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Simple Estimators for Relational Bayesian Classifiers

Jennifer Nevill e, David Jensen, Brian Gall agher and RossFairgrieve

Knowledge Discovery Laboratory, Department of Computer Science, University of Massadhusetts,
140 Governors Drive, Amherst, MA 0108 USA
{jneville | jensen | bgall ag | fairgr} @cs.umassedu

This paper evaluates sveral modifications of the
Simple Bayesian Classfier to enable estimation
and inference over relational data. The resulting
Relational Bayesian Clasdfiers are evaluated on
three red-world datasets and compared to a
baseline SBC using ro relational information.
The gproach we cdl INDEPVAL achieves the
best results. We use synthetic data sets to fur-
ther explore performance & relational data char-
aderistics vary.

1 Introduction

In this paper we present the Relational Bayesian Class-
fier (RBC), a modification of the Simple Bayesian Clas-
sifier (SBC) for relational data. The SBC offers good
performance in many propaositional domains and is sm-
ple to train and easy to understand. However it operates
only with attribute-value data. The heterogeneous gruc-
ture of relational data predudes dired application of a
SBC model. We mnsider several approacdhes to modeling
relational data with a Bayesian classfier and evaluate
their performance on three data sets. An approach that
follows the spirit of SBC and assumes attribute inde-
pendence gpeas to work best.

A number of techniques have been developed to lean
models of relational data [Dzeroski and Lavrac 2001].
The power of relational data lies in combining intrinsic
information about objeds in isolation with information
about related oljeds and the mnnedions between those
objeds. A technique modeling relational information
should be &le to perform at leest as well as (and often
better than) traditional attribute-value techniques model-
ing only intrinsic information. However, relational data
present several challenges to leaning algorithms. The
data often have irregular structures and complex depend-
encies which contradict the assumptions of conventional
modeli ng techniques.

The simplicity of the SBC stems from its assumption
that attributes are independent given the dass— an as-
sumption rarely met in pradice. Domingos and Pazzani
[1997 showed that the SBC performs well under zero-
one loss even when its independence asumption is vio-
lated by a wide margin. Reseach investigating the dfed

of algorithm assumptions on performance has helped us
to better understand the range of applicability for conven-
tional techniques. This paper studies smilar questions for
relational data. We evaluate four different techniques on
empirica data sets, comparing their acaracy and area
under the ROC curve. We explore the dfeds of our ap-
proaches on simulated data sets, decomposing acairacy
into bias and variance estimates [Friedman 1997, Domin-
gos 200(0. Domingos and Pazzani [1997 showed that
deaeasing the bias associated with attribute dependen-
cies is not necessarily the best approach to improving
SBC performance on propaositional data. Our experi-
ments ow that for relational data, performance im-
proves as bias is decreased.

2 Modeling Relational Data

Most conventional classficaion techniques assume that
data instances are recorded in homogeneous <gructures.
Figure 1a shows a segment of propasitional data stored in
atable. Each row is a separate instance (e.g. movie) and
ead column reoords an attribute of the instances (e.g.
movie genre). The atribute-value data are used to build a
model of a dasslabel (e.g. movie box officerecapts).

Relational data have more information avail able with
which to build better models, but the data often have
complex structures which are more difficult to model.
For example, the subgraph in figure 1b shows the data
available to predict movie success (recepts>$2mil) in a
relational dataset. In addition to information about the
movie itself, there is information regarding the adors,
diredors, producers, and studios that participated in mak-
ing the movie. For example, acors have gender, age and
award information. Each movie subgraph may have a
different number of related objeds, resulting in diverse
structures. For example, some movies may have 10 adors
and others may have 1000 A relational classfication
technique neads to contend with heterogeneous data in-
stances for both learning and inference.

There ae anumber of approaches to using conven-
tional machine leaning techniques on relational data.
Transforming relational data to propositional form
through flattening is perhaps the most common. One
method transforms heterogeneous data into homogenous
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Figure 1: Examples of (a) propositional data, (b) relational data represented as a subgraph. and (c¢) relational data decomposed by attribute.

records by aggregating multiple valuesinto a single value
(e.g. average actor age) or duplicating values across re-
cords (e.g. studio location is repeated across all associ-
ated movies). Other methods use relational learners to
construct features that represent various characteristics of
the examples [Kramer et al 2001]. Structured instances
are transformed into homogenous sets of relational fea-
tures. Any conventional machine learning technique can
be applied to the data once they are flattened.

2.1 Relational Bayesian Classifiers

The RBC will decompose structured examples down to
the attribute level. A heterogeneous subgraph is trans-
formed into a homogenous set of attributes. For example,
a movie subgraph contains information about a number
of attributes including actor-age, actor-gender and studio-
location. Each attribute contains a multiset of values for
each subgraph. For example, the subgraph in figure 1b is
transformed to the representation in figure 1c. This de-
composition by attribute value follows the simple ap-
proach used in the SBC where attributes are assumed to
be conditionally independent given the class. With this
assumption, probability of class given an example can be
calculated as the product of probabilities of attribute
given class:

P(C=+|E)=a[]P(A =4 |C=+P(C=+)

We will heredter use P(A|C) in placeof P(A=a|C=c) for
notational simplicity. Leaning a SBC model then con-
sists of estimating probabiliti es for ead attribute given
class We will refer to techniques used to estimate these
probabiliti es as estimators.

Estimation tedhniques for propacsitional data ae
straightforward. For discrete data, maximum-likelihood
estimates can be adieved by counting. Kernel-density
estimators are agood choice for continuous data [John &
Langley 1995. Estimation techniques for relational data
need to model multisets of varying cardinality. For ex-
ample, consider the segment of decomposed data in fig-
ure 1c. Each value for the ador-gender attribute is a dif-
ferent multiset (e.g. { F,M,F,F}). The dimensionality will
be too highto model the sets direcly. Many attribute sets
will occur rarely so acaurate probability estimates will be
difficult to achieve. Estimators used in the RBC will need
to model multisets in a more general way. We will evalu-
ate two different approacdhes to estimating and three dif-
ferent approaches to inferences.

2.2 Multiset Estimators

Average Value

The average-value estimator (AVGVAL) corresponds to
flattening the data by averaging. During estimation, ead
multiset is replacal with its average (continuous attrib-
utes) or modal value (discrete atributes). Figure 2a
shows an example subgraph from which P(A|C) will be
estimated. Figure 2b shows the subgraph after flattening.
The tuple mnsisting of class label and modal value {+,F}
will be used in a standard maximum-likelihood estimator.
The number of instances used for estimation is equal to
the number of subgraphs in the data. Inference proceeds
in a similar manner; probabiliti es are inferred from the
average/modal set value:

P(+|E) =aP(Mode=F |+)P(+)

We hypothesize that the AVGV AL approach should per-
form well if the values in the multiset are highly corre-
lated. In this stuation, the set of values gives no more
information than the average value. In addition, if the
attribute distributions given class are hard to distinguish
(i.e. close together) and cardinality of the multisets (i.e.
degree is high, then AvGVAL will reduce estimation
variance and passbly improve model acairacy.

Independent Value

The independent value estimator (INDEPVAL) assumes
ead value of a multiset is independently drawn from the
same distribution. This estimator is designed to mirror
the independence asumption of SBC — now in addition
to attribute independence (e.g. between columns of figure
1c), there is aso an assumption of attribute value inde-
pendence (e.g. within columns of figure 1c). For estima-
tion, ead value of ead set is considered to be an inde-
pendent instance. Figure 2c shows the movie subgraph
decomposed for estimation. The movie dasslabel is du-
plicated and paired with ead ador attribute value. Each
pair is considered to be independent evidence. The num-
ber of instances available for estimation is now equal to
the number of linked oljeds with the spedfied attribute.
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Figure 2: {a) Example subgraph transformed for estimation by (b) AVGVAL, and (c) INDEPVAL




During inference the probability of ead value is com-
puted and multiplied into the overall probability inde-
pendently:

P(+|E)=aP(F |+)P(M |+)P(F | +)P(F |+)P(+)

INDEPVAL should perform well if the dass label de-
termines ead attribute value independently — when there
is no correlation among attribute values. In this stuation,
higher degree subgraphs will produce more evidence of
the dassand result in lower variance estimates. We ex-
ped this approach to perform in a manner similar to the
SBC. Even in the &sence of high degree subgraphs,
INDEPVAL can use dl available evidence to reduce vari-
ance. This may increase bias aubstantially when the &
sumption of independence is not met, but may not affect
zero-one lossoverall if the varianceis low enough

Average Probability

The third estimator uses average probability (AvVGPROB)
for inference. AVGPROB is an inferencetechnique only. It
uses probabiliti es estimated with INDEPVAL. The prob-
ability of ead value is computed independently and then
averaged over the multiset before being multiplied into
the overall probability:
+)+ +)+ +)+ +)0J

P+ |y = PE LT PIM )+ PIF 1)+ PE ).

AVGPROB computes an arithmetic average of prob-
abilities instead of the geometric average computed by
INDEPVAL. If the values in the multisets are highly de-
pendent, geometric averaging will push the probabiliti es
to extreme values. In this dtuation, arithmetic averaging
should have lower bias. However, geometric averagingis
more robust to irrelevant values in the multisets. Many
irrelevant values will pull arithmetic averages toward the
center, washing out the dfeds of the useful values. In
this stuation, AVGPROB may have higher bias. If only
rare values of the multi sets are predictive of the dass we
exped AVGPROB and INDEPVAL to outperform AVGVAL.

3 Empirical Data Experiments

The experiments reported below are intended to evaluate
two assertions. The first claim is that relational informa-
tion can be used to improve model acaracy. We evaluate
this claim by comparing the performance of RBC models
using multiset estimators, with the performance of a SBC
model using only intrinsic dtributes. The SBC model
recaves only information about the objeds being class-
fied, no relational information is included. We cdl this
approach INTRINSIC.

The second claim is that RBC models using INDEPV AL
estimators will outperform RBC models using AVGVAL
or AVGPROB estimators. We evaluate this claim by com-
paring the performance of ead estimator.

To compare the four approaches, we recorded acaracy
and area under the ROC curve [Provost et al 1998 on
threered-world clasgfication tasks. Areaunder the aurve

(AUC) measures classfication acairacy over all possble
class distributions and misclasdfication costs. The ex-
periments use incremental ten-fold crossvalidation
[Cohen 1995 in order to compare estimator performance
acoss a range of training set sizes. Training set sizes
ranging from 10-90% of the data set are randomly chosen
for eadh test set (10% of the data). Accuracy and AUC
are averaged over the ten folds for ead training set size.
All models used Laplace orredion for zero-values and
kernel-density estimation for continuous attributes.

3.1 Classification Tasks

The first data set is drawn from the Internet Movie Data-
base (www.imdb.com). We gathered a sample of 1383
movies released in the United States between 1995 and
2000 In addition to movies, the data set contains objeds
representing acors, direcors, producers, and studios. In
total, the data set contains 46,000 oheds and 68000
links. The leaning task was to predict movie opening-
weekend bax office recapts. We discretized the dtribute
so that a positive label indicates a movie that garnered
more than $2 million in openingweeend receapts
(P(+)=0.55). Nine atributes were supplied to the RBC
models, including studio country, and ador birth-year.

The second data set is drawn from Cora, a database of
computer science reseach papers extraded automaticaly
from the web using machine leaning techniques
[McCallum et al 1999. We seleded a set of 4330 ma-
chine-leaning papers along with assciated authors,
journals, bodks, publishers, institutions and cited papers.
The resulting colledion contains 11,500 oljeds and
26,000links. The prediction task was to identify whether
paper topic is Neural Networks (P(+)=0.32). Ten attrib-
utes were available to the RBC models, including the
journal affili ation and paper venue.

The third data set is arelational data set containing in-
formation about the yeast genome & the gene and the
protein level (www.cs.wisc.edu/~dpage/kddcup2007%).
The data set contains information about 1243 genes and
1734 interadions among their associated proteins. The
leaning task was to predict whether or not a gene’'s func-
tions include Transcription (P(+)=0.31). The RBC mod-
els used fourteen attributes for prediction, including gene
phenotype, motif, and interaction type.

3.2 Results

Figure 3 shows acairacy and AUC results for ead of the
four models on the three clasdfication tasks. On the
IMDB, the INDEPVAL and AVGPROB models have higher
acairacy than the AVGVAL and INTRINSIC models. How-
ever, INDEPVAL's AUC results are far superior to any of
the other approaches. In this data set AVGVAL performs
significantly worse than the other RBC models. This in-
dicates that flattening relational data and applying pro-
positional models may not always be agood approach.
On the Cora dassdfication task, INDEPVAL also shows
superior performance in both acaracy and AUC. Again,
the increase is more pronounced in AUC. This suggests
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Figure 3: Results of empirical data experiments for IMDB,
Cora, and Gene databases.

that INDEPVAL produces better rankings of probability
estimates than the other approaches. If this is the case,
INDEPV AL should perform best with respect to squared
loss as well. AvGVAL and AvgProb perform equivalently,
in both accuracy and AUC. The AUC results for
INTRINSIC indicate that its performance is no better than
random.

The gene data set is the only one where all approaches
perform equivalently. INTRINSIC appears to have slightly
better accuracy overall, but AVGVAL dominates slightly
in AUC. In this classification task, the relational models
do no better than the propositional model.

We used two-tailed, paired t-tests to assess the signifi-
cance of the results obtained from the ten-fold cross-
validation trials. The t-tests are conducted on the accu-
racy and AUC results from the cross-validation trials
which used 90% of the data for training. The null hy-
pothesis is that there is no difference between two ap-
proaches; the alternative is that there is a difference be-
tween two approaches. The resulting p-values are re-
ported in Table 1 below as a heuristic guide to signifi-
cance. Dietterich [97] reports that paired t-tests on ten-
fold cross-validation results can make at most twice the
target level of errors in which the null hypothesis is in-
correctly rejected. However, the p-values are low enough
that this bias should not alter our conclusions. The results
support our conclusions above. INDEPV AL is the superior
approach for IMDB and Cora, and performs equivalently
for Gene.

4 Synthetic Data Experiments

Common characteristics of relational data could be af-
fecting estimator performance. Relational data sets often

IMDB Cora
Acc AUC Acc AUC Acc

Gene
AUC

INDEPVAL VS.

AVGVAL 0.0003 0.0000

0.0023 0.0000 | 0.4532 0.2074

INDEPVAL VS.

AVGPROB 0.4122 0.0003

0.0006 0.0000 | 0.8708 0.1210

INDEPVAL VS.

0.0057 0.0000 | 0.0001 0.0000 | 0.6586 0.1682

INTRINSIC

Table 1: P-values of significance tests on 10-fold CV results.

exhibit concentrated linkage with a number of high de-
gree objects. For example, many papers in Coralink to a
few journals, and many movies in the IMDB link to afew
studios. These high degree objects may reduce the esti-
mator variance if the linked objects are used together for
classification (e.g. use related movies to predict an at-
tribute of studios). On the other hand, the same connec-
tions could increase variance if the linked objects create
dependencies across examples (e.g. a single journal is
used separately to classify each associated paper). Even
with objects of low to moderate degree, linkage can cre-
ate complex dependencies among attribute values. At-
tribute values can exhibit uniformity among objects that
share a common neighbor. For example, in the gene data,
proteins located in the same place in the cell (e.g. cell
wall) often have highly correlated functions (e.g. cell
growth). Dependencies such as these can be a source of
increased variance. We will use synthetic data to explore
the effects of linkage and attribute correlation on estima-
tor performance.

4.1 Methodology

Our synthetic data sets are comprised of bipartite graphs,
each containing a single core object (e.g. amovie) linked
to zero or more peripheral objects (e.g. actors). Note that
each actor links to exactly one movie. Each movie has a
single binary attribute, C={+,-}, representing its class
(e.g. receipts>$2mil). Likewise, each actor has a single
binary attribute, A={1,0} (e.g. gender). Some sample
graphs are shown in figure 4. The degrees of the graphs
in each data set are distributed normally with mean equal
to [actors| / |movies|. The default parameters for the ex-
periments were 100 movies, 500 actors, P(+)=0.5, and
P(A=1|C=+)=P(A=0|C=-)=0.75. Variations from these
defaults are described for each experiment below.

The learning task was to predict the class label for
each movie. Experiments were performed for each of the
three RBC estimators. We measured average accuracy of
each RBC model across 100 pairs of training/test sets.

é%
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Figure 4: Sample synthetic data subgraphs.
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Bias and variance were measured for ead approach
using the decompositions defined for zero-one loss by
Domingos [200Q. Bias and variance estimates are cdcu-
lated for ead test example using 100 dfferent training
sets and averaged over the entire test set. This was re-
peaed for 100 test sets to caculate average test set bias
and variance. The results of the synthetic experiments are
presented in figure 5.

4.2 Results

Figure 5a shows an experiment in which the total humber
of adors in eath data set was varied from 100 to
1000 Default settings were used for all other parameters.
In this experiment AVGVAL and INDEPVAL are indistin-
guishable. The acaracy of the AVGVAL and INDEPVAL
estimators increases with graph degree through 1000 ac-
tors while the acwracy of the AVGPROB estimator levels
off around 500 adors. AVGVAL and INDEPVAL show
lower bias as degree increases, whereas the bias of the
AVGPROB estimator remains relatively constant. For all
three etimators, degree reduces variance. The three e-
timators have comparable variance so the increese in ac-
curagy can be atributed to lowering bias.

Figure 5b shows an experiment in which the oorrela-
tion among linked actor attribute values is varied. Default
settings were used for all other parameters. Again,
AVGVAL and INDEPVAL are indistingushable. The acw-
racy of the AVGVAL and INDEPVAL estimators deaeases
as correlation incresses while the acwracy of the
AVGPROB estimator remains approximately constant. The
variance of all three estimators is very low and seems to
depend very littl e on attribute correlation, so again the

@) () ()
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Attribute Correlation
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Figure 5: Results of synthetic data experiments.

decease in acaracy for AVGVAL and INDEPVAL can be
attributed to estimator bias which increases with attribute
correlation.

Figure 5¢ shows an experiment in which P(A=1|C=+)
is varied from {0,1} while holding P(A=1|C=-) constant
at 0. Default settings were used for all other parameters.
This is the first experiment to show a difference in per-
formance between AVGVAL and INDEPVAL illustrating
performance in situations where rare atribute values de-
termine the dass INDEPVAL and AVGPROB both show
lower variance than AVGVAL but AVGPROB has much
lower acauracy. Since INDEPVAL shows lower bias than
either of the other estimators we can attribute its higher
acauracy to this reduction in bias.

The @ove eperiments were repeded for overall
P(A=1|C=+) values other than 0.75. The relative per-
formance of estimators remained substantially the same
acossall correlation levels.

5 Discussion

Structural charaderistics of relational data dfed per-
formance of multiset estimators in a number of ways.
Large multisets cdculated from objeds of high degree
can be useful in reducing variance. However, our ex-
periments only examine the dfeds of high degreeobjeds
within a single subgraph. Linkage acoss sibgraphs may
produce dependencies that result in higher variance.

Correlation among attribute values sems to have less
effed on the bias and variance of estimators. Yet,
AVGVAL and INDEPVAL acarades are alversely ef-
feded by higher correlations. We expeded AVGPROB to
be robust to attribute correlation due to its arithmetic av-
eraging. However, it is surprising that it doesn’t outper-
form the other approaches. This may be aresult of de-
creased bias in AVGVAL and INDEPVAL due to high de-
gree Future work will examine posdble interadion ef-
feds of linkage and correlation.

Overall, INDEPVAL estimators have lowest bias and
variance over a wide range of synthetic data sets.
AVGVAL has low variance over a number of data sets, but
it was easy to identify situations in which AvGVAL
would be abiased estimator. Both estimators have lower
variance & degree increases. We can infer that
INDEPVAL’s auperior performance on the red-world clas-
sification tasks is a result of lower overall bias.
AVGPROB appeas to be biased over a number of rela-
tional data configurations. However, it achieves acaira-
cies comparable to INDEPVAL on the IMDB experiments.
This reveds that our synthetic data experiments have not
clealy identified the drcumstances in which AVGPROB is
a good approach to estimation.

6 Related Work

The Inductive Logic Programming community have stud-
ied the issues of modeling relational data for many yeas.
1BC is afirst-order Bayesian clasdfier for relational data
which applies dynamic propaositionalization [Flach and



Lachiche 1999. Examples consist of objeds and their
relational neighborhood 1BC generates a set of first-
order conditions which evaluate the atribute values of
various items in the examples. The initial work on 1BC
discusses a number of approaches to decomposing struc-
tured examples into sets of items and attribute values.
Approaches to modeling lists and sets of attribute values
are presented but they are not used in the models.

More recent work has examined 1BC2 models which
use mmplex list- and set-valued estimators [Lachiche
and Flach 2007. Complex estimators are used to de-
crease overall bias of the models in light of the high di-
mensionality of set-valued attributes. However, the per-
formance of 1BC2 models with set-valued estimators is
not impresdve — the results are generally indistingush-
able from those of 1BC.

Flach and Ladhiche do not explore the bias and vari-
ance tradeoffs of the two approaches. The experiments
reported above show that estimators with reduced bias
have higher acarrades. However, these estimators tend
to have low variance a well. Future work needs to ex-
plore bias and variance tradeoffs more fully with both
simple and complex multi set estimators.

7 Conclusions

We have identified a simple gproach to estimation for
relational data. Adhering to the SBC's sirit of simplic-
ity, an RBC model assuming conditional independence of
both the atributes and the multiset attribute values
(INDEPVAL) is succesdul in a variety of red-world and
synthetic dassfication tasks.

INDEPVAL estimation performs at least as well as
AVGVAL estimation in all tasks, and significantly better
in some. AVGVAL estimation is esentially the same &
dynamicdly flattening relational data and applying a
propcsitional learner. An RBC using INDEPVAL estima-
tion should now be mnsidered as superior to flattening
relational data.

On two red-world clasdfication tasks, RBC models
perform significantly better than SBC models without the
relational information. On a third task there is no differ-
ence between the gproaches. We don't lose anything by
modeling relational datawith RBC’s, sincethey share the
SBC’srobustnessto irrelevant data.

In addition, the RBC model with INDEPV AL estimation
is easy to implement and efficient to train and apply. It
should be agood taseline against which to evaluate other
relational learning techniques.

Future work will include further investigation of the
effeds of relational data charaderistics on estimator per-
formance. The structure of relational data (linkage and
attribute rrelation) can affed estimator bias and vari-
ance. A RBC model which seleds an appropriate estima-
tor for ead attribute may outperform an RBC model us-
ing INDEPVAL for all attributes. We will also investigate
the performance of more complex estimators (e.g. kernel
density estimators for multi sets).
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