
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

1999

Coordinating Agent Activities in Knowledge
Discovery Processes
David Jensen
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Jensen, David, "Coordinating Agent Activities in Knowledge Discovery Processes" (1999). Computer Science Department Faculty
Publication Series. 71.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/71

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13600262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/71?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


Accepted to WACC-99 1

Coordinating Agent Activities in Knowledge Discovery
Processes

David Jensen, Yulin Dong, Barbara Staudt Lerner, Eric K. McCall,
Leon J. Osterweil, Stanley M. Sutton, Jr., and Alexander Wise

Department of Computer Science
University of Massachusetts, Amherst

Amherst, MA  01003
{jensen|yldong|lerner|mccall|ljo|sutton|wise}@cs.umass.edu

Abstract

Knowledge discovery in databases (KDD) is an increasingly widespread activity.  KDD processes may
entail the use of a large number of data manipulation and analysis techniques, and new techniques are
being developed on an ongoing basis.  A challenge for the effective use of KDD is coordinating the
use of these techniques, which may be highly specialized, conditional and contingent.  Additionally,
the understanding and validity of KDD results can depend critically on the processes by which they
were derived.  We propose to use process programming to address the coordination of agents in the
use of KDD techniques.  We illustrate this approach using the process language Little-JIL to program
a representative bivariate regression process. With Little-JIL programs we can clearly capture the
coordination of KDD activities, including control flow, pre- and post-requisites, exception handling,
and resource usage.

Keywords:  Knowledge discovery process, Knowledge representation, Agent coordination, Agenda
management, Process programming
Category:  Speculative paper

1.  Introduction

KDD—knowledge discovery in databases—has become a widespread activity undertaken by an

increasing number and variety of industrial, governmental, and research organizations.  KDD is used

to address diverse and often unprecedented questions on issues ranging from marketing, to fraud

detection, to Web analysis, to command and control.  To support these diverse needs, researchers have

devised scores of techniques for data preparation, transformation, mining, and postprocessing.

Moreover, dozens of new techniques are added each year.  While the growing collection of

techniques and tools helps address the growing set of needs, the size and rapid growth of the

collection is becoming something of a problem itself.  Many of the techniques will yield incorrect

results unless they are used correctly with other techniques.  In addition, KDD is often done by teams

whose activities must be correctly coordinated.

Thus, one of the chief challenges facing an organization that wishes to conduct KDD is in

assuring that data analysis and processing techniques are used appropriately and correctly and that

the activities of teams assembled to do KDD are properly controlled and coordinated.  The
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applicability of techniques can depend on a number of factors, including the question to be

addressed, the characteristics of the data being studied, and the history of processing of those data.

This problem can be compounded if the organization lacks experience with the (possibly new)

techniques, or if individual analysts on a team differ with respect to their general level of expertise,

specialized knowledge about the data (e.g., biases and assumptions), or familiarity with particular

analysis techniques (pitfalls and tricks).  The problem can be further exacerbated if multiple analysts

must be orchestrated in a KDD effort, or if the resources required to support the KDD effort are

scarce or subject to competitive access.

We view these problems as issues of coordination, with the general goal being to assure that the

right team member applies the right technique to the right data at the right time.  Similar problems of

coordination come up in software development, for example, in the application of software tools to

software artifacts, the assignment of developers to development tasks, and the organization of tasks in

the execution of software methods.  We have applied process programming to solve coordination

problems in software development, and we believe that process programming is also suited to

representing and supporting coordination in KDD processes.  The applicability of approaches based

on software process programming is further suggested by other similarities between KDD processes

and software processes.  For example, both sorts of problems entail the involvement of both human

and automated agents, the combination of algorithmic and non-algorithmic techniques, the reliance

on external resources, and the need to react to contingencies and handle exceptions.  Additionally,

issues of process are important in understanding and assuring the validity of KDD results.

In this paper we argue that a process orientation is important for KDD and that process

programming is an appropriate technique for effecting good coordination in the use of KDD

techniques.  We support this argument with examples programmed in Little-JIL, a process language

that emphasizes coordination of activities, agents, and the use of resources and artifacts.  We believe

that Little-JIL provides a basis for orchestrating coordination that assures correctness and consistency

in the specification and execution of KDD processes, and assures that agents will have the ability to

communicate, analyze, and generally reason about the coordination of KDD techniques.

2.  KDD Processes
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A process can be thought of as a multi-step plan for completing a given task.  A process

specification defines a class of process instances.  Each instance conforms to the specification, but

carries out its work in ways that are molded by the mix of agents and data that are available when the

process is executed.  Instances differ from each other in ways that include the selection of agents that

execute particular steps, the order in which steps are executed, and the choice of which substeps are

used to complete a given step.

For example, a single KDD process specification for bivariate regression might allow choice

among multiple methods for handling outliers (e.g., manual removal, automatic removal, non-

removal), for constructing a regression model (simple least-squares regression, locally-weighted

regression, and three group resistant line), and for estimating statistical significance (parametric

estimates, randomization tests).  Naively assuming no interstep constraints and only these three steps,

this very simple process can be instantiated in 18 different ways — a potentially confusing number

for an unaided user.

Some of these possible configurations of process steps are clearly more desirable and effective

than others in different situations.    Thus researchers and practitioners have begun to provide this

sort of guidance.  Presently this takes the form of technical papers that specify desirable processes in

informal ways.  We believe that there is considerable value in augmenting these informal descriptions

with the more precise, complete, and formal specifications that are achievable through process

programming.  Capturing and representing processes precisely, completely, and clearly is notoriously

difficult, but our preliminary work indicates that carefully designed process specification languages

can greatly facilitate this task.

2.1  Processes are Particularly Important to KDD

Explicit representation of processes is particularly important in KDD. First, effective KDD

requires managing dependencies between steps.  Some steps may require, disallow, or enable other

steps.  For example, using most neural network training algorithms requires a preceding step to

recode missing values.  Non-parametric regression techniques disallow any subsequent step to

construct parametric confidence intervals.  Constructing a decision tree enables a future step of
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pruning that tree.  Explicit representations of these dependencies can assure that they are

appropriately handled.

Second, the details of processes are essential to determining the statistical validity of inductive

inferences.  One example of this is the well-known error of testing on training data (Weiss and

Kulikowski 1990).  KDD processes that do not enforce separation between training and testing data

(e.g., through simple disjoint sets or cross-validation) will produce biased estimates of model

accuracy.  The underlying cause of this phenomenon — referred to as "multiple comparisons" in

statistics — has far more general effects.  It has been causally linked to several pathologies of data

mining algorithms, including attribute selection errors, overfitting, and oversearching (Jensen &

Cohen 1997) and pathological growth in the size of decision trees (Jensen, Oates, and Cohen 1997).

It has also been causally linked to errors in evaluating several types of modeling algorithms (Feelders

and Werkooijen 1995; Gascuel and Caraux 1992; Giles and Lawrence 1997).  KDD systems that

employ multiple analysts distributed in time and space are particularly susceptible to pathologies

stemming from multiple comparisons (Jensen 1997).  Explicit representation of KDD processes

supports analyses that can determine when these pathologies can and cannot occur.  In addition, the

ability to reinvoke an identical process is a necessary prerequisite to solutions such as randomization

tests, cross-validation, and bootstrap estimates (Noreen 1989).  Explicit representation of processes

provides a vehicle for assuring that reinvocations are indeed identical.

Third, process details are vital to establishing the validity of KDD results in more general ways.

The literature of KDD, statistics, and machine learning is filled with discoveries of implicit

assumptions underlying particular techniques.  In most cases, the only way to verify whether these

assumptions are met is to examine the process used to apply a particular technique.  Only by

knowing the process used to derive a result can potential errors be traced back to their source.

Explicit KDD process descriptions capture these details.

Fourth, explicit representation of KDD processes can help balance multiple performance goals.

Several approaches to a given analysis task may produce results of differing statistical validity,

comprehensibility, and ultimate utility.  In addition, those techniques may require different amounts

of computation effort and human attention.  By explicitly representing these characteristics as part of

the specification of individual steps, the process specification can be created that meets particular
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objectives (e.g., "give me a fast approximate result" or "give me a highly accurate result, but take all

night if you need it").

2.2  Combining Human Analysts and Automated Agents

Research on KDD processes represents a return to one of the central issues of early work in KDD:

how best to combine the goals and expertise of human users with powerful automated data analysis

tools.  While this topic was identified as a central one by early work in the field (e.g., Gaines 1991), it

can be overlooked in our rush to develop more sophisticated automated techniques.  Recent work has

returned to this theme, including general descriptions of KDD processes (e.g., Fayyad, Piatetsky-

Shapiro, and Smyth, AI Magazine, 1996), analysis and integration of steps (Engels, Lindner, and

Studer 1997; Zhong et al. 1997), formulation of exploratory data analysis as an AI planning activity

(St. Amant and Cohen 1997), and a nascent industry effort to formulate standard KDD processes

(CRISP-DM).  More broadly, we believe that the effective integration of the work of human and

automated agents is a problem that is at the core of a growing number of critical problems. We

believe that we can advance work on this problem by studying it in the more specific context of

mixed-agent coordination in KDD process specification.

One important note: our work explores how to coordinate the activities of multiple KDD agents,

be they automated or human.  Our work does not concern programming individual automated agents

for such tasks as training a neural network or calculating a chi-square statistic.  These tasks are best

done using conventional programming languages and software engineering techniques.  Our work

also does not attempt to tell human analysts how to do their job.  Human analysts have knowledge

and expertise that is essential to the KDD process.  Instead, we are exploring flexible languages that

can be used to coordinate the actions of experienced human analysts with those of automated agents

and to build processes that enable less experienced analysts to achieve high-quality results.  The next

section provides an extended example of one such language.

3.  An Example:  Bivariate Regression

 In this section we present an example of a KDD process for bivariate regression.  Regression

appears to be a relatively simple process, but it is an appropriate example nevertheless.  First, it is a
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common data analysis activity, regression tools are included in several KDD workbenches, and it is a

basic task in deployed KDD applications. Second, the process is not actually as simple as it may

appear.  It involves a combination of human and automated agents, it may draw on a variety of

analytical techniques, the use of these techniques may be conditional and contingent,

interdependencies exist between certain techniques, and the whole process may entail sequential,

parallel, alternative, and recursive activities.  Thus, although bivariate regression is a relatively "small"

process, it still suffers many of the coordination problems that process programming is intended to

address.

The basic bivariate regression problem can be described simply (see Figure 1a).  We have a

continuously-valued variable X (e.g., advertising spending), and we wish to determine whether it can

help us predict another continuously-valued variable Y (e.g., net sales).  To assess this relationship

between X and Y, we have a data sample of N (x, y) tuples.

In this section, we present a process that coordinates agents and techniques in the performance of

bivariate regression.  We begin with basic linear regression, and then expand the example to

incorporate further functionality in the form of non-linear regression and accommodation of

inhomogeneous data sets (i.e., data reflecting two or more independent phenomena).  The process is

defined using the Little-JIL process language (Wise 1998), which is described with reference to the

examples.

This process should not be taken as a complete or comprehensive specification.  It contains both

intentional and unintentional simplifications.  That said, we believe that it illustrates many of the

necessary features of a more complete specification, and that the Little-JIL language could be used to

represent many of the necessary details in a more complete specification.

3.1 Linear Regression

The most common approach to the task of bivariate regression is linear regression.  Linear

regression constructs a model of the form y = ß1x + ß0, and allows easy assessment of the statistical

significance of the slope ß1.  We can conclude that X and Y are dependent if we can reject the null

hypothesis that ß1 is zero with high confidence.
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An outlierBivariate regression Inhomogeneity

X

Y

Figure 1: Simple bivariate regression and two common problems

 Least squares regression (LSR) is the most commonly used form of linear regression.  The

advantages of LSR include relatively high statistical power and computational efficiency.  However,

LSR's desirable characteristics rest on several assumptions, including homoskedasticity (the variance

of Y is independent of X) and the absence of outliers— (x, y) tuples that lie far from all other points.

Outliers often represent errors or highly unusual conditions that produce extreme values.

Consider the assumption about outliers in more detail.  Outliers strongly affect LSR models—a

single outlier can sharply shift an LSR model, causing it to accurately predict neither the outlier, nor

the other data points (Figure 1b).  An alternative modeling technique —three group regression

(TGR) (Emerson and Hoaglin 1983)—is robust to the presence of outliers.  TGR divides the range of

X into three groups with equal numbers of points, finds the median X and Y value of each group, and

constructs a line from those three points. Because the median is a measure of central tendency that is

resistant to outliers, TGR is much less strongly affected by outliers than LSR.

TGR addresses the problem of outliers, but the parametric significance test of ß1 used for LSR

does not apply to TGR. Instead, a computationally-intensive technique—randomization test (Cohen

1995, Edgington 1995)—should be used to test significance for ß1, the slope of the line built with

TGR.  Incidentally, a randomization test can also be used for LSR (although, due to its computational

cost, we chose to exclude this from our example process).

How the varied activities of linear regression should be coordinated, in light of the relevant

dependencies, conditions, alternatives, and contingencies, is precisely what a cogent process definition

should make clear.  Such process definitions require a process language that enables coordination

semantics to be expressed clearly and concisely, that allows rigor and flexibility to be combined as

appropriate, and that supports effective process enforcement while admitting dynamic adaptation.
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3.2  Representing a Linear Regression Process

In this section we illustrate the linear regression process using the Little-JIL process language.

Little-JIL is a visual language derived from a subset of JIL, a process language originally developed

for software development processes (Sutton and Osterweil 1997).  Little-JIL focuses on coordination

of agents in the performance of process activities in a wide range of processes.

Little-JIL represents the activities of a process as steps, where each step can be decomposed into

substeps.  Substeps within a step can be invoked either proactively or reactively.  A step may also

have a prerequisite to guard entry into the step, a postrequisite to guard exit from the step, and

exception handlers to handle exceptions thrown during the step.  The requisites and exception

handlers in turn are steps that may also have substeps, etc.  In addition, steps may include resource

specifications.  Runtime management of resource allocation provides another means of dynamically

constraining, adapting, and controlling process execution.  Each step also has, as a distinguished

resource, an execution agent, which is responsible for initiating and carrying out the work of the step.

Execution agents may be human or automated, and both types may be transparently combined in a

Little-JIL process.  These features and others are illustrated and discussed below with respect to the

examples.

Figure 2: Little-JIL specification for linear regression

 Figure 2 shows a Little-JIL specification of a linear regression process.  Process steps in Little-JIL

are represented visually by a step name surrounded by several graphical badges that represent aspects

of step semantics.  The bar below the step represents control of substeps.  The leftmost element in the



Accepted to WACC-99 9

control bar is a sequencing badge that indicates how substeps should be executed. For example, the

Linear Regression step in Figure 2 contains a circle-with-slash badge that represents a

"choice" control construct; this indicates that Linear Regression is executed by executing one

of the alternatives Least Squares Regression or Three Group Regression. The

agent, an analyst to whom the step is assigned, makes this choice. Least Squares

Regression and Three Group Regression, in turn, are executed by executing a sequence

of substeps, as indicated by the arrow control badge. (Two other proactive control badges, "try" and

"parallel", are discussed with respect to later figures.)

The rightmost element of a step control bar represents exception handlers.  Exception handlers

may be simple actions or more complex subprocesses, represented by additional substeps. The simple

actions include completing the step, continuing the step, restarting the step, and rethrowing the

exception. In Figure 2, the exception handler for the Outliers exception (thrown by step

Construct Linear Model) has no substep; rather, this handler simply traps the exception and

continues the Linear Regression step, as indicated by the arrow badge associated with the

exception handler. (A handler with a substep is shown in Figure 4.) In the context of a choice step,

continuing after an exception means that the agent is offered a choice of the remaining alternatives.

A step may also include reactions, which are attached as substeps to a badge in the center of the

control bar (however, reactions are omitted here for the sake of simplicity).

In the visual representation of Little-JIL steps, a circular badge above a step name represents the

interface to the step.  The interface includes resources needed by the step, as well as parameters sent

into and out of the step, local data, and events and exceptions that may be thrown by the step.

Execution agents are represented as a type of resource.  Each step has an execution agent; if none is

specified for a step, the execution agent is inherited from the step's parent.  In Figures 2 and 3 the

agents include both humans and automated tools.  Data sets can also be modeled as resources.

Several steps in the example throw exceptions (designated in the interface by an X).  While much of

the data flow between steps is shown in a simplified form, most of the data declarations have been

omitted from the interfaces in the figures for the sake of brevity.

A Little-JIL step may also have a prerequisite and/or a postrequisite.  A prerequisite is indicated

by a downward-pointing triangle on the left of the step name and a postrequisite is indicated by an
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upward-pointing triangle on the right.  An empty triangle indicates no requisite; a filled triangle with

text indicates the name of the specified requisite. The body of the requisite is a separately specified

step (not shown in our figures) possibly containing multiple substeps.  A requisite is successful if it

terminates normally; if it fails, it throws an exception.  For example, the step Construct LSR

Model has the postrequisite No Outliers.  If outliers exist, then the postrequisite throws the

Outliers exception, which causes Construct LSR Model to fail.  The parent step Least

Squares Regression propagates the exception, which is handled by its parent Linear

Regression.

Clearly, there are many ways to add to the process specified in Figure 2.  Additional pre- and

post- requisites could be added to the LSR and TGR steps, data preprocessing steps could be added to

improve the robustness of the process, and other approaches to regression could be added.  The next

section discusses one of the most important elaborations to the process:  how to deal with non-

linearity.

3.3  Coping with Non-linearity

 A common diagnostic technique for any form of linear regression is to examine a plot of

residuals.  Ideally, the residuals—the errors in Y left unexplained by a model—should not vary with

X. A non-linear relationship between X and the residuals indicates a non-linear relationship between

X and Y, one that is not adequately captured by the linear model.  Checking for linear residuals can

be represented in Little-JIL as a postrequisite for the Linear Regression step. What if this

postrequisite fails?  One solution would be to try a non-linear modeling technique such as locally-

weighted regression or lowess (Cleveland and Loader 1995).  Figure 3 shows a process that includes

both the original linear regression step and a new step for non-linear regression.  The "try"

sequencing badge on the root regression step indicates that non-linear regression is invoked only if

linear regression fails.  Given the current specification of linear regression, the principal reason the

step might fail is the presence of non-linear residuals.
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Figure 3: Regression with substeps for linear and non-linear regression

Linear regression and non-linear regression are partitioned as separate alternatives because

different processes are required to determine if linear and non-linear models indicate a relationship

between X and Y.  Linear regression tests a relatively simple statistical hypothesis (ß1 = 0); non-linear

regression relies on a step Evaluate Relationship in which a human analyst makes a

qualitative judgement. To assist in that judgment, a step to construct confidence intervals has been

added to non-linear regression, although analysts should be cautious to distinguish between

confidence intervals and significance tests (Cohen 1995).

Note that the overall Regression process coordinates the work of human and non-human

agents who participate at various levels in the process. As with linear regression, many additions to the

regression process are possible.  These include additional approaches to non-linear regression, more

quantitative substitutes for the evaluate relationship step, and prerequisites for the regression step.

The next section describes one particularly important prerequisite for regression—homogeneity.

3.4  Coping with Inhomogeneity
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 A frequently overlooked assumption of regression is that the data sample is homogeneous—that

it represents a single uniform phenomenon rather than two or more phenomena with fundamentally

different behavior (Figure 1c).  For example, inhomogeneity can occur when men and women have

different physiological responses to some phenomenon, yet data from men and women are mixed

together for purposes of analysis.  In contrast to outliers, which often represent errors that cannot be

explicitly modeled, inhomogeneity represents two or more distinct data regimes that require

independent modeling.

Figure 4: Handling inhomogeneous data

 Figure 4 shows a Model Relationships process that handles inhomogeneous data.  The

process first attempts to apply regression testing to a given bivariate data set.  However, the regression

step is guarded by a prerequisite that tests the homogeneity of the data. This prerequisite assures that

a single regression is not performed on heterogeneous data.  If the prerequisite is violated, the

exception NonHomogeneity is thrown, which is caught by an exception handler for Model

Relationships.  The recursive process Model Subsets handles the exception.  At the top

level Model Subsets is a sequence. The first substep, Choose a Subset, chooses a data
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subset from the inhomogeneous data set.  The second substep is a parallel step, Use and Choose

Next.  This substep, in parallel, applies regression to the selected subset and recursively calls Model

Subsets on the remaining part of the data set.  By this recursion, Model Subsets iteratively

models subsets of the original data set, completing normally when no more subsets are available (as

indicated by the "check" badge on the exception handler for the exception

NoSubsetAvailable).

By combining the parallel step with recursion, multiple data subsets may be modeled

concurrently.  Note that, in this formulation of the process, a chosen data subset is not guaranteed to

be homogeneous.  In that case, when the process Regression is called on the subset, the

homogeneity prerequisite will again throw the NonHomogeneity exception, which will take

control back to the exception handler for inhomogeneous data (i.e., Model Subsets).  As an

alternative, we could have put a test for homogeneity as a postrequisite on the Choose a Subset

step.

3.5 Coordinating Agents at Process Execution Time

In the preceding sections we have shown how Little-JIL can be used to flexibly specify a process

that manages inter-step process dependencies for multiple execution agents.  In this section, we

describe how the activities of these agents are coordinated when a process is instantiated and

executed.

The vehicle for agent coordination during process execution is an agenda management system

(AMS).  An agenda management system is a software system that is based on the metaphor of using

agendas, or to-do lists, to coordinate the activities of various human and automated agents.  In such a

system, task execution assignments are made by placing agenda items on an agenda that is monitored

by one or more execution agents.  Different types of agenda items may be used to represent different

kinds of tasks that an agent is asked to perform.

Our agenda management system (McCall, Clarke, Osterweil 1998) is composed of a substrate that

provides global access to AMS data, a set of root object types (agendas, agenda items, etc.),

application-specific object types that extend the root types, and application-specific agent interfaces

(e.g., GUIs for human agents).
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We have designed and implemented an AMS specifically to support the execution of Little-JIL

processes.  This AMS has five types of agenda items: one item type corresponds to each of the four

Little-JIL step kinds, and one item type corresponds to a process step at its lowest level of

decomposition.  Each Little-JIL agenda item has many attributes, including step name, execution

agent, current status, log, step instance parameters, throwable exceptions, and interpreter.  The last

attribute is provided because, as we illustrate below, the Little-JIL interpretation architecture allows

each step to have its own interpreter instance.

When a step of a process program is first instantiated, an agenda item of the appropriate type is

created and its attribute values are set accordingly (e.g., status is set to “Posted,” input parameters are

given the correct values).  As the process executes, the attribute values change accordingly (e.g., the

execution agent sets output parameter values, status is changed).  Thus, process program execution

state is stored within the AMS. This approach to storing process state is similar to that used in the

ProcessWall (Heimbigner 1992).

An agent typically monitors one or more agendas to receive tasks to perform. Multiple agendas

are used because an agent may frequently be involved in several disjoint processes (or acting in roles

that are logically disjoint).  When an item is posted to an agenda that an agent is monitoring, the

agent is notified that the agenda has changed.  In the case of a human agent, for example, this could

result in a new item appearing in the person's agenda view window.  The agent is then responsible for

interpreting the item and performing the appropriate task.  Agents may also monitor items

individually; this gives them the ability to post an item to an agenda and to observe the item so they

can react to changes in the item’s status, for example.

These mechanics are sufficient for the Little-JIL interpreter to instantiate and execute multi-agent

Little-JIL process programs.  By examining the state of an agenda item corresponding to a step of the

process program, the interpreter can execute the process.  When a new step is to be executed, the

interpreter identifies the appropriate execution agent (with the help of a resource management

system), creates an appropriately typed agenda item for that step, and posts it on the agent's agenda.

As the agent executes the step, its updated status is reflected in the agenda item's status attribute value,

which is monitored by the interpreter.  As the status changes, the interpreter accordingly creates and

posts substeps, returns output parameters, on successful completion of the step, propagates exceptions,
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on unsuccessful completion, and so on.  Thus, an AMS provides language-independent facilities that

allow coordination to take place, while the interpreter encodes key coordination semantics of the

Little-JIL language itself.  This design decouples concerns about why and when coordination should

occur from concerns about how coordination should occur.

For example, consider how the process program fragment in figure 2 would be executed,

supposing an interpreter had created an item to correspond to an instance of a Linear

Regression step (a Little-JIL choice step).  Assume the interpreter has identified a HumanAnalyst

for this task (named Herman), posted it to Herman's agenda, and started the item's interpreter (which

is stored in the interpreter attribute of the item).  At this point the human analyst would use the GUI

to change the status attribute of the Linear Regression item to “Starting.”  Its interpreter

would be notified of this change and would create two new agenda items that correspond to the

Least Squares Regression and the Three Group Regression sub-steps, then set the

parent item's status to “Started.”  Because new agents are not specified for these steps, the interpreter

would post them to Herman's agenda and would start interpreters for the new items.  Herman's agenda

GUI would render the agenda to clearly depict the subitems of the choice item as alternatives.

Suppose Herman then chooses to start the Least Squares Regression step, changing its

status to “Starting.”  At this point both the Linear Regression item's interpreter and the

Least Squares Regression item's interpreter would be notified of the change.  The

Linear Regression item's interpreter would react by setting the status of the other sub-item

(Three Group Regression) to “Retracted.”  This would cause the item to disappear from

Herman's agenda.  Meanwhile, the Least Squares Regression item's interpreter would

create a new item for the first substep, Construct LSR Model.  Because the process specifies an

LSRTool for that step, the new item would be posted to a particular LSRTool's agenda, then the

Least Squares Regression item's status would be set to “Started.”  Whatever agent was

monitoring the LSRTool's agenda would then be notified that the tool's agenda has changed.  This

agent would extract whatever information was needed by the tool from the agenda item, set the item's

status to “Starting,” and would invoke the LSRTool agent.  Because Construct LSR Model is

a leaf step, the item's interpreter immediately changes its state to “Started.”  When the LSRTool
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finishes, the tool's agent would set the status of the leaf step appropriately (“Completing” if

successful or “Terminating” if not), and that step's interpreter would complete the transition of the

leaf step to a final state.  The interpreter for the Least Squares Regression item would be

notified that the step has changed, and, depending on its status, would start the next sequential sub-

step or would terminate the parent.

As previously mentioned, Little-JIL makes no distinction between human and tool agents.

Similarly, neither does the AMS.  As seen in the above example, different agents interact with the

AMS, and consequently with the running Little-JIL process, via customized agent interfaces.  For

humans, this interface may be a GUI that is used to change an item's status, signal exceptions, change

parameters, etc.  For COTS tools (such as the LSRTool, perhaps), this interface may be a wrapper

agent that integrates the tool with the AMS, spawning the tool to perform tasks in response to agenda

items being posted to the tool's agenda and reporting the results of tool execution by setting agenda

item attributes (e.g., parameters, status) as required.

Our early experiences support our belief that an agenda management system provides an

appropriate metaphor for coordinating interaction in mixed-agent processes such as KDD.  We intend

to continue experimenting with the use of Little-JIL and the AMS to facilitate coordination in such

processes.

4.  Lessons Learned

Our experience using Little-JIL to specify KDD processes has been instructive.  Many

coordination aspects of KDD processes (including examples not described here) have been easily

expressed using Little-JIL.  For example, one aspect well handled by Little-JIL is the highly variable

control requirements of KDD processes.  Conversely, KDD processes have drawn on the full range of

Little-JIL control constructs.  In some cases, processes require extremely strict control, and Little-JIL

allows us to indicate this (e.g., by executing substeps in a specified order).  In other cases, only very

loose control is needed, and the language allowed us to specify this as well (e.g., by allowing user

choice or parallel execution).  We believe that a successful process languages for KDD must allow

flexibility to program processes both strictly and loosely.

Little-JIL's pre- and postrequisites are essential to effective coordination in KDD processes.

Prerequisites make explicit the assumptions that underlie a sampling or analysis technique;
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postrequisites make explicit the acceptance criteria for the successful completion of a technique. The

ability to make assumptions and acceptance criteria explicit is important for making a KDD process

understandable, evaluating its correctness, assuring its consistent execution, and validating its results.

Similarly, the ability to represent exceptions and exception handling is critical for process

robustness, reliability, and safety.  In our KDD examples, exception management is also crucial in

specifying process control structures.  While many descriptions of KDD techniques use nearly ideal

data, most practitioners who attempt to apply these techniques quickly uncover hidden assumptions,

leading to exceptions in idealized process models.  The ability to indicate possible exceptions, specify

how they are to be handled, and direct subsequent execution, is essential to coordinating KDD efforts

in real-world applications.

Resource management provides another dimension of coordination in KDD processes.

Flexibility in agent coordination is afforded because Little-JIL process can be written independently

of the specific execution agents to which they will be bound at run time.  Additionally, the control

model of the language, in conjunction with the agenda management system, allows processes to be

written transparently with respect to the issue of human versus automated agents.  However, runtime

allocation of agents allows dynamic orchestration of agent activities and enables the dynamic

adaptation of process behaviors to agent availability.  Similar degrees of flexibility and opportunities

for dynamic control apply to resources in general.

Our experience using Little-JIL also uncovered some deficiencies in the current version of the

language.  Two related issues particularly stand out.  First, adding to Little-JIL process specifications

is not as simple as we would like, at least in the domain of KDD.  Incorporating new techniques (e.g.,

variable transformation or deletion of outliers) sometimes requires substantial revisions in process

specifications (due at least in part to the interdependence of KDD techniques and their effects).  We

would prefer that Little-JIL process specifications to be robust enough that most new KDD techniques

could merely be "slotted into" the appropriate place in a Little-JIL process.  Changes to the Little-JIL

language or development of appropriate Little-JIL style may be essential steps toward this goal.

Second, KDD is often an event- or opportunity-driven activity, and our current Little-JIL process

specifications have not expressed this adequately.  Exception handlers have provided useful

specifications of reactions to abnormal events; based on experience in modeling software
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development processes, we believe that the ability to specify reactions to normal events should also be

useful for KDD processes.  This aspect of Little-JIL is currently under development.

5.  Future Work

Our work to date with Little-JIL has convinced us of the general utility of KDD process

specification.  However, at least three important areas of work remain.  First, additional experience

with specifying KDD processes is needed.  We intend to extend our existing handful of KDD

processes to a larger number, and to increase the level of sophistication of those processes.

Second, while we believe that Little-JIL specifications are easy to read and write compared to

more algorithmic languages, we would like the process to be extended by non-programmers.  We

imagine providing a more sophisticated process editor that would assist a KDD researcher by assisting

with the insertion of appropriate steps with the necessary prerequisites, postrequisites, data flow and

exception handling.

Finally, the Little-JIL language itself is still under development and there are a number of issues

we intend to address.  We are investigating integrating an AI planner (Garvey, Decker, and Lesser

1994) and resource-based scheduler (Wagner, Garvey, and Lesser 1997) with Little-JIL.  Such

mechanisms would allow us to schedule agents and other resources based on cost, availability for a

specific time and duration, and expected quality of their results.  The results from planning would

help guide agents in their decision making at choice and parallel steps by identifying which substeps

are most likely to satisfy the time, cost, and quality constraints for process instances.

We are also investigating the use of static analysis techniques (Dwyer and Clarke 1994) on Little-

JIL processes.  Specifically, we wish to prove properties of Little-JIL processes such as ordering rules

(Step A always executes before Step B) and non-local dependencies (if Step A is performed, Step B is

6. Conclusions

Knowledge discovery research is developing and exploiting a diverse and expanding set of data

manipulation and analysis techniques.  Not all analysts, or even all organizations, can have a thorough

knowledge of how to correctly and effectively combine and deploy these techniques.  Process

programming provides an effective means for specifying the coordinated use of KDD techniques by
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agents in potentially complex KDD processes.  As demonstrated in this paper, KDD process

specifications written in Little-JIL express requirements on individual techniques and capture

dependencies among techniques. Little-JIL is a high-level process language designed to support the

specification of coordination in processes; Little-JIL offers appropriate control flow constructs, pre-

and post-requisites, reactions, exception handling, agent specifications, and dynamic resource

bindings.  Little-JIL enables explicit representation of KDD processes, allows reasoning about those

processes, and supports correct execution of the processes.  In turn, this enables KDD applications to

produce reliable and repeatable results, which is necessary for the effective use of data mining across

a wide range of organizations.
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