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DYNAMICS OF A SUSPENSION OF SPHERES AND RIGID POLYMERS:

EFFECT OF GEOMETRICAL MISMATCH

Radu P. Mondescu and M. Muthukumar

Department of Physics and Astronomy, and Polymer Science & Engineering Department and Materials Research Science and

Engineering Center

University of Massachusetts, Amherst, MA 01003

(February 1, 2008)

An effective medium approach together with a multiple scattering formalism is considered to
study the steady-state dynamics of suspensions of spheres and rigid stiff polymer chains without
excluded volume interactions. The polymer chains are taken to be so long that Gaussian statistics is
applicable. We have considered the dynamics of probe objects in a solution containing spheres and
polymers. The probe object is either a sphere or a polymer. We have studied different conditions
of the solution where some or all of the spheres are frozen in space. The effective medium equations
have been solved self-consistently for finite volume fractions of spheres ΦSP and polymers ΦPOL,
respectively, and the important dimensionless variables that are controlling the dynamical behavior
have been identified. In particular,the role of the geometrical parameter t =

Rg

a
(a is the radius

of any sphere and Rg the radius of gyration of a polymer chain) is discussed. The translational
diffusion coefficients of the moving probe sphere DS and of the probe polymer chain DP , and
the shear viscosity of the suspensions have been derived. When the polymers are present in the
solution,both the friction coefficient of the labeled mobile sphere or that of the probe polymer chain
and the shear viscosity diverge as ΦPOL → 0.31. Also, when polymers are diffusing in a suspension
of fixed spheres an optimum range of ΦSP that maximizes the difference in the diffusion coefficients
of polymer chains characterized by distinct t values has been noticed.

I. INTRODUCTION

Starting with the pioneering work of Einstein [1], a lot
of effort was devoted to developing the hydrodynamics of
suspensions at finite concentrations, owing to both the in-
trinsic challenge of the problem and to the considerable
utility of such a theory in the rheology of concentrated
polymer suspensions. Most of the work done is related to
the hydrodynamics of suspensions of hard spheres, specif-
ically to the computation of virial-type expansions—in
the volume fraction Φ (low but non-zero) of the sus-
pended particles—for the change in viscosity δη and in the
friction coefficients ζ (translational and rotational). An
incomplete review of the development of this field could
include the divergence-free theories of Peterson and Fix-
man [2] and Batchelor and Green [3], the multiple scatter-
ing method elaborated by Freed and Muthukumar [4,5]
and Muthukumar and Freed [6,7], the expansion in cor-
relation functions used by Beenaker [8] and the angular
momentum diagrammatic expansion combined with the
multiple scattering technique in Thomas and Muthuku-
mar [9].

The viscosity and frictional properties of infinitely di-
luted polymer solutions received a wide interest (see Ref.
[10]),but few attempts were made to construct a detailed
theory for finite concentrations [11–13], and even less the-
oretical results are available for dispersions of distinct

types of elements.

In this paper we derive explicit expressions for the
change in viscosity due to suspended objects and for
the translational diffusion coefficients, as functions of the
solid filling fractions of spheres and of polymer chains,
ΦSP and ΦPOL, respectively, for a suspension of poly-
mers and rigid, fixed spheres, in the stationary, time-
independent limit. Qualitative features of the hydrody-
namic behavior of the mixed suspensions are discussed
and it is shown that when the polymers are present in
the solution, the dynamics is frozen at ΦPOL ≃ 0.31.
Results in the limits of very low [14] and very high poly-
mer concentrations (Rouse) and also for the dynamics of
a random array of spheres [15], are recovered. We have
found that the interaction between polymers, spheres and
the fluid is controlled by the dimensionless parameters

β =
Rg

ξ , x = a
ξ and t =

Rg

a , where ξ = ξ(ΦSP , ΦPOL, t)

is the hydrodynamic screening length.

Technically, our calculations are based on the multi-
ple scattering formalism [4,6,15,5] and on the assumption
that the physical properties of the suspension, averaged
over the random position distribution of the particles,
are equivalent to those of an homogeneous effective fluid
characterized by the effective viscosity ηeff and by the al-
tered Oseen propagator of the velocity field G(r, r′) (to be
defined later).

The main simplifying hypothesis is the absence of
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excluded volume interactions—sphere-sphere,polymer-
polymer,or polymer-sphere—both the polymer chains
and the spheres being penetrable,ghost-type objects.
Also, the solvent is assumed incompressible and de-
scribed by a linearized Navier-Stokes (N-S) equation.

Other assumptions made and the basic features of the
theory are :

a) the suspension of spheres and polymers is monodis-
perse, all spheres having the radius a and all polymers
having the length L.

b) except the sphere producing the flow, all others are
fixed. All polymers are Gaussian.

c) the specific calculations are valid only in the
limit of steady-state shear flow in the linear response
regime,when the average force 〈F(r)〉 exerted upon the
fluid is given by :

〈F(r)〉 = (K ∗ 〈v〉) (r)

where K is a tensor-like quantity and ∗ is the convolution
operator: f ∗ g =

∫

f(r − r′)g(r′) dr′.

d) both the spheres and the polymer chains are ran-
domly distributed, and after the configurational average
is taken the suspension becomes isotropic.

e) we employ the usual preaveraging approximation
[10], where one replaces the value of the effective Oseen
tensor G(r, r′) and of its generalized inverse with their
configurational averages 〈G(r, r′)〉 and

〈

G−1(r, r′)
〉

.

f ) two models have been analyzed :

S-P an ensemble of rigid spheres in a dispersion of polymers.
All but one sphere are fixed. The tracer sphere gener-
ates the flow.

P-S a collection of polymer chains immersed in a suspension
of immobile spheres, with an external flow imposed.

The hydrodynamic interaction between fluid and par-
ticles is implemented by enforcing stick boundary con-
ditions. In each example we calculate the translational
diffusion coefficient of the test object ( a polymer chain or
the tracer sphere ) and the change in the shear viscosity
of the solution due to the presence of the added particles,
as functions of ΦSP , ΦPOL and the coupling parameter

t =
Rg

a .

The paper is organized as follows : next section deals
with the formal theory of the steady-state velocity flow in
a solution of NP polymer chains and NS fixed spheres , in
Section III we apply the derivation to the separate cases
of polymers and spheres, which are needed in Sec. IV
where we solve and show the results for the four specific
examples mentioned previously. Finally, in Section V,
we present, discuss, and review the main findings of our
paper. For the reader interested in reproducing and ex-
tending our results, detailed calculations are displayed in
the Appendices.

II. FORMAL THEORY OF THE VELOCITY
FIELD IN A SUSPENSION OF POLYMERS AND

SPHERES

To describe the dynamics of a hydrodynamic system,
a knowledge of the velocity field v(r,t) produced by the
forces acting upon the fluid is required. Our goal is to find
an expression for v(r) (stationary limit) for the system
we are interested in and to extract the appropriate phys-
ical information (diffusion coefficient, viscosity). This is
accomplished using the multiple scattering technique as
shown below.

A. Fluid and Particles

Under the assumptions indicated in the previous sec-
tion and taking the fluid density equal to unity, the sta-
tionary velocity field for an incompressible, newtonian
viscous fluid is governed by the linearized N-S equation :

− η0△v(r) + ∇p(r) = F(r) (1)

where F(r,t) and p(r, t) are the external force driving the
flow ( including the random thermal contribution ) and
the pressure, and η0 is the kinematic shear viscosity coef-
ficient. Introducing the Fourier transform of any function
A(r) as :

A(r) =

∫

dk

(2π)3
A(k) exp(−ik · r) ≡

∫

k

A(k) exp (−ik · r)

A(k) =

∫

drA(r) exp(ik · r) (2)

one finds the formal solution of Eq. (1) as a convolution :

v(r) = (G ∗ F)(r) (3)

with G(r,r′) being the Oseen tensor [16] (in dyadic no-
tation) :

G(k) =
11 − k̂k̂

η0k2

G(r, r′) =
1

8πη0|r − r′|

(

11 +
(r − r′)(r − r′)

|r − r′|2
)

(4)

Here, 11 is the unit tensor and k̂ is the unit vector pointing
in the k direction.

Physically, G(r, r′)—the force propagator—is convey-
ing the hydrodynamic disturbances, converting a point-
like force acting at r′ to the velocity of a fluid particle
located at r. When a fixed object is introduced in the
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fluid, the velocity flow is perturbed due to the scatter-
ing off the particle surface. One needs then to include in
Eq. (1) a term FOBJ→FL(r) corresponding to the force
exerted by the particle upon the fluid :

− η0△v(r) + ∇p(r) = F(r) + FOBJ→FL(r) (5)

To couple in a simple way the dynamics of the solvent and
of the object, we choose no-slip boundary conditions :

vFLUID(rs) = vOBJ(rs), rs ∈ object surface. (6)

In Eq. (5) F(r) is zero inside and on the surface of
the particles and FOBJ→FL(r) is non-zero only on the
surface of the suspended particles. The equation of mo-
tion is valid throughout the volume of the fluid. Because
we want to replace the fluid and the suspended particles
with an effective medium characterized by an average ve-
locity field defined everywhere, it is necessary to apply
Eq. (5) inside the volume of the particles as well. This
is true provided the full stress tensor Π(r) [17,4] obeys (
neglecting the inertial term in the equation of motion of
the object ) :

∇ · Π(r) = 0 , r ∈ inside object.
∇ · Π(rs) = FOBJ→FL(rs) , rs ∈ object surface.

(7)

The formal solution of Eq. (5) can be written as :

v(r) = G ∗ F|
r
+ G ∗ FOBJ→FL

∣

∣

r
(8)

Using the boundary condition (6), we can eliminate the
unknown quantity FOBJ→FL(r) —as shown explicitly in
the next section—and arrive at the exact equation that
gives the microscopic velocity field everywhere in the
fluid :

v(r) = G ∗ F|
r
+ G ∗ TOBJ ∗ G ∗ F

∣

∣

r
(9)

where the multiple convolution product means :

f ∗ g ∗ h|r =

∫

dr dr′ f(r − r′) · g(r′ − r′′) · h(r′′)

and TOBJ represents the flow propagator, a tensor op-
erator that transforms the velocity field incident on the
object in a force field located on its surface and acting
upon the fluid. TOBJ depends in general on the position,
structure and geometry of the object. The interpretation
of (9) is straightforward : there are two contributions to
the velocity of the fluid v(r) at point r, a direct wave due
to the external force F acting at some point r′, and an
indirect contribution coming from the scattering off the
surface of the object of the disturbance produced by F
at r′ (see Fig. 1).

When many objects are present in the solution, one
should add all the contributions coming from all possible

scattering sequences but, even for two bodies only, Eq.
(9) becomes a series with an infinite number of terms,
the convergence of which might be problematic. For
some specific cases (polymers, spheres) [12,15], these dif-
ficulties can be overcome, which was the reason we de-
cided to investigate solutions of mixed polymer chains
and spheres. For example, when two objects labeled a
and b are present in the solution, the multiple scattering
expression for the velocity field v(r) will be :

v(r) = G ∗ F|
r
+ G ∗ {Ta + Tb} ∗ G ∗ F|

r

+ G ∗ {Ta ∗ G ∗ Tb + Tb ∗ G ∗ Ta} ∗ G ∗ F|
r

(10)

+ G ∗ {Ta ∗ G ∗ Tb ∗ G ∗ Ta

+ Tb ∗ G ∗ Ta ∗ G ∗ Tb} ∗ G ∗ F|
r
+ . . .

Being interested only in the average properties of the
system, we will average in Eq. (9) upon the random posi-
tion of the body, thus obtaining the average velocity field
u(r) :

u(r) = 〈v(r)〉 =
1

V

∫

dR0 v(r) = G ∗ F|
r

+ G ∗
〈

TOBJ
〉

∗ G ∗ F
∣

∣

r
(11)

with R0 denoting the position of the center of mass of
the object.Note that if excluded volume interactions are
considered, appropriate particle distribution functions
should be used.

To make the connection with the experimentally mea-
surable quantities, we will turn to Eq. (5) and average it
directly over the particle distribution to get the Navier-
Stokes equation describing the effective fluid :

− η0△u(r) + ∇〈p(r)〉 − Σ ∗ u|
r

= F(r) (12)

In writing the equation above we introduced a new quan-
tity, the Σ(r, r′) operator, called the self-energy of the
fluid and defined by the relation :

Σ ∗ u|
r

=
〈

FOBJ→FL(r)
〉

(13)

Note that this relation implies a linear response regime
of the shear flow.

Σ(r, r′) is the essential quantity that encompasses all
the information regarding the change in the viscoelastic
properties of the fluid due to the presence of the object(s).
To illustrate this, let us introduce the Fourier transform
of the self-energy, knowing that the averaged solution is
translationally invariant :

Σ(k) =

∫

drΣ(r − r′) exp(ik · (r − r′)) (14)

Then Eq. (9) becomes :
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[

η0k
211 − Σ(k)

]

· u(k) − ikp(k) = f(k) (15)

Using the incompressibility condition k̂ · u(k) = 0 and
decomposing Σ(r, r′) into its transverse and longitudinal
parts applying the relations :

Σ(k) = Σ⊥(k) (11 − k̂k̂) + Σ‖(k) k̂k̂

(11 − k̂k̂) · (11 − k̂k̂) = (11 − k̂k̂) (16)

k̂k̂ · (11 − k̂k̂) = 0

we can eliminate the pressure p(k) to solve Eq. (15) for
the Fourier component u(k) of the averaged velocity field
u(r) :

u(k) = G(k) ·F(k)

G(k) =
11 − k̂k̂

η0k2 − Σ⊥(k)
(17)

We recover then, immediately :

u(r) = G ∗ F|
r

(18)

The interpretation of Σ emerges clearly. What we
achieved is to replace the initial system fluid + object(s)
with an effective medium of a certain viscosity ηeff where
the hydrodynamic disturbances are propagated by the
modified Oseen tensor G(k), with all the complexities of
the multiple scattering processes involving the suspended
object(s) captured by the Σ tensor.

In the hydrodynamic limit |k| → 0, the total change
in viscosity is given by :

ηeff − η0

η0
= − lim

k→0

1

η0

∂

∂k2
Σ⊥(k) (19)

If Σ⊥(k = 0) 6= 0 , the hydrodynamic interaction is
screened, with the screening length ξ given by :

ξ−2 = − 1

η0
Σ⊥(k = 0) (20)

Similarly, formulas for the friction coefficients ζ (transla-
tional, rotational, cross translational-rotational ) of the
object can be derived from Σ(k). We will explicitly show
this, for the translational friction coefficient, in the fol-
lowing sections.

More practical, from an experimental point of view,
is the diffusion coefficient D of a particle moving in a
solution, calculated from the Einstein formula :

D(Φ) =
kBT

ζ(Φ)

where T = temperature, kB is the Boltzmann constant
and Φ is the volume fraction of the suspended particles

in the solution. Note that in general the friction coeffi-
cient is a tensor-like quantity, in which case the previous
expression should be adjusted correspondingly. The di-
mensionless variable that we have computed and plotted
in this paper is the relative translational diffusion coeffi-
cient :

Dt(Φ)

D0
t

=
ζ0
t

ζt(Φ)
(21)

with D0
t the translational diffusion coefficient of a parti-

cle in the pure fluid (e.g. D0
t = kBT

6πη0a for a sphere and

D0
t = 8

√
2

3
kBT

6π
√

2πη0Rg
for a single polymer chain ). In

the remaining of this work, we will denote this relative
diffusion coefficient simply by D.

Having established that Σ(k) contains the relevant dy-
namical information , we need to actually compute it by
relating it to the known quantity TOBJ . Here lies the
essence of the multiple scattering formalism. Averaging
Eq. (8) directly and using the definition of Σ from Eq.
(13) we can rewrite the solution for the averaged velocity
field u(r) in terms of the G propagator of the pure fluid :

u(r) = G ∗ F|
r
+ G ∗ Σ ∗ u|

r
(22)

Iterating indefinitely, one obtains :

u(r) = G ∗F|
r
+ G ∗ Σ ∗ G ∗ F|

r

+ G ∗ Σ ∗ G ∗ Σ ∗ G ∗ F|
r
+ . . . (23)

Representing Σ as a series in the number i of distinct
scattering events :

Σ(r, r′) =

∞
∑

i=1

Σ(i)(r, r′) (24)

substituting in Eq. (23) and comparing to the formal so-
lution from Eq. (11), it follows that :

Σ(1)(r, r′) =
〈

TOBJ(r, r′)
〉

Σ(2)(r, r′) = −
〈

TOBJ
〉

∗ G(r1, r2) ∗
〈

TOBJ
〉
∣

∣

(r,r′)
(25)

Σ(3)(r, r′) =
〈

TOBJ
〉

∗ G ∗
〈

TOBJ
〉

∗ G ∗
〈

TOBJ
〉∣

∣

(r,r′)

. . .

where integration over r1 and r2 in the multiple convo-
lution is understood.

The expressions displayed above are particular for the
case of only one particle in the solution, but they illus-
trate the basics of the formalism used in this paper. Now
it is straightforward to generalize the procedure devel-
oped before to deal with a system where more than one
object, or different types of particles are immersed in a
fluid.
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Finally, at any volume fraction Φ of the solute par-
ticles, we compute self-consistently [7] the contribution
Σ(r, r′) of the suspended particles to the divergence of
the full stress tensor of the fluid. This is accomplished
by assuming linear superposition of the contributions of
each particle to the self-energy of the fluid (assumption
which is exact when there are no thermodynamic corre-
lations among particles, as in the present work). Then,
for a suspension of N particles, one can replace N − 1
of them with an effective medium described by the mod-
ified Oseen tensor G(r, r′), which is a function of some
ΣN−1 (see Eqs. (12,17,18)). Then, it follows that δΣ,
the self-energy increase due to the remaining particle is :

δΣ (G(ΣN−1)) =
ΣN−1

N − 1
(26)

The left-hand side of the equation can be evaluated as
outlined for the case of one object in a fluid, but using
the G propagator instead of G of the pure fluid. Thus
we have obtained a self-consistent equation for calculat-
ing the full ΣN−1.

B. Calculation of Σ(r, r′) for a suspension of NS

spheres and NP polymer chains

We consider NS fixed, rigid spheres, each of radius a,
and NP mobile, Gaussian polymer chains, each of length
L = nl (l = Kuhn length; n = number of beads ), im-
mersed in an incompressible fluid of viscosity η0, in the
regime of stationary flow.

The static velocity field in the suspension is described
by the N-S equation together with stick boundary condi-
tions :

− η0△v(r) + ∇p(r) = F(r) +

NP ,n
∑

α,i≥1

δ(r − Rαi)σαi

+

NS
∑

b=1

∫

dΩbδ(r − Rb)σb(Ωb) (27)

∇ · v(r) = 0

Ṙαi = uα + ωα × Sαi = v(Rαi) (28)

Ṙb = 0 = v(Rb)

Here, the greek symbols α, β, . . . are labeling the polymer
chains and are running from 1 to NP , i, j, k, . . . are indices
(∈ {1, n}) for the beads on any arbitrary chain and b, c . . .
are labels for the spheres (range 1, NS). Rαi = R0

α +Sαi

is the position vector of the i-th bead of the chain α,
with R0

α denoting the position vector of the center of
mass of the α chain and with Sαi the position vector of
the i-th bead with respect to the center of mass of α.

Rb = R0
b + rb(Ωb) is the decomposition of the position

vector of a point on the surface of the sphere b in the
position vector of its center of mass and the relative co-
ordinate of the surface point in the center of mass frame
(|rb| = a, for any sphere); Ω indicates the orientation of
the vector rb. σαi and σb(Ωb) are the densities of force
exerted by the i-th bead of chain α and by the sphere
b at the surface point rb, respectively, upon the fluid.
When there is no risk of confusion, we will write only σb,
the dependence of Ωb being understood. Finally,F(r) is
some force acting at r that generates the flow (e.g.the ef-
fect of any sphere or polymer chain moving with uniform
velocity).

From the boundary conditions for the polymer chains
and because we are neglecting the inertial terms in the
equations of motion for the polymers, the total force and
torque acting upon any chain must vanish. We can write
then :

−
n
∑

i=1

σαi = 0

−
n
∑

i=1

Sαi × σαi = 0 , α = 1, NP (29)

The formal solution of Eq. (27) is :

v(r) = G ∗ F|
r
+

NP ,n
∑

α,i=1

G(r − Rαi) · σαi

+

NS
∑

b=1

∫

dΩb G(r − Rb) · σb(Ωb) (30)

Using the boundary conditions (28) and the constraints
(29) we can eliminate the unknown forces σαi and σb,
to express the solution for the velocity field as a multiple
scattering series in terms of the single-object flow prop-
agator Tα for the chain α and Tb for the b sphere (see
Appendix A for details) :

v(r) = G(r) ∗ F|
r
+
∑

α,b

G ∗ {Tα + Tb} ∗ G ∗ F|
r
+

+
∑

α,b

G ∗ {Tα ∗ G ∗ Tb + Tb ∗ G ∗ Tα} ∗ G ∗ F|
r

+
∑

α6=β

G ∗ Tα ∗ G ∗Tβ ∗ G ∗ F|
r

(31)

+
∑

b6=c

G ∗ Tb ∗ G ∗ Tc ∗ G ∗ F|
r
+ . . .

where the sum should be continued over all possible scat-
tering sequences. In this expression, the first factor on
the right-hand side represents the direct wave, the sec-
ond contains the single scattering processes from only one
polymer chain or one sphere, the third includes the se-
quences sphere-polymer and polymer-sphere,etc... . Any
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sequence of T operators is valid except those involving
two consecutive scatterings off the same sphere or the
same polymer (the exclusion constraint).

The macroscopic equation for the effective velocity
field u(r) is retrieved by performing a configurational
(position) average over the distribution of the particles,
mathematically expressed as :

〈 ·〉 =
1

V NP NS

∫

∏

α

dR0
α

∫

∏

b

dR0
b 〈 · 〉αi,αj,... (32)

with the “0” superscript referring the center of mass and
< >αi,αj,... being an average over the distribution of the
segments of the α chain about its center of mass. The
probability distribution function is taken to be Gaussian
(see [10]). Then u(r) is calculated from :

u(r)= 〈v(r)〉 = G ∗ F +
∑

α,b

G ∗ {〈Tα〉 + 〈Tb〉} ∗ G ∗F

+
∑

α,b

G ∗ {〈Tα ∗ G ∗ Tb〉 + 〈Tb ∗ G ∗ Tα〉} ∗ G ∗ F

+
∑

α6=β

G ∗ 〈Tα ∗ G ∗ Tβ〉 ∗ G ∗F (33)

+
∑

b6=c

G ∗ 〈Tb ∗ G ∗ Tc〉 ∗ G ∗ F + . . .

where all convolutions are actually functions of r.

As outlined in the previous section, the meaningful
physical quantity is the self-energy tensor Σ(r, r′) defined
as :

Σ ∗ u =

〈

∑

α,i

δ(r − Rαi)σαi +
∑

b

∫

dΩb δ(r − Rb)σb

〉

= ΣPOL ∗ u + ΣSP ∗ u (34)

Next, the solution of the configurationally averaged
Navier-Stokes equation is still Eq. (23), but now the to-
tal Σ includes the effects of both the polymers and the
spheres. Expanding once again the self-energy in the
number of distinct scattering events (i.e. the number of
Tα,b operators) and comparing the terms with the same
number of T factors in Eqs. (23,33), it follows that :

Σ(1)(r, r′) =
∑

α

〈Tα〉 +
∑

b

〈Tb〉

Σ(2)(r, r′) =
∑

α6=β

〈Tα ∗ G ∗ Tβ〉 +
∑

b6=c

〈Tb ∗ G ∗ Tc〉

+
∑

α,b

{〈Tα ∗ G ∗ Tb〉 + 〈Tb ∗ G ∗ Tα〉}

−
∑

α,β

〈Tα〉 ∗ G ∗ 〈Tβ〉 −
∑

b,c

〈Tb〉 ∗ G ∗ 〈Tc〉 (35)

−
∑

α,b

{〈Tα〉 ∗ G ∗ 〈Tb〉 + 〈Tb〉 ∗ G ∗ 〈Tα〉}

. . . (36)

Assuming that the spheres do not rotate , we can de-
rive the following expressions for the Tα,b operators (see
Appendix A) :

Tα(r, r′) = −
n
∑

i,j

δ(r − Rαi)
[

K−1(Sαi,Sαj)

−
n
∑

l,l′=1

K−1(Sαi,Sαl) · g−1
t ·K−1(Sαl′ ,Sαj)

]

δ(r − Rαj)

+ rotational terms + . . . (37)

gt =

n
∑

i,j

K−1
ij ; gt · g−1

t = 11 .

Tb (r − r′) = −
∫

dΩb dΩ′
b δ(r − Rb)K

−1
b (Ωb, Ω

′
b) δ(r′ − R′

b)

in which Rb and R′
b are the position vectors of separate

points on the surface of the same sphere labeled b and
K−1

α and K−1
b are the generalized inverse operators for

the single polymer chain and the single sphere [12,15],
defined by :

n
∑

j=1

K−1(Si,Sj) ·G(Sj − Sk) = 11 δik (38)

∫

dΩ′′
b K−1(Ωb, Ω

′′
b ) · G(rb(Ω

′′
b ) − rb(Ω

′
b)) = 11 δ(Ωb − Ω′

b)

To avoid an increasingly intricate notation, we will adopt
the following short-hand notation :

K−1(Sαi,Sαj) → K−1
αi,αj

K−1(Ωb, Ω
′
b) → K−1

b,b′ (39)

G(Rαj − Rb) → Gαj,b

The Einstein summation convention over repeated in-
dices is implied everywhere but where explicitly not fol-
lowed . We also drop the index α when referring to quan-
tities not specifically depending on a particular polymer
chain.

Some remarks are necessary before embarking upon
some concrete calculations. In the limit of our static de-
scription of the suspension of polymer chains and spheres,
Eqs. (35) are exact, for noninteracting as well as for in-
teracting objects, and will describe the dynamics of the
suspension with any degree of accuracy, although prac-
tically it may require a strenuous effort. To obtain an-
alytical results, we are limiting ourselves to the case of
noninteracting polymers and spheres and, further, we will
approximate the total self-energy tensor Σ(r, r′) with the
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first term in the expansion (35) that contains the contri-
bution from single scattering events :

Σ(r, r′) ≃ Σ(1)(r, r′) (40)

but, for the convenience of notation we will still denote
it by Σ(r, r′). Actually, for the noninteracting situation,
this is the leading term as can be seen from Eq. (35) by
breaking the averages, with the contribution from higher
order processes vanishing due to the lack of correlations
among particles.

As already pointed out, Σ(k) contains the sought infor-
mation about the transport properties of the suspension.
To evaluate the self-energy, first we take the configura-
tional average (32) over the T operators in Eq. (37), then
we Fourier transform their expressions, obtaining :

〈Tα(k)〉 = − 1

V

n
∑

i,j≥1

〈

exp (ik · (Si − Sj))
[

K−1
αi,αj

−
n
∑

l,l′≥1

K−1
αi,αl · g−1

t ·K−1
αl′,αj





〉

i,j

(41)

〈Tb(k)〉 = − 1

V

∫

dΩb dΩ′
b K−1

b,b′ exp [ik · (rb − r′b)] (42)

The preaverage over K−1 part produces terms like
〈

K−1
ij

〉

ij
〈exp (ik · (Si − Sj))〉ij—with the i,j indices sig-

nifying an average over the distribution of the segments
of any chain—so Σ(k) can be written as :

Σ(k) ≃ Σ(1)(k) = −cPOL
n
∑

i,j≥1

〈exp (ik · (Si − Sj))〉ij

×





〈

K−1
ij

〉

ij
−
〈

g−1
t

〉

ij
·

n
∑

l,l′≥1

〈

K−1
il

〉

il
·
〈

K−1
l′j

〉

l′j



 (43)

−cSP

∫

dΩ dΩ′ K−1(Ω, Ω′) exp [ik · (r(Ω) − r′(Ω′))]

where r(Ω) , r′(Ω′) are two generic points on the surface
of any sphere and cPOL = NP

V , cSP = NS

V are the concen-
trations of the polymers and of the spheres, respectively.

III. CALCULATION OF Σ(k) AND EFFECTIVE
MEDIUM THEORY FOR SOLUTIONS OF

SPHERES OR POLYMERS ONLY

In this part of the paper, the problems of constructing
the effective media in the separate cases of a suspension
of spheres and a polymer dispersion are addressed.

A. Calculation of W(k) for NS spheres immersed in
a fluid : a review

This problem is well documented in the literature [7,15]
so we will quote the main results we need. The system
consists in NS , rigid, penetrable spheres of radius a, im-
mersed in an incompressible,newtonian fluid of viscosity
η0. All spheres but one, which is moving at constant ve-
locity and generates the flow, are fixed. The suspension
is assumed stationary.

A remark should be made regarding the notation. Be-
cause we want to distinguish this particular system from
the others ,we will denote the self-energy of the fluid in
the presence of the spheres only by WSP instead of ΣSP .

Along the lines previously exposed,we can map the sus-
pension averaged over the uniform distribution of the
spheres to an effective fluid of viscosity ηeff

SP where the
disturbances are propagated by the modified Oseen ten-
sor G

SP (k) :

G
SP (k) =

11 − k̂k̂

η0k2 − WSP
⊥ (k)

(44)

with the transverse part of the self-energy computed from
Eq. (16).

In order to solve self-consistently for WSP (k) we ex-
pand its transverse part, in the small k limit :

WSP
⊥ (k) =

(

−η0ξ
−2
SP − η0W

SP
1 (ΦSP )k2

)

(45)

Then the modified Oseen propagator becomes :

G
SP (k) =

11 − k̂k̂

η0(1 + WSP
1 )(k2 + ξ′−2

SP )

ξ′
−2
SP =

ξ−2
SP

1 + WSP
1

(46)

where WSP
1 is some function of ΦSP . All other symbols

were already defined.

WSP (k) has the following form (see Appendix B) :

WSP (k) = −6πη0acSP 1

I1/2(
a
ξ′

)K1/2(
a
ξ′

)
(1 + WSP

1 )11 +

+
3

2
η0Φ

SP (1 + WSP
1 )k2

[

1

I1/2(
a
ξ′

)K1/2(
a
ξ′

)

− 8

9 I3/2(
a
ξ′

)K3/2(
a
ξ′

)
− 2

5 I1/2(
a
ξ′

)K5/2(
a
ξ′

)

]

11 (47)

+
3

2
η0Φ

SP (1 + WSP
1 ) k2

[

4

27 I3/2(
a
ξ′

)K3/2(
a
ξ′

)

+
2

5 I1/2(
a
ξ′

)K5/2(
a
ξ′

)

]

ẑẑ
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where I and K are the modified Bessel functions of the
first kind, ΦSP = 4πa3

3 cSP is the volume fraction of
spheres and ẑ is the versor of the Oz direction. Pro-
jecting out the transverse part of WSP (k) by dotting in
with (11 − ẑẑ) and comparing the result with the expan-
sion (45), one arrives at the following set of equations for
x = a

ξ′
and WSP

1 :

x2 =
9

2
ΦSP 1

I1/2(x)K1/2(x)

WSP
1 (ΦSP ) =

{

1 +
3

2
ΦSP

[

1

I1/2(x)K1/2(x)
(48)

− 8

9 I3/2(x)K3/2(x)
− 2

5 I1/2(x)K5/2(x)

]}−1

− 1

These equations can be solved numerically and x(ΦSP )
and WSP

1 (ΦSP ) calculated for any values of 0 ≤ ΦSP <
1,thus leading to the required WSP (k). As ΦSP → 0,
WSP

1 decreases to zero and also, from the structure of
Eq. (48), one expects a divergent behavior of WSP

1 as
ΦSP increases beyond a certain limit. The effective vis-
cosity ηSP of the medium containing the spheres and the
translational friction coefficient ζt of the moving sphere
are obtained from :

ηSP − η0

η0
= WSP

1 (ΦSP )

ζt = ζt 11 = − 1

cSP
WSP (k = 0) = 6πaη0 (49)

× 1

I1/2(x(ΦSP ))K1/2(x(ΦSP ))
(1 + WSP

1 (ΦSP )) 11

One can derive the above expression for the friction
coefficient by applying the general analysis from Ap-
pendix A to our particular case of a suspension of N − 1
fixed and one uniformly moving spheres . Then, the re-
lation between the total average force exerted upon the
mobile sphere by the fluid and its velocity will be given
by Eq. (A6) without the polymer term :

〈
∫

dΩ σ(Ω)

〉

=

〈
∫

dΩ dΩ′ T (Ω, Ω′)

〉

· u = (50)

〈
∫

dΩ dΩ′ K
−1(Ω, Ω′)

〉

· u = ζt · u

Note that now K
−1 is the generalized inverse of G, to

account for the presence of the fixed spheres in the solu-
tion. Comparing then to the sphere contribution to the
self-energy from Eq. (43) and making use of (B7,B18) one
can recover the formula for ζt displayed in (49). When
the filling fraction of the background spheres approaches
zero, WSP

1 → 0 and one recovers the Stokes result for
the friction coefficient ζt of one sphere.

As stated before, the readily measurable quantity we
calculated is the relative diffusion coefficient of the mo-
bile sphere (relative to the bare diffusion constant), in-
troduced in (21). From (49) we get immediately :

DSP = DSP 11 = I1/2(x(ΦSP ))K1/2(x(ΦSP )) (51)

× 1

1 + WSP
1 (ΦSP )

11

in which x(ΦSP ) and WSP
1 (ΦSP ) are calculated from (48)

for a given fraction ΦSP .

B. Calculation of the self-energy for a solution of NP

noninteracting polymer chains

We consider NP Gaussian, noninteracting, free mov-
ing polymer chains, each of length L = nl, dispersed in
an incompressible, newtonian fluid of viscosity η0. Some
external force F(r) generates the velocity flow.

Once again, we will use the notation W for the self-
energy of the fluid when only the polymers are present.

Following the derivation in Sec. II B, we can write the
Navier-Stokes equation for the velocity field v(r) similar
to (27)—but no spheres present—with the stick bound-
ary conditions (28). Averaging the N-S equation over the
configuration of the polymer chains and introducing the
self-energy of the fluid W as in (34), we can write the

solution for the averaged velocity u(r) = G
POL ∗ F (see

Eqs. (12, 17,18)), where the force propagator G
POL is

given by :

G
POL =

11 − k̂k̂

η0k2 − WPOL
⊥ (k)

=

11 − k̂k̂

η0(1 + WPOL
1 )(k2 + ξ′POL

−2)
(52)

ξ′POL
−2

=
ξ−2
POL

1 + WPOL
1

where, in the limit of k → 0, the following approximation
was made for the transverse part of the self-energy :

WPOL
⊥ (k) = −η0ξ

−2
POL − η0W

POL
1 (ΦPOL)k2 (53)

Our goal is to find WPOL(k) self-consistently, for any
volume fraction ΦPOL. If WPOL(k) were the self-energy
of the fluid containing NP − 1 chains, the contribution of
one more chain added would be (similar to (43),but with
cPOL = 1/V and no spheres) :

WPOL(k)

NP − 1
= − 1

V

n
∑

i,j≥1

〈exp[ik · (Si − Sj)]〉ij
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



〈

K
−1
ij

〉

ij
−
〈

g−1
t

〉

ij
·

n
∑

l,l′≥1

〈

K
−1
il

〉

il
·
〈

K
−1
l′j

〉

l′j



 (54)

gt =

n
∑

ij

K
−1
ij ; g−1

t · gt = 11 .

Here, in contrast to (43), K−1 signifies the generalized in-
verse of the modified Oseen tensor G because we imagined
the last chain immersed in the effective medium created
by the initial pure fluid plus NP − 1 polymer chains and
the force propagator should be changed correspondingly.

The calculations are rather laborious and are detailed
in Appendix C. In the hydrodynamic limit of long wave-
lengths, the expression of WPOL(k) is :

WPOL(k) = − 9

π
η0k

2ΦPOL(1 + WPOL
1 )Q(β)11

Q(β) =
1

β
log

(

1 +
β√
π

)

+
1√
π

+
β

2π
(55)

Symbols have the following meanings: ΦPOL =
4πR3

g

3 cPOL

is the volume fraction of the polymers ; Rg =
√

Ll
6 is

the radius of gyration ; β(ΦPOL) =
Rg

ξ′(ΦP OL)
with ξ′ the

screening length in the effective medium, given by (52).
In obtaining the previous relation we used the Kirkwood-
Riseman approximation that amounts to consider only
the diagonal terms in the Fourier expansion of G−1(s, s′)
(s is the arclength along the polymer chain), as detailed
in Appendix C. We believe this approximation is phys-
ically justifiable because we are working in the limit of
long chains, when the off-diagonal terms are small.

To get the self-consistent equations for the unknowns
β(ΦPOL) and WPOL

1 (ΦPOL), we take the transverse part

of WPOL(k) by dotting in (11 − k̂k̂) and then we equate
it with the expansion (53) to arrive at :

β(ΦPOL) = 0

WPOL
1 (ΦPOL) =

1

1 − 9
π ΦPOLQ(0)

− 1 (56)

which gives WPOL
1 as an analytic function of the vol-

ume fraction ΦPOL. Also it is interesting to remark that

β(=
Rg

a ) = 0 implies that the hydrodynamic screening is
absent in the limit of k → 0 (observation that is actually
manifest from the structure of (55)). The function Q(β)
is defined in Eq. (55).

We can calculate the viscosity of the effective medium
ηPOL (using (19)) and the diffusion coefficient DPOL of
a polymer chain as follows :

ηPOL(ΦPOL) − η0

η0
= WPOL

1

DPOL(ΦPOL) =
ζKR
t

ζPOL
t (ΦPOL)

(57)

=
1

1 + WPOL
1

= 1 − 18

π
√

π
ΦPOL

where we employed Q(0) = 2√
π

and ζKR
t = (9π

√
π/4)η0Rg

is the Kirkwood-Riseman friction coefficient for the non-
free-draining limit.

Limiting values for DPOL and ηPOL can be obtained
for small and large polymer filling fractions ΦPOL :

ΦPOL ≪ 1 :
ηPOL − η0

η0
→ 24√

π
R3

g

1

V

DPOL → 1 (58)

ΦPOL(large) < 1 :
ηPOL − η0

η0
→ ∞ as ΦPOL → 0.309 . . .

DPOL → 0 (59)

We remark that for low ΦPOL the result for the vis-
cosity is twice that of Kirkwood-Riseman [14] for one
chain because we neglect the rotational terms in calcu-
lating WPOL(k). It is also notable that the constraint
of the positivity of WPOL

1 in this effective medium ap-
proach leads to the divergence of the viscosity and of the
friction coefficient,which occurs at ΦPOL

DIV ≃ 0.309. This
divergence is attributed to the rigid-body dynamics as-
sumed for the polymer.

IV. RESULTS FOR SPECIFIC EXAMPLES

In this section we apply the above theory to two types
of mixed polymers-spheres suspensions :

S/P system : one mobile sphere among other fixed, rigid
ones, in a polymer solution.

P/S system : free moving polymer chains in a suspen-
sion of fixed spheres.

In addition, to gradually develop the theory we start
by explicitly investigating two particular cases of the gen-
eral models just mentioned, namely :

1S/P system : one mobile sphere inside a polymer solu-
tion.

1P/S system : one polymer chain moving in a suspen-
sion of fixed spheres.
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A. One sphere moving in a suspension of polymers

In this example we consider a sphere of radius a moving
uniformly with the velocity v0 inside a suspension of NP

non-interacting, Gaussian, free moving polymer chains of
length L. The flow of the fluid is generated by the mov-
ing sphere. The motion of the particles is coupled to the
motion of the solvent by stick boundary conditions. We
also mention that the total force and torque acting upon
each polymer chain are zero.

Similar to Eq. (27), the equation of motion for the fluid
and the boundary conditions can be written as :

− η0△v(r) + ∇p(r) = F0(r) +

NP,n
∑

α,i

δ(r − Rαi)σαi (60)

∇ · v(r) = 0

Ṙαi = v(Rαi) (61)

in which F0(r) is the force exerted by the mobile sphere
upon the fluid given by :

F0(r) =

∫

dΩ0 δ(r − R0)σ(Ω0) (62)

Averaging the Navier-Stokes equation over the distri-
bution of the polymer chains and introducing the self-
energy of the solution :

Σ(r, r′) = WPOL(r, r′) =

〈

NP,n
∑

α,i≥1

δ(r − Rαi)σαi

〉

(63)

we find the formal solution (following Eqs. (12,18)) :

v(r) = G ∗ F0|r

G(k) =
11 − k̂k̂

η0k2 − WPOL
⊥ (k)

(64)

and we succeeded in transforming the initial problem in
the Stokes motion of a single sphere in a fluid of viscosity
ηPOL. Because only the polymers are contributing to the
effective viscosity of the solution, ηeff is given by (19,57) :

ηeff − η0

η0
= WPOL

1 =
1

1 − 18
π
√

π
ΦPOL

− 1 (65)

As it was shown in the previous section—Eq. (56)—
the hydrodynamic screening is absent for a suspension of
polymers. In this problem,the sphere does not contribute
to the self-energy of the fluid, which implies that the hy-
drodynamic interactions are still unscreened. Then the

translational friction coefficient of the moving sphere is
just the Stokes result :

ζt = 6πaηeff 11 (66)

with ηeff = η0(1 + WPOL
1 ). The translational diffusion

coefficient as defined in (21) reads then :

D(ΦPOL) =
6πaη0

ζt
= 1 − 18

π
√

π
ΦPOL (67)

It is noteworthy that in this case there is no size cou-

pling (no t =
Rg

a dependence) between the dynamics
of the polymer chains and the dynamics of the moving
sphere. The diffusion coefficient vanishes and the viscos-
ity diverges at ΦPOL ≃ 0.31.

B. One polymer chain immersed in a suspension of
fixed spheres

This time we consider a free polymer chain of length
L, immersed in a suspension of NS rigid, fixed, uniformly
distributed spheres of radius a. There are no interactions
other than hydrodynamic and the flow is generated by
some external force field F(r).

The velocity field is described by another variant of
N-S Eq. (27), with only one chain present :

− η0△v(r) + ∇p(r) = F(r) +

n
∑

i=1

δ(r − Ri)σi

+

NS
∑

b=1

∫

dΩb δ(r − Rb)σb (68)

where all the symbols have the known meanings.

Taking the configurational average of the equa-
tion above and introducing the self-energy tensors
ΣPOL(r, r′) and WSP (r, r′) (see (34)) related to the in-
fluence of the polymer chain and of the spheres on the
fluid, we can cast the Navier-Stokes equation for the av-
eraged velocity u(r) = 〈v(r)〉 in the following form :

− η0△u(r) + 〈∇p(r)〉 − WSP ∗ u
∣

∣

r
= F(r) + ΣPOL ∗ u

∣

∣

r

(69)

the formal solution of which being (see Section II) :

u(r) = G ∗ F|
r
+ G ∗ ΣPOL ∗ G ∗ F

∣

∣

r
+ . . . (70)

Here ∗ is the usual convolution operator and G(r, r′)
is the effective Oseen tensor modified to account for the
influence of the spheres. Its expression is given by (46)
using the expansion for small k (45). In this way our
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starting problem was reduced to studying the station-
ary dynamics of a polymer chain in an effective solution
where the force propagator is G(k). Following the re-
sults of Sec. II B—Eqs. (40, 35, 42, 43)—and noticing
that we must make the changes cPOL = 1

V , G → G and

K−1 → K
−1, we find the solution of ΣPOL(k) in first

order in the number of scattering events :

ΣPOL(k) = − 1

V

n
∑

i,j≥1

〈exp [ik · (Si − Sj)]〉ij
[

〈

K
−1
ij

〉

ij

−
〈

g−1
t

〉

ij
·

n
∑

l,l′

〈

K
−1
il

〉

il
·
〈

K
−1
l′j

〉

l′j



 (71)

Note that K
−1 is the generalized inverse of G :

n
∑

j=1

K
−1
ij · Gjk = 11δik (72)

Remembering that the effective medium has replaced
the spheres and the pure fluid, we can repeat the
derivation from Appendix C to get an explicit form
for ΣPOL(k), with the changes WPOL

1 → WSP
1 and

cPOL = 1
V :

ΣPOL(k) = − 9

π
η0

4πR3
g

3

1

V
(1 + WSP

1 )Q(βSP )k2 11 (73)

βSP =
Rg

ξ′SP

where ξ′SP and WSP
1 were defined in Sec. III A.

To evidentiate the important dimensionless variables

of this model, we introduce the parameters t =
Rg

a and

xSP = a
ξ′

SP

and rewrite ΣPOL(k) as :

ΣPOL(k) = − 9

π
η0

ΦSP

NS
t3[1 + WSP

1 (ΦSP )]Q(txSP ) k2 11

(74)

Both xSP (ΦSP ) and WSP
1 (ΦSP ) are characteristic to the

problem of the spheres immersed in a fluid and can be
calculated from the system (48).

In a similar manner,the diffusion coefficient of the poly-
mer chain in the effective medium of spheres can be ex-
pressed as :

D(ΦSP ) =
ζKR
t

ζPOL
t (ΦSP )

=
3
√

π

4

1

1 + WSP
1

P(txSP )

txSP
(75)

in which we used (C24), with WPOL
1 → WSP

1 and
β → βSP . The function P(x) is defined in Appendix C
(C23).

The effective viscosities, total and relative (which mea-
sures the increase in the viscosity due to the polymer
chain) are calculated from :

ηeff − η0

η0
= WSP

1 − lim
k→0

1

η0

∂

∂k2
ΣPOL

⊥ (k)

= WSP
1 +

9

π

ΦSP

NS
t3(1 + WSP

1 )Q(txSP ) (76a)

ηeff − ηSP

ηSP
= − lim

k→0

1

ηSP

∂

∂k2
ΣPOL

⊥ (k)

=
9

π

ΦSP

NS
t3Q(txSP ) (76b)

with ηSP = η0(1 + WSP
1 ), and xSP (ΦSP ), WSP

1 (ΦSP )
obtained from (48),as already mentioned.

As will be shown below, Eqs. (75,76) are the limit-
ing formulas of the general situation presented in Sec-
tion IVD, where the dependence of D and ηeff on ΦSP

and t will be discussed also.

However, some remarks can be made. The arrest of
the chain motion occurs at ΦSP

DIV ≃ 0.49—as found in
Ref. [15] for a sphere moving in a random array of fixed
spheres. The curves seem physically plausible. When
the radius of gyration Rg of the polymer chain is smaller
than or comparable to the radius of the sphere (t <∼ 1)
the viscosities (both total and relative) are relatively in-
sensitive to variations in the t parameter. Still, although
being related only to the presence of the polymer chain,
the relative viscosity depends on ΦSP and t variables
through Q(t xSP ) (see 76), so the contribution of the
chain to the viscosity of the solution is a function of the
effective solvent.

C. One mobile sphere in a suspension of fixed
spheres and polymers

We now investigate the stationary dynamics of a
suspension containing NS uniformly distributed, rigid
spheres of radius a and NP Gaussian, free moving poly-
mer chains of length L. All spheres but one that is mov-
ing with the constant velocity u0,thus creating the flow,
are fixed, and no interactions beside the hydrodynamic
coupling occur. We calculate the diffusion coefficient D
of the moving sphere and the total ηeff and the relative
ηeff

ηPOL
− 1 effective viscosities as functions of the volume

fractions ΦSP for spheres,ΦPOL for polymers and of the

coupling parameter t =
Rg

a .

We proceed closely to the derivations exposed in the
previous sections. First, by properly identifying the
G(k) tensor, we construct an effective medium replac-
ing the polymers and the pure fluid,in this way reducing
the problem to that of a self-consistent computation of
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the viscosity and diffusion coefficient of an ensemble of
spheres, as discussed in Refs. [15,5,7] and in Sec. III A.
Solving the resulting equations, we obtain the desired
quantities,namely the diffusion coefficient of the moving
sphere and the effective viscosities.

The velocity field obeys the N-S Eq. (27), with F(r) →
F0(r) now being the force exerted by the moving sphere
upon the fluid. Averaging first over the distribution of
the polymers and then over the position of the fixed
spheres and introducing the self-energies WPOL(r, r′)
and ΣSP (r, r′) as defined in (34), we deduce the N-S
equation for the averaged velocity u(r) = 〈v(r)〉 :

− η0△u(r) + 〈∇p(r)〉 − WPOL ∗ u − ΣSP ∗ u = F0(r)

(77)

As usual, we denote the self-energy of the fluid result-
ing from the presence of the polymers with the WPOL

symbol and not with ΣPOL to stress that this is the
background effective medium we have related our cal-
culations to. This also means that WPOL depends only
upon the polymer properties, but ΣSP —the contribu-
tion of the spheres to the self-energy of the fluid—could
depend on ΦPOL and on some coupling parameter,like t
and,implicitly,on other characteristics of the background
effective fluid. For WPOL we will use the explicit expres-
sions found in Sec. III B (Eqs. 55,56).

The formal solution of the N-S equation is then :

u(r) = G ∗ F|
r

(78)

with the modified Oseen tensor having the following
form :

G(k) =
11 − k̂k̂

η0k2 − WPOL
⊥ (k) − ΣSP

⊥ (k)
(79)

Working in the k → 0 limit, we approximate ΣSP (k)
with :

ΣSP (k) = (−η0ξ
−2
SP − η0Σ

SP
1 k2) 11 (80)

where ξSP is the screening length felt by the spheres in
the effective medium that supplants for the polymers and
the pure fluid. Substituting back in the Oseen tensor
formula and replacing WPOL

⊥ with its expression from
(53,56) we get :

G(k) =
11 − k̂k̂

η0(1 + Σ1)(k2 + ξ′−2)
=

11 − k̂k̂

ηeff(k2 + ξ′−2)
(81)

in which :

Σ1 = WPOL
1 + ΣSP

1

ξ′
−2

=
ξ−2
SP

1 + Σ1
(82)

where ξ′ is the total screening length in the resulting ef-
fective medium that replaced the initial pure fluid, the
polymers and the spheres. Note that the polymers do
not contribute to the screening, as found in Sec. III B.

It follows then that the total and the relative (due to
the presence of spheres only) effective viscosities of the
solution and the translational friction coefficient of the
moving sphere (see Sec. III A) can be computed from :

ηeff

η0
− 1 = WPOL

1 + ΣSP
1

ηeff

ηPOL
− 1 = − lim

k→0

1

ηPOL

∂

∂k2
ΣSP

⊥ (k) =
1

1 + WPOL
1

ΣSP
1

ζt = − 1

cSP
ΣSP

⊥ (k = 0) = η0
1

cSP
ξ−2
SP (83)

Next step is to find ΣSP (k) self-consistently. This can
be done exactly as shown in Appendix B,but taking care
of the effective medium that replaces the polymers, by
using the new G, substituting Σ1 for WSP

1 and chang-
ing the meaning of ξ′, which will now represent the total
screening length. Thus :

ΣSP (k) = −6πaη0 cSP (1 + Σ1)
1

I1/2(
a
ξ′

)K1/2(
a
ξ′

)
11

+
3

2
η0(1 + Σ1)ΦSP k2 Z(

a

ξ′
) 11 + (longit. part) ẑẑ (84)

Z(y) =
1

I1/2(y)K1/2(y)
− 8

9 I3/2(y)K3/2(y)
− 2

5 I1/2(y)K5/2(y)

Comparing this expression with (80) and using the def-
initions of Σ1 and ξ′ from (82) and of WPOL

1 from (56),
we finally obtain the system of equations for ΣSP (k) :

ΣSP
1 (ΦSP , ΦPOL) =

1

1 − 18
π
√

π
ΦPOL

[

1

1 + 3
2ΦSP Z(x)

− 1

]

x2 =
9

2
ΦSP 1

I1/2(x)K1/2(x)
(85)

with x = x(ΦSP ) = a
ξ′

and the function Z(x) being de-

fined in the previous equation. One could remark that
there is no polymer dependence in the total screening
length ξ′.

Solving this system for x(ΦSP ) and ΣSP
1 (ΦSP , ΦPOL)

allows us to compute the diffusion coefficient of the mov-
ing sphere from (83) :

D(ΦSP , ΦPOL) =
6πaη0

ζt
= I1/2(x)K1/2(x) (86)

× (1 − 18

π
√

π
ΦPOL)(1 +

3

2
ΦSP Z(x))
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and the total and relative effective viscosities as :

ηeff

η0
− 1 =

1

(1 − 18
π
√

π
ΦPOL)[1 + 3

2ΦSP Z(x)]
− 1 (87)

ηeff

ηPOL
− 1 =

1

1 + WPOL
1

ΣSP
1 =

1

1 + 3
2ΦSP Z(x)

− 1

In Figs. [2,3]; [4,5]; 6 the results for D, the total
ηeff/η0 − 1 and the relative ηeff/ηPOL − 1 viscosities have
been plotted against ΦPOL (first plot of each pair and
Fig. 6) and against ΦSP (in the second plot).

We have already seen that the total screening length ξ′

as given by (85) is function only on ΦSP (as the polymers
were absent). It is also notable that there is no depen-

dence upon the coupling parameter t =
Rg

a . Both obser-
vations are related to the absence of screening in a disper-
sion of non-interacting polymers (as found in Sec. III B),
which prevents the spheres to sense the existence of the
polymer chains.

Two important points, at ΦSP
DIV ≃ 0.49 and at ΦPOL

DIV ≃
0.31, where the viscosity of the solution and the friction
coefficient diverge, are evident in Figs. 2–6. Note that
ΦSP

DIV + ΦPOL
DIV < 1, even if the polymer chains and the

spheres are penetrable, non-interacting objects.

At low ΦSP and ΦPOL → 0 one recovers the Einstein
result for the viscosity of spheres in a pure fluid and the
Stokes friction coefficient for a sphere (D(ΦSP , 0) → 1).

When ΦSP → 0 (recall ΦSP = NS−1
V ), we retrieve the

results from the last section for one mobile sphere im-
mersed in a polymer solution (compare Eqs. (86,87) to
Eqs. (67,65)). The results of this limit are marked with
the + symbol in Figs. 2 and 4.

D. NP polymer chains moving in a suspension of NS

randomly distributed fixed spheres

In this section we explore the reverse of the previ-
ous model. There are NP non-interacting, free-moving
polymer chains of length L dispersed in a suspension
containing a random array of NS rigid, penetrable,
fixed spheres. We wish to compute—using the effective
medium approach—the translational diffusion coefficient
D for a polymer chain and the total and relative (the
spheres contribution) effective viscosities as function of
ΦPOL, ΦSP and of the coupling parameter t = Rg/a.
The velocity flow is externally generated (one could con-
sider it to be produced by the motion of one polymer
chain without any influence on the final results).

Once again, we develop the necessary theory in two
stages. First, we substitute the spheres and the pure
fluid with the corresponding effective medium presented
in Sec. III A, then we calculate self-consistenty the trans-
port properties of the polymers dispersed in the effective

solution, for any volume fraction ΦPOL, following the
procedure detailed in Sec. III B. Conceptually, we are
modeling this system with a superposition of two effec-
tive media, a fixed background related to the influence
of the spheres and a foreground related to the polymers,
coupled through hydrodynamic interactions.

Apparently, there should be a symmetry between the
present system and the reversed one (spheres in a so-
lution of polymers), but this assumption proves to be
incorrect, as we will further show. The main difference
is that in the present case the size coupling is active and

t =
Rg

a controls both the mobility D of the chains and
the viscosity of the dispersion.

We start with the Navier-Stokes (N-S) equation (27)
for the velocity field v(r) in the suspension,with F(r)
some external force density. After we perform the config-
urational average (32) and we replace the averages over
the forces with the WSP (r, r′) and ΣPOL(r, r′) as de-
fined in (34) the N-S equation for the average velocity
field u(r) is :

− η0△u(r) + 〈p(r)〉 − WSP ∗ u − ΣPOL ∗ u = F(r)

(88)

where, as discussed in the previous sections, we substi-
tute WSP for ΣSP to distinguish between the back-
ground effective fluid associated with the spheres and
the contribution to the self-energy of the added polymer
chains. WSP (r, r′) tensor is function only of ΦSP volume
fraction and it was calculated in Sec. III A, Eqs. (47,48).

To obtain the self-consistent equations for ΣPOL we
proceed as in the last section. First, we write the formal
solution of the N-S equation as a convolution :

u(r) = G ∗ F (89)

where the modified Oseen tensor has its Fourier trans-
form given by :

G(k) =
11 − k̂k̂

η0k2 − WSP
⊥ (k) − ΣPOL

⊥ (k)

=
11 − k̂k̂

η0(1 + Σ1)(k2 + ξ′−2)

Σ1 = WSP
1 + ΣPOL

1 ; ξ′
−2

=
ξ−2
SP + ξ−2

POL

1 + Σ1

in which we inserted WSP
⊥ from (45) and we used the

following approximation , in the k → 0 region :

ΣPOL(k) = (−η0ξ
−2
POL − η0Σ

POL
1 k2) 11 (90)

Also, ξ′ is the total screening length and ξSP is function
only of the concentration of spheres. We can readily write
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the solution for ΣPOL(k) by observing the structures of
the Oseen tensors found in (52) and (90). In compari-
son with the effective medium theory for polymers (as in
Sec. III B and Appendix C), we need to transform (55)
by working with ξ′ instead of ξ′SP and with the total
self-energy Σ1 instead of WPOL

1 . We immediately arrive
to :

ΣPOL(k) = − 9

π
η0Φ

POL(1 + Σ1)Q(β) k2 11 (91)

with β =
Rg

ξ′
and the function Q(x) defined by (55).

Comparing to (90), we obtain the system :

ξ−2
POL = 0

ΣPOL
1 =

9

π
ΦPOL (1 + WSP

1 + ΣPOL
1 )Q(β) (92)

Introducing the natural dimensionless variables

x(ΦSP ) = a
ξ′

SP

and t =
Rg

a , we finally determine ΣPOL(k)

through :

ΣPOL
1 (ΦPOL, ΦSP , t) = [1 + WSP

1 (ΦSP )]

× 1

1 − 9
π ΦPOLQ(β)

(93)

β2 = (t x)2 (1 − 9

π
ΦPOL Q(β))

where WSP
1 and x(ΦSP ) are computed from the system

(48) as functions of ΦSP only. Note that now β(= Rg/ξ′)
is in general a non-zero function of ΦPOL, ΦSP and
t, which means that the polymers are subjected to a
screened hydrodynamic interaction, in contrast with the
previous system.

The effective viscosities—total and relative, due to
added polymers—are determined from :

ηeff

η0
− 1 = WSP

1 + ΣPOL
1

= (1 + WSP
1 )

1

1 − 9
π ΦPOLQ(β)

− 1 (94)

ηeff

ηSP
− 1 =

1

1 + WSP
1

ΣPOL
1 =

1

1 − 9
π ΦPOLQ(β)

− 1

For a mobile polymer chain the translational diffusion
coefficient (actually defined as relative to the Kirkwood-
Riseman result) is shown to be (see Appendix C) :

D =
ζKR
t

G−1
00

(95)

with G−1
00 being the zero-th coefficient of a Fourier series

expansion of
〈

G
−1
〉

(see Appendix C). Because in our

approximations Gqq′ is diagonal, G−1
00 becomes (C23) :

G−1
00 = (G0)

−1 = 3πη0Rg
β

P(β)
(1 + Σ1) (96)

The diffusion coefficient of any moving polymer chain is
given by :

D =
3
√

π

4

1

1 + WSP
1

P(β)

β
(1 − 9

π
ΦPOLQ(β)) (97)

The functions P(x) and Q(x) have been defined in Ap-
pendix C, Eqs. (C23,C28).

The prominent feature of the final results for the so-
lution viscosity and the diffusion coefficient of a polymer
chain (94,97) is their dependence on the t parameter—
the stationary dynamics of the spheres and the polymer
chains is size coupled—as advertised in the beginning.
Also note that in contrast to the problem of spheres in
a polymer suspension, the variable β = Rg/ξ′ depends
upon ΦSP too, which implies—Eq. (94)—that the rela-
tive contribution of the polymers to the viscosity is en-
hanced, function of ΦSP and t, by the presence of the
background effective fluid related to the spheres. It is
sensible to believe that these new phenomena have been
generated by the spheres acting as fixed scattering cen-
ters of the velocity field and had we analyzed a system
of polymer chains and Brownian spheres, we might have
observed that the dynamics of the two types of particles
would have been decoupled, in the mentioned sense (no
t dependence, β function only on ΦPOL).

Checking the limit ΦSP → 0 we recover the results
for the suspension of polymers only (WSP

1 → 0, β → 0,
compare to (57)), and in the limit ΦPOL → 0 we re-
trieve the results for the 1P/S problem : β → txSP ;

ΦPOL → 1
V 4πR3

g/3 = ΦSP

NS
t3 (compare to Eqs. (75, 76)).

The values of the total and relative effective viscosities
and of the diffusion coefficient given by Eqs. (94,97) have
been plotted as functions of ΦPOL and ΦSP at different
t. Four sets of data corresponding to t = {0.01; 0.1; 1; 10}
have been calculated and displayed.

In Figs. [7–10] the diffusion coefficient D of a mov-
ing polymer chain is plotted against ΦSP with ΦPOL pa-
rameter and for each of the t values mentioned, and in
Figs. 12–14 D is plotted as a function of ΦPOL with ΦSP

parameter, with t = {0.1, 1, 10} for convenience.

D(ΦPOL) depends linearly on ΦPOL and for fixed
ΦSP and ΦPOL,the diffusion coefficient D decreases as
t increases—longer chains are less diffusive—so the t pa-
rameter acts like a mobility selector. The sensitivity of D
to t variations is higher when the size (Rg) of the chains
becomes comparable to the radius of the spheres (com-
pare the relative drop in D at the same ΦSP in Fig. 12
(t = 0.1) to Fig. 13 (t = 1), and Fig. 13 to Fig. 14
(t = 10).

The same observation can be made when looking at
the ΦSP dependence of D, in Figs. [7–10], for the same
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values of t. Additionally, for t = {0.01; 0.1}, D exhibits a
change in the curvature and an almost plateau region in
the middle of the ΦSP range for higher ΦPOL (Figs. 7,8).

We now consider the behavior of the limiting case cor-
responding to the 1P/S system as shown by the + sym-
bols in Figs. [7–10]. One can notice a change in the cur-
vature of the diffusion coefficient of one polymer chain
when going from t = 0.01 to t = 10. It appears that
for relatively small (in comparison to the spheres) poly-
mer chains (t = 0.01) or relatively large (t = 10) a
plateau region appears, where D is slowly varying with
respect to ΦSP . Physically, this could signify that when
the polymer is small (large), a certain built up in ΦSP

is required before the diffusion coefficient D is affected
more markedly. Additionally, for a given radius a of the
spheres,the difference in the mobilities of two polymer

chains of distinct lengths (t1 6= t2; ti =
R(i)

g

a ) is maxi-

mized for a certain range of ΦSP values, fact depicted in
Fig. 11 , where the difference in the diffusion coefficient
of one polymer chain for four pairs of t values is plot-
ted against the filling fraction ΦSP (e.g. ΦSP ∈ [.15; .3]
roughly for two types of polymer chains with t1 = 0.01
and t2 = 1). This may have applications in the design of
polymer sieves.

Comparing now the behavior of the polymer moving
in the suspension of spheres (Figs. [7–10]) to that of
the mobile sphere inside a polymer dispersion (Fig. 2)
at equivalent relative sizes of the tracer particle (t = 10
in the first case is similar to t = 0.1 in the second one),
we notice that the D(ΦSP ) for a small mobile polymer
chain (t = 0.01; 0.1) is higher than that of a small sphere
(t = 10) moving in a polymer suspension, but a larger
sphere (t = 0.1) exhibits an increased mobility (D) com-
parative to a large polymer chain (t = 1; 10). Eventually,
because (ΦSP

DIV ≃ 0.49) > ΦPOL
DIV ≃ 0.31, the polymer

immersed among spheres will retain a non-zero mobility
at higher volume fractions than the sphere moving in a
polymer suspension.

The same discussion applies in the general P/S case.
The mobility of a small t = 0.01 or large t = 10 polymer
chain is only slightly influenced by the volume fraction
of the spheres (see slopes of graphs in Figs. 7,10 in the
middle region). This feature indicates that, for a given
radius a of the background spheres and a pair of polymer
chains characterized by distinct t values (e.g. t1 = 0.01
and t2 = 1), the difference in the diffusion coefficients of
the two chains will reach its maximum for a certain range
of the spheres volume fraction ΦSP .

The two points of divergence ΦPOL
DIV ≃ 0.31 and

ΦSP
DIV ≃ 0.49 are clearly marked. Because ΦPOL

DIV < ΦSP
DIV

the suppressing of the mobility of the moving particles
(either sphere or a mobile polymer chain) is stronger
when polymers are added than when the sphere concen-
tration is increased.

Comparing the data for D(ΦSP ) in Fig. 3, for the S/P

example (note that there is no t dependence, to those for
D(ΦPOL) at t = 0.1 in Fig. 12 and t = 10 in Fig. 14, the
same observation as in the 1P/S case can be made : at
the same t ratio between the sizes of the moving object
and of the background component and for the same back-
ground concentration, a small (t = 0.1) polymer chain in
the P/S system is more mobile than a small (t = 10)
sphere moving in the S/P system, but as t gets larger,
a big sphere becomes more diffusive than a long polymer
chain (t = 10). In this situation, the control parame-
ter is the concentration of the added (e.g.,in the P/S
example, polymers are the added elements) components,
but the same conclusion is reached if comparing the data
for D(ΦPOL) from Fig. 2 in the S/P case to those from
Fig. 8 (t = 0.1) and Fig. 10 (t = 10) for the P/S system,
the control parameter now being the concentration of the
background elements.

The limiting case of one polymer chain (NP → 1)
is very well approached in the P/S example, as one
can notice in Figs. 7–10 by comparing the uppermost
curves (1P/S case) to those corresponding to the pa-
rameter value ΦPOL = 0.01, representing D(ΦSP ) when
t = {0.01; 0.1; 1; 10}, respectively.

Viscosities calculated from (94) have been plotted in
Figs. 15–21 : the total effective viscosity change in
Figs. 15,16 as a function of ΦPOL and against ΦSP in
Figs. 17,18 with t = {0.01; 10}; the relative effective vis-
cosity in Fig. 19 as a function of ΦPOL for t = {1; 10} and
as a function of ΦSP in Figs. 20, 21 with t = {0.01; 1; 10}.
Two observations could be made regarding the viscosi-
ties :

a) both for ηeff(ΦPOL) with ΦSP parameter
(Figs. 15,16) and for ηeff(ΦSP ) with ΦPOL parameter
(Figs. 17,18), as t increases, the total viscosity change
is more sensitive to variations in ΦPOL or ΦSP (com-
pare Fig. 15 when t = 0.01 to Fig. 16 when t = 10 and
Fig. 17 (t = 0.01) to Fig. 18 (t = 10)). We note that a
larger polymer chain ( in comparison to the radius of the
background sphere) is more sensitive to the environment.
This behavior clearly contrasts that encountered for the
total effective viscosity in the S/P case (see Fig. 4).

b) the relative effective viscosity due to the presence
of the polymers (Figs. 19–21) depends not only on ΦPOL

but on ΦSP and on t as well, once again in contrast to the
S/P system (see Fig. 6). As suggested before, t acts like
a control parameter that when increased (compare t = 1
to t = 10 calculations in Fig. 19 or Fig. 20 to Fig. 21)
makes the contribution of the polymers to the viscos-
ity more markedly dependent on both ΦPOL and ΦSP .
Actually, when the radius of gyration Rg is comparable
to the sphere diameter a (t ≤ 1) , the relative viscosity
ηeff

ηSP
− 1 is relatively insensitive to variations in ΦSP or t

(compare Fig. 20 to t = 1 data in Fig. 21).

Obviously, these observations may have some signifi-
cance from an experimental point of view.
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V. CONCLUSIONS

In the present paper we have investigated the steady-
state transport properties of a heterogeneous suspension
of rigid polymers and spheres without excluded volume
interactions, applying the multiple scattering formalism
[4–6,18] and the effective medium theory [7,15,18].

The main approximations and features of our approach
were :

a. the absence of any interactions among polymers
and spheres. All particles are penetrable.

b. the solvent is assumed incompressible and it is de-
scribed by a linearized Navier-Stokes equation.

c. the stationary, time-independent limit is assumed.
All results are valid in the long range hydrodynamic
limit (k → 0).

d. the dynamics of the solvent, polymers and of the
spheres are coupled by stick boundary conditions.

e. the spheres are monodisperse, having radius a.

f. the polymers are monodisperse with chain length
L, and they translate freely as rigid bodies. We
do not consider the rotation of the polymer as a
rigid body. For convenience, the distribution func-
tion for the inter-segment distance of any chain was
taken to be Gaussian.

g. Σ(k), the self-energy of the fluid in the presence of
the immersed spheres and polymer chains was ap-
proximated with the first-order component Σ(1)(k),
in an expansion in the number of distinct scatter-
ing events (one event means one interaction of the
velocity field with one particle). When no corre-
lations (interactions) among particles occur,this is
actually the leading term of the exact Σ(k).

Under these approximations, two general systems have
been analyzed :

1. Moving sphere in a solution of fixed spheres and
freely translating polymer chains.

2. Moving polymer chains dispersed in a suspension
of fixed spheres.

Also, two significant limiting cases of the previous models
have been investigated :

a. Moving sphere in a solution of polymers.

b. Moving polymer chain immersed in an array of
fixed spheres.

For each example the underlying theory has been exposed
and developed and equations were explicitly displayed,
from which the translational diffusion coefficient D of the
probe particle and the effective viscosities of the solution,
total ηeff/η0 − 1 and relative, have been computed.

We have identified the proper dimensionless variables

characterizing the problem as follows : β =
Rg

ξ′
, x = a

ξ′

and t =
Rg

a , where Rg and a are the radius of gyration
of a polymer chain and the radius of a sphere, and ξ′ is
the total screening length in the solution.

It has been shown that the polymers do not contribute
to the screening of the hydrodynamic interactions at
large length scales and, as functions of polymer filling
fraction ΦPOL, both the effective viscosity ηeff and the
translational friction coefficient ζt diverge, in all exam-
ples, at a volume fraction ΦPOL

DIV ≃ 0.31 much less than
the corresponding divergence point for the ΦSP depen-
dence (ΦSP

DIV ≃ 0.49). While for suspensions of uni-
form particles showing no long-range order—in partic-
ular spheres—there is wide experimental support for the
divergence of viscosity and of the friction coefficient for
ΦSP

DIV ∈ [0.5, 0.6] (e.g. Ref. [19]), in the case of solu-
tions of rigid polymers and specifically for suspensions
of polymers and spheres less data are available, to our
knowledge.

Perhaps the most interesting parameter is t, which is
controlling the response of ηeff and D, both for spheres
and polymers, to changes in the environment (variations
in ΦSP and ΦPOL). The understanding of the role of the
t variable might be of interest in experimental applica-
tions, mainly related to gel permeation chromatography
and macromolecular sieving. A rather noticeable predic-
tion of our analysis related to the process of diffusion of
the polymers in a suspension of fixed spheres is the ex-
istence of an optimum range of the volume fraction ΦSP

of the spheres that maximizes the difference in the diffu-
sion coefficients for two types of chains characterized by
distinct t values (see Fig. 11 for the 1P/S system and
Figs. 7–10 in the P/S case).

It has been also noticed that at the same t ratio be-
tween the size of the tracer (moving) particle and the
size of the background element and the same background
concentration, the spheres and the polymers are behav-
ing differently. When the polymer is small in compar-
ison to the spheres, it is more diffusive than a small
sphere moving among polymer chains, but a large poly-
mer chain in a suspension of fixed spheres is less mobile
than a large sphere moving in a polymer dispersion. We
must note that this observation is valid before reaching
ΦPOL

DIV ≃ 0.31.

Despite the approximations made to yield the calcu-
lations analytically tractable, the formalism presented is
essentially general and also applicable when excluded-
volume (or other types of) interactions are turned on,
although in practice the effort could be quite laborious.
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Yet, in this straightforward approach we have managed
to draw a physically reasonable picture of the dynami-
cal behavior of such heterogeneous solutions of polymers
and spheres and some conceivable findings emerged. Fur-
ther extensions of this work are possible, for example the
study of rigid rodlike polymers and spheres, microemul-
sions (deformable particles) or investigating polydisperse
suspensions of spheres and polymers. This last aspect
is particularly meaningful in industrial applications (e.g.
ceramic fabrication, where processing at volume fractions
higher than the limiting values ΦSP

DIV , ΦPOL
DIV is necessary

but very difficult due to the divergent viscosity),because
experimentally it has been shown that a proper adjust-
ment of the particle size distribution could induce sub-
stantial increases in the limiting volume fractions [19],
but theoretically this observations is still not fully un-
derstood.

We seek to address this question and the physically
more appealing problem of a heterogeneous suspension
of particles with potential interactions in a future paper.
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APPENDIX A: SOLUTION OF THE
NAVIER-STOKES EQUATION FOR A

SUSPENSION OF NP POLYMER CHAINS AND
NS SPHERES

In Sec. II B we have found that a formal solution of the
Navier-Stokes equation (27) is given by Eq. (30), where
the force densities σαi and σb exerted upon the fluid by
the i-th bead of the polymer chain α and by the point Rb

on the surface of the sphere b, are unknowns. Using the
stick boundary conditions (28), we eliminate the forces
to express the velocity field in terms of the single-object
flow propagators Tα of any chain α and Tb of any sphere.

To simplify the notation, we replace the variables
Rb,Rαi with the indices b and αi,respectively, when ap-
pearing in the arguments of the Oseen tensor G and we
apply the Einstein convention of summation over repeat-
ing indices. In the case of the spheres this will also imply
a surface integral over the solid angle dΩ. We drop the
chain index α for relations generally valid independent
of the chain variables. The convolution operation is de-
noted by ∗—f ∗ g =

∫

dr′ f(r − r′) · g(r′) with f and g
tensors or vectors—and it is understood that its result is
a function of some position vector r, when not otherwise
specified by a subscript. Due to the translational invari-
ance in the suspension, G(r, r′) is actually a function of

the relative distance : G(r − r′). Then, Eq. (30) can be
rewritten as :

v(r) = G ∗ F + Gr,αi · σαi + Gr,b · σb (A1)

The sums over i, j,... run from 1 to n,the sums over
α, β, . . . from 1 to NP and the sums over b, c, . . . types of
indices run from 1 to NS . Inserting the previous expres-
sion in the boundary conditions (28) we get :

uα + ω × Sαk = G ∗ F|α + Gαk,βj · σβj + Gαk,b · σb

0 = G ∗ F|b + Gb,αi · σαi + Gb,c · σc (A2)

Here uα and ωα are the velocity of the center of mass
and the angular velocity of chain α. To eliminate the
unknown quantities σαi and σb we need the generalized
inverse operators K−1

α and K−1
b [12,15] defined by :

n
∑

j=1

K−1
α (Si,Sj) · G(Sαj − Sαk) = 11 δαi,αk

∫

dΩ′′
b K−1

b (r, r′′) · G(r′′ − r′) = 11 δ(Ωb − Ω′
b) (A3)

where r(Ωb),r
′′(Ω′′

b ) and r(Ω′
b) are position vectors (about

the center of mass frame) of distinct points on the surface
of the sphere b and Sαi is the position vector of the i-th
bead of the chain α with respect to its center of mass.
Applying the inverse operators in (A2) we obtain :

σαi =

n
∑

k=1

K−1
αi,αk · (uα − G ∗ F|αk − Gαk,b · σb

− Gαk,βj · σβj|β 6=α

)

+
n
∑

k=1

K−1
αi,αk · (ωα × Sαk) (A4a)

σb(Ωb) = −K−1
bb′ · G ∗ F|b′ − K−1

bb′ ·Gb′,αi · σαi

− K−1
bb′ · Gb′c · σc

∣

∣

b6=c
(A4b)

Note that there is no summation over α in the first equa-
tion and over b in the second one.

Analyzing the structure of these force factors, it ap-
pears manifest that the force upon the fluid due to one
object, is proportional to the relative increase in the ve-
locity of the fluid about the local velocity owing to the
action of all other bodies and external forces, which is a
sensible physical expectation. Also, the inverse operators
K−1

αi,αk and K−1
bb′ will produce the friction coefficients of

the polymer chains and of the mobile sphere, after one
performs the configurational average (32) and sums over
the indices i, k in the polymer case or integrates over Ωb

and Ω′
b for the sphere.

As shown in Ref. [12], the angular velocity of the
chain ωα in the force equations (A4) leads, eventually, to
the appearance of the rotational and cross translational-
rotational/rotational-translational friction coefficients of
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the polymer chains. The former has been calculated in
Ref. [12] and the latter vanish upon preaveraging. In the
present work we will ignore the rotational term, which
does not alter the screening properties of a polymer so-
lution. Then, using the conditions (29) that the total
external force and torque acting on any polymer chain
are zero, we get the velocity uα :

uα = g−1
t ·

n
∑

i,k

K−1
ik · G ∗ F|ik + g−1

t ·
n
∑

i,k

K−1
αi,αk

·Gαk,b · σb + g−1
t ·

n
∑

i,k

K−1
αi,αk · Gαk,βj · σβj

∣

∣

∣

β 6=α

gt =

n
∑

i,j

K−1
ij ; gt · g−1

t = 11 (A5)

Inserting back in (A4) and relabeling the dummy indices,
we finally calculate :

σαi = Tαi,αk · G ∗ F|αk + Tαi,αk · Gαk,βj · σβj |β 6=α

+Tαi,αk ·Gαk,b · σb (A6)

σb = Tbb′ · G ∗ F|b′ + Tbb′ · Gb′,αi · σαi

+ Tbb′ · Gb′cσc|b6=c

where there is no summation over α in the first equa-
tion and over b in the second and we have introduced the
notation :

Tαi,αk = −



K−1
αi,αk −

n
∑

l,l′=1

K−1
αi,αl · g−1

t ·K−1
αl′,αk





Tbb′ = −K−1
bb′ (A7)

Following indefinite iterations in (A6) and substituting
the results for σαi and σb back in (A1), we obtain the
velocity field as :

v(r) = G ∗ F + Grαi ·Tαi,αk · G ∗ F|αk

+ Gr b ·Tbb′ ·G ∗ F|b′
+ Gr αi ·Tαi,αk ·Gαk,βj ·Tβj,βl|β 6=α · G ∗ F|βl

+ Gr b ·Tbb′ ·Gb′c · Tcc′ ·G ∗ F|b6=c (A8)

+ Gr,αi · Tαi,αk · Gαk,b · Tbb′ · G ∗ F|b′
+ Gr b ·Tbb′ ·Gb′,αi · Tαi,αk ·G ∗ F|αk + . . .

Next, the single chain and single sphere flow propagators
Tα and Tb will be defined as :

Tα(r − r′) =

n
∑

i,k=1

δ(r − Rαi)Tαi,αk δ(r′ − Rαk) (A9a)

Tb(r − r′) =

∫∫

dΩb dΩ′
b δ(r − Rb)Tbb′ δ(r′ − Rb′) (A9b)

It is worth noticing that both operators still depend
upon the centers of mass through Rαi = R0

α + Sαi and
Rb = R0

b + rb(Ωb).

Eventually, the above definitions allow us to write (A8)
in a physically more suggestive manner, as a sequence of
multiple convolutions that are representing the scattering
events :

v(r)= G ∗F +
∑

α

G ∗ {Tα ∗ G ∗ F +
∑

b

G ∗ Tb ∗ G ∗ F

+
∑

α

∑

b

G ∗ {Tα ∗ G ∗ Tb + Tb ∗ G ∗ Tα} ∗ G ∗ F

+
∑

α

∑

β( 6=α)

G ∗ Tα ∗ G ∗ Tβ ∗ G ∗ F (A10)

+
∑

b

∑

c( 6=b)

G ∗ Tb ∗ G ∗ Tc ∗ G ∗ F + . . .

where the dependence on r of the multiple convolutions
is implied and the sum is continued over all permissible
scattering sequences.

This is Eq. (31) we wished to derive.

APPENDIX B: SELF-CONSISTENT
CALCULATION OF THE W(k) TENSOR FOR NS

SPHERES IMMERSED IN A FLUID

The main tool we need is the following expansion in
spherical harmonics :

A(r(Ω), r′(Ω′)) =

∞
∑

l,l′≥0

l
∑

m=−l

l′
∑

m′=−l′

Ãlm;l′m′Ylm(Ω)Y ∗
l′m′(Ω′)

Ãlm;l′m′ =

∫∫

dΩ dΩ′ A(Ω, Ω′)Y ∗
lm(Ω)Yl′m′(Ω′) (B1)

where r and r′ are the position vectors for points on the
surface of a sphere (|r| = |r′| = a) with angular direc-
tions Ω and Ω′, Ylm(Ω) are the spherical harmonics and
A is any tensor (vector)-like quantity.

Consider now NP − 1 fixed, non-interacting spheres of
radius a immersed in a pure fluid of viscosity η0. One
can calculate the exact self-energy ΣSP (k) of the sus-
pension as in Sec. II B (dropping the factors related to
the polymer chains) but a more direct approach is to
seek a self-consistent approximation , WSP (k) , of the
exact self-energy. As discussed in Sec. II A, we can re-
place our system of spheres and pure fluid averaged over
the distribution of the spheres, with an effective medium
in which the force propagator is G

SP (k) given by (44).
Adding one more sphere, its contribution to the approx-
imate self-energy of the fluid is found from the second
factor in (43) with the replacements cPOL → 1/V and
K−1 → K

−1 :
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WSP (k)

NS − 1
= − 1

V

∫

dΩ dΩ′ K
−1(Ω, Ω′)

× exp[ik · (r(Ω) − r′(Ω′))] (B2)

where K
−1 is the single sphere generalized inverse of the

modified Oseen tensor G :
∫

dΩ dΩ′′ K
−1(Ω, Ω′′) · G(r(Ω′′), r′(Ω′)) = 11 δ(Ω − Ω′)

(B3)

Expanding in (B2) in spherical harmonics we get :

WSP (k) = −cSP

∫

dΩ dΩ′
∑

lm

∑

l′m′

K
−1
lm;l′m′

× exp[ik · (r − r′)] Ylm(Ω)Y∗
l′m′(Ω′) (B4)

But the quantities of interest (shear viscosity, diffusion
coefficient) are related to the transverse part of WSP (k),
which should be isotropic in the k space (in our linearized
model). Thus we can perform the angular integral in the
equation above by choosing k ‖ ẑ direction and employ-
ing the plane-wave expansion :

exp[ik(z − z′)] =

∞
∑

l,l′=0

(−1)l′ il+l′(2l + 1)(2l′ + 1)

× jl(ka) jl′(ka)Pl(cos θ)Pl′ (cos θ′) (B5)

cos θ = k̂ · r̂ ; cos θ′ = k̂ · r̂′.

we arrive at :

WSP (k) = −4πcSP
∞
∑

l=0

∞
∑

l′=0

(−1)l′ il+l′
√

(2l + 1)

×
√

(2l′ + 1) jl(ka)jl′(ka)K
−1
l0;l′0 (B6)

Note that this equation is valid for any k values. A partic-
ular value of the self-energy WSP (k) that is meaningful
and readily obtainable from (B4), is :

WSP (k = 0) = −4πcSP K
−1
00;00 (B7)

For evaluating K
−1
lm;l′m′ , we start by expanding the def-

inition (B3) in spherical harmonics to transform it in the
equivalent form :

∞
∑

l′′=0

l′′
∑

m′′=−l′′

K
−1
lm;l′′m′′ · Gl′′m′′;l′m′ = 11 δll′ δmm′ (B8)

where the coefficients of the Oseen tensor expansion in
spherical harmonics are :

Glm;l′m′ =

∫∫

dΩ dΩ′ G[r(Ω), r′(Ω′)] Y∗
lm(Ω)Yl′m′(Ω′)

(B9)

Substituting G(r, r′) = G(r − r′) with its Fourier trans-
form (calculated as in (2)) yields :

Glm;l′m′ =
2

π
(−1)l il+l′

∫ ∞

0

dk k2 jl(ka)jl′(ka)

η0k2 − WSP
⊥ (k)

IPlm;l′m′

(B10)

with jl(ka) the spherical Bessel functions of order l and
IPlm;l′m′ the tensor :

IPlm;l′m′ =

∫

dΩk (11 − k̂k̂) Y∗
lm(Ωk)Yl′m′(Ωk) (B11)

Now inserting WSP
⊥ (k) from (45) and integrating over

the k variable produces [15] :

Glm;l′m′ =
1

η0a(1 + WSP
1 )

I
l+

1
2
(
a

ξ′
)K

l′+
1
2
(
a

ξ′
)

× (δl l′ + δl l′+2) IPlm;l′m′ (B12)

Here, I and K are the modified Bessel functions of the
first kind and ξ′ is the effective screening length in the
suspension of spheres from (46).

The construction of the inverse K
−1
lm;l′m′ requires an in-

volved procedure , described in Refs. [7,15]. It is based on
the observation that G—in its matrix representation—
can be decomposed into a block diagonal (l = l′) GD

and an off-diagonal GOD part (l 6= l′). We could write
then formally G = GD + GOD, which leads to, by tak-
ing the inner product from left and right with K−1 and
K

−1
D ,respectively, and iterating indefinitely :

K−1 = K
−1
D − K

−1
D · GOD · K−1

D + . . . (B13)

We compute then first (K−1
D )lm;lm′ :

(K−1
D )lm;lm′ = η0a (1 + WSP

1 )
1

I
l+

1
2
( a

ξ′
)K

l+
1
2
( a

ξ′
)

IP−1
lm;lm′

(B14)

in which the last factor is the generalized inverse of
IPlm;lm′ defined by the relation :

l
∑

m′′=−l

IP−1
lm;lm′′ · IPlm′′;lm′ = 11 δmm′ (B15)

and then one can calculate the non-diagonal part (l =
l′ + 2) of K

−1
lm;l′m′ :
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K
−1
lm;l′m′ =

η0a (1 + WSP
1 )

I
l′+

1
2
( a

ξ′
)K

l+
1
2
( a

ξ′
)

IP−1
lm;l′m′ (B16)

Finally, we return to (B6) to limit the expansion to fac-
tors of order k2 and using also the constraint l−l′ = {0, 2}
we get :

WSP (k ≪ 1) ≃ −4πcSP
[

K
−1
00;00 j20(ka) + 3 K

−1
10;10 j21(ka)

− 2
√

5 j2(ka) j0(ka)ReK−1
20;00

]

(B17)

The actual values of the operators K
−1
lm;l′m′ are :

K
−1
00;00 =

3

2
aη0

1 + WSP
1

I1/2(
a
ξ′

)K1/2(
a
ξ′

)
11 (B18a)

K
−1
10;10 =

1

9
aη0

1 + W1

I3/2(
a
ξ′

)K3/2(
a
ξ′

)
IL−1

10;10 (B18b)

K
−1
20;00 =

3

8
√

30
aη0

1 + WSP
1

I1/2(
a
ξ′

)K5/2(
a
ξ′

)
IL−1

20;00 (B18c)

with the IL−1 tensors given by :

IL−1
10;00 = 12 11− 2 ẑẑ

IL−1
20;00 = −8

√

3

2
11 + 24

√

3

2
ẑẑ (B19)

The last step in obtaining the self-energy of the sus-
pension of fixed spheres is to expand the spherical Bessel
functions in (B17) and, collecting all factors, we get :

WSP (k) = −6πcSP aη0
1 + WSP

1

I1/2(
a
ξ′

)K1/2(
a
ξ′

)
11

+
3

2
ΦSP (1 + WSP

1 ) k2

[

1

I1/2(
a
ξ′

)K1/2(
a
ξ′

)
11

− 2

27

1

I3/2(
a
ξ′

)K3/2(
a
ξ′

)
(12 11 − 2 ẑẑ) (B20)

+
1

10
√

6

1

I1/2(
a
ξ′

)K5/2(
a
ξ′

)

(

−8

√

3

2
11 + 24

√

3

2
ẑẑ

)]

that reduces immediately to (47), the equation we set to
derive.

APPENDIX C: SELF-CONSISTENT
CALCULATION OF WPOL(k) FOR A

SUSPENSION OF NP MOBILE POLYMER
CHAINS

In order to compute the self-energy of a solution of
polymers, we need to make the transformations :

a) change the variable Ri to R(s) where s is the posi-
tion of the i-th bead measured as the length of the
arc along the chain, that is i = s

l , l being the Kuhn
length.

b) convert the sum
∑n

i=1(· · ·) into the integral
1
l

∫ l

0
ds (· · ·),and the Kronecker delta δij to l δ(s −

s′).

c) the Fourier transform of a quantity 〈A(s, s′)〉—the
average being taken over the distribution of the
segments about the center of mass of one polymer
chain (assumed to be Gaussian) :

〈A(s, s′)〉 =

+∞
∑

q,q′=−∞
Aqq′ exp

(

2iπqs

L
− 2iπq′s′

L

)

Aqq′ =
1

L2

∫ L

0

ds

∫ L

0

ds′ 〈A(s, s′)〉 (C1)

× exp

(

−2iπqs

L
+

2iπq′s′

L

)

The generalized single chain inverse K
−1
α (Si,Sj) of the

modified Oseen tensor Gα(Si,Sj) of the polymer solution
is defined by the relation :

n
∑

j=1

K
−1
α (Si,Sj) · G(Sαj ,Sαk) = δik 11 (C2)

Averaging over segments distribution and applying the
previous transformations we get :

1

l2

∫ L

0

ds′ K
−1
α (s, s′) · G(s′, s′′) = δ(s − s′′) 11 (C3)

the Fourier transform of which being :

+∞
∑

q′=−∞
K

−1
qq′ · Gq′q′′ =

1

n2
δqq′′ 11 (C4)

or, in operator notation K
−1 = 1

n2 G
−1.

Our starting point is Eq. (54) converted to an integral
form :

WPOL(k) = −cPOL 1

l2

∫ L

0

ds

∫ L

0

ds′ 〈exp[ik · (R(s)

− R(s′))]〉
{〈

K
−1(s, s′)

〉

(C5)

− 1

l2
〈

g−1
t

〉

·
∫ L

0

∫ L

0

dp dp′
〈

K
−1(s, p)

〉

·
〈

K
−1(p′, s′)

〉}

where the averages are taken over the distribution of the
segments about the center of mass of the polymer chain.
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For a Gaussian probability distribution function we have
the following result [10] :

〈exp[ik · (R(s) − R(s′))]〉 = exp

[

−k2l|s − s′|
6

]

(C6)

Inserting the above expression in (C5), Fourier expanding
the

〈

K
−1
〉

factors and using their definition gives :

WPOL(k) = WPOL
a (k) + WPOL

b (k)

WPOL
a (k) = −cPOL

+∞
∑

q,q′=−∞
I∗qq′ (k)G−1

qq′ 11 (C7a)

WPOL
b (k) = cPOL

〈

g−1
t

〉 n2

l2

∫ L

0

∫ L

0

dp dp′
+∞
∑

q,q′

+∞
∑

ω,ω′

(C7b)

I∗qq′ (k) exp

(

−2iπωp

L
+

2iπω′p′

L

)

K−1
qω K−1

ω′q′ 11

with the notation :

I∗qq′ (k) =
1

L2

∫ L

0

∫ L

0

ds ds′ exp

[

−k2l|s − s′|
6

]

× exp

[

2iπqs

L
− 2iπq′s′

L

]

(C8)

In the previous relations we implicitly assumed that all
tensors are multiples of the unit tensor, which will be
shown to be true under certain approximations.

The integrals over p, p′ in the WPOL
b expression are

straightforward, yielding :

WPOL
b (k) = cPOL

〈

g−1
t

〉

∑

qq′

I∗qq′ (k)G−1
q0 G−1

0q′ 11 (C9)

Now I∗qq′ (k) can be evaluated to be :

I∗qq′ (k) =
2

L2











(

L

2πq

)2 k2R2
g

1 +
(

k2R2
g

2πq

)2 δqq′

−

[

(

k2R2
g

2π

)2

− qq′
]

(

2π
L

)2
q2q′2

[

1 +
(

k2R2
g

2πq

)2
] [

1 +
(

k2R2
g

2πq′

)2
] (C10)

×
[

1 − exp(−k2R2
g)
]}

in which Rg =
√

nl2

6 is the radius of gyration of any

polymer chain. What remains to be calculated is the
G

−1 operator.

Approximating the transverse component of WPOL(k)
with (53) and using the translational invariance of the
suspension we compute first the effective Oseen tensor :

G(R(s),R(s′)) = G(Rs − R′
s)

=

∫

k

G(k) exp [−ik · (Rs − R′
s)]

G(k) =
11 − k̂k̂

η0k2 − WPOL
⊥ (k)

(C11)

=
11 − k̂k̂

η0(1 + WPOL
1 )(k2 + ξ′−2

POL)

ξ′−2
POL =

ξ−2

1 + WPOL
1

where the Fourier integral is given by (2) and ξ′POL is the
effective screening length in the polymer solution.

Averaging over the distribution of the segments and
integrating over the solid angle, recalling that WPOL

⊥ (k)
does not depend on the direction of k , we get :

〈G(s, s′)〉 =
1

3π2

∫ ∞

0

dk k2 1

η0k2 − WPOL
⊥ (k)

× exp

(

−k2l|s− s′|
6

)

11 (C12)

Then, applying the Fourier transform defined at the be-
ginning of the appendix, one finds :

Gqq′ =
1

3π2

∫ ∞

0

dk
k2

η0(1 + WPOL
1 )(k2 + ξ′−2

POL)
Iqq′(k) 11

(C13)

where we used
∫

dΩk (11 − k̂k̂) = 8π
3 11 and Iqq′ has been

evaluated in (C10).

In order to make the calculation of G analytically
tractable, without coarsening the physical picture too
much, we will make two approximations :

1. the Kirkwood-Riseman approximation,which
amounts to discard the off-diagonal terms in I∗qq′ (k).

2. the long chain limit, n ≫ 1.

Under these assumptions, both G and its inverse are di-
agonal and their Fourier elements are simply related as :

(G−1)qq′ = (G−1)qδqq′ = (Gq)
−1 δqq′ (C14)

For convenience we will denote these matrix elements by
G−1

q .

We will proceed further to evaluate WPOL(k). Notic-
ing that Iq = I−q, one finds :

WPOL
a (k) = −cPOL

{

I0(k)G−1
0 + 2

∞
∑

q=1

Iq(k)G−1
q

}

11 (C15a)

WPOL
b (k) = cPOL I0(k)G−1

0 11 (C15b)
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in which we obtained
〈

g−1
t

〉

from :

〈gt〉 =

n
∑

i,j=1

〈

K
−1
ij

〉

=
1

L2

∫ L

0

∫ L

0

ds ds′ G−1(s, s′) = G
−1
0

〈

g−1
t

〉

= G0 (C16)

Working in the hydrodynamic limit k → 0, we expand
Iq(k ≪ 1) ≃ 1

π2q2 k2R2
g and converting the sum over q

to an integral over the wavevector µ = 2πq
L , we obtain

the following expression for WPOL(k) by adding the two
terms (C15a,C15b) :

WPOL(k) = − 4

πL
cPOLR2

g k2

∫ ∞

2π
L

dµ
1

µ2
G−1

µ 11 (C17)

To calculate the translational friction coefficient (and
implicitly,the diffusion coefficient), we have to consider
one polymer chain moving with some uniform velocity
u0 inside an effective medium replacing all others NP −1
chains, medium characterized by the force propagator
G(k) given by (C11). The equation of motion of the
center of mass of the chain is :

MR̈0 = −
n
∑

i=1

σi + f0 (C18)

M is the mass of the chain and σi is the force exerted by
the i-th bead of the polymer upon the fluid. Neglecting
the inertial term (stationary problem) in the above equa-
tion of motion, the total external average force upon the
polymer chain is found to be :

〈f0〉 =

〈

n
∑

i=1

σi

〉

=

n
∑

i,k

〈

K
−1
ik

〉

· u0 (C19)

where the expression of σi is a particular case of (A4)—
no spheres present and the other chains are absorbed in
the effective fluid by replacing K−1

ij with K
−1
ij . The trans-

lational friction coefficient follows readily :

ζt 11 =

n
∑

i,k

〈

K
−1
ik

〉

=

n
∑

i,k

〈

K−1
ik

〉

11 (C20)

where first we had a configurational average as defined
in (32) that reduced to an average over the distribution
of the segments Si, Sk about the center of mass of the
chain. Introducing the arc-length variables s and s′ and
applying the Fourier transform we obtain for ζt :

ζt = G−1
0 11 = 〈gt〉 11 (C21)

Next we insert (C10) in (C13) and setting q = q′ = 0 we
calculate G0 :

G0 =
2

3π2

1

η0(1 + WPOL
1 )

1

Rgβ

∫ ∞

0

dx
1

x2 + 1

×
{

1 − 1

(βx)2
[1 − exp(−β2x2)]

}

11 (C22)

with β a dimensionless variable : β = Rgξ
′−1
POL. The

integral gives the exact result :

G0 =
1

3π

1

η0(1 + WPOL
1 )

1

Rg

P(β)

β
11

P(β) = 1 +
1

β2

[

1 − exp(β2) +
2√
π

exp(β2)Γ(3
2 , 0, β2)

]

(C23)

Γ(3
2 , 0, x) =

∫ x

0

dt t
1
2 exp(−t)

where the last expression is the incomplete Gamma func-
tion.

Thus the friction coefficient is given by :

ζt 11 = G
−1
0 = 3πη0 [1 + WPOL

1 (ΦPOL)] Rg
β

P(β)
11

(C24)

From (C13), in the long-chain limit, Gµ becomes :

Gµ =
1

3π2

1

ηo(1 + WPOL
1 )

2

L2

∫ ∞

0

dp
p2

p2 + ξ′−2
POL

× 1

µ2

p2R2
g

1 +
(

p2R2
g

µL

)2 11 (C25)

where µ = 2πq
L . Working out the integral in terms of

dimensionless variables we get :

Gµ =
1

6π

1

η0(1 + WPOL
1 )

√
2

Rgβ

√
2 −

√

µL
β2 +

(

µL
β2

)3/2

1 +
(

µL
β2

)2 11

(C26)

Also, G
−1
µ is immediately computed as : G

−1
µ = (Gµ)−1.

Finally, changing the integration variable in (C17)
from µ to x = (µL/β2) and defining the volume fraction

of the polymers to be ΦPOL =
4πR3

g

3 cPOL, we calculate

WPOL(k) :

WPOL(k) = −36

π
η0 (1 + WPOL

1 )ΦPOL k2 1

β

×
∫ ∞

√

2π

β2

dx
x4 + 1√

2 x3(x3 − x +
√

2)
11 (C27)
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where the integration can be done exactly, leading even-
tually to the desired equation for the self-energy WPOL

of a suspension of NP non-interacting, mobile polymer
chains :

WPOL(k) = − 9

π
η0 (1 + WPOL

1 )ΦPOL k2 Q(β) 11 (C28)

Q(β) =
1

β
ln

(

1 +
β√
π

)

+
1√
π

+
β

2π

with β =
Rg

ξ′

POL
.

As a last note, we present here the series expansions
and the asymptotic behavior of the functions P(x) and
Q(x) introduced in the previous calculations :

x ≪ 1







P(x) ≃ 4
3
√

π
x − 1

2x2 + 8
15

√
π
x3 − . . .

Q(x) ≃ 2√
π

+ 1
3π

√
π

x2 − 1
4π2 x3 + . . .

(C29)

x ≫ 1







P(x) ≃ 1 − 2√
πx

+ 1
x2 − 1√

πx3 + . . .

Q(x) ≃ 1
2π x + 1√

π
+ . . .

(C30)
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FIG. 1. The physical interpretation of the multiple scat-
tering expression of the microscopic velocity field v(r). O =
observation point; G = the Oseen tensor of the pure fluid;
TOBJ = single-object velocity propagator.

FIG. 2. Diffusion coefficient D function of ΦPOL for the
1S/P limit case and for the S/P system with ΦSP param-
eter; all t values. From top to bottom : + 1 sphere limit;
3 ΦSP = 0.01; △ ΦSP = 0.11; © ΦSP = 0.21; 2 ΦSP = 0.31.

FIG. 3. Diffusion coefficient D function of ΦSP for a probe
sphere moving among other fixed spheres in a suspension of
polymers (S/P system), with ΦPOL parameter; all t values.
From top to bottom : 3 ΦPOL = 0.01; △ ΦPOL = 0.09;
© ΦPOL = 0.16; 2 ΦPOL = 0.24.

FIG. 4. Total viscosity change ηeff

η0
− 1 function of ΦPOL

for the 1S/P limit case and for the S/P system with ΦSP pa-
rameter; all t values. From bottom to top : + 1 sphere limit;
3 ΦSP = 0.01; △ ΦSP = 0.14; © ΦSP = 0.26; 2 ΦSP = 0.39.

FIG. 5. Total viscosity change ηeff

η0
− 1 function of ΦSP

for the S/P system, with ΦPOL parameter; all t values.
From bottom to top : 3 ΦPOL = 0.01; △ ΦPOL = 0.09;
© ΦPOL = 0.16; 2 ΦPOL = 0.24.

FIG. 6. Relative viscosity change ηeff

ηPOL
− 1 function of

ΦPOL for the S/P system, with ΦSP parameter; all t val-
ues. From bottom to top : 3 ΦSP = 0.09; △ ΦSP = 0.24;
© ΦSP = 0.39; 2 ΦSP = 0.46.

FIG. 7. Diffusion coefficient D function of ΦSP for the
1P/S limit and for the P/S system with ΦPOL parameter;
t = 0.01. From top curve to bottom curve, Figs. [7–10] :
+ 1 chain limit; 3 ΦPOL = 0.01; △ ΦPOL = 0.09;
© ΦPOL = 0.16; 2 ΦPOL = 0.24.

FIG. 8. Diffusion coefficient D function of ΦSP . 1P/S
and P/S systems, with ΦPOL parameter; t = 0.1.

FIG. 9. Diffusion coefficient D function of ΦSP . 1P/S
and P/S systems, with ΦPOL parameter; t = 1.

FIG. 10. Diffusion coefficient D function of ΦSP . 1P/S
and P/S systems, with ΦPOL parameter; t = 10.

FIG. 11. Differences in the diffusion coefficient of the poly-
mer chain function of ΦSP for four pairs of t values (1P/S
system). From top to bottom,following the maximum of each
curve : © D(t = 0.01) −D(t = 10); 3 D(t = 1) −D(t = 10);
△ D(t = 0.01) − D(t = 1); 2 D(t = 0.01) − D(t = 0.1).

FIG. 12. Diffusion coefficient D function of ΦPOL for one
mobile polymer chain inside a dispersion of other polymer
chains and fixed spheres (P/S system), with ΦSP parameter;
t = 0.1. From top to bottom , Figs. [12–14] : 3 ΦSP = 0.01;
△ ΦSP = 0.14; © ΦSP = 0.26; 2 ΦSP = 0.39.

FIG. 13. Diffusion coefficient D function of ΦPOL. P/S
system, with ΦSP parameter; t = 1.

FIG. 14. Diffusion coefficient D function of ΦPOL. P/S
system, with ΦSP parameter; t = 10.

FIG. 15. Total viscosity change ηeff

η0
− 1 function of ΦPOL.

P/S system, with ΦSP parameter; t = 0.01. From bottom to
top curve : 3 ΦSP = 0.01; △ ΦSP = 0.14; © ΦSP = 0.26;
2 ΦSP = 0.39.

FIG. 16. Total viscosity change ηeff

η0
− 1 function of ΦPOL.

P/S system, with ΦSP parameter; t = 10. From bottom to
top curve : 3 ΦSP = 0.01; △ ΦSP = 0.14; © ΦSP = 0.26;
2 ΦSP = 0.39.

FIG. 17. Total viscosity change ηeff

η0
− 1 function of ΦSP .

P/S system, with ΦPOL parameter; t = 0.01. From bottom
to top curve, Figs. [17–18] : 3 ΦPOL = 0.01; △ ΦPOL = 0.09;
© ΦPOL = 0.16; 2 ΦPOL = 0.24.

FIG. 18. Total viscosity change ηeff

η0
− 1 function of ΦSP .

P/S system, with ΦPOL parameter; t = 10.

FIG. 19. The relative viscosity change ηeff

ηSP
− 1 as a func-

tion of ΦPOL for the P/S system, with ΦSP parameter; t = 1
when symbols are joined with lines and t = 10 when they
are isolated. The corresponding ΦSP values are : 3 and
3–3 ΦSP = 0.01; △ ΦSP = 0.14; © ΦSP = 0.26; 2 and
2–2 ΦSP = 0.39.

FIG. 20. The relative viscosity change ηeff

ηSP
−1 as a function

of ΦSP . P/S system, with ΦPOL parameter; t = 0.01. From
bottom to top curve, △ ΦPOL = 0.09; © ΦPOL = 0.16;
2 ΦPOL = 0.24
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FIG. 21. The relative viscosity change ηeff

ηSP
− 1 as a func-

tion of ΦSP . P/S system, with ΦPOL parameter; t = 1
when symbols are joined with lines and t = 10 when they
are isolated. The corresponding ΦPOL values are : △ and
△–△ ΦPOL = 0.09; © and ©–© ΦPOL = 0.16; 2 and
2–2 ΦSP = 0.24.
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