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ABSTRACT

LANGUAGE MODELS FOR HIERARCHICAL SUMMARIZATION
(PROPOSAL FOR DISSERTATION)

MAY 2001

DAWN LAWRIE

A.B., DARTMOUTH COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Hierarchies have long been used for organization, summarization, and access to in-

formation. In this proposal we define summarization in terms of a probabilistic language

model and use the definition to explore new techniques for automatically generating topic

hierarchies. One technique applies a graph-theoretic algorithm, which is an approxima-

tion of the Dominating Set Problem. Another technique uses an entropy-based approach

to choose topic terms. Both techniques efficiently select terms according to a language

model. We compare the new techniques to previous methods proposed for constructing

topic hierarchies including subsumption and lexical hierarchies, as well as words found

using TF.IDF. Our preliminary results show that the new techniques perform as well as or

better than these other techniques. We plan to evaluate the two techniques further through

user studies as well as computer simulations. We will also develop a demo for better inter-

action with users.
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CHAPTER 1

INTRODUCTION

This proposal presents methods of automatically generating a summary for a large

group of documents. It is particularly difficult to present a summary for hundreds of doc-

uments, especially when there is no assumption that the documents cover the same topics.

Recently there has been a large body of research on developing natural language sum-

maries, which try to string together sentences or sentence fragments from the text[3, 4] or

generate sentences to form a summary[2, 20]. When dealing with a few hundred docu-

ments, such a solution is impractical because of the myriad of topics one expects to find.

Instead, we focus on term based summaries which can be much more compact than a nat-

ural language summary.

Unlike traditional abstract-like summaries, which at some level can act as a substitute

for the original text, our term-based summaries are intended to act as a guide to which

documents are useful and to give the user a general sense of the topics covered in the

documents. Such a summary could be created for a user’s e-mails. From the summary,

one would learn the topics of the e-mails expressed through keywords and most likely, the

people who write about particular topics. If the user were looking for e-mails on a specific

topic, the summary could help identify which e-mails would most likely contain the specific

topic.

There are three main challenges related to the automatic creation of term-based sum-

maries. The first is the selection of terms. The second is the presentation of these terms

in a coherent fashion to the user, and the third is the evaluation of the summaries in a

meaningful way.
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In order to automatically generate a term-based summary, we must first determine how

to identify which terms should be part of the summary. We propose using a probabilistic

model of the language used in the text of the documents, which is described in Lawrie

et al.[14]. The model incorporates probabilities of individual terms in the text and condi-

tional probabilities of pairs of terms. Through the language model we have an abstract view

of the text which makes it easier to find the terms that convey the most information about

the text as whole. We present two different methods that use the language model to deter-

mine which terms are best at conveying the topics in the documents. The first method uses

the model to construct a weighted graph which then determines the terms that dominate the

rest of the vocabulary by using a greedy approximation to the dominating set problem[14].

The second method looks at the problem from a compression point of view to find the topic

terms. It selects terms that minimize the average code length required to express the entire

vocabulary in the documents through an entropy equation.

Once the topic terms are selected, they need to be conveyed to the user. There are many

examples of listing the terms by frequency or another metric[5, 9]. The main problem with

a list is that it provides no indication of how the terms in the list are related. Instead, we

propose to use a hierarchy because of the information the structure provides about how

terms relate to one another.

Finally, the issue of evaluation must be addressed. Evaluating the hierarchies is a par-

ticularly difficult problem because we cannot directly compare our hierarchies to what a

human might generate. The manually produced hierarchies that exist are very general such

as the Yahoo! hierarchies[27] or MeSH[16]. Instead, we have focused on evaluations that

can be simulated by a computer, which provides a good metric for comparing hierarchies.

This method of evaluation has shown the usefulness of clustering in heuristic approaches

to generating a hierarchy [13], and that the language model approaches are as good as or

better than the heuristic approaches at identifying terms that break documents into rele-

vant and non-relevant groups [14]. However, this type of evaluation does not answer the
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question of whether the information contained in the hierarchy conveys the topics of the

documents and whether it is a useful tool for information-related tasks such as browsing

and finding relevant documents.

This research makes three general contributions:

� We will develop a definition of an optimal hierarchy for summarization and informa-

tion related tasks. With such a definition, we will have concrete attributes that can be

measured to determine which hierarchies are best.

� We will provide the first formal framework for choosing topic terms for the hierar-

chies. The advantage of having a formal framework is the existence of well-defined

ways to modify the framework to make improvements.

� We will develop evaluation measures for hierarchical summarization using large doc-

ument collections. In order to develop human-usable hierarchical summarizes, the

current methods of evaluation must be expanded to encompass a broader range of

attributes. These measures will be able to verify whether the hierarchies constructed

using our formal framework are in fact optimal hierarchies.

In the remainder of the proposal, we discuss work related to summarization, topical

hierarchies, visualization, and evaluation in Chapter 2. In Chapter 3, we summarize the

research that has already been completed, and in Chapter 4 we present our plan of future

work. In Chapter 5, we conclude with the research contributions of the thesis proposed.
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CHAPTER 2

RELATED WORK

2.1 Summarization

Luhn began working on the problem of automatic summarization in the 50’s[17]. Re-

search on the topic has intensified in the past decade with the advent of the World Wide

Web. Automatic methods of summarization have used three main approaches: linguistic

(e.g. [19, 21]), statistical (e.g. [2, 3]), and combinations of the first two approaches (e.g.

[6]).

Most of this work focuses on single document summaries created by extracting sen-

tences or sentence fragments. Kupiec et al.[11] is one example of this work. They use a

training set of documents with hand-selected document extracts to develop a classification

function that estimates the probability a given sentence is included in a summary. Sen-

tences are ranked according to this probability, and a user-specified number of top-ranked

sentences are selected.

An example of generating summaries is Berger and Mittal[2]. They create a language

model of the document, select terms that should occur in a summary, and then combine it

with a trigram language model to generate readable summaries.

Multidocument summarization has mainly focused on the similarity among a group of

documents [3, 20]. Carbonell et al.[3] finds passage similarity using Maximum Minimal

Relevance for multiple documents on the same topic. They organize the top-ranked sen-

tences in their original order within the documents. McKeown et al.[20] extract features

from the document set. They then determine which themes are similar in order to identify

phrases that should occur in the summary. Finally, a sentence generator is used, which
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orders the phrases by the earliest date they occurred and employs a language generator

with complete grammar rules to combine the phrases. Mani and Bloedorn[18] incorporate

some of the differences between a pair of documents in their summaries. To do this they

represent each document as a graph, where terms are nodes and edges correspond to se-

mantic relationships between terms. They use spreading activation to find nodes that are

semantically related to the topic. Activated graphs of two documents are matched in order

to find a graph corresponding to similarities and differences between the pairs. The system

outputs the set of sentences containing the shared terms and the set of sentences covering

the unique terms. The first two examples focus on the similarity among documents, and

they can present concise summaries of at most 25 documents. However, in the third ex-

ample where differences are included, only two documents are used in the summary. In

order to summarize the similarities and differences of many more documents, a term-based

summary is advantageous because it can remain concise while covering the diversity of

topics.

The research cited above all focus on generating some sort of natural language summary

that acts in the same way as an abstract. Term-based summaries also exist. An example

of a single document term-based summary is the list of keywords that appear at the begin-

ning of articles. Kea [26] is an example of such a single document summarizer. It uses

machine learning to identify features that are characteristic of keywords, and the trained

system selects keywords for documents where the author did not give any. An example

of multidocument term summaries is a hierarchy which will be discussed further in the

following section.

2.2 Topical Hierarchies

The work on topical hierarchies can by divided into two main sets based on the way that

documents are grouped together or clustered. One body of research has used traditional

clustering algorithms [25] to induce a hierarchical structure in the documents[5, 28, 9].
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Membership in a particular group is determined by the presence of a number of features,

but no one feature in particular must be present, which is referred to as polythetic clus-

tering. The other body of research makes use of monothetic clustering[1, 23, 13, 14]. In

this case, documents are grouped together because of the presence of a particular feature.

The advantage of monothetic clusters is that such clusters are very easy to describe. The

particular feature required for membership in the cluster is a satisfactory label. In general,

the labels of polythetic clusters are a list of top-ranked features. Invariably, some of the

documents that are part of the cluster have none of the features that are mentioned in the

label and in a sense are surprise elements, since a user would have no knowledge of their

presence.

A thorough review of topic hierarchies that use monothetic clustering is described in

Subsections 2.3 and 2.4 of Lawrie and Croft[13].

Of the polythetic clustering approaches, Scatter/Gather is the most well known[5]. It

clusters documents into five groups and labels the clusters with the top eight terms. A user

is expected to pick one or two clusters which are thought to contain relevant documents.

The selected groups are reclustered and again labeled. The user continues this process of

drilling down until a satisfactory group of documents is gathered. Yang et al.[28] extends

Scatter/Gather to the task of topic detection and tracking. They cluster the entire corpus of

a few thousand documents and use the top five ranked terms to describe the clusters. They

envision that a complete system would allow the user to drill down to the particular level

of granularity that met the user’s need and then use a single document natural language

summarizer to learn about the specific contents of the documents.

Hofmann[9] uses a different clustering algorithm based on an annealed version of the

Expectation-Maximization algorithm to produce a hierarchical probabilistic clustering of

the documents. Like Scatter/Gather and Yang et al., documents are expected to fit into

a single place in the hierarchy, which assumes that documents are about a single topic.

Because of the probabilistic model used in clustering, the model can be used to summarize
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a particular cluster rather than most frequent terms. Hofmann argues that these terms are

more discriminating than the most frequent terms, but this description still suffers from the

same problem of topics that appear at lower levels of the hierarchy but are not even hinted

at in higher levels.

2.3 Visualization

There are several ways in which a hierarchy can be displayed to a user. The 2-dimensional

methods include: a node-link graph diagram (e.g. [10]), embedded folders (e.g. [22, 15]),

popup menus (e.g. [23, 13, 14]), and hyperlinks (e.g. [27]). There are also a few 3-

dimensional methods of displaying hierarchies including Cat-a-cone[8] and the hyperbolic

browser[12].

Each of the 2D methods has strengths and weaknesses. From a user’s point-of-view,

a hyperlink hierarchy is the weakest of the four because a user cannot see the siblings or

ancestors when he reaches a dead-end. It also provides no way to keep track of many dif-

ferent places of interest at the same time [7]. However, the hyperlink visualization provides

an intuitive way to incorporate documents and even short descriptions of the document, by

placing the documents on the page along with the children. Popup menus are opposite of

the hyperlink hierarchy. Where a hyperlink hierarchy shows one level of the hierarchy and

the documents related to the level, a popup menu can easily show four or more levels of

the hierarchy and all the siblings of ancestor nodes on a single screen. Levels are revealed

instantly when the mouse is pointing to the parent, without any clicking. This allows the

hierarchy to be explored very quickly, but occasionally it can be difficult to view a partic-

ular part of the hierarchy because items are so close together. Node-link graph diagrams

and embedded folders fall somewhere between the previous two in their ability to display

portions of the hierarchy on a screen. Node-link diagrams require that the arrows connect-

ing nodes use part of the screen real estate, but such a display has more permanence than

the popup menu. Neither the popup menu nor the node-link diagram offers an intuitive
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way to display documents within the structure, so a separate view is required. Embedded

folders offer a natural way to include the documents, as is done in the display of computer

directory systems. The biggest drawback to using folders is that everything is displayed in

a vertical column, so most of hierarchy will either be above or below the current view.

Some more advanced methods use 3D to display more of a hierarchy on a single screen.

Cat-a- cones makes use of circles set on edge[8]. Labels are attached to the edges, like

children on a Ferris Wheel, so that some categories will be in the foreground while others

are obscured. Large segments of a hierarchy can be displayed, but only the siblings that

are close to the label of interest will be easy to view. The hyperbolic browser focuses the

attention of the user on those sections of the hierarchy that are physically close together[12].

As the levels of the hierarchy get farther away, the labels used to describe the attributes

become smaller until they are unreadable. The user drags different parts of the hierarchy to

the center of the display to view a particular section.

2.4 Evaluation

Evaluating the topic hierarchies is a very challenging task. Most evaluations of sum-

maries have used component-wise methods as discussed in Section 4 of Lawrie et al.[14].

Thus far we have compared the hierarchies based on their ability to locate relevant docu-

ments as presented in Section 5 of Lawrie and Croft[13]. This particular metric scores the

hierarchy based on the total number of documents and menus one must examine in order to

find all relevant documents in the hierarchy with respect to the query. It turns out this metric

is biased towards hierarchies that break the document sets into very small groups, so in the

end the number of documents read greatly outnumbers the number of menus examined even

when there are only small numbers of relevant documents. This means that if leaf nodes

have 10 or fewer documents, the algorithm will be able to choose nodes that add only a few

non-relevant documents to the score. Conversely, if the hierarchy has leaf nodes with 50

or more documents, many more non-relevant documents will contribute to the score. We
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have also examined the similarity among hierarchies by calculating the overlap between

two hierarchies, explained in Section 5 of Lawrie and Croft.
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CHAPTER 3

RESEARCH SUMMARY

One of the main contributions of this work will be the development of two techniques

that use language models to choose topic terms for a hierarchical summary. In Section 3.1,

there is a overview of the Dominating Model. A longer discussion and experiments can

be found in Lawrie et al.[14]. In Section 3.2, we present a entropy-based approach to

selecting topic terms that tries to minimize the average code length required to express the

vocabulary. We also include a preliminary evaluation of the Entropy Model that mirrors the

one in Lawrie et al. This evaluation is included because the results have not been publisher

anywhere else. Section 3.3 consists of an evaluation of two-level hierarchies created using

the Dominating Model (DSP), subsumption, and the lexical approach. We have not yet

completed this analysis for the Entropy Model. It is left for future work. Section 3.4

concludes with a summary of results.

3.1 Dominating Model

The Dominating Model captures two main characteristics observed in the subsumption

and lexical hierarchies. Subsumption and lexical hierarchies both identify terms that have

many dependents. In fact, subsumption defines a vocabulary term, � , to be a dependent

of a topic,
�
, when ��� ��� ���
	����� . Topics are term that have many dependents and are not

themselves dependents. In contrast, topic terms in lexical hierarchies are chosen because

of the frequency of the term in phrases. The phrases are the dependents of the topic terms.
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In order to express this in terms of the conditional probability ��� ��� ��� , a set � is defined to

be the set of all phrases in the document set. Therefore,

��� ��� ����� ���� ����� if
�

is a term in the phrase

� otherwise

The topic terms are those terms that maximize the function: 	�
��� � � ��� ��� . Thus, both

techniques find the terms using the same conditional probability. One way to combine

the two approaches uses the following equation to find a set of terms, � , that maximizes

dependents over the vocabulary, � :

� ����� ������������� �! "$#% � ! #
���'& � ��� � �)( (3.1)

Equation 3.1 completely defines the lexical hierarchy. However, the second qualifica-

tion of the subsumption is not addressed by the equation: the notion of choosing topic terms

that have dependents from different parts of the vocabulary. To ensure this quality, let us

define �+* to be the set of vocabulary terms dependent on
� * and � ! to be the union of all

vocabulary sets. The independence criterion can be expressed in the following manner:

, � *�-.�0/ � *213� !54 *6��7 (3.2)

The Dominating Model combines Equations 3.1 and 3.2 in order to select topic terms

that maximize dependents, while ensuring that the topics represent different parts of the

vocabulary:

� ���8� �9�:���;���<�=�! "�>?#% � ! #
�@�A& � ��� ����B<��C+D � , � *�-3�0/ �=*21E� !54 *6��7 �)( (3.3)

The implementation of this model uses an approximation of the Dominating Set prob-

lem for graphs and is described in Lawrie et al.
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3.2 Entropy Model

Information theory was first developed by Claude Shannon in the 1940s to address

the problem of maximizing the amount of information that one can transmit over a noisy

channel[24]. We extend this point-of-view to summarization. The goal of summarization

can be thought of as explicitly communicating the smallest amount of data that allows the

user to, in some sense, “know” the information contained in the documents. Since people

are good at making associations, by revealing one term in the document set, a user will

believe other terms are present as well. For example, when a user sees the term “tree”, she

thinks of plants that usually grow quite tall with a trunk of some sort, leaves, and roots.

When a user is presented with an unknown set of documents, she has no idea of what

the topics of the documents are. We can model this uncertainty using a language model of

general English, which means that the expectation of terms is the same for any set of doc-

uments. We approximate this model by using the language model of the document set we

are summarizing. We use entropy, which is the average uncertainty of a single vocabulary

term, to quantify the effort required to know the vocabulary. An entropy measure is used

to find the best set of topic terms through a minimization algorithm. We begin with the

traditional definition of entropy:�
��� ��� #
���A& � ������� ��� �& � ��� (3.4)

which is also the average code length required to express a vocabulary term, and can be

thought of as a way of quantifying the user’s effort to ascertain the vocabulary of a doc-

ument set. Equation 3.4 can be interpreted as a weighted average where ����� ���	�
 
� is the

length of the code of that vocabulary term and & � ��� the proportion that the vocabulary term

contributes to the overall average code length. In this model, when a term becomes a topic

term, � * , it is explicitly conveyed to the user, so that no bits are needed to express the par-

ticular term. This will also give the user some idea of what other vocabulary terms are

present, so the code length of those terms should also be decreased. Which terms will a
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user associate with a given topic term? We choose the terms by looking at how often a term,

��� , is associated with the topic term, which is modeled using the conditional probability,

& � �6* � ����� . We assume that if the conditional probability is greater than the probability of ��� ,
the user’s certainty about term ��� will increase. Otherwise it will remain the same. This

yields the following formula for the average code length for a single topic term, � * :
� � � !�� ��� #
���'& � ��� ��� C " ��� � � �& � ��� / � � � � �& �)� * � ��� (  (3.5)

Equation 3.5 is the basis for the minimum average code length:

� ����� �������;� ��� C! �@� " #
 �@� & � ��� ��� C " � � � � �& � ��� / ��� � � �& � � � � ��� / ����� � �& � � � � ��� /    / � � � � �& � �
	 ! 	 � ��� (�( (3.6)

In the implementation of the entropy model for finding topic terms, we use the same

underlying language model of the document set. This language model is described in Sec-

tion 3 of Lawrie et al.[14] and contains all the probabilities and conditional probabilities

required for the calculation of the minimum average code length. The topic set is selected

using a greedy approximation to Equation 3.6 by adding the topic that individually de-

creases the code length the most.

3.2.1 Example

In the following discussion, we compare hierarchies generated from language models

where the conditional probabilities are based on a window size. For each hierarchy created

using a language model, “ � ��� ” or “ � � ��;/���� ” follows the name of the technique. The

� ��� refers to the size of the window used when creating the language model. These

results attempt to establish the optimal language model for generating hierarchies as well

as the best technique. Different depths in the hierarchy can be based on different window

sizes, which is why ��� ����/���� is used for hierarchies with a depth of two.
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Figure 3.1. A Minimum Average Code hierarchy created for TREC query 319: New Fuel
Sources, where � =(5,2,1).
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Min. Avg. Code, � =1 Min. Avg. Code, � =2 Min. Avg. Code, � =20 Min. Avg. Code, � =40
terms # docs terms # docs terms # docs terms # docs

program 186 required 249 required 249 required 249
required 249 technolody 263 amendment 91 amendment 91

fuel 499 fuel 499 fuel 499 fuel 499
technology 263 amendment 91 Secretary 68 Secretary 68
amendment 91 program 186 technology 263 technology 263

States 221 nuclear 286 nuclear 286 nuclear 286
nuclear 286 States 221 research 201 research 201
services 135 services 135 House 69 tax 53
research 201 research 201 tax 53 inserting 35
energy 333 contained 173 program 186 program 186
House 69 Secretary 68 vehicle 126 power 323
cost 182 tax 53 services 135 vehicle 126
tax 53 energy 333 power 323 energy 333

system 214 Act 131 funds 84 services 135
based 221 cost 182 changes 189 changes 189

Table 3.1. Lists the topics terms and number of documents whose terms occur in the top
level of the Minimum Average Code hierarchy using sliding windows of 1, 2, 20, and 40
for TREC query 319.

Figure 3.1 is one example of a hierarchy created using the Minimum Average Code

(MAC) algorithm. MAC selects topic terms for a document set retrieved for TREC query

319 about New Fuel Sources. One of the most notable differences between this hierarchy

and those created with the other techniques shown in Tables 1 and 2 of Lawrie et al. is

that “fuel” is not the first topic term. This means that other terms are more consistently

dependent on “required” and “amendment” than on fuel. In fact “fuel” is never the top

ranked term when MAC is applied. However, the characteristics of the hierarchy in the

figure are very similar to the characteristics of the hierarchy in Figure 2 of Lawrie et al.

The menu under the topic “research” contains different topics as shown in Figure 3.1, but

the sizes of the document clusters are very similar. The same can be said for the third level

of the hierarchy.

Tables 3.1 and 3.2 show the terms chosen by the algorithm for a number of different

language models. One of the most distinctive features of these sets of words is the similarity

among them. There are only nine new terms in the seven lists introduced following MAC
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Min. Avg. Code, � =50 Min. Avg. Code, � =60 Min. Avg. Code, � =80 Min. Avg. Code, � =100
terms # docs terms # docs terms # docs terms # docs

required 249 required 249 required 249 required 249
amendment 91 amendment 91 amendment 91 amendment 91

fuel 499 fuel 499 fuel 499 fuel 499
Secretary 68 Secretary 68 technology 264 technology 264

technology 264 technology 264 Secretary 68 Secretary 68
nuclear 286 nuclear 286 nuclear 286 nuclear 286
research 201 research 201 research 201 energy 333

tax 53 program 186 program 186 program 186
program 186 tax 53 tax 53 tax 53
inserting 35 inserting 35 power 323 power 323

power 323 power 323 system 214 research 201
energy 333 energy 333 energy 333 Chairman 65
system 214 system 214 Act 131 system 214

vechicle 126 vechicle 126 Chairman 65 Act 131
services 135 Chairman 65 House 69 House 69

Table 3.2. Lists the topics terms and number of documents whose terms occur in for the
top level of the Minimum Average Code length using sliding windows of 50, 60, 80, and
100 for TREC query 319.

� =1. In Tables 1 and 2 of Lawrie et al. there are twenty new terms in four lists introduced

following DSP � =1, and there is much more variability in the smaller window sizes.

3.2.2 Initial Results

Figure 3.2. The ANOVA analysis of the hierarchy scores for Minimum Average Code
with neighbors of 1, 20, 40, 60, 80, and 100. The bar to the left of the hierarchy types
indicates where there is no significant differences among the types. In this figure there is
no significant difference among the different terms chosen, although larger window sizes
have slightly better mean scores.

We evaluate the top level of the hierarchies using two different quantitative techniques,

which were also used in Lawrie et al.[14]. The first evaluation scores the hierarchy based on

the number of documents read per relevant document in the document set. This evaluation
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Figure 3.3. The ANOVA analysis for Subsumption, Lexical, TF.IDF, the Dominating Set
with neighbors of 1, 50, and 100, and the Minimum Average Code with neighbors of 1, 50,
and 100. The Dominating Set with � =1 always had the highest mean score independent of
the number of topics; however, only in the case of 5 topics was it significantly better than
the second highest performing technique. All three MAC examples appear in the second
grouping and are not significantly different from Subsumption, TF.IDF, Lexical, and large
window sizes of DSP.

assumes the user is interested in all relevant documents in the document set. The algorithm

is explained in Section 5 of Lawrie and Croft[13], which is simplified here because we are

only looking at the top level of the hierarchy. The second evaluation looks at the similarity

between topic terms chosen, which we refer to as the overlap between two hierarchies.

Using hierarchy scores, we found no significant differences among the hierarchies cre-

ated using the Minimum Average Code as shown in Figure 3.2. The means of hierarchies

with larger window sizes were generally higher, but this can be explained by using Ta-

bles 3.1 and 3.2. The new terms that occur in hierarchies with larger window sizes occur

in fewer documents. Since the size of the cluster plays an important role in the ability to

choose clusters that add few non-relevant documents to the score, this result is not surpris-

ing. When comparing MAC to other techniques, only the Dominating Set where � =1 is

significantly better, as shown in Figure 3.3. There are no significant differences in scores

among subsumption, lexical, TF.IDF, MAC and DSP with large window sizes.

In Section 3.2.1 we noted that the terms selected were very similar across window

sizes. In order to determine if this was true only for the particular query or a general

phenomenon, we looked at the similarity between unary increments of window sizes: how

similar MAC � =2 is to MAC � =1, how similar MAC � =3 is to MAC � =2, and so on up
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Figure 3.4. Illustrates the similarity of the top 15 and top 5 topics between the window size
listed in the figure (e.g. � =2) and the window one smaller (e.g. � =1) for topics chosen by
Minimum Average Code. For each method a box plot represents the similarities across all
queries where the box is the middle 50% of the similarities. The whiskers go down to the
20th percentile and up to the 80th percentile. The circles represent points that fall outside
the 20th to 80th percentile.

Figure 3.5. Illustrates the similarity of the top 15 and top 5 topics between the window size
listed in the figure and the window one smaller for topics chosen by Dominating Set. In the
figure showing 5 topic terms, there is a dot at 75% for DSP � =100. This is because for one
query, DSP � =99 only selected 4 topics, and � =100 shared 3 of them giving a similarity of
75%.
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to how similar MAC � =100 is to MAC � =99. We found that the similarity is very high

as shown in Figure 3.4. The first five topics are almost always the same, except for small

window sizes. When looking at the first fifteen topics, there is a little more variability, but

as the window size increases, the similarity increases as well. In fact there is no window

size for any topic where the similarity is less than 50%. In contrast, the Dominating Set

has much less similarity between neighbors as is illustrated in Figure 3.5. Although the

similarity increases as window size increases, it isn’t as high as the corresponding window

size for MAC. This is especially true when comparing the top 15 topics. In fact about 12%

of the hierarchies have less than 50% of its topics in common with the preceding hierarchy.

Figure 3.6. Illustrates the similarity of the top 15 and top 5 topics between MAC � =50 and
terms chosen by the Dominating Set at small window sizes.

MAC was also compared to Subsumption, Lexical, TF.IDF, and DSP as shown in Fig-

ures 3.6 and 3.7. When comparing the top 5 topics of DSP with small windows to MAC

� =50, on average about half of the terms are shared. When the top 15 topics are compared,

the percent overlap decreases. For the other methods and DSP at larger window sizes, there

is less similarity. In fact, occasionally none of the top five topic terms chosen by MAC

� =50 are the same as the ones chosen by Subsumption, Lexical, and TF.IDF. MAC � =50

has less in common with these other techniques than DSP � =1 as shown in Figure 5 of

Lawrie et al., which means that MAC differs from previous techniques to a greater extent
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Figure 3.7. Illustrates the similarity of the top 15 and top 5 topics between MAC � =50 and
Lexical, Subsumption, TF.IDF and terms chosen by the Dominating Set with large window
sizes.

than DSP. The terms that MAC does have in common are just as likely to be found below

the top five. This is very different from DSP where the average similarity increases when

fewer topics are involved in the comparison.

3.3 Preliminary Evaluation of Hierarchies

We have applied the results of Lawrie et al.[14] to create hierarchies with a depth of

two and used the same types of analysis as described above to evaluate the hierarchies. For

the first level of the hierarchy, we chose window sizes of 5, 10, 15, and 20 since it seemed

that the smaller window sizes performed better in our previous evaluation of DSP. These

window sizes roughly correspond to a partial sentence to two or three sentences. For the

second level of the hierarchy, we varied the window size between 1 and the parent’s size.

Tables 3.3 and 3.4 show the subtopics for the term “research” for 8 different hierarchies.

The smallest window size is (5, 2) where “research” was chosen for its ability to dominate

vocabulary within a window size of 5 and the topic terms in the table for the ability to

dominate vocabulary in a window size of 2. These hierarchies select very similar topic

terms. Only 14 new terms are introduced in the seven lists following the first one and
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DSP, � =(5,2) DSP, � =(5,5) DSP, � =(10,4) DSP, � =(10,8)
terms # docs terms # docs terms # docs terms # docs

technology 46 technology 46 technology 59 technology 59
basically 32 reactor 65 reactor 77 reactor 77
material 20 basically 32 Energy 70 Energy 70
Energy 46 Energy 46 material 41 funding 31
reactor 65 centers 34 systems 33 material 41

program 43 program 43 funding 31 project 53
institute 53 material 20 basically 34 fuel 89
funding 26 project 44 program 43 University 33

high 33 facility 36 fuel 89 Surveys 15
Nuclear 54 conducted 31 University 33 systems 33
centers 34 funding 26 facility 51 facility 51
systems 24 institute 53 high 43 centers 39

fuel 61 systems 24 project 53 methods 19
conducted 31 high 33 methods 19 program 43

project 44 area 27 production 41 institute 56

Table 3.3. Lists the topics terms and number of documents whose terms are subtopics of
“research” for the Dominating Set hierarchies using sliding windows of (5,2), (5,5), (10,4),
and (10,8). The first number in the pair is the window size that chose “research”, and the
second number is the window size that chose the terms listed in the table. Again these
documents were retrieved for TREC query 319.

new terms are found at the bottom of the list, specifically in position 9 or higher. Another

notable similarity is that all lists have ranked “technology” first, seven of the lists have

ranked “reactor” second, and six of the lists have ranked “Energy” third. Not all of the

subtopic lists are this closely related, but in general they do exhibit more similarities than

the top level menus.

Figure 3.8. The ANOVA analysis for Subsumption, Lexical, TF.IDF, and the Dominating
Set with neighbors of (5,4), (10,8), (15,12), and (20,15). The only significant difference
occurs between Subsumption and DSP � =(10,8).
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DSP, � =(5,2) DSP, � =(5,5) DSP, � =(10,4) DSP, � =(10,8)
terms # docs terms # docs terms # docs terms # docs

technology 67 technology 67 technology 71 technology 71
reactor 87 reactor 87 reactor 91 reactor 91
Energy 75 Energy 75 Energy 85 Energy 85

fuel 101 systems 44 fuel 118 fuel 118
funding 34 fuel 101 material 55 material 55
material 51 centers 34 systems 48 program 50
systems 44 facility 54 program 50 facility 59
project 57 material 51 facility 59 systems 48

University 37 project 57 Power 74 funding 35
facility 54 Power 64 stated 49 study 43
Power 64 production 43 project 63 Power 74
high 50 credited 6 University 37 stated 49

operated 57 program 48 process 41 centers 42
National 39 area 40 water 41 basically 39

stated 46 Surveys 17 Nuclear 92 test 54

Table 3.4. Lists the topics terms and number of documents whose terms are subtopics of
“research” for the Dominating Set hierarchies using sliding windows of (15,6), (15,12),
(20,8), and (20,15).

Figure 3.9. The ANOVA analysis for Subsumption, Lexical, and the Dominating Set with
neighbors of (5,2), (10,4), (15,6), and (20, 8). There are no significant differences found
between any pairs of techniques.

The ANOVA results showed almost no significant differences between Subsumption,

Lexical, and Dominating Set hierarchies with varying window sizes. The only significant

difference is between Subsumption and DSP � =(10,8) when the top five topic terms are

compared. The Subsumption and Lexical hierarchies are truncated at the second level. If

this had not been done, Subsumption would have been significantly better than all the other

hierarchies because the Subsumption hierarchies are quite deep and break the documents

into very small clusters. The Lexical hierarchy’s performance would not have changed as

greatly because it has a maximum depth of three. Some of the ANOVA results are displayed
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in Figures 3.8 and 3.9. From these results, the only thing we may conclude is that at a depth

of two, DSP is not significantly worse than the prior two techniques for this task. Deeper

hierarchies will reveal if DSP can perform better than Subsumption at choosing topic terms.

Subsumption is shown to perform significantly better than lexical hierarchies in Lawrie and

Croft.

Figure 3.10. Illustrates the similarity of the top 5 and top 15 topics between DSP � =(5,2)
and Subsumption, DSP � =(5,4), DSP � =(10,8), DSP � =(15,12) and DSP � =(20,15). DSP

� =(5,4) has the greatest similarity because the first menus are exactly the same. The differ-
ence between Subsumtion and DSP � =(5,2) is more pronounced than when comparing the
top levels.

The results of the similarity test magnify the differences observed in the comparisons of

the single level hierarchies. Figure 3.10 and 3.11 show the overlap between DSP � =(5,2)

and Subsumption, Lexical, and seven different DSP hierarchies. Both Lexical and Sub-

sumtion have little similarity to DSP. When looking at similarity between different DSP,

hierarchies that use the same language model for the first level exhibit more similarity. The

comparison of hierarchies with five terms per level to fifteen reveals that the same terms

tend to occur in the top 5 topics.
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Figure 3.11. Illustrates the similarity of the top 5 and top 15 topics between DSP � =(5,2)
and Lexical, DSP � =(5,2), DSP � =(10,4), DSP � =(15,6) and DSP � =(20,8). DSP � =(5,2)
is always exactly the same since it is a comparison with itself. The difference between
Lexical and DSP � =(5,2) is about the same as the difference between Subsumption and
DSP � =(5,2). This is a considerably different from the comparison of the first level where
the median similarity was almost 50%.

3.4 Summary

Thus far we have developed two formal models for selecting topic terms and done

a preliminary evaluation using a scoring metric and investigating overlap. The scoring

metric presented in this proposal shows that there is no significant difference between the

Minimum Average Code and the other techniques at the first level of the hierarchy. It

also shows that there are no significant differences for hierarchies of two levels deep. We

believe that the shortcomings observed do not point to failings in the models but instead

to failings in the evaluation metric. Although scoring the hierarchy makes sense for fully

developed hierarchies, it only reveals whether a technique is particularly bad when applied

to truncated sections of the hierarchy.

The reason that Entropy Model merits further analysis despite its mediocre performance

is that the terms it selects are not as dependent on the particular language model when

comparing it to the Dominating Set. Also, before discounting it, an analysis of the contents

of the hierarchy needs to be done because it is choosing different terms than other methods.

However, this model does not make any guarantees about the coverage of the topics. It will
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have to be determined if there exists a lack of coverage. Finally, limiting topics to nouns

and noun phrases will be investigated since verbs and adjectives violate the assumption of

the model that people can use associations to figure out what other vocabulary terms are

present in the document set.

The Dominating Model needs further analysis for the same reasons that the Entropy

Model does. A true test will be for a hierarchy that is four or five levels deep to be com-

pared to the full subsumption hierarchy. If significant differences are found, there will

be much more substantial reasons to believe that Dominating Model is a good technique.

However, it may be that the hierarchies are indistinguishable using the scoring metric and

other evaluations will reveal the optimal technique.

The remainder of the research will focus on developing more robust evaluations and

verifying that the models used to select topic terms are correct.

25



CHAPTER 4

INTENDED RESEARCH

In order for this research to be successful we need to define an optimal hierarchy. This

will enable us to find comparison measures that truly distinguish between a useful hierarchy

and one that is not. Part of this definition will encompass characteristics of the hierarchy

such as its depth, the size of document clusters at the leaves, and the change in the size of

document clusters as one explores deeper in the hierarchy. Another part of the definition

will need to address the content of the hierarchies. An optimal hierarchy should outline the

topics of the document set. A third part of the definition must address the issue of usability

by determining whether people can use the hierarchies to learn the topics of the document

set and find interesting groups of documents.

From the initial results, we can select characteristics that should be present in a defini-

tion of an optimal hierarchy. One characteristic is that each level’s cluster sizes should be

roughly the same; however, the top levels may have a greater variance than lower levels.

The hierarchy will most likely be between three and five levels deep for a set of five hun-

dred documents. The depth will be governed by the goal size for cluster leaves. Currently,

we believe leaf-clusters should have somewhere between 3 and 10 documents.

The second and third issues will be developed with future experimentation. Testing the

ability of a hierarchy to cover different topics can be done through simulations. We will

combine documents that are relevant to a diverse group of queries so that we can predict

the topics the hierarchy should discover by testing for the presence of query terms in the

hierarchy. We will also need to find out if the terms in the hierarchy actually summarize the

document set. An experiment to determine this could involve users highlighting terms from
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the document that they would include in a summary. User terms would then be compared

to the terms in the hierarchy.

To address the issue of usability, we will develop a demo environment where users can

interact with the hierarchy. We will then test their ability to do retrieval-oriented tasks.

Since all of our current document sets are retrieved for a query, some of the tasks will

be oriented toward finding non-relevant documents, while others will focus on relevant

documents. Tasks may also be defined that make use of a known document. We may also

define tasks that can be accomplished without use of a hierarchy as a control.

4.1 Detailed Plan
� Optimize and debug code for generating the language models and finding topic terms.

Ideally this optimization would allow the creation of a hierarchy with a depth of 5 in

less than 2 minutes. Such a hierarchy with 20 terms at each level requires roughly 3

million language models, so this might be a bit ambitious. (1 month)

� Continue to build deeper hierarchies and test them with existing techniques. The

characteristics of the hierarchy will be analyzed to find the parameters for optimal

hierarchies. These parameters may be dependent on the size of the document set,

and we will need to explore this possibility. (1 month)

� Explore building hierarchies with nouns and noun phrases. Verbs and adjectives tend

to make disappointing topics, since one has little notion of what types of terms will

be associated with it. We will also experiment with hierarchies made entirely from

phrases, since phrases tend to convey more information than single words. (3 weeks)

� Complete a failure analysis. Determine what types of conditions yield poor hierar-

chies. (1 month)

� Investigate how different size initial document sets effect the hierarchy ,and specifi-

cally what the effect of clustering is on the hierarchy. Find out if the models compen-
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sate for the lack of a clustering algorithm, which we found to be quite helpful when

creating lexical and subsumption hierarchies. If the model does not compensate,

determine if a clustering step should be added. (2 weeks)

� Develop an evaluation that looks at how well topics are covered. This may be done by

creating document sets made up of relevant documents from a number of different

queries and looking at how well the hierarchy groups the documents. The topics

should be judged to determine if the terms describe the documents. The easiest way

to do that is to look for topic words that are part of the query. (2 weeks)

� Continually develop and test the idea of what a globally optimal hierarchy is.

� Develop an interface that can be used in a demo environment for user studies. (2

months)

� Investigate how one would use the system in a real setting based on other work. (2

weeks)

� Do a user study that incorporates the demo and measures how well users can perform

retrieval oriented tasks using a ranked list verse using the hierarchy. (3 weeks)

Preparation and writing of the dissertation itself will take approximately four months.

The entire project is expected to talk 12 months to complete. Including other degree obli-

gations, this should allow a thesis defense to be scheduled in August of 2002.
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CHAPTER 5

CONCLUSION

This proposal outlines the development of an approach to automatically generate hier-

archical summaries. There are several steps that contribute to the creation of the summary:

building the language model, selecting topic terms, and testing the hierarchy. The contri-

butions of this thesis will include:

� a definition of a globally optimal hierarchy in terms of both physical characteristics

and the information users gain from the hierarchy,

� the first formal framework for selecting topic terms, and

� the development of evaluation measures for hierarchical summarization based on

large text collections.

The foundation for this work has already been laid. We have defined two new for-

mal approaches to selecting topic terms and evaluation metrics that help us decide which

hierarchies are good. In the coming months we will develop these ideas further.
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