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This paper evaluates several modifications of the 
Simple Bayesian Classifier to enable estimation 
and inference over relational data. The resulti ng 
Relational Bayesian Classifiers are evaluated on 
three real-world datasets and compared to a 
baseli ne SBC using no relational information. 
The approach we call INDEPVAL achieves the 
best results.  We use synthetic data sets to fur-
ther explore performance as relational data char-
acteristics vary. 

1 Introduction 
In this paper we present the Relational Bayesian Classi-
fier (RBC), a modification of the Simple Bayesian Clas-
sifier (SBC) for relational data. The SBC offers good 
performance in many propositi onal domains and is sim-
ple to train and easy to understand. However it operates 
only with attribute-value data. The heterogeneous struc-
ture of relational data precludes direct appli cation of a 
SBC model. We consider several approaches to modeli ng 
relational data with a Bayesian classifier and evaluate 
their performance on three data sets. An approach that 
foll ows the spirit of SBC and assumes attribute inde-
pendence appears to work best. 

A number of techniques have been developed to learn 
models of relational data [Dzeroski and Lavrac 2001]. 
The power of relational data li es in combining intrinsic 
information about objects in isolation with information 
about related objects and the connections between those 
objects. A technique modeli ng relational information 
should be able to perform at least as well as (and often 
better than) traditi onal attribute-value techniques model-
ing only intrinsic information. However, relational data 
present several chall enges to learning algorithms. The 
data often have irregular structures and complex depend-
encies which contradict the assumptions of conventional 
modeli ng techniques.  

The simpli city of the SBC stems from its assumption 
that attributes are independent given the class – an as-
sumption rarely met in practice.  Domingos and Pazzani 
[1997] showed that the SBC performs well under zero-
one loss even when its independence assumption is vio-
lated by a wide margin.  Research investigating the effect 

of algorithm assumptions on performance has helped us 
to better understand the range of appli cabilit y for conven-
tional techniques. This paper studies simil ar questions for 
relational data.  We evaluate four different techniques on 
empirical data sets, comparing their accuracy and area 
under the ROC curve.  We explore the effects of our ap-
proaches on simulated data sets, decomposing accuracy 
into bias and variance estimates [Friedman 1997, Domin-
gos 2000].  Domingos and Pazzani [1997] showed that 
decreasing the bias associated with attribute dependen-
cies is not necessaril y the best approach to improving 
SBC performance on propositi onal data.  Our experi-
ments show that for relational data, performance im-
proves as bias is decreased.  

2 Modeling Relational Data 
Most conventional classification techniques assume that 
data instances are recorded in homogeneous structures. 
Figure 1a shows a segment of propositi onal data stored in 
a table. Each row is a separate instance (e.g. movie) and 
each column records an attribute of the instances (e.g. 
movie genre). The attribute-value data are used to buil d a 
model of a class label (e.g. movie box off ice receipts).  

Relational data have more information avail able with 
which to buil d better models, but the data often have 
complex structures which are more diff icult to model. 
For example, the subgraph in figure 1b shows the data 
avail able to predict movie success (receipts>$2mil ) in a 
relational dataset. In additi on to information about the 
movie itself, there is information regarding the actors, 
directors, producers, and studios that participated in mak-
ing the movie. For example, actors have gender, age and 
award information. Each movie subgraph may have a 
different number of related objects, resulti ng in diverse 
structures. For example, some movies may have 10 actors 
and others may have 1000. A relational classification 
technique needs to contend with heterogeneous data in-
stances for both learning and inference. 

There are a number of approaches to using conven-
tional machine learning techniques on relational data. 
Transforming relational data to propositi onal form 
through flattening is perhaps the most common. One 
method transforms heterogeneous data into homogenous 

Simple Estimators for Relational Bayesian Classifiers 
 
 Jennifer Nevill e, David Jensen, Brian Gall agher and Ross Fairgrieve 

Knowledge Discovery Laboratory, Department of Computer Science, University of Massachusetts,  
140 Governors Drive, Amherst, MA 01003 USA   
{ jnevill e | jensen | bgallag | fairgr} @cs.umass.edu 



records by aggregating multiple values into a single value 
(e.g. average actor age) or duplicating values across re-
cords (e.g. studio location is repeated across all associ-
ated movies). Other methods use relational learners to 
construct features that represent various characteristics of 
the examples [Kramer et al 2001]. Structured instances 
are transformed into homogenous sets of relational fea-
tures. Any conventional machine learning technique can 
be applied to the data once they are flattened.  

2.1 Relational Bayesian Classif iers 
The RBC will decompose structured examples down to 

the attribute level. A heterogeneous subgraph is trans-
formed into a homogenous set of attributes. For example, 
a movie subgraph contains information about a number 
of attributes including actor-age, actor-gender and studio-
location. Each attribute contains a multiset of values for 
each subgraph. For example, the subgraph in figure 1b is 
transformed to the representation in figure 1c. This de-
composition by attribute value follows the simple ap-
proach used in the SBC where attributes are assumed to 
be conditionally independent given the class. With this 
assumption, probability of class given an example can be 
calculated as the product of probabilities of attribute 
given class:  

P(C = + | E) = α P(Ai = ai |C = +)P(C = +)
Ai

∏  

We will hereafter use P(A|C) in place of P(A=a|C=c) for 
notational simpli city. Learning a SBC model then con-
sists of estimating probabiliti es for each attribute given 
class. We will refer to techniques used to estimate these 
probabiliti es as estimators. 

Estimation techniques for propositi onal data are 
straightforward. For discrete data, maximum-li keli hood 
estimates can be achieved by counting. Kernel-density 
estimators are a good choice for continuous data [John & 
Langley 1995]. Estimation techniques for relational data 
need to model multi sets of varying cardinalit y. For ex-
ample, consider the segment of decomposed data in fig-
ure 1c. Each value for the actor-gender attribute is a dif-
ferent multi set (e.g. { F,M,F,F} ). The dimensionalit y will 
be too high to model the sets directly. Many attribute sets 
will occur rarely so accurate probabilit y estimates will be 
diff icult to achieve. Estimators used in the RBC will need 
to model multi sets in a more general way. We will evalu-
ate two different approaches to estimating and three dif-
ferent approaches to inferences. 

2.2 Multiset Estimators 

Average Value 
The average-value estimator (AVGVAL) corresponds to 
flattening the data by averaging. During estimation, each 
multi set is replaced with its average (continuous attrib-
utes) or modal value (discrete attributes). Figure 2a 
shows an example subgraph from which P(A|C) will be 
estimated. Figure 2b shows the subgraph after flattening. 
The tuple consisting of class label and modal value { +,F} 
will be used in a standard maximum-li keli hood estimator. 
The number of instances used for estimation is equal to 
the number of subgraphs in the data. Inference proceeds 
in a simil ar manner; probabiliti es are inferred from the 
average/modal set value: 

P(+ | E) = α P(Mode = F |+)P(+) 
We hypothesize that the AVGVAL approach should per-

form well i f the values in the multi set are highly corre-
lated. In this situation, the set of values gives no more 
information than the average value. In addition, if the 
attribute distributions given class are hard to distinguish 
(i.e. close together) and cardinalit y of the multi sets (i.e. 
degree) is high, then AVGVAL will reduce estimation 
variance and possibly improve model accuracy. 

Independent Value 
The independent value estimator (INDEPVAL) assumes 
each value of a multi set is independently drawn from the 
same distribution. This estimator is designed to mirror 
the independence assumption of SBC – now in additi on 
to attribute independence (e.g. between columns of f igure 
1c), there is also an assumption of attribute value inde-
pendence (e.g. within columns of f igure 1c). For estima-
tion, each value of each set is considered to be an inde-
pendent instance. Figure 2c shows the movie subgraph 
decomposed for estimation. The movie class label is du-
pli cated and paired with each actor attribute value. Each 
pair is considered to be independent evidence. The num-
ber of instances avail able for estimation is now equal to 
the number of li nked objects with the specified attribute. 



During inference the probabilit y of each value is com-
puted and multi pli ed into the overall probabilit y inde-
pendently: 

P(+ | E ) = α P(F |+)P(M |+)P(F |+)P(F |+)P(+)  
INDEPVAL should perform well i f the class label de-

termines each attribute value independently – when there 
is no correlation among attribute values. In this situation, 
higher degree subgraphs will produce more evidence of 
the class and result in lower variance estimates. We ex-
pect this approach to perform in a manner simil ar to the 
SBC. Even in the absence of high degree subgraphs, 
INDEPVAL can use all avail able evidence to reduce vari-
ance. This may increase bias substantiall y when the as-
sumption of independence is not met, but may not affect 
zero-one loss overall i f the variance is low enough. 

Average Probability 
The third estimator uses average probabilit y (AVGPROB) 
for inference. AVGPROB is an inference technique only. It 
uses probabiliti es estimated with INDEPVAL. The prob-
abilit y of each value is computed independently and then 
averaged over the multi set before being multi pli ed into 
the overall probabilit y: 

P(+ | E ) = α P(F |+) + P(M |+) + P(F |+) + P(F |+)
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  P(+)  

AVGPROB computes an arithmetic average of prob-
abil ities instead of the geometric average computed by 
INDEPVAL. I f the values in the multi sets are highly de-
pendent, geometric averaging will push the probabiliti es 
to extreme values. In this situation, arithmetic averaging 
should have lower bias. However, geometric averaging is 
more robust to irrelevant values in the multi sets. Many 
irrelevant values will pull arithmetic averages toward the 
center, washing out the effects of the useful values. In 
this situation, AVGPROB may have higher bias. If only 
rare values of the multi sets are predictive of the class, we 
expect AVGPROB and INDEPVAL to outperform AVGVAL. 

3 Empirical Data Experiments 
The experiments reported below are intended to evaluate 
two assertions. The first claim is that relational informa-
tion can be used to improve model accuracy. We evaluate 
this claim by comparing the performance of RBC models 
using multi set estimators, with the performance of a SBC 
model using only intrinsic attributes. The SBC model 
receives only information about the objects being classi-
fied, no relational information is included. We call this 
approach INTRINSIC.  
 The second claim is that RBC models using INDEPVAL 
estimators will outperform RBC models using AVGVAL 
or AVGPROB estimators. We evaluate this claim by com-
paring the performance of each estimator. 

To compare the four approaches, we recorded accuracy 
and area under the ROC curve [Provost et al 1998] on 
three real-world classification tasks. Area under the curve 

(AUC) measures classification accuracy over all possible 
class distributions and misclassification costs. The ex-
periments use incremental ten-fold cross-vali dation 
[Cohen 1995] in order to compare estimator performance 
across a range of training set sizes. Training set sizes 
ranging from 10-90% of the data set are randomly chosen 
for each test set (10% of the data). Accuracy and AUC 
are averaged over the ten folds for each training set size. 
All models used Laplace correction for zero-values and 
kernel-density estimation for continuous attributes.  

3.1 Classif ication Tasks 
The first data set is drawn from the Internet Movie Data-
base (www.imdb.com).  We gathered a sample of 1383 
movies released in the United States between 1995 and 
2000.  In additi on to movies, the data set contains objects 
representing actors, directors, producers, and studios.  In 
total, the data set contains 46,000 objects and 68,000 
li nks.  The learning task was to predict movie opening-
weekend box off ice receipts. We discretized the attribute 
so that a positi ve label indicates a movie that garnered 
more than $2 milli on in opening-weekend receipts 
(P(+)=0.55). Nine attributes were suppli ed to the RBC 
models, including studio country, and actor birth-year.  

The second data set is drawn from Cora, a database of 
computer science research papers extracted automaticall y 
from the web using machine learning techniques 
[McCall um et al 1999].  We selected a set of 4330 ma-
chine-learning papers along with associated authors, 
journals, books, publi shers, institutions and cited papers. 
The resulti ng coll ection contains 11,500 objects and 
26,000 li nks.  The prediction task was to identify whether 
paper topic is Neural Networks (P(+)=0.32).  Ten attrib-
utes were avail able to the RBC models, including the 
journal aff ili ation and paper venue.  

The third data set is a relational data set containing in-
formation about the yeast genome at the gene and the 
protein level (www.cs.wisc.edu/~dpage/kddcup2001/). 
The data set contains information about 1243 genes and 
1734 interactions among their associated proteins. The 
learning task was to predict whether or not a gene’s func-
tions include Transcription (P(+)=0.31).  The RBC mod-
els used fourteen attributes for prediction, including gene 
phenotype, motif, and interaction type.  

3.2 Results 
Figure 3 shows accuracy and AUC results for each of the 
four models on the three classification tasks. On the 
IMDB, the INDEPVAL and AVGPROB models have higher 
accuracy than the AVGVAL and INTRINSIC models. How-
ever, INDEPVAL’ s AUC results are far superior to any of 
the other approaches. In this data set AVGVAL performs 
significantly worse than the other RBC models. This in-
dicates that flattening relational data and applying pro-
positi onal models may not always be a good approach.  

On the Cora classification task, INDEPVAL also shows 
superior performance in both accuracy and AUC. Again, 
the increase is more pronounced in AUC. This suggests  



Figure 3: Results of empirical data experiments for IMDB, 
Cora, and Gene databases.   
 
that INDEPVAL produces better rankings of probability 
estimates than the other approaches. If this is the case, 
INDEPVAL should perform best with respect to squared 
loss as well. AVGVAL and AvgProb perform equivalently, 
in both accuracy and AUC. The AUC results for 
INTRINSIC indicate that its performance is no better than 
random. 

The gene data set is the only one where all approaches 
perform equivalently. INTRINSIC appears to have slightly 
better accuracy overall, but AVGVAL dominates slightly 
in AUC. In this classification task, the relational models 
do no better than the propositional model. 

We used two-tailed, paired t-tests to assess the signifi-
cance of the results obtained from the ten-fold cross-
validation trials. The t-tests are conducted on the accu-
racy and AUC results from the cross-validation trials 
which used 90% of the data for training. The null hy-
pothesis is that there is no difference between two ap-
proaches; the alternative is that there is a difference be-
tween two approaches. The resulting p-values are re-
ported in Table 1 below as a heuristic guide to signifi-
cance. Dietterich [97] reports that paired t-tests on ten-
fold cross-validation results can make at most twice the 
target level of errors in which the null hypothesis is in-
correctly rejected. However, the p-values are low enough 
that this bias should not alter our conclusions. The results 
support our conclusions above. INDEPVAL is the superior 
approach for IMDB and Cora, and performs equivalently 
for Gene.  

4 Synthetic Data Experiments 
Common characteristics of relational data could be af-
fecting estimator performance. Relational data sets often 

exhibit concentrated linkage with a number of high de-
gree objects. For example, many papers in Cora link to a 
few journals, and many movies in the IMDB link to a few 
studios. These high degree objects may reduce the esti-
mator variance if the linked objects are used together for 
classification (e.g. use related movies to predict an at-
tribute of studios). On the other hand, the same connec-
tions could increase variance if the linked objects create 
dependencies across examples (e.g. a single journal is 
used separately to classify each associated paper). Even 
with objects of low to moderate degree, linkage can cre-
ate complex dependencies among attribute values. At-
tribute values can exhibit uniformity among objects that 
share a common neighbor. For example, in the gene data, 
proteins located in the same place in the cell (e.g. cell 
wall) often have highly correlated functions (e.g. cell 
growth). Dependencies such as these can be a source of 
increased variance. We will use synthetic data to explore 
the effects of linkage and attribute correlation on estima-
tor performance. 

4.1 Methodology 
Our synthetic data sets are comprised of bipartite graphs, 
each containing a single core object (e.g. a movie) linked 
to zero or more peripheral objects (e.g. actors). Note that 
each actor links to exactly one movie. Each movie has a 
single binary attribute, C={+,-}, representing its class 
(e.g. receipts>$2mil). Likewise, each actor has a single 
binary attribute, A={1,0} (e.g. gender). Some sample 
graphs are shown in figure 4. The degrees of the graphs 
in each data set are distributed normally with mean equal 
to |actors| / |movies|. The default parameters for the ex-
periments were 100 movies, 500 actors, P(+)=0.5, and 
P(A=1|C=+)=P(A=0|C=-)=0.75. Variations from these 
defaults are described for each experiment below. 

The learning task was to predict the class label for 
each movie. Experiments were performed for each of the 
three RBC estimators.  We measured average accuracy of 
each RBC model across 100 pairs of training/test sets.  

 IMDB Cora Gene 

 Acc AUC Acc AUC Acc AUC 

INDEPVAL vs. 
AVGVAL 0.0003 0.0000 0.0023 0.0000 0.4532 0.2074 

INDEPVAL vs. 
AVGPROB 0.4122 0.0003 0.0006 0.0000 0.8708 0.1210 

INDEPVAL vs. 
INTRINSIC 0.0057 0.0000 0.0001 0.0000 0.6586 0.1682 

Table 1: P-values of significance tests on 10-fold CV results. 



Bias and variance were measured for each approach 
using the decompositi ons defined for zero-one loss by 
Domingos [2000]. Bias and variance estimates are calcu-
lated for each test example using 100 different training 
sets and averaged over the entire test set. This was re-
peated for 100 test sets to calculate average test set bias 
and variance. The results of the synthetic experiments are 
presented in figure 5. 

4.2 Results 
Figure 5a shows an experiment in which the total number 
of actors in each data set was varied from 100 to 
1000. Default settings were used for all other parameters. 
In this experiment AVGVAL and INDEPVAL are indistin-
guishable. The accuracy of the AVGVAL and INDEPVAL 
estimators increases with graph degree through 1000 ac-
tors whil e the accuracy of the AVGPROB estimator levels 
off around 500 actors. AVGVAL and INDEPVAL show 
lower bias as degree increases, whereas the bias of the 
AVGPROB estimator remains relatively constant. For all 
three estimators, degree reduces variance. The three es-
timators have comparable variance so the increase in ac-
curacy can be attributed to lowering bias. 

Figure 5b shows an experiment in which the correla-
tion among li nked actor attribute values is varied. Default 
settings were used for all  other parameters. Again, 
AVGVAL and INDEPVAL are indistinguishable. The accu-
racy of the AVGVAL and INDEPVAL estimators decreases 
as correlation increases whil e the accuracy of the 
AVGPROB estimator remains approximately constant. The 
variance of all three estimators is very low and seems to 
depend very littl e on attribute correlation, so again the 

Figure 5: Results of synthetic data experiments. 
 

decrease in accuracy for AVGVAL and INDEPVAL can be 
attributed to estimator bias which increases with attribute 
correlation.  
  Figure 5c shows an experiment in which P(A=1|C=+) 
is varied from { 0,1} whil e holding P(A=1|C=-) constant 
at 0. Default settings were used for all other parameters. 
This is the first experiment to show a difference in per-
formance between AVGVAL and INDEPVAL ill ustrating 
performance in situations where rare attribute values de-
termine the class. INDEPVAL and AVGPROB both show 
lower variance than AVGVAL but AVGPROB has much 
lower accuracy. Since INDEPVAL shows lower bias than 
either of the other estimators we can attribute its higher 
accuracy to this reduction in bias. 
 The above experiments were repeated for overall 
P(A=1|C=+) values other than 0.75. The relative per-
formance of estimators remained substantiall y the same 
across all correlation levels. 

5 Discussion 
Structural characteristics of relational data affect per-
formance of multi set estimators in a number of ways. 
Large multi sets calculated from objects of high degree 
can be useful in reducing variance. However, our ex-
periments only examine the effects of high degree objects 
within a single subgraph. Linkage across subgraphs may 
produce dependencies that result in higher variance.  

Correlation among attribute values seems to have less 
effect on the bias and variance of estimators. Yet, 
AVGVAL and INDEPVAL accuracies are adversely ef-
fected by higher correlations. We expected AVGPROB to 
be robust to attribute correlation due to its arithmetic av-
eraging. However, it is surprising that it doesn’ t outper-
form the other approaches. This may be a result of de-
creased bias in AVGVAL and INDEPVAL due to high de-
gree. Future work will examine possible interaction ef-
fects of li nkage and correlation.  

Overall , INDEPVAL estimators have lowest bias and 
variance over a wide range of synthetic data sets. 
AVGVAL has low variance over a number of data sets, but 
it was easy to identify situations in which AVGVAL 
would be a biased estimator. Both estimators have lower 
variance as degree increases. We can infer that 
INDEPVAL’ s superior performance on the real-world clas-
sification tasks is a result of lower overall bias. 
AVGPROB appears to be biased over a number of rela-
tional data configurations. However, it achieves accura-
cies comparable to INDEPVAL on the IMDB experiments. 
This reveals that our synthetic data experiments have not 
clearly identified the circumstances in which AVGPROB is 
a good approach to estimation.   

6 Related Work 
The Inductive Logic Programming community have stud-
ied the issues of modeli ng relational data for many years. 
1BC is a first-order Bayesian classifier for relational data 
which appli es dynamic propositi onali zation [Flach and 



Lachiche 1999]. Examples consist of objects and their 
relational neighborhood. 1BC generates a set of f irst-
order conditi ons which evaluate the attribute values of 
various items in the examples. The initi al work on 1BC 
discusses a number of approaches to decomposing struc-
tured examples into sets of items and attribute values. 
Approaches to modeli ng li sts and sets of attribute values 
are presented but they are not used in the models.  

More recent work has examined 1BC2 models which 
use complex li st- and set-valued estimators [Lachiche 
and Flach 2002]. Complex estimators are used to de-
crease overall bias of the models in li ght of the high di-
mensionalit y of set-valued attributes. However, the per-
formance of 1BC2 models with set-valued estimators is 
not impressive – the results are generall y indistinguish-
able from those of 1BC. 

Flach and Lachiche do not explore the bias and vari-
ance tradeoff s of the two approaches. The experiments 
reported above show that estimators with reduced bias 
have higher accuracies. However, these estimators tend 
to have low variance as well . Future work needs to ex-
plore bias and variance tradeoff s more full y with both 
simple and complex multi set estimators. 

7 Conclusions 
We have identified a simple approach to estimation for 
relational data. Adhering to the SBC’s spirit of simpli c-
ity, an RBC model assuming conditi onal independence of 
both the attributes and the multi set attribute values 
(INDEPVAL) is successful in a variety of real-world and 
synthetic classification tasks.  

INDEPVAL estimation performs at least as well as 
AVGVAL estimation in all tasks, and significantly better 
in some. AVGVAL estimation is essentiall y the same as 
dynamicall y flattening relational data and applying a 
propositi onal learner. An RBC using INDEPVAL estima-
tion should now be considered as superior to flattening 
relational data. 

On two real-world classification tasks, RBC models 
perform significantly better than SBC models without the 
relational information. On a third task there is no differ-
ence between the approaches. We don’ t lose anything by 
modeli ng relational data with RBC’s, since they share the 
SBC’s robustness to irrelevant data. 
 In additi on, the RBC model with INDEPVAL estimation 
is easy to implement and eff icient to train and apply. It 
should be a good baseli ne against which to evaluate other 
relational learning techniques. 

Future work will i nclude further investigation of the 
effects of relational data characteristics on estimator per-
formance. The structure of relational data (li nkage and 
attribute correlation) can affect estimator bias and vari-
ance. A RBC model which selects an appropriate estima-
tor for each attribute may outperform an RBC model us-
ing INDEPVAL for all attributes. We will also investigate 
the performance of more complex estimators (e.g. kernel 
density estimators for multi sets). 
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