
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

1994

Connectivity and Performance Tradeoffs in the
Cascade Correlation Learning Architecture
D. S. Phatak
University of Massachusetts - Amherst

I. Koren
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Phatak, D. S. and Koren, I., "Connectivity and Performance Tradeoffs in the Cascade Correlation Learning Architecture" (1994).
Computer Science Department Faculty Publication Series. 197.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/197

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13600878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/197?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Connectivity and Performance Tradeoffs in the
Cascade Correlation Learning Architecture

D. S. Phatak and I. Koren
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

(IEEE Transactions on Neural Nets, vol 5, no. 6, Nov. 1994, pp930–935.)

ABSTRACT

The Cascade Correlation [1] is a very flexible, efficient and fast algorithm for supervised learning. It incre-
mentally builds the network by adding hidden units one at a time, until the desired input/output mapping is
achieved. It connects all the previously installed units tothe new unit being added. Consequently, each new
unit in effect adds a new layer and the fan–in of the hidden andoutput units keeps on increasing as more units
get added. The resulting structure could be hard to implement in VLSI, because the connections are irregular
and the fan-in is unbounded. Moreover, the depth or the propagation delay through the resulting network is
directly proportional to the number of units and can be excessive.

We have modified the algorithm to generate networks with restricted fan-in and small depth (propagation
delay) by controlling the connectivity. Our results revealthat there is a tradeoff between connectivity and
other performance attributes like depth, total number of independent parameters, learning time, etc. When
the number of inputs or outputs is small relative to the size of the training set, a higher connectivity usually
leads to faster learning, and fewer independent parameters, but it also results in unbounded fan-in and depth.
Strictly layered architectures with restricted connectivity, on the other hand, need more epochs to learn and use
more parameters, but generate more regular structures, with smaller, limited fan-in and significantly smaller
depth (propagation delay), and may be better suited for VLSIimplementations. When the number of inputs or
outputs is not very small compared to the size of the trainingset, however, a strictly layered topology is seen to
yield an overall better performance.

� This work was supported in part by NSF Grant MIP 90-13013.

I Introduction

Algorithms like the Cascade Correlation [1] or the Continuous ID3 (CID3, which is derived from a ma-
chine learning paradigm [2]), incrementally build a neuralnet. These algorithms take the guess work out of
the training process: there is no need to guess the number of hidden units or their connections ahead of time.
The algorithms themselves add units and connections as required, during the training process. However,
these algorithms can lead to unrestricted fan–in and large depth (propagation delay). Also, the connections
generated are irregular and unsuitable for VLSI implementation (an efficient VLSI implementation requires
regularity and local interconnects). In this paper, we propose a modified version of the Cascade Correlation
algorithm which leads to restricted fan–in, more regular connections and significantly smaller depth.

We begin with a brief introduction to the Cascade Correlation algorithm [1]. In this method, all the
inputs and outputs are directly connected first and these connections are trained to minimize the error (i.e.,
squared error summed over all outputs over all I/O patterns). Hidden units are then installed one by one,
incrementally reducing the error, till the desired error bound is met. Each unit is installed in two steps. In
step 1, all the inputs and previously installed hidden unitsare connected to the input of the new hidden unit.
Its output is not yet connected anywhere in the net. The inputside connections of the new unit are then
trained tomaximizethe correlation between its output and the residual error atthe network outputs. This
can be thought of as a maximal “alignment” with the residual error. The input side connection weights are
frozen hereafter. In the 2nd phase of installing the hidden unit, its output is connected to all the network
output units. All the connections feeding the output units are then trained tominimizethe error. This can be
thought of as “canceling” the error as much as possible by exploiting the “alignment” accomplished in step
1. This process is continued, and new units are added until the desired error bound is met.

This turns out to be an extremely efficient, very flexible, andfast training procedure. However, each new
unit in effect adds a new layer, which leads to a very deep structure with a long propagation delay. It should
be noted that the presence of layer(s) skipping or shortcut connectionsdoes not reducethe propagation delay
because the delay is proportional to thelongestpath through the network which is unaffected by the presence
of shortcut connections. The propagation delay is an important performance parameter especially for high-
speed applications. Moreover, learning is likely to occur infrequently and perhaps off-line. Hence, it is
worthwhile to spend more time in learning if the resultant net has a much smaller propagation delay. Another
drawback of the Cascade Correlation algorithm is that the fan–in of the hidden and output units keeps on
increasing as more units are added. The resulting structurewith irregular connections and unbounded fan–in
might be hard to implement in VLSI.

Attempts have been made to reduce the connectivity [3] of theCascade Correlation algorithm. Smotroff
et. al. [3] used “iterative atrophy” to prune less importantconnections. They came up with a saliency
measure for each weight and used saliency windows to eliminate non-useful connections. Such an approach
becomes computation intensive. Estimating the correct saliency for each weight can itself be a non-trivial
task. This type of algorithm therefore spends effort first infinding all the connection weights and then in
trying to undo a part of what it did and remove the non-salientconnections. Another drawback of weight-
pruning by saliency is that it does not lead to any improvement in the depth. In fact, the use of saliency
windows would imply that the nets derived by weight pruning can be as deep as those obtained by the
original version.

We have approached the problem differently and modified the Cascade Correlation algorithm to yield
architectures with restricted fan-in and much smaller depth. An obvious way of controlling the fan–in and
depth is to generate a “strictly layered” structure. By strictly layered, it is meant that there are no connections

2

that skip a layer. Thus, the fan–in of a unit is limited to the number of units in the previous layer. If the
number of units in each layer is sufficiently large, the number of layers needed (i.e., the depth) is usually
very small as well. Next, we describe the algorithm(s) that generate the various layered topologies.

II The Training Procedure

Step 1. Train the biases of the output unitsas best as possible, to minimize the error. Note that the inputs
and outputs are not connected at this time. This is illustrated in Figure 1-a.

Step 2. Install the first hidden layer, adding one unit at a time. Hidden units in this layer receive connections
only from the input units and are not connected to other hidden units.

To install a hidden unit, it is connected to all of the networkinputs and the connections are trained
to maximize the correlationbetween its output and the residual error. Note that all the weights (input
as well as output weights) associated with previously installed hidden units are held fixed when the
input connections of the new unit are being trained. As a result, the new unit sees smaller residual
error (at installation time) than previous units, because the previous units have already reduced the
total error. The input–side weights of the new hidden unit remain frozen hereafter, as in the original
Cascade Correlation algorithm.

In the second phase of installing a unit, its output is connected to all the network output units.
All the fan–in connections of the output-layer units (thoseemanating from previously installed hidden
units as well as those connected to the hidden unit being currently installed), and their biases are then
trained tominimize the error.

In order to restrict the fan–in and achieve regularity, the number of units in each layer is held fixed
at a predetermined value. Thus, all hidden layers (except possibly the last) have the same number of
units. The creation of the first layer is illustrated in Figure 1-b.

Step 3. Collapse the output layer into the next hidden layer.This means that theN units which were output
units so far, are now deemed to be the firstN units in the next hidden layer. The old output layer thus
becomes a part of the next hidden layer. Anewoutput layer is created and all the previous output
units (which are now a part of the new hidden layer) are connected to all the new output units. These
connections are trained to minimize the error. This step is depicted in Figure 1-c.

The motivation for utilizing the old output units and their connections in this manner is threefold.
First, this reduces the training time. Second, the set of weights feeding these (previous output, now
hidden) units are repeatedly trained many times, during thecreation of the previous (just completed)
hidden layer. Hence, the possibility of incorporating suboptimal and wasteful connections is reduced.
Third, this facilitates good initial guesses of weights connecting this layer to the new output layer as
explained next.

Denote the previous output units by 1;2; � � � ; i; � � � ;N; the new output units by 1
0 ;20 ; � � � ; i 0 ;� � �N0

; and the weight of the link from unitj to unit i
0
byWji 0 . The biases of all the new output units are

initialized to 0. The magnitude of weightWji 0 is set proportional to the correlation between the output

of unit j and the target values of theith network output. If the magnitude is above a preset threshold,
the sign is set positive, otherwise the sign is set negative.This way, if theith unit had produced correct

3

outputs for most patterns, thenWii 0 (weight of the link from uniti to thecorrespondingoutput uniti
0
)

would be initialized to a large positive value, which would favor unit i
0
to turnon whenever uniti is

on . On the other hand, if theith unit produced wrong outputs for most patterns, thenWii 0 would be

initialized to a large negative value, which would favor unit i
0
to turnoff whenever uniti is on . Thus,

this choice of initial values leads to a reduction in the output error. It was found to result in faster
convergence in most cases.

Step 4. Expand the newly formed hidden layer by adding more hidden units one at a time, exactly as in step
2.

Step 5. Repeat steps 3 and 4 creating new layersuntil the training is successful or until a predetermined
number of iterations where the trial is declared unsuccessful and is abandoned.

It should be emphasized that creating a layered topology is just one of a large number of possible ways
of limiting the depth and fan–in. Even the layered topology itself can have several different variations, each
of which in turn can be generated in many different ways. Indeed the Cascade Correlation is a very flexible
algorithm and it is not feasible to try out all possible modifications or even a significant fraction thereof. We
have tested several possibilities [4] and selected the above method for the purpose of illustration because it
performs well and is relatively simple.

4

III Results and Discussion

We have run this algorithm on a large number of problems and compared its performance to the original
Cascade Correlation algorithm. For the sake of brevity, we have illustrated the results for 3 benchmarks viz.,
the Two Spirals, Vowel and the NETTalk benchmarks from the CMU collection [5], in Tables 1, 2 and 3,
respectively. We ran 100 trials (10 sets of 10 trials each) with each algorithm, for the first 2 benchmarks and
10 trials with each algorithm for the NETTalk benchmark. TheNETTalk nets are big and take a formidable
amount of time to learn. The time required for running more than 10 trials is prohibitive. For each set, we
used the same seed to initialize the random number generatorin all algorithms.

Relevant parameters of interest are : maximum fan–in, number of units, total number of independent
adjustable parameters (all weights and biases in the net), depth, number of epochs needed for training,
number of connection crossings (please refer to [1] for definition and description of this parameter. It is a
better measure of the overall learning complexity and time than the number of epochs) and the number of bit
errors on the test set. These parameters were stored for eachof the runs, but only the values from successful
runs were used to accrue the statistics (the success rate of each of the algorithms on each of the benchmarks
illustrated in the tables was 100%, i.e., all the trials weresuccessful).

(a) The Two spirals Benchmark [5, 6] : Table 1 shows the results for the Two Spirals classification

problem where asymmetric sigmoidal units (output2 (0;1)) were used. The problem specification has 2
inputs and 1 output and 194 training patterns (97 points fromeach spiral).

Note that the table also shows a “loosely layered” version besides the strictly layered version. In the
loosely layered version, all the units in a hidden layer receive connections from the original (external) inputs
as well, besides the connections from the previous hidden layer. The motivation for adding the connections
to the network inputs is twofold. First, note that in a strictly layered structure, the units in a layer “see” the
inputs only through the previous layer. Here, it is conceivable that there could be a “loss of information” in
the earlier (closer to input) layer(s) which may prevent thelater (closer to output) layers from successfully
learning the task. This may happen if, for example, a layer has too few units (or independent parameters) to
capture all the features associated with the inputs or if certain combinations of weight values evolve during
training. We encountered this situation in practice. It is intuitively clear that if the hidden units have access
to the original external inputs, this kind of “irrecoverable loss of information” is not possible. Second, these
connections considerably speed up the learning process,without increasing the depth, while maintaining the
restricted fan–in.Note that the number of inputs is aconstant. Adding connections to the inputs therefore
increases the maximum fan–in by a constant amount. The fan–in is still independent of the number of hidden
units installed, and is not unbounded as in the original version.

We used 15 units per hidden layer in this version. As mentioned above, the number of units (parameters)
in a layer should be large enough to capture all the features of the inputs, otherwise there could be a loss of
information leading to an unsuccessful run. After some trial and error, it was found that the strictly layered
algorithm can converge if the number of units per layer is larger than 5. At this extreme, (5 units per layer)
the algorithm uses too many layers and defeats the purpose oftrying to limit the depth. On the other hand,
we wanted to limit the maximum fan–in to about half that of thenets generated by the original version. It
was therefore decided to use 15 units per layer.

As seen in the table, the maximum fan-in (average value accrued over 100 trials) for the original Cascade
Correlation algorithm is 32.2 ; while that for the strictly layered version is 15 ; and for the loosely layered

version, it is 17. Thus, the fan-in is reduced by about1
2. Similarly, the depths (average) for the layered

5

versions are 6.3 and 5.2 while the depth generated by the original version is 31.2. This demonstrates a
significant reduction in the depth or the propagation delay (about 5 times smaller depth). The number of
units used by the layered versions, on the other hand, increases by a factor between 2 and 2.5. However, the
total number of independent parameters (weights and biases) is a better measure of the overall complexity
than the number of units alone, because it incorporates boththe number of units and their connectivity. It is
seen that the strictly layered version uses about 1.6 times;and the loosely layered version uses about 1.37
times the number of parameters used by the original algorithm.

Cios and Liu [2] have also used the two spirals benchmark to illustrate their CID3 algorithm. The net
reported in [2] has 30 hidden units distributed in 5 hidden layers(depth = 6), a maximum fan–in of 32, and
requires 431 independent parameters. Thus, the number of parameters utilized by CID3 is smaller than that
utilized by the loosely layered version(527), but the maximum fan–in is about double that of the loosely
layered version(17). The depths of the generated nets are comparable. In fact, the CID3 has some of the
same drawbacks as the Cascade Correlation algorithm: it connects all previously installed hidden layers to
the new layer being created, which leads to an unbounded fan–in and irregular connections.

The spirals used to generate Table 1 had a radiusR= 2:0 and were centered at (2,2) in thexy plane.
Consequently, they were contained in the square with vertices (0,0), (0,4), (4,4), (4,0) which lies entirely in
the 1st quadrant. The net reported in [2], on the other hand, was trained on spirals centered at the origin. For
a proper comparison with CID3, we therefore used spirals centered at the origin (0,0) with a radiusR= 6:5.
This way thex andy coordinates of the points on the spirals take both positive and negative values and are
symmetric with respect to the origin. For this training data, the loosely layered version of our algorithm
generated nets with 7 hidden units per layer, with an averageof 6 hidden layers (depth = 7), and utilized
436 independent parameters on the average (the table corresponding to this data had to be excluded from
the manuscript for the sake of brevity). These nets are better than the net generated by the CID3 algorithm
since the depth and number of independent parameters used isabout the same, but the the maximum fan–in

is restricted to the fixed value 9 (about1
3rd), and the connections are more regular.

(b) The Vowel Benchmark [5, 7] : Table 2 shows the results for the Vowel Benchmark with symmetric

sigmoidal units (output2 [�0:5;+0:5℄). The net has 10 inputs and 11 outputs, where exactly one out
of the 11 output units is “on” at a time, to indicate the spokenvowel. This corresponds to a localized
output encoding. As seen in the table, the number of hidden units employed is usually very small (in fact,
smaller than the number of input or output units). The maximum fan–in is therefore dominated by the
number of input connections. Just one hidden layer with a small number of hidden units was found to be
sufficient for this task. Hence, is not necessary to try the loosely layered version. Note that the total number
of parameters(average value) used by the layered version issignificantly smaller than that of the original
version.

(c) The NETTalk benchmark [5, 8] : Table 3 shows the results for this benchmark for which there are
196 input and 26 output units. We randomly chose a set of 200 words (from the 1000 available in the CMU
version), which generated 1114 training patterns. Here thefan-in is dominated by the number of input units.
It it interesting to note that the strictly layered version uses a much larger number of hidden units but a
smaller total number of independent parameters. This is dueto the restricted connectivity. Also, the depth is

much smaller than that generated by the original version (about 1
6th). An examination of the nets revealed

that the direct input-output connections in the original version is the single most dominant contributor to the
total number of independent parameters (196� 26 = 5096 or about 50% of the total number of parameters.

6

Please refer to Table 3). Since the strictly layered versionperforms better without these connections, there
is no need to try the loosely layered version where these connections are present.

(d) Tradeoffs : Our results indicate that the layered version always requires more hidden units. This is
expected, since the unit being installed has fewer connections. It can only see units in the previous hidden
layer and thus has less information to work with than a unit inthe original version, which is connected to all
the previous units and network inputs.

The number of independent parameters, which is a better measure of the overall network complexity,
however, shows an interesting behavior. When the number of training patterns is large compared to the
number of inputs or outputs, the original version utilizes fewer parameters than the layered version. This is
illustrated by the two spirals benchmark where the number ofinput units is two, and the number of I/O pairs
to be learned is 194 or about 100 times larger. For such problems, there is a tradeoff between connectivity
and other performance attributes. The original version with full connectivity is at one extreme. It yields
faster convergence and a smaller number of parameters but also leads to very deep nets with arbitrarily large
fan–in. The strictly layered version is at the other extremeand requires more parameters and longer learning
time, but yields restricted fan–in and much smaller depth. The loosely layered version falls in between these
extremes, trading off more connectivity for fewer parameters and equal or smaller depth, and may be the
best compromise.

When the input or output dimensionality is not so small compared with the size of the training set, the
layered version utilizes fewer parameters and yields overall better performance. This is illustrated by the
Vowel and the NETTalk benchmarks. The ratio of the number of training patterns to the number of input
units is about 9 and 5, for the Vowel and NETTalk benchmarks, respectively. In such cases, connecting
the network inputs to the outputs results in a large (in fact larger than required) number of connections.
Furthermore, training all of them simultaneously turns outto be less efficient than incrementally introducing
hidden units and training the small number of associated connections at a time.

In conclusion, we have proposed a modified version of the Cascade Correlation algorithm which controls
the connectivity of the units being added to restrict the fan–in and generates layered nets with a very small
depth and regular connections. Our data illustrates the tradeoffs between connectivity and other performance
attributes.

Several future extensions are possible. For instance, the number of units per layer need not be fixed. It
can be decided dynamically and the creation of a new layer canbe started if the error reduction achieved by
expanding the layer begins to taper off. Another approach isto stick to the strictly layered structure as far as
possible and only occasionally install units with direct (layers skipping) connections to the network inputs,
when there is little or no reduction in the error.

Preliminary analysis of the generalization characteristics of these nets has been done. Even though
the layered version utilizes a larger number of parameters,its generalization performance appears to be
comparable to or better than the original version, as illustrated by the number of bit errors on the test sets
for the Spirals and Vowel benchmarks in Tables 1 and 2. However, further investigation is necessary to draw
any conclusions.

References

[1] S. E. Fahlman and C. Lebiere, “The Cascade Correlation Learning Architecture,” inNeural Information

7

Processing Systems 2(D. S. Touretzsky, ed.), pp. 524–532, Morgan Kaufman, 1990.

[2] K. J. Cios and N. Liu, “A Machine Learning Method for Generation of a Neural Network Architecture:

A continuous ID3 Algorithm,”IEEE Transactions on Neural Networks, vol. 3, pp. 280–291, Mar. 1992.

[3] I. G. Smotroff, D. H. Friedman and D. Connolly, “Large Scale Networks Via Self Organizing Hierar-

chical Networks,” inProceedings of the SPIE conference on applications of AI andNeural Networks,

April 1991.

[4] D. S. Phatak and I. Koren., “Connectivity and Performance Tradeoffs in the Cascade Correlation Learn-

ing Architecture,” Tech. Rep. TR-92-CSE-27, Electrical and Computer Engineering Department, Uni-

versity of Massachusetts, Amherst, July 1992.

[5] S. E. Fahlman et. al.,Neural Nets Learning Algorithms and Benchmarks Database. maintained by S. E.

Fahlman et. al. at the Computer Science Dept., Carnegie Mellon University.

[6] K. J. Lang and M. J. Witbrock, “Learning to Tell Two Spirals Apart,” in Proceedings of the 1988

Connectionist Models Summer School, San Mateo, CA(D. Touretzsky, G. Hinton, and T. Sejnowski,

ed.), Morgan Kaufman Publishers, 1988.

[7] A. J. Robinson and F. Fallside, “A Dynamic ConnectionistModel for Phoneme Recognition,” inProc.

of nEuro, June 1988, Paris, Jun. 1988.

[8] T. J. Sejnowski and C. R. Rosenberg, “Parallel Networks That Learn to Pronounce English Text,”Com-

plex Systems, vol. 1, pp. 145–168, 1987.

8

Output units

Input units

First hidden layer

Output units

Input units

Output units

Input units

First hidden layer

Second hidden layer

Figure 1−a : Step 1. Train the biases of the
output units. Note that the inputs are not
yet connected.

Figure 1−b : Step 2. Install the first hidden layer. Units

are added one at a time. Input side connections are trained
first. Once trained, the input side weights remain fixed.
Output side connections for the new unit are then installed

and all the output connections are trained

Units in the old output layer (shown by dotted ellipses) are collapsed into the next (second) hidden layer.

A new output layer is created. Input side weights of the newly collapsed hidden layer remain fixed. The

output side connections of the newly formed hidden layer (shown in dotted linestyle) are all trained simultaneously.

Then the hidden layer is further expanded by installing more units, one at a time, as in step 2.

Figure 1−c : Steps 3 and 4. Install the second (and successive) hidden layers.

.

9

 � Algorithm Type�!
Parameter Original Strictly Layered Loosely Layered# Cascade units per layer units per layer

Correlation 15 15

max 40 15 17
Maximum Fan–in min 25 15 17

average 32.2 15 17
std. dev. 3.36 0 17

max 38 108 73
Number of Hidden Units min 23 46 41

average 30 72 55
std. dev. 3.36 11.2 6.12

max 858 1537 1105
Total number of min 348 543 527
Independent Parameters average 570 962 784

std. dev. 113.8 179.2 111.1
max 39 9 6

Depth min 24 5 4
average 31.2 6.3 5.2
std. dev. 3.36 0.8 0.44

max 8717 8011 17643
Number of Epochs min 2460 4008 3791

average 3337 5828 5134
std. dev. 768.8 779.3 1720.5

max 10.4 15.1 23.7
Connection Crossings (�107) min 4.04 5.29 5.48

average 6.78 9.51 8.1
std. dev. (percentage of the mean) 19.87% 18.6% 23.9%

max 30(15.5%) 27(13.9%) 17(8.8%)
Bit errors on min 5(2.6%) 4(2.1%) 3(1.5%)
Test Set average 15.4(7.9%) 13.4(6.9%) 8.9(4.6%)

std. dev. 5.6 4.8 3.1

Table 1: The Two Spirals benchmark [5, 6] with Asymmetric Sigmoidal units (output2 [0;1℄). The problem

specification has 2 inputs and 1 output.

10

 � Algorithm Type�!
Parameter Original Cascade Strictly Layered# Correlation Version

max 12 10
Maximum Fan–in (Dominated min 12 10
by number of input units = 10) average 12 10

std. dev. 0 0
max 1 6

Number of Hidden Units min 1 4
(all in a single layer average 1 4.84
for the layered version) std. dev. 0 0.42

max 143 143
Total number of min 143 99
Independent Parameters average 143 117

std. dev. 0 9.23
max 2 2

Depth min 2 2
average 2 2
std. dev. 0 0

max 406 579
Number of Epochs min 202 274

average 287 423
std. dev. 36.96 55.98

max 2.34 1.82
Connection Crossings (�106) min 1.11 0.88

average 1.61 1.36
std. dev. (percentage of the mean) 13.5% 13.2%

max 166(31.4%) 100(18.9%)
Bit errors on min 143(27.1%) 69(13.1%)
Test Set average 158.8(30.1%) 80.8(15.3%)

std. dev. 4.4 6.0

Table 2: The Vowel benchmark [5, 7] with Symmetric Sigmoidalunits, (output2 [�0:5;+0:5℄).

The problem specification has 10 inputs and 11 outputs.

11

 � Algorithm Type�!
Parameter Original Cascade Strictly Layered Version# Correlation (35 units per layer)

max 226 196
Maximum Fan–in (Dominated min 221 196
by number of input units = 196) average 223 196

std. dev. 1.49 0.0
max 29 132

Number of Hidden Units min 24 100
average 25.7 104.8
std. dev. 1.49 8.71

max 11995 11115
Total number of min 10750 10041
Independent Parameters average 11172 10265

std. dev. 371.9 285.8
max 30 5

Depth min 25 4
average 26.70 4.08
std. dev. 1.49 0.29

max 5080 5812
Number of Epochs min 4340 5300

average 4641 5565
std. dev. 194.9 179.4

max 21.3 6.84
Connection Crossings (�109) min 17.5 6.43

average 19.1 6.64
std. dev. (percentage of the mean) 5.6% 2%

Table 3: The NETTalk benchmark [5, 8] with Symmetric Sigmoidal units. There are 196 inputs and 26

outputs.

12

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1994

	Connectivity and Performance Tradeoffs in the Cascade Correlation Learning Architecture
	D. S. Phatak
	I. Koren
	Recommended Citation

	tmp.1273778422.pdf.MBDck

