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A Visual Query Language for Relational Knowledge Discovery

H. Blau* N. Immerman D. Jenseh

{bl'au, inmmerman, jensen}@s.unmass. edu
Department of Computer Science, University of Massachsis&imherst, MA 01003-4610

Abstract

QGRAPH is a visual query language for knowledge discovery in retal data. UsingQGRAPH, a
user can query and update relational data in ways that sugpta exploration, data transformation,
and sampling. When combined with modeling algorithms, saglthose developed in inductive logic
programming and relational learning, the language assisdlysis of relational data, such as data drawn
from the Web, chemical structure-activity relationshigsd social networks. Several features distinguish
QGRAPH from other query languages such as SQL and Datalog. It is@Manguage, so its queries are
annotated graphs that reflect potential structures withdatabase QGRAPH treats objects, links, and
attributes as first-class entities, so its queries can dycaiyalter a data schema by adding and deleting
those entities. Finally, the language provides groupirg@unting constructs that facilitate calculation
of attributes that can capture features of local graph girac We describe the language in detail, discuss
key aspects of the underlying data model and implementgdiot discuss several uses@BRAPH for
knowledge discovery.

1 Introduction

We have been investigating how to analyze large sets oforkdtdata. As an example of such data, consider
Figure 1, which shows a fragment from a database about moliesfigure usesbjectsto represent movies
(e.g.,NetworkandThe Thomas Crown Affgir people (Faye Dunaway), organizations (MGM), and things
(Oscars), and it uses binalinks to represent relations between objects (e.g., Actorlne®@arOf). The
labels on the objects indicate their name, and the labelgks indicate their type. Not shown in the figure
are othemattributesof objects, such as the gender of an actor, the year a moviealessed, or the location
of a studio. Similarly, links could have attributes, suchtassalary an actor received for starring in a given
movie. The figure represents only a fragment of much largéabdese of movies, persons, organizations,
and awards.

The data shown in Figure 1 exemplify a general data reprasentwe have been exploring for knowl-
edge discovery. Based on recent usage of the term in knowldigovery and machine learning (e.g.,
De Raedt and Kramer 2000), we refer to this data representas “relational”, in contrast to data where
objects are homogeneous, identically distributed, anikttally independent (often called “propositional
data” or “iid data”). Specifically, our relational data setsnsist of objects, binary links, and attribute-
value pairs that record features of the object or link. Anegbjor link can have zero or more attribute-
value pairs, and all attributes are set-valued. That isfiplelvalues for the same attribute can be stored
on an object. For example, a person can have multiple namesar@investigating how large data sets
in this representation can be analyzed in an integrated latlge discovery system calledRBXIMITY
(http://kdl.cs.umass.edu/systems/proximity/

Relational data are an increasingly common target for rekeéa knowledge discovery. Work in induc-
tive logic programming (e.g., Muggleton 1992) and socialvwek analysis (Wasserman and Faust 1994)

*Authors listed in alphabetical order.
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Figure 1: Graphical data fragment from a movie database
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have explored this topic for years. More recently, work iarteng statistical models of relational data has
yielded several practical techniques (De Raedt and Krai®@0;2Getoor and Jensen 2000). Finally, work
on analyzing data about the Web and other computer netwakptoduced useful algorithms for Web page
classification (Kleinberg 1999; Craven et al. 1998).

Our own work with several large data sets has indicated tkd f@r a query language with special fea-
tures that support relational knowledge discovery. We ltlsgned a new query language @GRAPH—
that has many of these feature§sRAPH queries can identifgubgraphf a larger graph, and allow varia-
tion in the number and types of objects and links that formstitegraph. Queries can identify and name the
particular roles that specific objects and links serve in é&ched subgraph. Finally, queries can transform
matched subgraphs by adding and removing objects, linksatinbutes. Added attributes can be the result
of evaluating mathematical expressions that include theegaof attributes on the objects and links in a
matched subgraph.

The feature set adGRAPH distinguishes it from other query languages such as SQlalBgtand Lorel,
and make it well-suited for several phases of the knowledgmudery process, including ad hoc exploration,
data transformation, sampling, and mining. We have foQ@®RAPH to be both an expressive and intuitive
medium for expressing the queries necessary for thesetapesa

The first section below describes the language and gives mganof usingQGRAPH to query the
database from which Figure 1 was drawn. Next, we examine Wwayanguage is useful for knowledge
discovery. We explain the multiple roles played QERAPH for PROXIMITY, and compare the expres-
siveness of this language to that of other languages suclQasa8d Datalog. Finally, we describe our
implementation to date and our plans for future work.



2 Language description

QGRAPH is a visual language for querying and updating a databaselatianal structures. AQGRAPH
query is a labeled graph in which the vertices correspondbjeats and the edges to links. We use the
termsvertexandedgewhen referring to the quergbjectandlink when referring to the database. The query
specifies the desired structure of vertices and edges. Itaisayplace boolean conditions on the attribute
values of matching objects and links, as well as global caims relating one object or link to another.
Each vertex and edge of@GRAPH query has a unique label. The query must be a connected graph.

A query consists ofnatchvertices and edges and optiongbdatevertices and edges. The former
determine which subgraphs in the graph database conséitatatch for the query. The latter determine
what modifications are made to the matching subgraphs. Asquigh only match vertices and edges serves
to identify and display a collection of subgraphs. To matoh query, a subgraph must have the correct
structure and satisfy all the boolean conditions and caimgr. A query with both match and update vertices
and edges can be used for attribute calculation and fortatalamodification of the database. The query
processor first finds the matching subgraphs using the quergtch elements, then makes changes to those
subgraphs as indicated by the query’s update elements.

2.1 Conditions

The query shown in Figure 2 finds all subgraphs wheréanor | n link exists between &er son and a
Movi e. The type restrictions are expresseddonditionson the two vertices and one edge of the query.
In this example only one attribute is tested in each conditin general a condition can be any boolean
combination of restrictions on attribute values.

A, B, and X are unique labels assigned to each vertex and edge in thg. g use letters at the
beginning of the alphabet for vertices, and those from ttek afrthe alphabet for edges. Labeling query
elements is useful for talking about the query and for wgtoonstraints (see Section 2.5). The labels have
no intrinsic meaning and do not indicate anything about e tof object or link that would match the
labeled element. Where desired, type restrictions areresdlovith conditions on vertices and edges.

For the sample database of Figure 1, this query produces éem{Figure 3). Unlike the SELECT
statement in SQL, @aGRAPH query does not specify which attributes of matching objacis links should
be included in the result. Evaluating@@GRAPH query returns a collection of all the matching subgraphs
from the database. The user can examine any subgraph ingiirrg collection, and any object or link
in that subgraph, with the user interface. All the object &nkl attributes, not just those mentioned in the
guery conditions, are available for inspection.

2.2 Numeric annotations

To group the actors together for each movie, we addraeric annotatiorio thePer son vertex (Figure 4).
Executing this query against the database produces 4 nsafEfgure 5), one for each movie, compared
with 8 matches for the query without the numeric annotatibigire 3). A numeric annotation can be
specified on a vertex or an edge oO&RAPH query. (We will see in Section 2.6 that a subquery can also
have a numeric annotation.) A numeric annotation takes btte@e forms. Anunbounded rangé&..| on a
vertex (or edge) means at ledashstances of the annotated object (or link) must be presesmty matching
database fragment. Bounded rangé:..j| means at leagtand no more thag instances are required for a
match. Anexactannotatiorji] means exactly instances are requiredcan be any integer 0; j can be any
integer> ¢. If the lower end of the possible range is 0, the annotategttsire is optional in any matching
database fragment. (The annotatjari] is not allowed because it would be ambiguous betwiéep| and
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Figure 2: Find allPer son, Act or | n, Movi e subgraphs
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Figure 3: Matches for query in Figure 2
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Figure 4: For each movie, find all its actors
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Figure 5: Matches for query in Figure 4



ObjType = Person L ObjType = Movie LI ObjType = Award LI

Gender = Female Genre = Mystery AwardType = Oscar
X Y
A B
LinkType = Actorin LinkType = Awarded
[0..2] [0]

Figure 6: Mysteries with fewer than 3 female actors and nce@awards

LinkType = Nominated

X ObjType = Award LI

. _ . AwardType = Oscar LI
ObjType = Movie ° ° Category = BestPicture L
Year = 1997

LinkType = Awarded
[0]

Figure 7: Movies nominated for Best Picture in 1997 that ditiwin

[1..7].) The annotation0] on a vertex (or edge) indicates negation: to match the gaatgtabase fragment
mustnot contain the corresponding object (or link).

A numeric annotation serves two purposes in a query. It ggdagether into one match repeated iso-
morphic substructures that would otherwise create meltiphtches for the query. It places limits on how
many such structures can occur in matching portions of th&bdge. To group the substructures without
limiting their number, we use the annotatigh.] (as in Figure 4). There is no mechanismg@RAPH to
limit the number of matching substructures without grogpihem together.

The query of Figure 6 selects mystery movies that nevervedein Oscar and have fewer than three
female actors. A movie that has won no awards at all, or hasamards that are not Oscars, could match
this query. The movi&leuth(1972) is a matchSleuthhad only one female actor (Eve Channing) and won
no Oscars, although it garnered several nominati@suthdid win an Edgar Allan Poe Award and a New
York Film Critics Circle Award. If we wanted only movies thhaive won no awards at all, we would drop
the conjunctawar dType = Gscar from the condition on nod€, leaving justObj Type = Awar d.

A negated element (annotatidf]) does not show up in the results of a query, because a subgraph
matches the query only if it has no object (or link) matchihg hegated vertex (or edge). For the query of
Figure 6, ncAwar d objects orAwar ded links would appear in the resultBer son objects andict or I n
links would appear only in matches for movies that had eyamtle or two female actors, such 8keuth
They would not appear in matches for movies that had no featitas.

The query of Figure 7 selects movies that were nominatechfoBiest Picture Oscar in 1997 but did not
win. This query illustrates a numeric annotation on a linkeTnoviesAs Good as It GetsThe Full Monty
Good Will Hunting andL.A. Confidentiaimatch this query.

To be well-formed, a query must remain a connected graph velngnoptional or negated structures



ObjType = Award LI ObjType = Award LI
AwardType = Oscar LI _ . _ . AwardType = Oscar LI
Category = BestPicture  ObjType = Movie ObjType = Movie  Category = BestPicture

. LinkType = . LinkType = . LinkType = .

Awarded RemakeOf Awarded

Figure 8:{Remake, origingl pairs where one won Best Picture and the other did not

(annotationd0], [0..], or [0..n]) are removed. To avoid ambiguities of interpretation, oo of any two
adjacent vertices can be annotated. An edge incident torastated vertex can itself be annotated. If the
edge incident to an annotated vertex has no explicit arinatat bears an implicit annotation ¢f..]. The
annotation on the vertex takes precedence over the arorotatplicit or explicit) on the edge. We first find
objects that match the annotated vertex, then for each ingtobject we find links that match the annotated
edge.

2.3 Projecting over subgraph structure

For many queries, the user does not need to see the entirdingagubgraph. For the query of Figure 7,
there is no need to include tiavar d object and théNomi nat ed link in every subgraph of the resulting
collection. The focus of interest is the movie. To see dvidyi e objects in the results, we highlight vertex
A in the query (leaving the other vertex and the edges unigigtdd). This highlighting is analogous to
the projection operator in relational algebra. QGRAPH, we project over structures by highlighting the
elements that interest us. Highlighting does not changethevguery is evaluated against the database. It
changes how the matching subgraphs are displayed. Onlg thigjects and links that match highlighted
vertices and edges are displayed.

2.4 Undirected edges

The data model underlyingGrRAPH is a directed graph; it has no undirected links. Neverte@&RAPH
allows undirected edges for queries in which we do not knawhoose to ignore, the directionality of the
relationship. For example, in the movie databaseRbeakef link goes from a new remake to the older
original. Suppose we want to finffemake, origingl pairs such that one of the two movies received an
Oscar for Best Picture while the other did not. Either theakenor the original received the award, but not
both. This query can be succinctly expressed with an ungisdRenakef edge between the twidbvi e
vertices (Figure 8). The silent clas®en-Hur(1925) and the 1959 remake starring Charlton Heston match
this query. The 1959 film won the Oscar for Best Picture; thegioal predated the Oscar awards.

2.5 Constraints

The query of Figure 9 selects pairs of people such that eastatted in one or more movies directed by
the other. This query matches the database fragment sholigune 10. Burt Reynolds directethe End
(21978) in which David Steinberg acted, and Steinberg diBaternity(1981) in which Reynolds acted.



ObjType = Movie

W
ObjType = Person A -
LinkType = Actorin

LinkType = DirectorOf

Figure 10: Database fragment for Burt Reynolds and DavithBéeg

This query also matches any director who has acted in his ooxigs. Multiple vertices of a query can
match a single database object provided the object satibiesonditions on all the vertices. Likewise two
or more edges having the same start- and endpoints can mgitegi@link in the database. In the case of an
actor-director, the vertices A and B match the sd#aeson, C and D the samkbvi e, W and X the same
Act or I n link, Y and Z the sam&®i r ect or O link. For example, this query would match John Sayles
and all the films he both directed and appearedReturn of the Secaucus(21980),Lianna (1983), The
Brother from Another Plangt1984),Matewan(1987),Eight Men Out(1988),City of Hope(1991),Passion
Fish (1992).

To eliminate the actor-director matches, we add two inatyuabnstraintsto the query:A # B and
C =# D. (Inequality constraints on the vertices force the edgdsetdistinct as well, since one edge cannot
have two different endpoints.) Inequality constraints meeessary whenever we want to ensure that two
vertices (or edges) map to distinct database objects (ks)liunless the conditions on the two query ele-
ments are incompatible anyway. In addition to inequalitystmaints, a constraint can relate attribute values
of one object or link to those of another in the matching sapbr For example, suppose thet or | n link
has aSal ar y attribute recording the amount the actor earned for thataggmce. With constraints, we can
compare the salaries of two different actors, or the saafehe same actor for two different movies.



4 )

ObjType = Person ObjType = Movie ObjType = Award
X Y
A B
LinkType = DirectorOf LinkType = Awarded
[3..]
[1..]

Figure 11: Directors of movies that have won three or morerdsvaach

Both conditions and constraints restrict the matches toeaygConditions on a vertex (or edge) involve
only the attributes of the corresponding object (or linkhnGtraints relate one vertex (or edge) of the query
to another vertex (or edge), by asserting that the two atendior by comparing their attribute values. No
inequality or other constraint is allowed between two weri that both have numeric annotations, for the
same reason that two vertices joined by an edge cannot bahrimated.

2.6 Subqueries

A subquery is a connected subgraph of vertices and edgesahdte treated as a logical unit. It has one or
more edges that leave the subquery box and attach the sykiquesmme vertex or vertices of the main query
(or another subquery). A subquery enables the user to atacimeric annotation to a connected group of
vertices and edges, instead of just a single vertex or edge.

Figure 11 shows a query that finds people who have directed stercessful movies, where a movie
is considered “very successful” if it has won three or morea@s. The numeric annotatidd..] on the
subquery box will group together all the successful mowesfgiven director into one match for the query.
Without the subquery box, one match would be returned foln saccessful movie of each director.

The director Steven Spielberg matches this query. His vecgessful movies includRaiders of the
Lost Ark (1981), 4 Oscarsk.T. the Extra-Terrestria(1982), 4 Oscarsjurassic Park(1993), 3 Oscars;
Schindler’s List(1993), 7 Oscars; anflaving Private Ryafi1998), 5 Oscars. The entire subgraph shown in
Figure 12 constitutes one match for the query in Figure 11.

2.7 Data transformation

In addition to its many convenient features for data eximactQGRAPH is a flexible data transformation
language for graph databases. We can add new objects, &inklsattributes, or delete existing ones. We
can calculate new attribute values by applying simple amétic operations or aggregation functions (sum,
averageetc) to the values of known attributes.

Conceptually,QGRAPH query processing comprises two phases: match and updatematch phase
determines which subgraphs of the database are selectdt lyuery’s match vertices and edges (with
their associated conditions, constraints, and numeriotations). The update phase performs all indicated
updates in parallel to the selected subgraphs. Within ayglu@ving more than one update element, the
result of applying one update cannot create a new match fdhanupdate from the same query.
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Figure 12: Match for query in Figure 11

2.8 Conditions and updates on set-valued attributes

In the QGRAPH data model, all attributes are set-valued. In many casesédimantics of the domain repre-
sented by the database constrain the values of some afitabe singleton sets. In the movie database, the
hj Type attribute is a singleton set: no object is both a person andvaanor an award and a production
studio. But in other domains, a single object might have reéwbfferentCbj Types.

The notationat t ri but e = val ue is shorthand foval ue € val ues(attri bute). Likewise,
attri bute # val ue is shorthand forval ue ¢ val ues(attri bute). Note that any object or
link for which at t ri but e is undefined (that isyal ues(attri bute) = () satisfies the condition
attri but e # val ue. If these matches are undesirable, we can eliminate themanxdbmpound condi-
tion that first tests if the attribute is defingdat t ri but e 2 NULL A attri but e #val ue).

Because attributes are set-value@GRAPH provides for three types of attribute updates:

e replace the existing values of the attribute with the new@alvritten
attri bute : = newval ue
which means
val ues(attribute) « {newal ue}

10
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ObjType = Person ObjType = Movie ObjType = Award
X Y
A B
LinkType = DirectorOf LinkType = Awarded
MeasureSuccess := i [3..]
i==1.]

Figure 13: Add measure of success as attribute of director

¢ add the new value to the existing ones, written
attri bute += newval ue
which means
val ues(attribute) « values(attribute) U{newal ue}

e remove an existing value from the set, written
attri bute -= ol dval ue
which means
val ues(attribute) « values(attribute) — {ol dval ue}

We can add, remove, or replace multiple values at once. Fonple,

attri bute : = newal uel, newval ue2, newal ue3

means

val ues(attri bute) «+ {newal uel, newal ue2, newal ue3}.
To remove all values for an attribute, set it to null:

attribute := NULL

which means

val ues(attribute) « 0.

2.9 Counter variablesin attribute updates

Figure 13 shows a variation on the query from Figure 11 in Whie store the number of very successful
movies as a new attribute of the director. The numeric ariootd := 1..] on the subquery box illustrates
the use of @ounter variablehat is set to the number of matches for the subquery. Anyl of #he numeric
annotations in a query may be augmented with counter vasgalb long as the variable names are unique
within the query.

The variable: counts the number of movies by this director that have reckthree or more awards.
This value is copied into a new attribukdeasur eSuccess on thePer son object. The italic font and
assignment operator indicate an attribute update.

11



ObjType = Person ObjType = Movie ObjType = Studio

X Y
A C
< LinkType = Actorin LinkType = StudioOf

LinkType := EmployeeOf
TotalSalary := SUM (X.Salary)

Figure 14: Add link from actor to studio with total salary

2.10 Addingalink

The query of Figure 14 creates Bnpl oyeeO link between an actor and a studio if the actor has appeared
in movies made by that studio. The query calculates the sataly the actor earned from all his appearances
in the studio’s movies and records the figure as as an atribiuthe new link.

This example illustrates the use of an aggregation fundtiaralculate the actor’s total salary. Aggrega-
tion functions such as SUM, AVG, MIN, and MAX may be used R@RAPH constraint or attribute update.
The expressiolsUM X. Sal ar y) calculates the sum of tt&al ar y attribute for all theAct or | n links X
connecting the actor to a movie made by the studio. The ngraanotation on the movie vertex is essential
for the calculation ofTot al Sal ary. The annotation groups together into one match all the nsdiae
a given{actor, studi¢ pair. Without the numeric annotation, a separate link frastoato studio would
be created for eacfactor, movie, studip triple, and the value of th&ot al Sal ar y attribute on the link
would be the salary for that particular movie.

A new Enpl oyee link is created for eacHactor, studi¢ pair that matches the query. The salary
is summed over just the movies involving thictor, studid pair. If the actor has worked for several
different studios, the query createstampl oyee O link to each studio with a corresponding value for the
Tot al Sal ary attribute.

If we wanted to create the new link only in cases where ther &ictd earned one million dollars or more
working for the studio, we would add a constraint to the qu&yM X. Sal ary) > 10°.

3 Query Languages and K nowledge Discovery

Querying and updating are key operations for several staigasowledge discovery. Querying is necessary
for effective data exploration, data sampling, and datamginUpdating is central to data transformation, in
addition to being necessary for operations such as samatidglata mining.

Despite these uses, query languages for knowledge dischege not been widely investigated. One
reason is that many knowledge discovery methods addregegitimnal data, and querying and updating
propositional data is relatively simple. Nearly all querigan be expressed in simple SQL, and many data
transformation are functions applied to single attribuiesg., log ) or simple mathematical expressions
combining the values of several attributes from a singléaimse (e.g.patient-height/patient-weight).

12



In contrast, our work with relational data has highlighted importance of querying and updating complex
graphical structures such as those discussed in the peeséamntion.
Specifically, we have develop&dsRAPH to assist with:

e Data exploration — We frequently need to ask questions abeugxistence and frequency of specific
structures present in the data. For example:

Q: Does the database contain movies linked to zero actors?

A: Yes, but most cases appear to be errors.

Q: Do actors ever have multiple roles in the same movie?

A: Yes, Tony Randall had seven rolesTihe Seven Faces of Dr. Lao

Such ad hoc exploration of large data sets virtually marsdatguery language, and our needs in this
area were a strong motivation in developiQGRAPH.

¢ Attribute creation — We often need to calculate attributest tapture properties of local graph struc-
ture. Such attributes can be calculated based on the eleroatsubgraph, and then stored as an
attribute of an object or link. For example: How many awarithving movies has each actor starred
in? How many studios has each actor worked for? What is theyiear that each actor starred in
any movie? In contrast to standard attribute calculatiangpfopositional data, calculating attributes
in relational data requires querying both the structure attiibutes of the data. Such attributes are
important to many relational learning and inference meshdakcluding some ILP techniques (Mug-
gleton 1992), probabilistic relational models (Getoorle2@01), and iterative classification (Neville
and Jensen 2000).

¢ Structural transformations — We have often found it coneahto make fundamental alterations in
the structure of databases by adding and deleting objedttirdes. For example, some calculations
about the relationships among movies can be made subdianiiare efficient by adding links that
directly connect movies that share a common actor or dire&imilarly, objects and links might be
added to represent “families” of movies (e.g., the multiptar Wars or James Bond movies) that share
a common studio, producer, and set of characters. Suchwtalitransformations allow fundamental
aspects of a particular data representation to be alteredndigally in ways that assist analysis, and
we have found such alterations to be important for prackoalwledge discovery.

e Sampling — Our recent work on sampling relational data (@erend Neville 2001) shows the im-
portance of sampling entire subgraphs rather than indalidbjects or links. For example, one type
of subgraph in the movie data might include movies and alielthactors, directors, and producers.
Sampling individual objects can produce biased paramstanates in statistical models, and lead to
incorrect estimates of accuracy. Sampling entire subgraah overcome such biases, but construct-
ing such subgraphs requires an appropriate query language.

e Data mining — Our work on data mining in relational data (Nlevand Jensen 2000) uses Bayesian
classifiers, but queries and updates can also be thoughtaokaswledge representation. Methods
have been developed to learn Datalog queries that acquidsedsify relational data, and we con-
jecture that methods could also be developed to legBRAPH queries. Though we have not yet
developed such methods, we plan to investigate them in thesfu
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4 Related Work

Researchers and practitioners of knowledge discovenadyrdnave access to many query languages, in-
cluding SQL, Datalog, Lorel, OQL, and GOOD. Our own work haad® extensive use of SQL, and other
researchers in knowledge discovery and machine learniig mse of Datalog. Lorel (Abiteboul, Quass,
McHugh, Widom, and Wiener 1997), OQL (Alashqur, Su, and L&89), and GOOD (Gyssens, Paredaens,
Van den Bussche, and Van Gucht 1994) are three of the bettarklanguages for querying semi-structured
data.QGRAPH differs from these other query languages because of itgagsals and the degree to which
the language achieves those goals. Specifically, we debig@eAPH to be visual, intuitive, and useful for
knowledge discovery.

QGRAPH is a trulyvisuallanguage. In contrast to SQL and Datalog, the primary elésn&fiQGRAPH
queries and updates are expressed as graphs with textu@btians. While graphic user interfaces and
visualizers have been developed for SQL and Datalog, tluede &re only adjuncts to the primary textual
representationQGRAPH queries have a structure that closely approximates the detking it easier for
users to imagine the structure of potentially matching sajblgs.

Many of our design decisions were intended to preserve sijataarity in ways that make the language
moreintuitive. Specifically, we have avoided language features that lewera reasonable and conflicting
interpretations, rather than make arbitrary choices alamguage semantics. For example, an annotation of
the form[..3] could be interpreted either &.3] or [1..3]. We designed)GRAPH to require users to specify
a lower bound, rather than assigning an arbitrary meaningnvéhlower bound was not provided.

Similarly, we have made several design decisions becauseeashll conceptual clarity and ease of
interpretation. For example, queries containing updatespeocessed by first finding all matches to the
match portion of the query and then executing all parts ofuh@ate portion in parallel. This requires that
some types of updates (e.g., those with interdependenilaténs) be executed as multiple queries, but it
greatly simplifies the language semantics.

The decision to represent attributes textually illussatdradeoff between our goals of a visual language
and an intuitive one. Some visual query languages, such a305@epresent attributes as nodes in the
query graph. For queries involving even a small number oibaties, the visual elements of the query that
represent attributes dominate, and obscure the strualaalents of objects and links. In contrast, it is easy
to distinguish between structural elements and attributessRAPH queries.

A third design goal was to makeGRAPH usefulfor knowledge discovery. We wanted a language
for easily expressing common queries needed for our work WROXIMITY. These include queries for
ad hoc exploration, data sampling, and attribute cala@iatEssentially all of these queries involve small
subgraphs surrounding core objects (e.g., all peopleelat a given studio through movies). Because of
this goal, we focused on queries that capture the charsitsriof local graph structure, rather than global
characteristics of graphs (e.g., diameter, mean shoratisf ptc.). We decided against language features that
would allow queries to express transitive closure or caltutlistances between arbitrary nodes. Given our
current experience, we feel that these features would bglesnto implement and would be rarely used.

For similar reasons, we designed the language to query atateigraphs containing links with multiple
attributes. Many existing languages either assume thet iontain no data or that they have a fixed attribute
structure (e.g., a single type attribute). For examplegl@ages for querying XML data often have these
restrictions. Our data model allows links to have an arbitraimber of set-valued attributes, aQGRrRAPH
provides the means to query and update such attributes.
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5 Implementation and Future Work

We are currently implementingGRAPH within PROXIMITY, our system for relational knowledge discov-
ery. Our current implementation ofR®XIMITY stores all data in relational database tables. Separdéstab
are used for objects, links, and individual attributes. I€xtlons of subgraphs are stored in an additional
table. When RoXIMITY processes @GRAPH query, it is compiled to a set of SQL queries that insert rows
into the subgraph table based on the query and the contetite object, link, and attribute tables.

Our current implementation processes only simple quehigsdontain a single core vertex connected to
one or more edges and vertices. Each edge and non-core earidhe annotated or unannotated. Vertices
and edges can be constrained via boolean expressions inutadr Several advanced language features
remain to be implemented, including subqueries and glatradtraints. Despite the limitations of our current
implementation, many useful queries can be expressednatiis subset c6GRAPH. For example, many
of the queries we make for sampling and attribute calculatin be made with this subset of the language.
Our work on the implementation continues, and we expect hopdete all features of the current version of
the language in the next three months.

In addition, we are currently characterizing the complexit the QGRAPH queries. This work aims to
improve the efficiency of query processing and provide fae#llio users as they construct and edit queries.
We hope to develop a small number of statistics about dadahidmt can be easily maintained and used
to improve the efficiency of query processing. Finally, weé@do examine the effect of particular graph
topologies on the efficiency @fGRAPH queries. Recently, attention has focused on so-called|l'svodd”
topologies (Watts 1999), which exhibit both small diameted a high degree of clustering. We conjecture
that such topologies will create substantially differeenthnds on query processing than more uniform
topologies.
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