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Abstrac t 3

The knowledge-directed approach to image interpretation, popular in the 1980's, sought

to identify objects in unconstrained two-dimensional images and to determine the three-

dimensional relationships between these objects and the camera by applying large

amounts of object- and domain-specific knowledge to the interpretation problem.  Among

the primary issues faced by these systems were variations among instances of an object

class and differences in how object classes were defined in terms of shape, color, function,

texture, size, and/or substructures.

This paper argues that knowledge-directed vision systems typically failed for two

reasons.  The first is that the low- and mid-level vision procedures that were relied upon

to perform the basic tasks of vision were too immature at the time to support the

ambitious interpretation goals of these systems.  This problem, we conjecture, has been

largely solved by recent advances in the field of 3D computer vision, particularly in stereo

and shape reconstruction from multiple views.  The other impediment was that the

control problem for vision procedures was never properly addressed as an independent

problem. This paper reviews the issues confronted by knowledge-directed vision

systems, and concludes that inadequate vision procedures and the lack of a control

formalism blocked their further development. We then briefly introduce several new

projects which, although still in the early stage of development, are addressing the

complex control issues that continue to obstruct the development of robust knowledge-

directed vision systems.

1. Introduction

The goal of image understanding systems often involves the identification of objects in

two-dimensional images, and the establishment of three-dimensional relationships among

3 This work was supported in part by the Advanced Research Projects Agency through contracts DACA76-

92-C-0041 and F30602-91-C-0037, by the National Science Foundation through grants MCS7918209 and

CDA-8922572, and by the Army Research Office through grant DAAH04-95-1-0068.
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the objects and between the objects and the viewer. This transformation of signals (the

image) to symbols (the interpretation) in the visual domain is almost certainly the most

complex sensory interpretation problem that exists for both human and machine. The

vision problem is ill-defined, requires immense computation, and must operate robustly in

widely varying contexts and under varying illumination. Yet perception is performed by

humans in an immediate, effortless, and to a great extent subconscious manner. In

contrast, it has turned out to be exceedingly difficult to build robust, autonomous

computer vision systems other than for highly restricted domains.

The inherent difficulty of the problem stems from the nature of both the signals and the

symbols. The image is a record of a spatially sampled discrete approximation to the scene

luminance, which varies as a function of the incident illumination and viewpoint. With

respect to object and scene recognition, this signal is further corrupted and degraded by

occlusions, specular reflections, interreflections, atmospheric conditions, lens distortions,

the normal foreshortening effects of perspective projection, and digitization. In

unconstrained domains it is impossible to develop an effective analytical model that

inverts or compensates for all of these effects.

The symbols, for their part, are equally complex. Our goal is to interpret images in terms

of object classes, both natural and man-made, and emergent scene properties. This

requires recognizing instances of classes such as “house” and “tree”, even though

particular instances of these classes differ quite dramatically from each other and from the

class prototype.  It also requires recognizing many different types of objects, even though

some object classes are defined in terms of shape, while others are defined in terms of

color, texture, function, context, size, substructures, or a combination of these factors.  To

identify instances of a class, computer vision systems must first discover or have
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specified the subset of possible attributes that members of the class share, and the

acceptable range of variation for these attributes.

To address these issues, many researchers in the 1980’s adopted the knowledge-directed

vision paradigm, in which large amounts of information were collected about each object

class, including what characteristics (shape, color, etc.) its members shared, and how

much variation was allowed for each characteristic within the class.  The aim was to build

intelligent systems that could match these complex class descriptions to image data

through a library of reusable vision procedures (sometime cast as knowledge sources or

production rules, according to the AI technology of the 1980’s).

Unfortunately, the available vision procedures were fairly impoverished relative to the

lofty goals of these systems.  Much of the focus was diverted into developing low and

intermediate-level vision algorithms or to operating in domains where rigid 3D shape

models were available and sufficient. This eventually resulted in a natural development of

10-20 (or more) subfields, each focusing on a single subtask. Within these subfields,

theories were developed and tested, and different solution methodologies adopted. As a

result, there are now several good and improving algorithms for many subdomains,

including edge and line extraction (straight and curved), stereo analysis, tracking over time,

depth from motion (two-frame and multi-frame), shape recovery, CAD/CAM model

matching, 3D pose determination, and color-based focus of attention, to name just a few.

Of particular interest are the advances in the extraction of depth and shape information

from images.  New techniques in multi-frame shape reconstruction [Tomasi and Kanade

92] and in stereo [Matthies 92; Kanade and Okutami 94; Schultz 94], as well as the

development of direct 3D sensors such as LADAR, IFSAR and light-stripe sensors, allow

us to measure 3D features and to adjust for the effects of perspective distortion as never
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before. Because of these and other advances, we believe it is time to reconsider computer

vision “in the large”, and to work toward systems that can interpret natural scenes, with

all the complexity, variations and counter-examples they invariably contain, even if we

still have to limit ourselves to partially constrained domains in the near-term.

As part of this reassessment, this paper reviews the issues at the core of knowledge-

based vision, emphasizing those insights and intuitions that may be unappreciated today.

At the same time, we turn a critical eye toward this approach, discussing the factors

(beside the relative immaturity of the vision procedures) that we believe led all too often

to failure, or at best to partial success.  Note that there is no attempt to survey the many

systems that were built; that task has already been accomplished in [Binford 1982;

Brown 1987; Jolion 1994; Wallace 1988].  Instead, the discussion will be centered around

issues.  In some cases, particularly with regard to failures, we will focus on the

VISIONS/Schema System, a system for interpreting outdoor natural scenes which was

first reported on in 1978 [Hanson and Riseman 78] and subsequently refined for eleven

years [Draper, at al 89]. We hope the reader will understand that by focusing on our own

work, we can draw upon our personal experience and freely criticize its shortcomings.

The point of the discussion, however, is to summarize our understanding of knowledge-

directed vision systems in general, based not only on the Schema System but also the

reported work on SIGMA [Hwang et al 86], SPAM [McKeown et al 85], PSEIKI

[Andress and Kak 88] and other systems.

In particular, we argue that while these systems addressed (and to some extent solved)

many critical issues, their success was limited not only by the relative immaturity of the

field, but also by fundamental and still-open problems in control. Section 2 of this paper

discusses the issues addressed in knowledge-directed vision that we believe are still

relevant, while Section 3 bluntly describes some of the problems they faced. Section 4 and
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then introduces new lines of research which, although still in the early stages of their

development, we believe will lead to solutions to the control problems discussed in

Section 3.  Section 5 concludes with our vision of the future of knowledge-based image

interpretation.

It should be noted that this paper focuses on systems that produce internal symbolic

interpretations of static scenes, with very little discussion of image sequences and

temporal dependencies. This is not because dynamic motion cues are not useful visual

information, but rather because this research area is complementary to the issues and

capabilities that we will be examining. Clearly, people can easily interpret still

photographs, and do so all the time.  Therefore the interpretation of general scenes should

not require sequences, multiple views, or any other data that allow 3D depth information

to be directly computed (in contrast to indirect inference based on assumptions about the

scene). However, it is also true that motion analysis can significantly aid in 3D scene

interpretation by segmenting independently moving objects, providing depth cues,

supplying new views of objects, etc.  Nevertheless, all of the issues discussed here, and

the mechanisms developed to deal with them, are necessary for dynamic scene

interpretation as well.

Many researchers have had success with systems that produce actions directly in

response to streams of images (e.g. Pomerleau 1993).  However, many of these systems

do not produce detailed internal symbolic representations of the environment, which we

believe are necessary for many types of intelligent behavior.  For an interesting discussion

on these issues, see Tarr and Black (1994).
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2. Knowledge-Based Image Understanding

Simply put, interpreting an image is a matter of establishing correspondences between the

image (i.e. the signal) and objects in the knowledge base (the symbols). Thus, it is not

sufficient to reconstruct only the geometry of a scene, for example by describing

orientations and positions of surfaces. A semantic interpretation must also include the

types (or classes) of objects present in the scene being imaged, their spatial relationships

to each other and the viewer, their semantic interrelationships (such as part/whole

relations), and perhaps their functional properties when relevant.

2.1 Object Recognition and Intra-class Variation

Identifying instances of general object classes is an extremely difficult problem, in part

because of the variations among instances of many common object classes, many of which

do not afford precise definitions. Houses, for example, come in many different shapes and

sizes (not to mention colors and textures).  Object recognition is therefore more than

recognizing fixed shapes, and indeed is more than strict matching on any single

characteristic. Object recognition requires flexible matching on a variety of characteristics,

with the ability to handle exceptions and deviations. For example, houses can usually be

recognized based on shape constraints (closed volumes with vertical walls, mostly at right

angles), commonly found substructures (e.g. windows, doors, chimneys)  and a limited

pattern of well-delineated colors (generally not more than two).  Other objects, such as

trees, present quite a different array of features and problems.  Object recognition

therefore requires a flexible and multi-faceted matching scheme.  Most simple matching

algorithms are simply not adequate by themselves, although they may be part of the

solution in that they may work well for certain objects or within specific domains.

It should be noted that, in some cases, it is possible to reduce intra-class variability by

subdividing a class until the members of the subclasses share a property, such as a single
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fixed (or perhaps parameterized) shape. In such cases, straightforward matching strategies

can be quite effective.  Unfortunately, this is not a universal solution; the class of houses,

for example, would have to be subdivided into many types, perhaps to the point of

individual homes.  At that point, it is not clear which is the greater problem - intra-class

variability or the proliferation of subclasses!

Approximate and flexible matching in turn requires a different kind of object model.

Object class models must now specify those characteristics that are common across the

elements of the class, and to what extent they vary. Object models should also include

characteristics or features which are shared by many but not all of the members of the

class, since the presence of each such feature can increase the system’s confidence (or

probability) of a match for many object instances. In general, we refer to this type of

information about an object as object knowledge rather than object models, both for

historical reasons and because the latter term generally refers to rigid or parameterized

shape descriptions.
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                                                                       (a)

                              (b)

Figure 1.  An image of a typical urban

setting. (a) The two houses show the intra-

class variability in architectural styles,

colors, shapes, and other geometric

features for a common object. (b) A close-

up view of the left house in the area around

the right lower corner of the dormer

window illustrates the futility of

attempting to recognize objects directly

from the pixel data.
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2.2 Inter-c lass  Variabi l i ty  and the Knowledge-Directed

A p p r o a c h

If the aim of a recognition system is to identify instances of just one object class, then

flexible matching strategies are not actually necessary. A house recognition system (to

continue with the example) could be built that always searched for large rectilinear

structures, which it then verified by looking for key subparts, such as doors and

windows, and by counting the number of distinct colors. Such a system could be

reasonably effective at identifying houses. Unfortunately, it would be completely

incapable of recognizing trees or roads.

The problem is that classes differ from each other not only in the values of their features,

but in terms of what features are even defined. It would be difficult and probably

meaningless to count the number of distinct colors (mostly greens and browns) in a tree,

even though such a color count is well defined for houses. Yet the range of colors for a

given type of tree is quite distinctive (except possibly in autumn). Combined with the

micro- and macro-texture associated with leaves, branches and crowns, the color of a

tree’s leaves produces a characteristic color variation that is probably the best single

feature description for tree recognition. Thus, both class definitions (i.e. houses and trees)

include color features, but how those features are represented and matched is obviously

quite different. We therefore once again emphasize the fundamental conclusion that not all

object classes are defined in terms of the same attributes, and these attributes may be used

in various ways within the matching or interpretation process.

One response among researchers to this problem is to search for a single all-inclusive

representation and matching scheme, capable of distinguishing instances of any class of

objects from any other.  One entry in this category, for example, are the eigenvector
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matching approaches (e.g. [Nene, et al 94]) which, although they have not yet shown the

ability to recognize all object classes, have had some success at partially viewpoint

invariant recognition of non-trivial objects.  Alternatively, the knowledge-directed

approach seeks to take the union of all special-purpose techniques. Color, for example,

can be represented and matched as a range of hues, as a color histogram, and/or as a count

of distinct colors (among other possibilities).  Possible shape representations include

CAD models, fractal models, and surface splines. Object models (i.e. object knowledge)

contain whatever characteristics and features are defined for the object class (including

possibly appearance models, such as eigenvector representations), as long as there is a

known procedure to detect or measure them. Customized control knowledge must be used

to select which features to look for first, and to combine the results of multiple partial

matches.

2.3 Structuring Knowledge

In principle, the knowledge-directed approach to image interpretation is an elegant

solution to the problems of inter-class and intra-class variation. Every object class is

defined in terms of whatever features are (relatively) constant among its members, and

every feature has a procedure (or production rule, or knowledge source) for measuring it.

Control knowledge associated with each object class determines which features to

measure and in what order to measure them.

Unfortunately, how to collect and structure this knowledge is a major open issue.

Knowledge collection (including knowledge engineering) will be discussed later; most

research in the 1980’s was more concerned with the issue of how knowledge is structured.

The VISIONS system, for example, was one of several projects that began as traditional

AI-style blackboard systems [Hanson and Riseman 78]; see [Andress and Kak 88;

Hwang et al 86] for examples of other blackboard-based vision systems.  Knowledge
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sources represented specific knowledge about specific objects, for example how to match

the color of a tree. As the VISIONS/Schema System evolved, successively more structure

was added, mostly to allow more and more specific matching strategies without creating

interpretation interference problems4 [Draper et al 89].  In particular,  the

VISIONS/Schema System introduced the notion of a schema, which was an active process

that encapsulated the knowledge about an object class and had its own, private memory

and explicit, procedural control strategies. In the current terminology of AI, the

VISIONS/Schema System evolved from a blackboard architecture into an active agents

paradigm.

Other researchers took different approaches to structuring knowledge. The expert system

paradigm in which knowledge is encapsulated in production rules was also popular (e.g.

[Ohta 80; McKeown et al 85]).  Unfortunately, this approach made it difficult to prevent

new knowledge from interfering with old, and also required special (some would say ad-

hoc) mechanisms for introducing control knowledge. SPAM, for example, divided its

production rules into five processing phases in order to interpret aerial images of airports

[McKeown et al 85].  Frame-based systems [Minsky 75] approached knowledge at a

more macroscopic level, as each frame collected information into larger chunks to be

invoked as a unit. This allowed control to be customized in ways that were not possible

in simple rule-based systems, as demonstrated by 3DFORM [Walker, et all 88].

Many of the details of how knowledge was structured in these systems is arguably no

longer relevant. The VISION/Schema System, for example, would be designed differently

4 Interpretation interference is when new knowledge about an object class or knowledge about a new object

class interferes with the recognition of other classes.  It can occur in the traditional blackboard framework

because all data is public and can trigger any knowledge source
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today given the existence of object-oriented programming languages and active agent

systems. However, the notion of using flexible object knowledge, including control

knowledge, to combat inter-class and intra-class variation, and of encapsulating this

knowledge according to object class, remain germane to the construction of object

recognition systems today.

2.4 Accessing the Knowledge Base: Indexing

The same broad nature of object knowledge that makes it possible to describe large classes

of objects also makes it difficult to match them. After all, if an object model permits

enough variations, many features may have to be missing before a system can reject the

hypothesis that the object is present.  The task of selecting which objects to match

against the data, sometimes called the object indexing problem (or just the indexing

problem [Rosenfeld 1984]), is therefore critical.

Unfortunately, none of the approaches to object indexing developed thus far are

completely satisfying. Most knowledge-directed systems worked in a limited domain,

where they could always look for a fixed set of objects, such as houses and roads in aerial

images of suburban scenes [Hwang et al 86] or runways, taxiways, tarmacs and terminals

in aerial images of airports [McKeown et al 85]. The VISIONS/Schema System was

somewhat more sophisticated in that it exploited contextual indexing, for example by

triggering a schema to look for telephone poles anytime a road was recognized, on the

basis that telephone poles often run alongside roads. The VISIONS/Schema System also

had contextual objects, such as “road scene” and “house scene”, which were used to group

contextually related objects. More recently, the CONDOR system expanded the idea of

contextual processing to include maps as contextual clues when searching for objects

[Strat 91].
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Contextual indexing is a powerful technique that we believe is clearly part of the solution

to the indexing problem. It does not address, however, people’s ability to interpret

photographs out of context. Other researchers have introduced techniques for indexing

into databases based on specific features or attributes (e.g. [Burns and Riseman 92]).

Recently, Nayar has introduced an algorithm for indexing into a database of 3D shapes

directly from a (2D) image, and techniques such as this are again likely to be part of the

solution to the indexing problem. These techniques are not general-purpose, however, in

that they are restricted to indexing into databases of rigid shapes. It is unclear whether

most general object classes, such as houses or trees, can be indexed (or recognized) based

solely on these techniques.

2.5  Multiple levels of representation.

There is a large representational gap between the initial sensory data (pixels and their

properties) and the high-level symbolic descriptions that constitute an interpretation.

Large inferential jumps, for example from pixels to much more abstract representations

such as surface and volume entities, or object identities, are extremely errorful and

therefore not widely used except under very constrained conditions.

Rather, the idea of hierarchical representations of knowledge, in which the levels

correspond roughly to the vocabulary of the intermediate representation of an

interpretation, has gained wide acceptance among vision researchers [Barrow and

Tenenbaum 1978; Hanson and Riseman 1978b; Hanson and Riseman 1987b; Marr 1982;

Rosenfeld 1984]. Since an interpretation can be viewed as a correspondence between

image features and knowledge classes, it is clear that the descriptive vocabulary for images

must be reflected in the hierarchical representation of the knowledge base. That is, the

system must be able to establish the correspondences based on extractable and derivable

image features, and these same image features must form the basic descriptions of the
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objects and object classes in the knowledge base. Viewed in this manner, it is clear why

many of the knowledge representations currently in use encode knowledge of objects

(individual instances, classes, and descriptions) and of events (actions, situations, cause

and effect) as a combination of data structures and interpretation procedures.

2.6   Uncertainty and Ambiguity

There is a significant amount of inherent ambiguity in the interpretation process.  In order

arrive at an unambiguous final result, a knowledge base must include a sufficiently rich set

of constraints and flexible mechanisms for manipulating uncertain hypotheses until there

is a convergence of evidence.

This argues for a methodical construction of an interpretation across increasingly more

abstract descriptions of the image. The matching processes responsible for generating

correspondences between images and object classes will inevitably make errors and may

generate multiple competing hypotheses to describe portions of the scene. This results in

uncertainty as to the “correct” interpretation at all levels of representation. In order to use

these uncertain hypotheses, their confidence level must be taken into account. Treating

the hypotheses as evidence for (or against) a set of models and the confidence values as

belief in the evidence leads to the general idea of inference mechanisms operating over the

knowledge base.

The inference mechanisms must be capable of pooling or combining evidence from

multiple sources in a consistent manner, and propagating this pooled information over the

knowledge base, subject to any relevant constraints or relationships. The inference

mechanisms support the establishment of  image-to-knowledge correspondences by

providing a principled mechanism for building partial interpretations at various levels of
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representation. Many different forms of reasoning under uncertainty have been used in

computer vision systems (including Bayesian inference, Dempster-Shafer evidential

reasoning [Wesley 86; Andress and Kak 88], and fuzzy reasoning [Sanchez and Gupta

1984; Zimmermann 1985] with varying degrees of success. (A review of inference

mechanisms is beyond the scope of this paper; for more details see [Shafer and Pearl

1990]).  The PSEIKI system in particular used Dempster-Shafer evidential reasoning

within the context of a blackboard-based image interpretation system to resolve

conflicting hypotheses [Andress and Kak 88], while recent work by Rimey and Brown

[94] and by Binford et al [89] has focused on image interpretation using Bayesian nets.

Interestingly, there is anecdotal evidence that the exact form of evidential reasoning

system may not be that important, so long as it can pool information from enough

sources. The VISIONS/Schema System, for example, took a particularly simple view of

evidence representation and combination. Confidence values were coarsely quantized on a

five point ordinal scale, ranging from `no evidence' to `slim-evidence', `partial-support',

`belief', and finally `strong-belief'. When combining evidence, heuristic and object-specific

evidence combination functions were used to map combinations of evidence to confidence

levels. These functions were typically written by specifying key pieces of evidence that

allowed an object instance to be hypothesized and which could be used to compute an

initial confidence level. Subsets of secondary confirming or discrediting evidence were

used to raise or lower these confidences as such evidence was acquired. Specifications of

these subsets, and the effect their confidence had on the overall confidence, was part of

the knowledge engineering effort involved in constructing a schema.

This method of evidence representation and accumulation lacked considerably from a

theoretical point of view, but it worked surprisingly well in interpretation experiments on

images of New England house and road scenes [Draper, et al 89]. We suggest that while
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the ability to combine evidence is important, there is enough redundancy in many

overconstrained interpretation tasks that systems can succeed without making optimal

evidence combination decisions (although good evidence combination mechanisms are

obviously preferable to bad ones).  For a discussion on the relative importance of the

structure of conditional dependencies versus the precise form of evidence propagation,

see Pearl [1988]

3 Open Problems in Knowledge-Based Vision

The knowledge-directed vision research of the 1970s and 1980s recognized the complex

nature of real-world object classes (as opposed, for example, to the assumption that the

world is composed of rigid shapes).  The major research emphasis at the time was on the

knowledge required (both the appropriate structure and type), the control mechanisms,

the representation of evidence, and the evidential inference mechanisms.  This work led to

several special-purpose systems, operating in strictly limited domains, which were built

by exploiting knowledge of domain constraints (e.g. see [Ballard, Brown et al. 1978;

Brooks 1981; Hanson and Riseman 1978b; Hanson and Riseman 1987a,b; Herman and

Kanade 1986; Matsuyama 1989; McKeown, et al. 1985]). In retrospect, the relative

success of these knowledge-based image understanding systems can be traced to a small

world assumption, where the number of objects in the domain are few, the constraints on

their descriptions are tight, and a complete world model is at least a possibility.

Consequently, special-purpose systems were able to define, structure, and apply relevant

task knowledge effectively. However, as the scope of a system broadened towards

domain-independent, general-purpose applications, an unfortunate chain of events

occurred: the size of the knowledge base increased, constraints on the object descriptions

became looser to account for wider variability, fewer assumptions could be made about

the types of image descriptions necessary for matching, and the complexity of knowledge

and data increased substantially.
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As stated earlier, many of the problems encountered by researchers as they attempted to

broaden their system’s domains were the result of immature algorithms.  Edge extraction

algorithms based on zero-crossings, for example, were just beginning to emerge in the late

1970s [Marr and Hildreth 80], and did not become truly robust until the mid-eighties.

Even more dramatic changes have occurred in other areas; for example, in the early 1980’s

there were very few algorithms for reliably extracting any kind of 3D shape or depth

information from images (with early work on stereo vision being a possible exception).

Now there are several good motion algorithms for recovering the relative depths of points

in space from point correspondences over two or more frames [Faugeras, et al 87; Tomasi

and Kanade 92; Oliensis 94;], as well as algorithms for recovering the relative (3D)

position and orientation of a camera from a set of image-to-model (2D-to-3D) point

correspondences [Kumar and Hanson 89; Haralick, et al 89]. Add to this recent

improvements in recovering depth through stereo processing of both traditional small-

baseline, synchronous image pairs [Matthies 92; Kanade and Okutami 94]  and larger-

baseline, temporally distinct pairs [Schultz 94], the introduction of depth-from-focus

techniques [Grossman 87; Krotkov 87], and the emergence of 3D sensors (e.g. LADAR,

IFSAR, and structured light sensors), and it becomes possible to extract far more

geometric information than was previously possible.  In the 1980’s, however, these

techniques were not available, and as a result when geometric and/or other constraints

were loosened on  early knowledge-directed systems, their  performance degraded badly.

We argue, however, that inadequate vision procedures were only one of the reasons these

systems failed to generalize. As the scope of the problem domains broadened, the

knowledge required --particularly the control knowledge -- became increasingly complex

and difficult to apply. The knowledge engineering paradigm used to collect knowledge for

small systems was inadequate for gathering the larger amounts of knowledge needed for
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more general systems.  In addition, as the size of the knowledge base grew, the systems

integration problems became more and more daunting. This was particularly true with

regard to vision procedures; as the number and complexity of the component algorithms

grew, the ability to organize procedures and to pass intermediate data from one procedure

to the next in an efficient manner became increasingly critical.

3.1 Knowledge Engineering

One of the main impediments to wide scale experimentation with the Schema System was

the manual labor required to design schemas. The knowledge base used for 2D road

interpretation in [Draper, et al. 1989] took one and a half man-months to build5 and

contained about twenty objects. The roadline schema strategy shown in Figure 2 was

only a small part of the control knowledge used in the Schema System, but it gives a good

sense of the granularity at which control knowledge was specified. Another problem was

that even when a knowledge base was finished, there was no guarantee that the

interpretation strategies embedded in it were optimal or even adequate.

In general, knowledge base construction could be viewed as an exercise in experimental

engineering, in which prototype schemas (or knowledge sources or rule sets) were

developed using existing system resources. These schemas were then tested on a

representative set of objects and images, failures were noted, and the schemas re-

engineered to account for the failures. In particular, schemas were assembled by

specifying (1) the appropriate set of vision procedures to be used, (2) control strategies

to conditionally sequence their application, and (3) a function to map combinations of

evidence into global confidence values. Failures could result from errors in any of these

three areas, and while errors in evidence combination were (comparatively) easy to fix,

errors in control strategies required debugging complex code modules. Worse still, some

5 Other researchers have generally not reported the time it took to develop their knowledge bases.
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failures were the result of inadequate or immature vision procedures. In such cases,

schema development was interrupted while an improved vision procedure was

constructed, a process that often involved a major research effort in its own right.
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Figure 2.  An example interpretation strategy for finding roadlines (the yellow or white

lane control markings found on many hard-surface roads). This particular schema has

two control threads, one based on image lines and the other on image regions.

3.2 Vision Procedures

Many types of vision procedures were developed by many researchers. The

VISIONS/Schema System, for example, made extensive use of color and texture features,

whereas systems designed for black-and-white aerial images (e.g. SIGMA, SPAM) tended

to make more use of (2D) shape features. In addition, most of these systems tried to take

advantage of contextual knowledge; SPAM, in particular, used detailed information about
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the functional relations between the parts of an airport (terminals, tarmacs, runways, etc.)

to spatially constrain its search for specific airport components.

New procedures were almost always developed in response to observed failures,

however, and in our experience these failures most often resulted from intra-class

variations or changes in viewpoint. Intra-class variation would lead to failures when new

instances of an object class were encountered that did not fit the previous model. The

VISIONS/Schema System, for example, modeled houses as having windows and windows

as having shutters. The first time a picture of a house without shutters was encountered,

our knowledge about houses had to be loosened, leading to the unfortunate possibility of

more false matches.

The other major source of failures during the development of the Schema System were

changes in viewpoint and/or object orientation. Obviously, under the laws of perspective

projection, a window appears as a rectangle when viewed head-on, but as a trapezoid if

the camera position varies along one dimension and as an arbitrary quadrilateral if the

camera position is unconstrained. As a result, the more orientations an object could

assume, the looser the constraints on its (2D) shape model.

Much of our optimism about the future of knowledge-directed systems is based on the

recent development of viewpoint-independent, 3D visual procedures.  These advances

actually began with the SCERPO system, which was capable of matching rigid 3D shape

models to line segments extracted from images, no matter what the orientation of the

target object [Lowe 85]; SCERPO also returned the 3D position and orientation of the

object, relative to the camera. Since then, other techniques for matching 3D shapes to 2D

images have been introduced [Beveridge 93; Huttenlocher et al 93]. All of these

techniques in turn require accurate camera models and accurate 3D object models, two
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more areas in which recent progress has been made; see [Tsai 86] for advances in camera

modeling, and [Tomasi and Kanade 92] and [Oliensis 94] for advances in recovering 3D

shape models from multiple images.

Of course, as we argued in Section 2.1, rigid shape matching is not the same thing as

object or scene interpretation, even in 3D.  It should be obvious, for example, that there is

no fixed 3D shape that corresponds to the object “house”. Nonetheless, the 3D matching

techniques above can also be used to look for substructures within an object, such as

windows or doors. In addition, other 3D techniques such as vanishing point analysis

[Magee and Aggarwal 84; Collins and Weiss 90] and the perspective-angle transform

[Kanatani 88] allow the 3D orientation of an object to be recovered from parallel lines on

its surface or by matching a corner. Such 3D orientation information in turn allows the

image to be “unwarped”, removing the effects of perspective projection. In general, the

burgeoning fields of projective geometric invariants [Mundy and Zisserman 92] and

multiframe analysis [Ullman and Basri 91]. are giving us a greater understanding of what

3D geometric information we can and can not expect to extract from small numbers of 2D

images

Finally, the improved performance of stereo algorithms at producing depth maps [Kanade

and Okutami 94; Matthies 92; Schultz 94], the development of direct 3D sensors (such as

LADAR, IFSAR and structured light sensors), and the introduction of depth-from-focus

algorithms [Grossman 87; Krotkov 87] all provide new sources of 3D information for

knowledge-directed systems. While we certainly do not claim that the 3D problem has

been “solved” -- 3D shape representation is just one area in which much more work is

required -- we do believe that the advancements in 3D vision over the past fifteen years

will make knowledge-directed systems far more powerful. In particular, most knowledge-

directed system in the past (including [Ohta 80; McKeown, et al 85; Hwang, et al 86])
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were applied to aerial image domains whose near-nadir views were effectively two-

dimensional6; we believe that restriction should no longer apply, even to complex scene

interpretation systems.

3.3 Systems Integration

Integrating these new procedures into knowledge-based systems will not be easy,

however.  Based on our experience with the Schema System, when new vision procedures

are developed, integrating them presents yet another set of problems, particularly if the

new procedure was developed at another laboratory. About half the vision procedures of

the time were written in C; since the VISIONS/Schema System was implemented in Lisp,

this meant that half of all procedures had to be re-implemented. Even when the

programming languages of the procedure and the vision system matched, the data

structures rarely did. Every algorithm seemingly had its own formats for images, edges,

straight lines and other commonly used geometric data structures. Applying one

procedure to data created by another usually required non-trivial data conversions.

This problem has ramifications beyond knowledge-directed vision; it makes it difficult,

for example, for researchers in one lab to compare their algorithms to those of another lab.

As a result, the ARPA Image Understanding Environment (IUE) project [Mundy, et al.

1992] gathered a committee of noted academic researchers to create an object-oriented

class hierarchy of canonical representations and file formats for every data type used in

computer vision. At the time of this writing, the IUE hierarchy was fully defined, and

C++ implementations of a subset of the classes were being prepared for general

6 The VISIONS/Schema System was an exception to this rule, which is why we are so familiar with the

problems of not having adequate 3D reasoning capabilities.
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distribution [Dolan, et al 96]. By defining a common set of object classes for IU research,

the IUE is intended to encourage and facilitate the sharing of code between laboratories.

There are three potential problems with the IUE. One is that its library of over 700?

classes may omit some the representations needed to support some vision procedures7.

Although this problem will eventually arise, the IUE class hierarchy should be large

enough and general enough to cover most near-term needs. The second is that existing

code designed before the IUE standard will have to be rewritten. The third is that the IUE

library is so large that its implementation may prove unwieldy. However, it is clearly the

most ambitious endeavor of its kind in the field of computer vision, and success would

produce a revolutionary change in our ability as a field to integrate component algorithms.

Other smaller approach are also being tried, such as ISR, an object-oriented database for

computer vision ([Brolio, et al 89; Draper and Kutlu 94]). Instead of defining a large class

library, ISR provides a small library of frequently used classes and encourages users to

define new classes as needed. The emphasis on ISR is less on the representation than on

the support provided for object classes. The most important area is I/O; ISR provides an

object-oriented library for I/O streams capable not only of reading and writing its own

binary and ascii formats, but also those of several other computer vision systems,

including Khoros [Rasure, et al 94], KBVision [Williams 90] and RCDE [Mundy, Welty,

et al 92]. This minimizes the need to re-implement existing code. ISR also provides 2D

and 3D graphics support, and support for spatial and associative retrieval of data tokens

(class instances) from sets. Current work on ISR is focusing on integrating it with

MNEME persistent object store to provide customizable mechanisms for

storage/retrieval of data to/from disks, and therefore improve system performance [Kutlu,

7 In order to keep the IUE definitions standard, researchers are discouraged from creating new classes.
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et al 96].  The potential disadvantage of ISR is that as users add new classes to the

system, they will diverge and the advantage of a standard representation will have been

lost. To avoid this, the possibility of adopting a subset of the IUE class hierarchy as

ISR’s initial class library is being studied.

3.4 Tools to Support Knowledge Engineering

The VISIONS/Schema System was not the only project to encounter problems with

knowledge engineering.  Almost every knowledge-directed vision project encountered

problems with acquiring knowledge, particularly control knowledge, and with systems

integration. Artificial intelligence researchers tried to combat the knowledge acquisition

problem by extracting knowledge from experts, a scenario that does not apply to

computer vision. Instead, vision researchers concentrated on making knowledge easier to

declare. For example, the SPAM project at CMU developed a high-level language for

describing objects [McKeown, et al. 89]. Work in Japan involved both automatic

programming efforts and higher-level languages for specifying image operations

[Matsuyama 89].  Even today, work on improved tools for knowledge engineering

continues (e.g. [Clement and Thonnat 93]).

Our experience with the Schema System led us to a different conclusion. Although

projects such as the IUE and ISR are lessening the systems integration problems, we do

not believe that the knowledge engineering problems can be overcome just by supplying

better tools. In practice, human knowledge engineers were being relied on to create and

implement complex control strategies without any scientific theory to guide them. What

is needed is for a group of researchers to formalize the control problem for computer

vision and to focus on its solution, just as has happened in other subareas of computer

vision (e.g. edge extraction, pose determination).  Based on our experience with the
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Schema System,  true progress in knowledge-directed vision will require a theoretically

sound approach to control.

4. New Directions in Control

In a computer vision system, control is responsible for orchestrating the flow of

processing within the system towards achieving a goal.  The goal may be as simple as

finding a single object (e.g. “find the house in this picture”), or as complex as recognizing

every object in an image and determining their 3D positions. The task of the control

strategy is to find the best sequence of vision procedures to satisfy the goal, where “best”

may be defined in terms of accuracy, cost, or more often a combination of both.

The best strategy is a function of all the types of knowledge discussed in Section 2.

Object knowledge describing the shapes, sizes, colors, textures, etc., that instances of an

object class can assume is obviously central to determining which vision procedures to

use. Domain knowledge is also important, both in terms of background probabilities (i.e.

how many objects in this domain are green?) and in terms of sensor models and viewing

conditions. Unfortunately, complete domain knowledge is rarely available. Finally,

contextual knowledge about how objects relate to each other is particularly useful for

broadly defined tasks such as “find all objects”, where identifying one object can provide

semantic clues about what other objects to look for, as well as spatial constraints that

may serve to focus attention.

In general, very little research in the field of computer vision has gone into the problem of

determining the best recognition strategies.  Instead, most systems are hand-crafted to

achieve a particular goal, and are considered finished when some pre-set level of

performance is reached, even if this performance is not optimal.  Recently, however,
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critical new research avenues have opened up that directly address the control problem

for computer vision.

4.1 Bayesian Approaches

Evidence combination was one of the topics that was intensely studied in the ‘70s and

‘80s, but it was generally not viewed as a control mechanism. With the advent of

Bayesian networks [Pearl 88], however, it became possible to use Bayesian reasoning not

only to combine evidence from multiple features, but to select which features to measure

next. In particular, it is possible to adopt a greedy control policy which at every stage of

processing selects as the next action the procedure that will have the greatest immediate

impact on the system’s belief in a hypothesis. This is basically the approach of

SUCCESSOR [Binford et al 89], which uses Bayesian networks to control inferences over

a complex, multi-level representation system based on generalized cylinders, and TEA1

[Rimey and Brown 94], which uses Bayesian networks to control an active vision

system.

Bayesian networks have the advantage that they establish a clear and simple principle for

selecting actions -- namely, they select the action with the strongest expected impact on a

hypothesis. Unfortunately, they do not avoid the knowledge engineering problem;

building a Bayesian network is a complex knowledge engineering task that involves

predicting all the possible dependencies in a domain. Moreover, there are currently no

robust techniques for learning Bayesian networks from experience, although this is an

active area of research in artificial intelligence and machine learning.

In addition, there is no guarantee that this approach will lead to optimal or near-optimal

control policies. The problem is not with Bayesian inference; as long as the topology of

the network obeys the constraints of the propagation algorithm, they will accurately
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estimate all probabilities [Pearl 88, chapter 4]. Instead, the problem is with the greedy

control policy. It is not necessarily true that selecting the action with the greatest

immediate reward will lead to the best control strategy. When reasoning across multiple

levels of representation (as is common; see Section 2.5), the optimal action may produce

little or no immediate reward; instead, the reward in terms of increased belief may come

only after several subsequent steps. The problem of selecting suboptimal actions using

the greedy control heuristic has led some researchers to group short sequences of

sequential actions into control primitives (e.g. TEA1).

4.2 Control as Search

Another approach is to treat the control of computer vision systems as a heuristic search

problem.  This introduces a variety of search techniques from the field of artificial

intelligence. Jiang and Bunke [95], for example, cast computer vision as a state space

search problem, in which the start state corresponds to the initial image and the goal state

is the target image representation. The operators in this search space are vision

procedures, each of which is described in terms of how it maps from its input to its

output. Given a specific task in terms of a target representation, their system uses A*

search to find the least-cost path from the initial data to the target representation.

This approach has the advantage of not requiring training data; unfortunately, it relies on

having accurate predictive descriptions of vision procedures, a condition which in our

experience is rarely met. To be efficient it also requires a good heuristic for the A* search

algorithm, which can be viewed as another (smaller) knowledge engineering problem.

Another approach introduced by Brown and Roberts [94] is to use a genetic algorithm to

search the space of  possible control sequences. Brown and Roberts built a military target

recognition system which identifies targets using image processing and ATR algorithms
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Rather than selecting a specific sequence of algorithms, however, they specify a library of

algorithms and algorithm parameters that might be used. Every possible control sequence

is represented by a string specifying the algorithms and parameters to be used, and a

genetic algorithm finds the best string (and therefore procedure sequence) for a given

target and domain.

Both of the approaches above (state-space search and genetic algorithms) are worth

pursuing in this context. However, they share a common disadvantage: they both create

open-loop control policies8. Both systems choose a fixed sequence of procedures to be

applied. As a result, if one of the procedures behaves erratically and produces an

erroneous result, the system will not be able to correct for the mistake.

Chen and Mulgaonkar [92], on the other hand, infer decision trees for selecting vision

procedures based in part on the results returned by previous procedures. The result is a

closed-loop, rather than open-loop, control policy. Although their system was limited to

reasoning at a single level of abstraction, Draper [93] introduces a system with a multi-

level decision tree that is capable of reasoning across many levels of representation,

including images, regions, 2D line segments, 3D planar surfaces and 3D poses (i.e.

position and orientation estimates).

4.3 Markov Decision Problems

Perhaps the most promising approach is to cast computer vision as a Markov Decision

Process (MDP). In an MDP, the problem domain is divided into a finite set of discrete

states that form a Markov chain. The actions in an MDP are processes that cause the

system to transition from one state to another according to given probability

8 The Brown and Roberts work also uses a Bayes Net to excersize dynamic control.
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distributions. Transitions also have rewards or penalties associated with them, depending

on their cost and/or the state they result in. (For example, a transition that results in a goal

state may have a high positive reward.) The objective in an MDP is to find a control

policy that maps actions onto states so as to maximize the total expected reward (or

equivalently to minimize the total expected penalty).

The classic algorithm for solving MDPs is Dynamic Programming (DP)9, which is a

successive approximation method for solving the Bellman Optimality Equation by

“backing up” estimates of a value or state/value function. Unfortunately, Dynamic

Programming  relies on an accurate model of the system being controlled in terms of the

rewards and transition probabilities, and as mentioned in Section 4.2 above, accurate

models of vision procedures are rarely available. Fortunately, research in Reinforcement

Learning (RL) has resulted in algorithms -- most notably Q-Learning [Watkins 89] and

Temporal-Difference (TD) learning [Sutton 88] -- that use similar methods to learn

control policies for unmodeled systems through on-line experimentation. This allows

control policies to be learned for systems where the operators and rewards may not be

well understood. (For a thoughtful discussion of RL and DP and the relationship between

them, see [Barto, Bradtke et al. 96]).

Recently, Peng and Bhanu [95] applied reinforcement learning to the limited problem of

parameter selection for a single vision procedure (an image segmentation algorithm).

Reinforcement learning has also been used in visually-guided robotic applications. The

most exciting possibility, however, is that reinforcement learning can be used to learn

complex scene or image interpretation strategies.

9 Either value-iteration or policy-iteration DP is fine. The difference is not relevant to this discussion.
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In a recent version of the Schema Learning System (SLS), reinforcement learning was used

to acquire a complex control policy for recognizing rooftops in aerial imagery [Draper

96].  In this experiment, SLS was provided with a library of vision procedures that

included straight line extraction, pairwise line grouping algorithms and symbolic graph

matching techniques. Its task was to learn a control policy for finding the image location

of a rectangular roof surface in an aerial image, based on a set of training samples. In a

small set of “leave one out” experiments (in which the system would be trained on nine

images and tested on a tenth), the control policies learned by SLS found a correct rooftop

in all ten trials (see http://vis-www.cs.umass.edu/Projects/SLS.html for more details).

The technology for applying reinforcement learning techniques to complex computer

vision applications is still early in its development. Many complex questions remain,

such as whether vision problems can be representation as a discrete set of states (as was

done by Bhanu, et al) or whether function approximators should be used to apply

reinforcement learning techniques to infinite state spaces (as was done by Draper).

Nonetheless, the MDP formalization provides a rich mathematical framework for

analyzing control problems in computer vision and for selecting procedures based on

long-term, rather than immediate, reward.

5 Conclusion

Although most recent work in computer vision has focused on narrowly-defined

subproblems, we believe that the long-terms goals of computer vision research should be

more ambitious. The general goal of computer vision is to provide the sensory component

- “the eyes” - for intelligent systems in a myriad of real-world applications. While the

domains of interest are wide-ranging and broad, computer vision systems should be

capable of providing the necessary semantic interpretations of their environment.
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In many ways, the stage has been set for focusing once again on integrated systems due to

the maturation of the many subfields of vision over the past twenty years.  Many of the

component technologies that would be used as building blocks for a general-purpose

vision system are now in place.  While there clearly is important work remaining in the

further development of component vision technologies, it is our contention that the time

is ripe to make advances in the integration of existing components into symbolic

interpretation strategies.

When studying fully-integrated scene interpretation systems, one must eventually

confront the many issues of knowledge representation and control, since the ultimate aim

is to associate the contents of an image with semantic information stored in long-term

memory. This paper reviewed some of the issues that must be dealt with, including:

• multiple levels of representation, from iconic images to extracted features, such

as edges, lines, regions, textures, surfaces, volumes, object identities and

spatial relationships;

• multiple visual cues and the processes to extract associated features and draw

inferences from this information;  this includes cues such as color, texture,

occlusion, shadows, stereo, motion, shape, vanishing points, size, etc.;

• the use of context and a priori world knowledge, so that specific instances of

general classes of objects can be recognized by their properties, parts of

objects can be constrained by their relationship to the whole, and semantic and

spatial constraints on objects within familiar stereotypical scenes can be

exploited;
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• the use of object- and context-specific control strategies for fusing information

across multiple levels of representation and integrating evidence from different

modalities.

In assessing these issues, we have argued that to fuse the many disparate visual cues

available in a scene, it will ultimately be necessary to have flexible, effective, and highly-

specific interpretation strategies for applying world knowledge to images.  In order to

take advantage of the image understanding algorithms produced over the last twenty

years, these interpretation strategies can be cast as control strategies that select and

parameterize sequences of vision procedures to achieve specific goals.

We contend, therefore, that one more important subproblem of computer vision needs to

be focused upon and advanced before effective, general-purpose vision systems can be

built: namely, the automatic construction of task-specific control strategies. Although this

topic has yet received the attention we believe it deserves, early efforts to solve it  are

outlined here.
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