduction achieved by
expanding the layer begins to taper off. Another approath ssick to the strictly layered structure as far as
possible and only occasionally install units with direety@rs skipping) connections to the network inputs,
when there is little or no reduction in the error.

Preliminary analysis of the generalization characteistf these nets has been done. Even though
the layered version utilizes a larger number of paramei&ssgeneralization performance appears to be
comparable to or better than the original version, as st by the number of bit errors on the test sets
for the Spirals and Vowel benchmarks in Tables 1 and 2. Howéwher investigation is necessary to draw
any conclusions.

References

[1] S. E. Fahlman and C. Lebiere, “The Cascade Correlatiarmirg Architecture,” ifNeural Information

Processing SystemgR. S. Touretzsky, ed.), pp. 524-532, Morgan Kaufman, 1990.

[2] K. J. Cios and N. Liu, “A Machine Learning Method for Geagon of a Neural Network Architecture:
A continuous 1D3 Algorithm,IEEE Transactions on Neural Networksl. 3, pp. 280-291, Mar. 1992.

[3] I. G. Smotroff, D. H. Friedman and D. Connolly, “Large $&dNetworks Via Self Organizing Hierar-
chical Networks,” inProceedings of the SPIE conference on applications of Alldedral Networks
April 1991.

[4] D. S. Phatak and I. Koren., “Connectivity and Performaficadeoffs in the Cascade Correlation Learn-
ing Architecture,” Tech. Rep. TR-92-CSE-27, ElectricalaBomputer Engineering Department, Uni-
versity of Massachusetts, Amherst, July 1992.

[5] S. E. Fahiman et. alNeural Nets Learning Algorithms and Benchmarks Databas&intained by S. E.
Fahlman et. al. at the Computer Science Dept., Carnegieoll&lhiversity.

[6] K. J. Lang and M. J. Witbrock, “Learning to Tell Two SpisaApart,” in Proceedings of the 1988
Connectionist Models Summer School, San Mateo([@ATouretzsky, G. Hinton, and T. Sejnowski,
ed.), Morgan Kaufman Publishers, 1988.

[7] A. J. Robinson and F. Fallside, “A Dynamic Connectiorvgbdel for Phoneme Recognition,” iAroc.
of nEuro, June 1988, Parigun. 1988.

[8] T.J. Sejnowski and C. R. Rosenberg, “Parallel NetworkatlLearn to Pronounce English Textom-
plex Systemwol. 1, pp. 145-168, 1987.

Output units

Output units > o & o D

First hidden layer

Input units O o o o Q

Figure 1-a : Step 1. Train the biases of the Input units

output units. Note that the inputs are not Figure 1-b : Step 2. Install the first hidden layer. Units

yet connected.))))
are added one at a time. Input side connections are trained

first. Once trained, the input side weights remain fixed.
Output side connections for the new unit are then installed

and all the output connections are trained

Output units

Second hidden layer

First hidden layer

Input units

Figure 1-c : Steps 3 and 4. Install the second (and successive) hidden layers.

Units in the old output layer (shown by dotted ellipses) are collapsed into the next (second) hidden layer.

A new output layer is created. Input side weights of the newly collapsed hidden layer remain fixed. The
output side connections of the newly formed hidden layer (shown in dotted linestyle) are all trained simultaneously.

Then the hidden layer is further expanded by installing more units, one atatime, as in step 2.

«— Algorithm Type —
Parameter Original | Strictly Layered| Loosely Layered
1 Cascade | units per layer | units per layer
Correlation 15 15
max 40 15 17
Maximum Fan—in min 25 15 17
average 32.2 15 17
std. dev. 3.36 0 17
max 38 108 73
Number of Hidden Units miry 23 46 41
average 30 72 55
std. dev. 3.36 11.2 6.12
max 858 1537 1105
Total number of min 348 543 527
Independent Parameters avergge 570 962 784
std. dev. 113.8 179.2 111.1
max 39 9 6
Depth min 24 5 4
average 31.2 6.3 5.2
std. dev. 3.36 0.8 0.44
max 8717 8011 17643
Number of Epochs mir} 2460 4008 3791
average 3337 5828 5134
std. dev. 768.8 779.3 1720.5
max 104 15.1 23.7
Connection Crossingsx10”) min 4.04 5.29 5.48
average 6.78 9.51 8.1
std. dev. (percentage of the medgh) 19.87% 18.6% 23.9%
max | 30(15.5%) 27(13.9%) 17(8.8%)
Bit errors on min| 5(2.6%) 4(2.1%) 3(1.5%)
Test Set average 15.4(7.9%) 13.4(6.9%) 8.9(4.6%)
std. dev. 5.6 4.8 3.1

Table 1: The Two Spirals benchmark [5, 6] with Asymmetricr8adal units (output [0, 1]). The problem

specification has 2 inputs and 1 output.

10

«— Algorithm Type —
Parameter Original Cascade Strictly Layered
+ Correlation Version
max 12 10
Maximum Fan-in (Dominated mir 12 10
by number of input units = 10) average 12 10
std. dev. 0 0
max 1 6
Number of Hidden Units mir 1 4
(all'in a single layer average 1 4.84
for the layered version) std. dey. 0 0.42
max 143 143
Total number of min 143 99
Independent Parameters average 143 117
std. dev. 0 9.23
max 2 2
Depth min 2 2
average 2 2
std. dev. 0 0
max 406 579
Number of Epochs mir} 202 274
average 287 423
std. dev. 36.96 55.98
max 2.34 1.82
Connection Crossingsx10°) min 1.11 0.88
average 1.61 1.36
std. dev. (percentage of the mean) 13.5% 13.2%
max 166(31.4%) 100(18.9%)
Bit errors on min 143(27.1%) 69(13.1%)
Test Set average 158.8(30.1%) 80.8(15.3%)
std. dev. 4.4 6.0

Table 2: The Vowel benchmark [5, 7] with Symmetric Sigmoidaits, (outpute [—0.5,+0.5]).
The problem specification has 10 inputs and 11 outputs.

11

+— Algorithm Type —
Parameter Original Cascade Strictly Layered Version
i} Correlation (35 units per layer)
max 226 196
Maximum Fan-in (Dominated mi 221 196
by number of input units = 196) average 223 196
std. dev. 1.49 0.0
max 29 132
Number of Hidden Units miry 24 100
average 25.7 104.8
std. dev. 1.49 8.71
max 11995 11115
Total number of min 10750 10041
Independent Parameters avergge 11172 10265
std. dev. 371.9 285.8
max 30 5
Depth min 25 4
average 26.70 4.08
std. dev. 1.49 0.29
max 5080 5812
Number of Epochs mir 4340 5300
average 4641 5565
std. dev. 194.9 179.4
max 21.3 6.84
Connection Crossingsx10°) min 17.5 6.43
average 19.1 6.64
std. dev. (percentage of the megn) 5.6% 2%

Table 3: The NETTalk benchmark [5, 8] with Symmetric Signadidnits. There are 196 inputs and 26
outputs.

12

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1994

	Connectivity and Performance Tradeoffs in the Cascade Correlation Learning Architecture
	D. S. Phatak
	I. Koren
	Recommended Citation

	tmp.1273778422.pdf.MBDck

