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ABSTRACT 
 

COMBINED TREATMENT WITH NPY Y5 ANTAGONISTS AND NAN-190 
ATTENUATES TRANSIENTS IN LIGHT-INDUCED PHASE SHIFTS AND 

POTENTIATES PHASE SHIFTS ONLY DURING THE LATE SUBJECTIVE NIGHT 
 

SEPTEMBER 2008 
 

MARY K. COSTELLO, B.A., WELLS COLLEGE 
 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Mary E. Harrington 
 
 

  

Circadian rhythms in physiology and behavior are synchronized by a central pacemaker, 

the suprachiasmatic nuclei (SCN) of the hypothalamus. Shift work, jet lag and sleep 

disorders can disrupt circadian rhythms, negatively impacting health and well-being. The 

SCN pacemaker resets rapidly in response to changes in the daily light cycle, however, 

adjustment of peripheral oscillators to changing time zones or work shifts is more 

gradual, leading to internal desynchrony. In addition, many diseases can impair the 

SCN’s ability to adjust to changes in the light cycle.  My research investigated whether 

combined pharmacological inhibition of neuropeptide Y and serotonin could enhance 

resetting and attenuate transient cycles in locomotor activity following a sudden change 

in light exposure. I found that simultaneously blocking neuropeptide Y and serotonin 

receptors potentiated phase shifts during the late subjective night and significantly 

reduced transient cycles of locomotor activity in hamsters. Development of treatments 

that enhance the circadian system’s response to light may alleviate some of the negative 

health consequences experienced by travelers, shift workers and individuals with disease-

related circadian desynchrony
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CHAPTER I 
 

INTRODUCTION 
 
 

Circadian rhythms of behavior and physiology are coordinated by the master circadian 

pacemaker, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus (Klein, 

Moore and Reppert, 1991). The circadian timing system influences sleep-wake cycles, 

hepatic metabolism, endocrine secretion, body temperature, cognitive function, 

cardiovascular activity, cell growth and division as well as other processes (Schibler, 

Ripperger and Brown, 2003).  Circadian rhythms are regulated by the daily light-dark 

cycle as well as by internal stimuli associated with behavioral and physiological status 

(reviewed in Reppert and Weaver, 2002; Yannielli and Harrington, 2004). Timing of 

daily rhythms allows optimal coordination of physiology and behavior with time of day. 

For example, a rise in glucose levels and corticosterone secretion in the early morning 

prepares the body for activity (La Fleur, Kalsbeek, Wortel, Fekkes and Buijs, 2001). 

Circadian rhythms also allow internal coordination, so that incompatible processes occur 

at different times of day. 

There is increasing evidence that circadian disruption, particularly in a light-

altered environment, may be responsible for increased incidence of human diseases 

including hypertension, diabetes, depression and breast cancer (Hastings, Reddy and 

Maywood, 2003; LaFleur, Kalsbee, Wortel, Fekkes and Buijs, 2001; Stevens, 2005). 

Travel to new time zones, lack of photic input, and an irregular circadian clock can 

disturb nightly sleep and reduce vigilance and cognitive function during the day (Cho 

2001; Katz, Knobler, Laibel, Strauss and Durst, 2002; Waterhouse, Really and Atkinson. 

1997). Seasonal affective disorder (SAD), which may be caused by a delayed circadian 
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system, affects 2-5% of the population in temperate climates (Lam et al., 2006). 

Symptoms of seasonal affective disorder include recurrent major depressive episodes, 

low energy and fatigue (Lewy, Lefler, Emens and Bauer, 2006).  

 Light is the most potent cue for entrainment of the circadian clock, however,  

non-photic stimuli, such as activity, sleep and feeding schedule can also influence 

circadian rhythms. The effects of light on circadian rhythms can be modified by non-

photic stimuli.  Non-photic information is conveyed to the SCN primarily via 

serotonergic input from the raphe nuclei and by neuropeptide Y input from the 

intergeniculate leaflet in the thalamus. Our lab recently found that simultaneously 

blocking NPY and serotonin input significantly potentiates photic phase shifts in 

hamsters (Lall and Harrington, 2006). This finding may have clinical value in treating 

disordered circadian rhythms. In human studies, light alone has not been able to produce 

the phase adjustment required to adjust to circadian dysynchrony experienced during jet 

lag or shift work (Zeiter, Dijk, Kronauer, Brown and Czeisler, 2000). My work seeks to 

further characterize the potentiation of phase resetting by blocking neuropeptide Y (NPY) 

and serotonin (5-HT) input. I seek to extend the finding to another species, mice, and to 

evaluate at what circadian phases the light induced shifts are potentiated by this 

treatment. In addition, I will determine whether transient cycles, which underlie the 

malaise of jetlag, can be attenuated with this combined inhibition of NPY and 5-HT.  

Transient cycles are the unstable cycles in the days following an abrupt light change 

before the overt rhythm measured reaches a steady state. Phase adjustments may have a 

therapeutic role in treating depression and SAD as well as alleviating the negative effects 

of jet lag and shift work (Sollars, Ogilvie, Simpson and Pickard, 2006). 
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CHAPTER II 
 

BACKGROUND AND SIGNIFICANCE 
 
 
A. The suprachiasmatic nucleus controls circadian rhythms of many behavioral 

and physiological responses 
 

Circadian rhythms are defined by three fundamental properties. First, the rhythm 

must persist in constant conditions with a period of approximately 24 hours. Additionally, 

a circadian rhythm is temperature compensated, having a period that is approximately the 

same across different constant ambient temperatures. The third and most important 

criterion is that a circadian rhythm can be entrained to daily cues, known as zeitgebers, in 

the environment (Johnson, Elliott and Foster, 2003).  

In mammals, a master pacemaker coordinates circadian rhythms of behavior and 

activity. Brain lesion, metabolic and electrophysiological studies determined that a 

central clock resides in the suprachiasmatic nucleus of the anterior hypothalamus of 

mammals. The SCN are small paired nuclei of ~10,000 neurons lying just above the optic 

chiasm. Lesions of the SCN extinguish circadian rhythms of locomotor activity, feeding, 

drinking, body temperature, and plasma adrenal corticosterone in rodents (Moore and 

Eichler, 1972; Stephan and Zucker, 1972; Abe, Kroning, Greer and Critchlow, 1979). 

The rhythmicity of the SCN persists in vitro in both hypothalamic slice and cell culture 

preparations (Shibata, Oomura, Hattori and Kita, 1982; Welsh, Logothetis, Meister and 

Reppert, 1995). Conclusive evidence for the autonomy of the SCN comes from transplant 

studies; transplants of fetal SCN to SCN-lesioned rodents reinstate wheel running activity 

rhythms with the period of the donor tissue (Ralph, Foster, Davis and Menaker, 1990). 
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The SCN receives direct neural input from the retina as well as innervations from 

the midbrain raphe and the intergeniculate leaflet of the thalamus (IGL) (see Figure 1). 

Photic entraining stimuli reach the SCN via the retinohypothalamic tract while non-

photic information is conveyed via the median raphe nuclei and via the 

geniculohypothalamic tract (GHT) from the IGL (Morin and Allen, 2006; Morin and 

Meyer-Bernstein, 1999; Harrington, 1997). It has also been suggested that the dorsal 

raphe nucleus might contribute to circadian phase setting in the Syrian hamster by 

enhancing serotonergic activity in the SCN, the IGL and/or the midbrain raphe nucleus 

(Glass, DiNardo and Ehlen, 2000). A number of IGL neurons projecting to the SCN are 

Figure 1. The principal input pathways to the suprachiasmatic nucleus (SCN). Photic input comes from the retina via the retinohypothalamic 
tract utilizing primarily glutamate and PACAP. Non-photic input arrives to the SCN from the intergeniculate leaflet (IGL) utilizing 
neuropeptide Y (NPY) and GABA and from serotonergic (5-HT) afferents arising from the midbrain raphe nuclei. (adapted from Yannielli 
and Harrington, 2004) 
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photically responsive and some encode light intensity, suggesting the IGL also plays a 

role in photic entrainment and photoperiodic responses (Harrington, 1997).  

 Individual neurons in the SCN are autonomous oscillators and can generate 

circadian firing rhythms when dissociated from SCN tissue (Honma, Shirakawa, 

Katsuno, Namihira and Honma, 1998; Welsh, Logthetis, Meister and Reppert, 1995).  

The core oscillation of the SCN is driven by auto-regulating transcription-translation 

feedback loops (Dunlap, 1999; Reppert and Weaver, 2001).  In brief, two positive 

activators, CLOCK and BMAL1, which are members of the bHLH-PAS domain family 

of transcription factors, dimerize and drive the transcription of the Period (per) and 

Cryptochrome (cry) genes.  As PER and CRY protein levels increase, PER proteins 

dimerize with CRY proteins and are phosphorylated.  The phosphorylated PER-CRY 

complex moves into the nucleus and binds to the CLOCK-BMAL1 heterodimer 

removing the positive drive to the per and cry genes.  When the level of the PER-CRY 

complex is low, the transcription of per and cry is once again activated by the BMAL-

CLOCK heterodimer. In addition, posttranslational modifications play a key role in the 

molecular generation of circadian rhythmicity in all eukaryotes (Gallego and Virshup, 

2007; Lee, Etchegaray, Cagampang, Loudon and Reppert, 2001; Merrow, Spoelstra and 

Roenneberg 2005; Schibler, 2005). Phosphorylation can affect half-life and control the 

sub-cellular localization of a protein to regulate transcriptional activity.  The major clock 

kinase, casein kinase I (CKI)ε and the related kinase, CKIδ, regulate the negative arm of 

the feedback loop through phosphorylation of PER proteins (Partch, Shields, Thompson, 

Selby and Sancar, 2006). The BMAL1 and cryptochrome proteins are also substrates for 

CKIε in vitro (Eide EJ, Vielhaber EL, Hinz WA and Virshup DM, 2002). 
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B. Circadian rhythms are entrained by the environmental light-dark cycle 
 
 

How does the circadian timing system coordinate internal rhythms with the 

external environment?  The most consistent environmental cue is the 24-hour light cycle 

and the phase of the master pacemaker, the SCN, is set every day by light cues (Schibler, 

2005). In mammals, rods, cones and intrinsically photosensitive retinal ganglion cells 

mediate circadian photoentrainment (Guler et al., 2008). The retinal ganglion cells, which 

are specialized for irradiance detection, use the photopigment melanopsin (Pierson and 

Foster, 2006). The axons of the melanopsin containing retinal ganglion cells project to 

the suprachiasmatic nucleus, the intergeniculate nucleus and the olivary pretectal nucleus. 

The SCN and IGL regulate circadian photoentrainment and the olivary pretectal nucleus 

regulates pupillary light reflex (Hattar et al., 2003). Mice lacking the melanopsin gene 

have diminished ability to phase-delay and lengthen circadian period, while mice lacking 

rods and cones have altered amplitude in their photic phase response curves. Together the 

melanopsin retinal ganglion cells and rod-cone cells have complementary roles in tuning 

of phase and period length for photoentrainment and normal pupillary light reflex (Hattar 

et al., 2003).  

 Light is transduced into a neural signal by retinal ganglion cells and the signal is 

conveyed to the SCN via the retinohypothalamic tract, triggering the release of the 

neurotransmitter glutamate and the neuromodulators, substance P and pituitary adenylyl 

cyclase-activating peptide (PACAP) onto retinorecipient cells in the SCN (see Fig. 2). 

Glutamate activates the excitatory NMDAR and mGluR receptors causing an influx of  

Ca 2+ and initiating a cascade of intracellular signaling events  (reviewed in Reppert and 

Weaver, 2002). 
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 Circadian entrainment depends on the activation of specific signal transduction 

pathways in the SCN including: protein kinase A, protein kinase G, protein kinase C, 

calcium-calmodulin protein kinase, and mitogen-activivated kinase  (Butcher, Lee, Cheng 

and Obrietan, 2005; Jakubcakova et al., 2007).  These signaling cascades activate the  

Figure 2.  Light resets the clock. a. A subset of melanopsin-containing retinal ganglion cells (RCGs) form the retinohypothalamic 
tract projecting to neurons in the SCN. b. When stimulated by light, the melanopsin-containing RGCs release primarily PACAP and 
glutamate. c. Glutamate and PACAP bind to their respective receptors, triggering an influx of Ca2+. This influx leads to increased 
cAMP levels, leading to phosphorytlation of CREB, and activation of the immediate early genes Per 1 and Per 2 resulting in a phase 
shift (shown in black). (Liu, Lewis and Kay, 2007) 
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Ca 2+/cyclic response elements (CRE) in the promoter region of the clock genes Per1 and 

Per 2  (Butcher, 2005). The clock genes Per1 and Per2 are induced in response to light 

stimuli presented during the subjective night, when their levels are minimal. Light during 

the day has little effect on Per levels; however light in the early night delays the feedback 

loop by inducing Per1 expression as it falls, and light in the late night advances the clock 

cycle by accelerating the transcription of Per as levels are rising. Transcriptional 

activation of Per is followed by increased levels of the PER1 and PER2 proteins. (Yan 

and Silver, 2004). Significantly, light-induced Per induction during the night correlates 

with resetting behavior of the locomotor activity rhythms (Shigeyoshi et al., 1997).  

 The circadian clock responds differently to light cues at different phases of its 

endogenous period.  Circadian phase is frequently determined by measuring activity 

onset in locomotor rhythms of small mammals (see Fig. 3). Animals are placed in 

constant dark conditions (DD) following entrainment to a light: dark cycle and daily 

locomotor activity rhythms are analyzed. The first half of the cycle (CT0-CT12) is 

identified as subjective day and the second half (CT12-CT24) identified as subjective 

night. Light stimulation during the early subjective night phase delays the circadian 

activity rhythm whereas light during the late subjective night phase advances the rhythm 

(Fig. 3). Light pulses received during the subjective day have little or no effect on the 

activity phase.  
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 The endogenous circadian clock can function in the absence of external time cues, 

however, it is important that the clock can also be entrained by environmental cues in 

order to provide an internal estimate of external time (Johnson, Elliott and Foster, 2003). 

Entrainment allows coordination of physiological processes and oscillations in peripheral 

tissues to the daily light schedule. The interval (measured in hours) between the 

entraining signal, referred to as a zeitgeber, and the onset of the rhythm (e.g. activity 

rhythm or body temperature) is referred to as the phase angle difference. Entrainment 

requires that a stable phase angle difference between the environmental cycle and the 

 
 
 
Figure 3. A photic phase response curve (PRC) determined for the Syrian hamster. Phase shifts are plotted as a function 
of the circadian phase when the light pulse is given as indicated on the x-axis. Light exposure during the early subjective 
night phase delays the clock and during the late night, light phase advances the clock. Phase delays are plotted as negative 
values and phase advances as positive values. Light during the day has little or no effect on phase. (Subjective day: CT 0 
– CT 12, subjective night: CT 12 - CT 24) 

      Lowrey and Takahasi, 2004 
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overt rhythm be established (Jud, Schmutz, Hampp, Oster and Albrecht, 2005). The 

period of the internal rhythm becomes approximately equal to that of the oscillating 

environmental signal (Dunlap, Loros and DeCoursey, 2004). Light is the most significant 

environmental signal for synchronizing circadian rhythms with external time. The 

circadian pacemaker is entrained by light falling at a specific phase of an organism’s 

phase response curve. For example, light during the late night results in an advance shift, 

allowing for an adjustment equal to the difference between the intrinsic free running 

period and the period of the entraining cycle (see Fig. 4). 

 During entrainment to new light-cycle, unstable cycles, known as transients can 

be observed in locomotor activity. Although the SCN resets rapidly in response to a 

changing light cycle, many overt rhythms require several cycles to reach the steady-state 

phase shift. Transient cycles, thought to reflect disequilibrium between the overt rhythm 

and the pacemaker, are observed for a few days following phase shifts to light stimuli 

(Johnson, Elliott and Foster, 2003). Pittendrigh (1958) suggested that transients occur as 

a light-driven oscillator gradually regains phase with the oscillating rhythm it drives. 

Advance and delay resetting by the pacemaker in response to light is rapidly 

accomplished within 2 hours of light onset (Best, Maywood, Smith and Hastings, 1999). 

However, it takes several days for the oscillations driven by the light-responsive 

pacemaker (the SCN in mammals) to reach this steady state. When the steady state in the 

overt rhythm is reached, it is in response to a signal that has occurred several days earlier. 

Transients are more pronounced for advance shifts than for delays and may contribute to 

the malaise experienced during jet lag and shift work.  
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Figure 4. The phase shift necessary for stable entrainment, phase shift = FRP – T, depends upon the length of the FRP. When the FRP 
is 2 hours longer than the T cycle as in A, light must strike the PRC during late subjective night to elicit a phase advance of two hours 
to establish stable entrainment. However, when the FRP is 2 hours less than the T cycle, light must coincide with early night to elicit a 
two- hour delay for stable entrainment. FRP: free running period, PRC: phase response curve, T: period of the environmental 
light/dark cycle  (Johnson, Elliott and Foster, 2003) 
 

 

 

 

 

A.  On the left, the solid PRC represents 
a 26- hour FRP of locomotor rhythm of 
a night-active animal, and the dotted 
PRC represents the necessary shift for 
entrainment to a 24-hour T cycle. The 
black bars on the actogram indicate the 
timing of the light necessary to bring 
about this shift. 

B.  On the left, the solid PRC represents 
a 22- hour FRP of locomotor rhythm of 
a night-active animal, and the dotted 
PRC represents the necessary shift for 
entrainment to a 24-hour T cycle. The 
black bars on the actogram indicate the 
timing of the light necessary to bring 
about this shift. 
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C. Nonphotic stimuli phase shift circadian rhythms during subjective day 

 
 Circadian rhythms can be phase shifted or entrained by non-photic stimuli during 

subjective day, a time when light has little effect  (Reebs and Mrosovsky, 1989). Early 

studies first identified social stimuli as zeitgeibers that could influence phase and period 

of circadian rhythms in birds, mice and humans (Menaker and Eskin, 1966; Yamada, 

Shimomada, Takahasi, and Takahasi, 1986; Ehlers, Frank and Kupfer, 1988). Subsequent 

studies determined that social stimuli do not effectively entrain circadian rhythms in 

hamsters, mice or monkeys and it is likely that social stimuli instead affect circadian 

rhythms by regulating light exposure, inducing activity or stimulating arousal (Refinetti, 

Nelson and Menaker, 1992; Mistleberger and Skene, 2003). In addition, many studies 

established that nonphotic stimuli which increase arousal, including novelty-induced 

wheel running, sleep deprivation and saline injection will also produce large phase 

advances when presented during subjective day (Antle and Mistlberger, 2000; Edgar and 

Dement 1991; Hastings, Duffield, Smith, Maywood and Ebling, 1998; Mrosovsky, 

Reebs, Honrado and Salmon, 1989).  Dark pulses, food deprivation, short acting 

benzodiazepines and morphine injections also produce phase advances, which depend 

upon induced behavioral activity (Van Reeth and Turek, 1989; Mistlberger, Sinclair, 

Marchant, and Neil, 1997; Mrosovsky and Salmon, 1990; Byku and Gannon, 2000). 

Phase delays elicited by non-photic manipulations may also be possible at the end of the 

animal’s activity period or at the beginning of the rest period  (see Fig. 5) but are smaller 

and not consistently observed (Marchant and Mistlberger, 1996; Reebs and Mrosovsky, 

1989). 
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Non-photic signals are conveyed to the SCN via the GHT from the IGL utilizing 

projections containing neuropeptide Y, GABA and enkephalin (Harrington, 1997). There 

is considerable evidence that neuropeptide Y has a primary role in mediating non-photic 

input to the circadian system.  Lesions of the GHT attenuate non-photic phase shifts in 

response to novel-running wheel induced activity (Wickland and Turek, 1994), dark 

pulses at circadian time 5-7 and 7-14 (Harrington and Rusak, 1986), confinement to a 

running wheel during the day (Janik and Mrosovsky, 1994) and benzodiazepines (Biello, 

Harrington and Mason, 1991; Johnson et al., 1998).  NPY microinjected into the SCN 

induces a phase advance of circadian activity rhythms in hamsters (Albers and Ferris, 

1984; Biello, Janik and Mrosovsky, 1994). Microinjections of antiserum raised against 

neuropeptide Y attenuate novelty-induced running wheel phase shifts (Biello, Janik and 

Mrosovsky, 1994).   Treatment with NPY can advance the circadian clock in vitro as well 

as in vivo during subjective day (Shibata and Moore, 1993) but has no effect on circadian 

phase during the night (Harrington and Schak, 2000). Fos, a marker for neuronal 

Figure 5. Non-photic phase response curve 
determined in Syrian hamsters with 3-hr pulses 
of novelty induced activity. (PRC adapted from 
Mrosovsky, Salmon, Menaker and Ralph, 1992) 
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activation, is colocalized with neuropeptide Y in the intergeniculate leaflet following a 

non-photic phase shift (Janik, Mikkelsen and Mrosovsky, 1995). The NPY Y2 receptor 

mediates the phase advancing effects of NPY during the day (Golombek, Biello, Rendon 

and Harrington, 1996; Huhman, Gillespie, Marvel and Albers, 1996; Soscia and 

Harrington, 2005). 

 Serotonergic projections from the midbrain raphe also convey non-photic 

input to the SCN  (Meyer-Bernstein and Morin, 1996). Serotonin agonists phase advance 

the clock during subjective day in vitro (Prossner, Miller and Heller, 1990) and in vivo 

(Edgar, Miller, Prossner, Dean and Dement, 1993; Horikawa et al., 2000). Both novelty-

induced activity and sleep deprivation stimulate serotonin release during the day and 

novelty-induced locomotor activity suppresses serotonin release during the late subjective 

night in hamsters (Dudley, Di Nardo and Glass, 1998; Grossman et al., 2000). In 

addition, electrical stimulation of the dorsal and median raphe induces phase advances at 

circadian time (CT) 6 and phase delays at CT 14 in the Syrian hamster  (Meyer-Bernstein 

and Morin, 1999). In the Syrian hamster, serotonergic afferents project to the SCN from 

the median raphe nucleus and to the IGL from the dorsal raphe nucleus and the midbrain 

raphe (see Fig. 6) (Meyer-Bernstein and Morin, 1996). Peripheral injections of serotonin 

agonist phase-shift the clock during daytime, but intracranial injections to the SCN have 

minimal effect (Challet, Scarbrough, Penev and Turek, 1998; Cutrera, Ouauour and 

Pevet, 1994). Serotonin exerts its phase-shifting effects by acting in the raphe or 

intergeniculate leaflet, rather than in the SCN (Duncan, Grear and Hoskins, 2004).  

Although serotonergic agonists are unable to elicit phase shifts when applied directly to 

the SCN, they readily phase shift the SCN when applied in vitro. The phase-shifting 
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effect of 5-HT agonists in vitro appears to depend on low endogenous levels of serotonin 

in the in vitro preparations, which allow the system to become more sensitive to 

treatments with the 5-HT agonists (Prossner, Lee and Wehner, 2006). 

   

 

 

 

 

 

How do non-photic phase shifts affect the master clock?   The SCN is reset by 

non-photic phase shifts rapidly, within one to two hours of stimulus presentation 

(Hastings, Duffield, Smith, Maywood and Ebling, 1998; Mead et al., 1992). Non-photic 

stimulation suppresses basal c-fos expression in the SCN while increasing c-fos 

expression in the intergeniculate leaflet (Mikkelsen Vrang, and Mrosovsky, 1998; Antle 

and Mistlberger, 2000). Non-photic resetting acutely suppresses the clock genes per1 and 

per2. Non-photic phase advances elicited by benzodiazepines treatment, novel-wheel 

induced activity, and saline injection, are associated with decreased per gene activity in 

the SCN (Maywood, Mrosovsky, Field and Hastings, 1999; Yokota et al., 2000; 

Figure 6. Afferent projections mediating non-photic input in the hamster circadian 
system. 
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Maywood and Mrosovsky, 2001).  Neuropeptide Y1/Y5 and Y2 agonists decreased per 1 

and per2 expression in SCN slices (Fukuhara, Brewer, Dirden, Bittman, Tosini and 

Harrington, 2001). Injections of antisense oligonucleotides to per1 induce phase advances 

during subjective day, suggesting that suppression of period genes is the cause and not 

the consequence of non-photic phase shifts (Hamada, Antle and Silver, 2004). Light-

induced phase shifts during the night have the opposite effect, enhancing per expression 

in the SCN.   

Light during the day does not elicit a photic phase shift; however, light can inhibit 

the response of the clock to non-photic stimuli during the subjective day. A light pulse 

during the day blocks phase advances in response to novelty-induced activity, NPY, 

serotonin and sleep deprivation (Mrosovsky, 1991; Biello and Mrosovsky, 1995 and 

Penez, Zee and Turek, 1997; Grossman, Mistlberger, Antle, Ehlen and Glass. 2000). Per1 

expression is higher in animals given a light pulse directly after non-photic stimuli than in 

animals receiving non-photic stimuli alone (Maywood and Mrosovsky, 2001).  

Glutamate, replicating the actions of light, inhibits phase resetting in response to NPY in 

the SCN slice preparation (Biello, Golombek and Harrington, 1997).  

 

D. Light-induced phase shifts are inhibited by non-photic stimuli, serotonin  
and NPY 

 
The possibility that behavioral stimuli might interact with light-induced phase 

shifts was prompted by reports that (1) testes regression, which is prevented by a night 

time light pulse, will occur if the light is delivered with concurrent locomotor activity 

(Ferraro and McCormack, 1985) and (2) light pulses and locomotor activity compete in 

setting circadian phase in the scorpion (el Bakary and Fuzeau-Braesch, 1988). 
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Ralph and Mrosovsky (1992) determined that light-induced phase advances are 

attenuated by simultaneous locomotor activity in the Syrian hamster. Sleep deprivation, 

morphine-induced activity, and the neurochemicals that phase advance circadian rhythms 

during the day (NPY, 5-HT, and opioids) decrease the phase response to light stimuli 

during the late subjective night (Mistlberger and Antle, 1998; Mistlberger and Holmes, 

2000; Biello et al., 1997a; Edelstein et al., 2003; Tierno, Fiore and Gannon, 2002). 

However, light-induced phase delays are not significantly attenuated by behavioral 

activation, NPY and serotonin  (Challet, Turek, Laute and Van Reeth, 2001; Mistlberger 

and Antle, 1998; Weber and Rea, 1997).  

Co-application of NPY with glutamate or NMDA (which mimic the effects of 

light) blocks both phase delays and advances to glutamate or NMDA in vitro  (Biello et 

al., 1997;Yannielli and Harrington, 2000).  In addition, NPY can be applied in vitro to 

block phase delays and advances to a light pulse administered before the slice preparation 

showing that its actions act on processes downstream of light input (Yannielli and 

Harrington, 2000). Effects of NPY on light-induced resetting are mediated by the NPY 

Y5 receptor (Lall and Biello, 2003; Yannielli and Harrington, 2001). Antiserum to NPY 

and the NPY Y5 receptor antagonist, RJW-57926, (RW Johnson Pharmaceutical 

Research Institute, Spring House), potentiate light-induced phase advances in the hamster 

(Biello, 1995; Lall and Biello, 2003;Yannielli and Harrington, 2004). In addition, the Y5 

antagonist, RJW-57926, counteracts the inhibitory effects of NPY on light induced phase 

shifts in vivo and in vitro (Yannielli and Harrington, 2001a; Yannielli and Harrington, 

2001b). 
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Serotonin can interact with light-induced phase shifts through the presynaptic 5-

HT1B receptor on retinohypothalamic tract axon terminals and via the postsynaptic 5-

HT1A/7 receptor (Pickard and Rea, 1997; Rea, Barrera, Glass and Gannon, 1995).  An 

agonist at the 5-HT 1A/7 receptor, given systemically or microinjected into the SCN, 

inhibits light-induced phase advances in hamsters  (Rea, Glass and Colwell, 1994; 

Weber, Gannon and Rea, 1998).   Light exposure blocked phase advances induced by the 

5-HT (1A/7) receptor agonist, 8-OH-DPAT  (Ehlen, Grossman and Glass, 2001).  A 

caveat to this finding is that 8-OH-DPAT did not induce daytime phase shifts and had no 

effect on light-induced phase shifts in mice (Antle, Ogilvie, Pickard and Mistlberger, 

2003). In a subsequent study, 8-OH-DPAT induced phase advances when given to mice 

systemically during midday (Horikawa and Shibata, 2004).  Additional studies are 

necessary to determine under what conditions serotonin regulates phase shifting in mice.  

Several serotonergic compounds acting at the 5-HT1A receptors greatly enhance 

photic phase shifts in hamsters (Gannon, 2003; Gannon and Millan, 2006b). NAN-190, 

which acts as an agonist at the 5-HT1A somatodendritic autoreceptor and a partial 

agonist at the 5-HT1A/7 postsynaptic receptor, potentiates light-induced phase advances 

in hamsters by as much as 250% (Rea, Barrera, Glass and Gannon, 1995). Activation of a 

different class of receptors, the presynaptic 5-HT1B receptors located on the retinal axons 

in the SCN, attenuates light-induced phase shifts in hamsters (Rea, Buckley and Lutton, 

1993; Pickard et al., 1999).   

At the behavioral level, non-photic stimuli oppose the effects of photic stimuli. 

Novelty-induced activity attenuated the phase advance to a light pulse, but did not alter 

Per1 mRNA and Fos protein expression in the SCN (Edelstein, de la Iglesia, Schwartz 
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and Mrosovsky, 2003). However, NPY decreased light-induced per1 mRNA expression 

and blocked light-induced per2 mRNA expression in the SCN, although it did not alter c-

Fos expression (McKinley Brewer, Yannielli and Harrington, 2001).  Inhibition of photic 

responses by serotonergic agonists is accompanied by decreased c-Fos expression as well 

as decreased light-induced expression of both per1 and per2 mRNA  (Yokota et al., 2000; 

Horikawa et al., 2000). The interactions of light and non-photic stimuli have opposing 

effects, which appear to converge on the core mechanism of the clock (Maywood and 

Mrosovsky, 2001). 

Inhibition of photic-induced phase shifts by non-photic stimuli is more effective 

during the late subjective night (the phase advance portion of the PRC).  Behavioral 

manipulations can attenuate light induced phase advances, but not phase delays (Ralph 

and Mrosovsky, 1992; Mistlberger and Antle, 1998).  Triazolam, a benzodiazepine used 

for the treatment of anxiety and insomnia, induced phase advances during the day (CT6). 

However, during the nighttime, triazolam inhibits light-induced phase advances and 

increases light-induced phase delays (Joy and Turek, 1992).  In vitro studies determined 

that NPY can inhibit phase delays as well as phase advances, but NPY is more effective 

in attenuating phase advances in vivo (Yannielli and Harrington, 2000; Lall and Biello, 

2003; Weber and Rea, 1997).  These differences may be due to endogenous tone of NPY 

in the early night in vivo, which is not a factor in the brain slice preparation (Yannielli 

and Harrington, 2004).  Serotonin is able to oppose the effects of light throughout the 

subjective night. The 5-HT1A/7 agonist (8-OH-DPAT) and the 5-HT1B agonist 

(TFMPP) injected systemically inhibit light-induced phase delays as well as phase 

advances (Rea et al., 1994; Pickard et al., 1999; Weber et al., 1998). 
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E. Combined inhibition of NPY and 5-HT input potentiates photic phase 
advances 
 

Individually, both NPY and serotonin can interact with light to influence 

entrainment of the circadian pacemaker.  NPY and 5-HT agonists block the phase shifting 

effects of nighttime light. Antagonists at the NPY Y5 receptor can potentiate the phase 

shifting effects of light during the subjective night (Yannielli and Harrington, 2004). In 

addition, drugs that act as antagonists at the postsynaptic 5-HT 1A/7 receptor and 

agonists at the 5-HT autoreceptors potentiate phase shifts to nighttime light pulses (Rea, 

Barrera, Glass and Gannon, 1993; Smart and Biello, 2001 and Gannon, 2003). Lall and 

Harrington (2006) measured the effects of combined inhibition of NPY and 5-HT input 

on photic shifts to determine whether these neural pathways provide independent or 

redundant input to the SCN. They found that pharmacological treatments that target both 

serotonergic and neuropeptide Y afferents to the SCN (Fig. 6) could significantly 

potentiate light-induced phase advances during the late subjective night in the Syrian 

hamster. Their work was the first report of the effect of combined inhibition of NPY and 

5-HT input on light induced phase shifts in vivo. 

 

F. Introduction to the thesis experiments 

 

It is important to extend the findings of Lall and Harrington (2006), that blocking 

both serotonergic and neuropeptide Y input (Fig. 7) significantly potentiated light-

induced phase shifts in the Syrian hamster, to other species. In my first experiment I 

investigated whether combined treatment with an NPY Y5 antagonist, CP-781, 214, and 
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the 5-HT 1A partial agonist, NAN-190, would regulate light-induced phase shifting in 

mice. An advantage to using the mouse as a model is the ability to study the effects of the 

pharmacological treatment on the knockouts for specific clock genes, NPY, and 5-HT 

receptors. In addition, the Harrington Lab has recently acquired the knockin mouse, 

Per2Luc  (Yoo et al., 2004) and has the capability to perform bioluminescent imaging 

(Actimetrics Lumicycle System, Chicago, IL) in SCN slices and tissue dissected from 

peripheral organs. The Lumicycle can be used to study the effects that pharmacologically 

blocking non-photic input has on light induced PER 2 expression in the SCN and in 

peripheral organs.  

 

 

 

 

 

 

Figure 7. The average phase shifts of wheel-running activity in Syrian hamsters treated with NPY 
Y5 antagonist, CP-760, 542 and NAN-190 45 minutes before a light pulse at CT 19. The following 
abbreviations were used: V: vehicle-treated animals; CP: CP-760, 542, a NPY Y5 antagonist; 
NAN: NAN-190, a 5-HT1A partial agonist; C + N: combined treatment with CP-760, 542 and 
NAN-190. (Lall and Harrington, 2006) 
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In the first experiment, I measured the effects that the combined treatment (NPY 

Y5 antagonist and a 5-HT1A/7 partial agonist) had on photic phase shifts in mice. I 

administered light pulses to the mice during the early subjective night and measured the 

effects of combined treatment on phase delays. I chose to work with phase delays in mice 

because mice have a small advance region in their phase response curve making it 

difficult to attain consistent and sizeable phase advances with a light pulse administered 

in late subjective night (see Fig.8). Whether pharmacologically blocking both NPY and 

Y5 and 5-HT 1A/7 receptors will potentiate phase delays during the early subjective 

night has not yet been determined.  Studies blocking either NPY or 5-HT in mice prior to 

a light pulse have yielded inconsistent results (Lall and Biello, 2003b; Weber and Rea, 

1997). In addition, light-induced phase delays are not significantly attenuated by NPY or 

serotonin (Mistleberger and Antle, 1998;Weber and Rea, 1997).    

 

 

 

  
 
Figure 8. Phase response curve for C57BL/6 mice for 15- minute light 
pulse (100-200 lux). (Schwartz and Zimmerman, 1990) 
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I found that blocking NPY and 5-HT input with systemic injections of CP-781, 

214 and NAN-190 did not modulate photic phase delays in mice (see Fig. 11). It was 

unclear whether the discrepancy of this finding from the previous results (Lall and 

Harrington, 2006) was due to species differences between mice and hamsters, or because 

the treatment was given to mice during the early subjective night. Although NPY can 

reduce the phase-resetting action of a light pulse during late subjective night, it does not 

block phase delays during the early subjective night in vivo in hamsters (Yannielli and 

Harrington, 2001).  Serotonergic compounds are able to modulate phase advances 

(Gannon and Millan, 2006; Moriya et al., 1998; Rea et al., 1995) and phase delays (Lall 

and Biello, 2003b) in hamsters. Lall (2006) found that blocking both NPY and 5-HT 

input potentiated phase advances when light pulses were delivered during the late 

subjective night using hamsters, but did not study the effects on phase delays in the early 

night.   In my second experiment, I sought to test the hypothesis that blocking both NPY 

and 5-HT input selectively affects photic phase shifting during the late subjective night 

(advances) and not phase shifts during the early subjective night (delays) in hamsters.  I 

predicted that blocking NPY input with the NPY Y5 receptor antagonist (CP-760, 542 or 

CP- 781,214) in combination with blocking serotonin input with the 5-HT 1A partial 

agonist, NAN-190, would potentiate phase advances during the late subjective night, but 

would not significantly modulate light-induced phase delays during the early subjective 

night in hamsters. If, on the other hand, I found that blocking NPY and 5-HT input 

potentiates phase delays in hamsters, this would suggest that the discrepancy in my 

findings was due to species differences. 
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Treatments that modulate circadian responses to light-induced phase setting could 

facilitate entrainment and may have therapeutic value in treating circadian 

desynchronization disorders including jet lag, seasonal affective disorder and 

dysregulated circadian function in Alzheimer’s patients.  In real-life, photic and non-

photic inputs interact and circadian entrainment will be influenced by behavioral stimuli 

as well as by the light/dark cycle (Dallman and Mrosovsky, 2006). This research will 

increase our basic understanding of circadian biology by characterizing the interaction of 

photic and non-photic inputs at different phases of the PRC. 
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CHAPTER III 

MATERIALS AND METHODS 

 

A. General Methods 

 

Animals.  Young adult male C57BL/6 mice (Charles River Labs, Kingston, NY) and Syrian 

Hamsters (Charles River Labs, Kingston, NY) were individually housed in clear plastic cages 

with free access to food and water.  Animal procedures were performed in accordance with 

the guidelines of the Association for Assessment and Accreditation of Laboratory Animal 

Care and the National Institute of Health; the Smith College Institutional Animal Care and 

Use Committee approved all experiments. Manipulations were carried out under dim red 

light and all efforts were made to minimize confounds with environmental cues, including 

noise.  Cage changes were not scheduled for the three days immediately before and after 

treatments. Mice were entrained under a 12 hour light/12 hour dark cycle, while hamsters 

were entrained under a 14 hour light/10 hour dark cycle. An additional difference is that mice 

were placed in five days of complete darkness (DD) prior to treatment while hamsters were 

maintained in 10 days of DD prior to treatment. 

 

Wheel running studies.  Animals were housed in cages equipped with running wheels 

connected to a computer running Clock Lab software (Actimetrics, Evanston, IL, USA). 

Wheel running activity was detected by magnetic microswitches and was collected in one-

minute bins. Wheel-running activity records (actograms) were analyzed using ClockLab 

software. Free running period of locomotor activity rhythm and light-induced phase shifts 
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were measured in constant dark conditions. Each day of the free-running period for an 

individual subject is divided into 24 hours of circadian time. Activity onset (CT 12) for the 

day of treatment was calculated by forward extrapolation of a regression line fitted to activity 

onsets for the three days prior to treatment for mice and for the seven days prior to treatment 

for hamsters. The circadian phase was determined by the addition of the subject’s circadian 

hours (CH), calculated as free running period divided by 24, to their CT 12 on treatment day.  

For example, CT16 = CT12 + 4 X CH.  Phase shifts in locomotor activity rhythms were 

calculated using the linear regression method  (Pittendrigh and Daan, 1976).  
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Drugs and routes of administration.  The selective neuropeptide Y Y5 antagonists, CP-

781, 214 or CP-760, 542 (Pfizer, CT) and the 5-HT 1A partial agonist, NAN-190 (Sigma, 

MO), were dissolved in 32% cyclodextrin (Sigma, MO). Although CP-781, 214 was used in 

the pilot study and Experiment 1, it was necessary to use another NPY Y5 antagonist, CP-

760, 542, in Experiment 2 because CP-781, 214 was not available in sufficient quantity from 

Pfizer at the time Experiment 2 was conducted. CP-760, 542 is given at a higher dose than 

CP-781, 214. The drugs were administered at a dose CP-781, 214 (10 mg/kg) or CP-760, 542 

(40 mg/kg) in combination with 5 mg/kg (NAN-190).  Vehicle injections consisted of an 

equivalent volume of 32% cyclodextrin. Injection volumes were approximately 0.1 ml for 

mice and 0.5 ml for hamsters. Calculations were based on the animal’s weight as measured 

three to five days before each treatment. Drugs were prepared on the day of treatment. Each 

animal received a single intraperitoneally (i.p.) injection 45 minutes prior to a light pulse. 

Preliminary studies determined that the drugs could be administered in a single i.p. injection 

and that drug treatment alone did not result in a phase shift (see Fig. 9).  

 
 

Statistical analysis. The design of the experiment included 4 treatment conditions at 6 time 

point for 30 animals and would have provided 5 data points for each condition (TX @ CT); 

however I only collected ½ the data and had only 2 data points at some conditions, so it was 

not possible to us ANOVA as planned. Instead, means for phase shifts in the different 

treatment groups were compared within a circadian phase (CT 14, CT 16, CT 18, CT 20 and 

CT 22). Differences in means were analyzed with the two-sample independent t-test (one-

tailed) (Mendenhall, Beaver and Beaver, 2006). Means are represented as ± standard error 

of the mean in the text and figures.  
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B. Pilot Study.  Can CP-781, 214 and NAN-190 be delivered in a single 

intraperitoneal injection? 
 

Light-induced phase shifts were measured in hamsters following a single combined i.p. 

injection with the NPY Y5 antagonist, CP-781, 214, and the 5-HT 1A partial agonist, NAN 

190, prior to a 15 minute light pulse (500 lux) at CT 19. These shifts were compared to phase 

shifts in hamsters that received only an equivalent light pulse at CT 19. Regression lines were 

drawn through the activity onsets for seven days prior to treatment and through activity 

onsets for the seven days following treatment. Activity onsets for the three days following 

treatment were omitted to allow for transient cycles. Phase shifts were calculated as the 

horizontal distance between the two regression lines on the first day after treatment.  

 

 

C. Experiment 1. Does combined treatment with 781, 214 and NAN-190 modulate 
photic phase delays in mice? 

 

Mice were maintained under a 24-hour light/dark cycle consisting of 12 hours of light and 12 

hours of darkness for a minimum of three weeks. Animals were transferred into constant 

darkness (DD) for five days before each treatment. Immediately following treatment, mice 

were maintained under DD for 10 days. Mice were allowed to reentrain under a 12 hours 

light/ 12 hours dark schedule after receiving two successive treatments.. Mice were randomly 

assigned to control group (light + vehicle injection) or experimental group (light and NAN-

190 + CP-781, 214).  Two additional groups were injected with vehicle or drug combination 

45 minutes prior to CT 16, without light pulse. Light pulses were given at circadian time 
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(CT) 16, the circadian time of maximal phase delay for the C57BL/6 strain (Schwartz and 

Zimmerman, 1990; preliminary studies in the Harrington lab, 2004). Mice were received a 

15-minute light pulse (500 lux) in a clean cage without bedding cage or cover and were 

returned to their own cage. Mice remained in constant dark for ten days following treatment.  

Regression lines were drawn through the three activity onsets prior to treatment and through 

activity onsets for the seven days following treatment. Activity onsets for the three days 

following treatment were omitted to allow for transient cycles. Phase shifts were calculated 

as the horizontal distance between the two regression lines on the first day after treatment. 

 

D. Experiment 2. Do NPY Y5 and 5-HT 1A receptors regulate photic phase 
shifting only during a temporal window in late subjective night? 

 

Experimental treatments. Hamsters were maintained under a 24-hour light/dark cycle 

consisting of 14 hours of light followed by 10 hours of darkness for at least three weeks. 

They were transferred to constant darkness (DD) for 10 days prior to each treatment and 

were maintained in constant darkness for ten days after each treatment. Hamsters were 

randomly assigned to receive two treatments in early subjective night and two treatments 

during late subjective night. Following two treatments, hamsters were allowed to reentrain 

under a 14 hours light/ 10 hours dark schedule. The order of treatments was varied so that no 

more than two animals received the same treatment sequence at a specific circadian phase. 

Light pulses were given at CT 14, CT 16, CT 18, CT 20 and CT 22. Each animal received a 

maximum of 2 light pulses and 4 treatments. Control conditions included 1) a light pulse with 

vehicle injection and 2) drug treatment without a light pulse. Animals received a 5-minute 
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light pulse (500 lux) in a clean cage without bedding and were returned to their home cage. 

Phase shifts for hamsters were calculated as described in the Pilot Study. 

 
 
E. Experiment 3. Can blocking NPY and 5-HT input eliminate transient cycles in 

photic phase shifts? 
 

Transient analysis. During my experiments, I observed that hamsters treated with CP-760, 

542 and NAN-190 prior to the light pulse showed a rapid shift, without transient cycles (see 

Fig. 14 and Fig. 16). I quantified this observation by comparing the phase shift on the day 

immediately following treatment as a percent of the steady state phase shift measured on day 

4. The percent of steady phase shift reached on day 1 for the drug + light treated animals was 

compared to this percent in the vehicle + light treated animals in Experiment 2.  
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CHAPTER IV 

RESULTS 

 

A. Pilot Study.  Can CP-781, 214 and NAN-190 be delivered in a single 
intraperitoneal injection? 

 
The average phase shifts of wheel running rhythms in hamsters given a single i.p injection of 

CP-781, 214 combined with NAN-190 in cyclodextrin (n =5) prior to light was 3.8 ± .7 h. 

The mean phase shift in the group receiving light alone was 1.4 ± .12 h. (n =5); hamsters 

receiving no light (n = 4) showed no phase shift. Injections were given 45 minutes prior to a 

15-minute light pulse at CT 19. Animals receiving a single injection of the combined drugs 

show a significantly greater phase shift than the group given light alone (P< 0.05) (see Fig. 

9).  

 

 

 
 
Figure 9. CP-781, 214 and NAN-190 given in cyclodextrin in single i.p. injection was effective in eliciting photic phase advances in 
hamsters. Treatments were given 45 minutes prior to a light pulse at CT 19. The mean phase shift in hamsters receiving single injection of 
NAN-190 + CP-781, 214 + light was greater than group receiving light alone (P< 0.05).  
 

No treatment             Light alone                 Combined injections + light 

  ∗ 
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B.  Experiment 1: Does combined treatment with NPY and serotonin antagonists 
modulate photic phase delays in mice? 

 

Representative actograms for Experiment 1 are shown in Fig.10. Control animals, treated 

with vehicle injection 45 minutes prior to a light pulse at CT 16, had a mean phase delay of - 

1.035 ± 0.23 h (mean ± SEM, n = 5).   Mice treated with CP-781, 214 and NAN-190 prior to 

a light pulse at CT 16 showed a mean phase shift of -1.1 ± 0.18 h (n =8). The difference in 

the mean phase shift between the mice treated with CP-781, 214 and NAN-190 prior to light 

pulse and the mice receiving vehicle injection prior to light pulse was not significant  (p = 

0.41; see Fig. 11). Treatment with either vehicle (n = 4) or combined CP-781, 214 and NAN-

190 (n = 5) without light pulse did not result in a phase delay. Two mice were excluded from 

the study because of insufficient running wheel data. 
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Figure 10. Representative double-plotted 
actograms from C57/BL6 mice released 
into DD after entrainment to a 12:12 light: 
dark (LD). Mice were released into 
constant darkness (DD) and received (A) 
no treatment (B) a 15-minute light pulse 
(LP) delivered at CT 16 without injection 
C) treatment with CP-781, 214 and NAN-
190 in a single i.p. injection 45 minutes 
prior to a light pulse at CT 16. The black 
marks indicate revolutions of the running 
wheel of an individual mouse collected in 
one-minute bins. Two consecutive days of 
activity are plotted horizontally, with day 1 
on the left and day 2 on the right. Day and 
time of the Light pulses (15 min, 500 lux) 
are indicated by the ().  
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Figure 11.  Average phase shifts of wheel running rhythms in mice following treatment with the 5-HT 1A/7 receptor mixed 
antagonist/agonist NAN-190 and the NPY Y5 antagonist, CP-781, 214) (n=8) prior to a light pulse at CT 16 (15 min pulse, 500 lux). 
Control group (n=5) received a vehicle injection prior to the light pulse at CT 16. Additional treatment groups received systemic injection 
with vehicle or CP-781, 214  + NAN-190 45 minutes prior to CT 16 without subsequent light pulse. Error bars identify standard error of the 
mean (SEM). Drug indicates combined CP-781, 214 + NAN-190 in a single i.p. injection. 
 

 

C. Experiment 2: Do NPY Y5 and 5-HT 1A/7 receptors regulate photic phase 
shifting only during a temporal window in late subjective night? 

 

Both vehicle and drug treated hamsters phase delayed following a light pulse at CT 14 (Fig. 

12); hamsters receiving drug treatment without light did not phase shift. A light pulse 

administered at CT 14 induced a mean phase delay of -1.39 ± .29 h (n = 3) in vehicle treated 

hamsters and a mean delay of -0.9 ± 0.13 h (n = 4) in animals receiving CP-760, 542 and 

NAN-190 (Fig. 13). Although the drug treatment attenuated the photic phase delay, the 

difference in mean phase shifts was not statistically significant in vehicle treated and drug 

treated animals (P > 0.05). These results supported my findings in Experiment 1, that 

combined treatment with a NPY Y5 antagonist and NAN-190 did not potentiate phase delays 
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in mice. Animals receiving either vehicle or combined drug injection without light showed 

minimal phase shifts (0.04 ± .06 h and 0.04 ± .04 h respectively).  

Both vehicle and drug treated hamsters phase advanced following a light pulse at CT 16, CT 

18 CT 20 and CT 22; hamsters receiving drug treatment without light at these circadian 

phases did not phase shift (Fig.13). A trend was observed for drug treatment to potentiate 

light induced phase shifts only during late subjective night. At CT 16, the light pulse elicited 

a mean phase advance of 0.71 ± 0.35 h (n = 3) in vehicle treated animals and a mean advance 

of 2 ± 1.08 h in the group administered CP-760, 542 and NAN-190 (Fig 13).  The difference 

in mean phase advances was not statistically significant  (P > 0.05). Systemic injection of 

CP-760, 542 + NAN-190 or vehicle without light resulted in phase shifts of  - 0.135 ± 0.124 

h  (n = 4) or 0.092 ± .0188 h  (n = 4) respectively. Mean photic phase advances following 

treatment with vehicle and light at CT 18 were 1.78 ± 0.09 h (n = 2); treatment with CP-760, 

542 and NAN-190 and light at CT 18 resulted in a phase advance of 3.05 ± .919 h (n=2); the 

phase shift difference was not statistically significant (P > 0.05) (Fig 13). Treatment with 

either combined vehicle or CP-760, 542 and NAN-190 without light resulted in phase delays 

of - 0.2 ± 0.09 h (n = 2) or - 0.195 ± 0.141 h (n = 2) respectively. A light pulse administered 

at CT 20 induced a mean phase advance of 1.61 ± 0.3 h (n = 2) in vehicle treated hamsters 

and a mean advance of 2.815 ± 0.175 h (n = 2) in animals receiving CP-760, 542 and NAN-

190 (Fig. 13 and Fig. 14). The difference at CT 20 was statistically significant (P < 0.05). 

Phase shifts measured in animals receiving drug or vehicle without light at CT 20 were 0.07 

± 0.04 h (n = 2) and – 0.04 ± 0.02 h (n = 2) respectively.  At CT 22, animals treated with 

vehicle and light had a mean phase advance of 1 ± 0.23 h (n = 2) and animals receiving CP-

760, 542 and NAN-190 with light had a mean phase advance of 1.39 ± 0.45 h (n = 2) (Fig. 
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13). The difference in mean phase advances was not statistically significant  (P > 0.05). 

Treatment with either vehicle or combined CP-760, 542 and NAN-190 without light resulted 

in phase shifts of 0.16 h (n = 1) or 0.13 ± 0.227 h (n= 3) respectively. The results for 

Experiment 2 are summarized in Table 1.  

The phase shift in the CP-760, 542 + NAN-190-treated group was significantly larger 

than the phase shift in the vehicle-treated group at CT 20 (P< 0.05).  The phase shift in the 

drug-treated + light group was smaller than in the vehicle + light group at CT 14. The 

average phase shifts elicited by treatment with the combined CP-760, 542 and NAN- 190 

prior to the light pulse and vehicle injection prior to a light pulse at the different circadian 

phases: CT 14, CT 16, CT 18, CT 20 and CT 22 are shown in Figure 15. In summary, the 

combined inhibition of NPY and 5-HT input potentiated light induced phase shifts during 

late subjective night (at CT 20) and not during early subjective night (at CT 14). 
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Figure 12. Representative double-
plotted actograms showing wheel 
running activity in hamsters 
following: treatment with (A) 
vehicle, 32% cyclodextrin, 
without light pulse, (B) vehicle 45 
minutes prior to a light pulse at 
CT 14 and (C) treatment with CP-
760, 542 and NAN-190 45 
minutes prior to a light pulse at 
CT 14. The black marks indicate 
revolutions of the running wheel 
of an individual hamster collected 
in one-minute bins. Animals were 
previously entrained to 14 h light: 
10 h dark before, and then 
maintained in DD for 10 days 
prior to treatment. Times of light 
pulses (5 minute, 500 lux) are 
indicated by the triangle ().  
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Figure 13. Average phase shift of wheel-running activity rhythms in hamsters treated with vehicle or combined CP-760, 542 + 
NAN-190 at circadian phases throughout the subjective night. In addition, some hamsters received a light pulse (5 minute 500 
lux) 45 minutes after i.p. injection while others remained in constant darkness after receiving an injection. Error bars indicate 
standard error of the mean (SEM). Significance indicated by ∗, (P< 0.05). 
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CT 14  CT 16  CT 18  CT 20  CT 22 

 
 
Vehicle alone 0.04 ± .06  0.09 ± .02  -0.19 ± .09 -0.04 ± .02 0.16  

    
 
 
 
Vehicle + light -1.39 ± .29 -.71± .35  1.8 ± .09  1.61 ± 0.3  1.01 ± .02 
 
 
 
Drug alone 0.04 ± .04  -.13 ± .12  -0.19 ± .14 0.07 ± .04  0.13 ± .23 
 
 
 
Drug + light -0.9 ± .13  2.0 ± 1.09  3.05 ± .92  2.82 ± .17  1.39 ± .45  
 
 
 
P- values  0.110784  0.177614  0.216774  0.042097  0.280813 
 
 
 
t-test between   
veh + light and  not significant not significant not significant significant  not significant 
drug + light 
 

 

 

Table 1: Mean phase shifts for all groups in Experiment 2.  
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Figure 14. Representative double plotted-
actograms showing the potentiation of 
light induced phase advances in hamsters 
by combined treatment with NPY Y5 
antagonist, CP-760, 542, and 5-HT1A 
partial agonist, NAN-190. Treatment: (A) 
CP-760, 542 and NAN-190 45 minutes to 
CT 20 without light pulse, (B) treatment 
with vehicle, 32% cyclodextrin 45 minutes 
prior to a light pulse at CT 20 and (C) 
treatment with CP-760, 542 and NAN-190 
45 minutes prior to a light pulse at CT 20. 
The black marks indicate revolutions of 
the running wheel of an individual hamster 
collected in one-minute bins. Animals 
were previously entrained to 14 h light: 10 
h dark before, and then maintained in DD 
for 10 days prior to treatment. Light pulses 
(5 min, 500 lux) are indicated by the 
triangle (). It is significant that the phase 
advance following treatment with 
combined CP-760, 542 and NAN-190 and 
light was without transient cycles.  
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Figure 15. Average phase shift of wheel-running circadian rhythms of hamsters in response to treatment with CP-760, 542 and 
NAN-190 45 minutes prior to a 5 minute light pulse at the circadian phases CT 14, CT 16, CT 18, CT 20 and CT 22.  Error bars 
indicate standard error of the mean (SEM). The asterisk indicates statistical significance in mean photic phase shifts between 
vehicle-treated and CP-760, 542 + NAN-190-tretaed groups at CT 20  (P< 0.05).  

 CT 14   CT 16  CT 18 CT 20  CT 22 

■  VEH + LIGHT 
 
■  CP-760, 542 + 
NAN-190 + 
LIGHT 
 

  ∗ 
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D. Experiment 3. Blocking NPY and 5-HT input attenuated transient cycles in 

photic phase shifts during subjective night 
 

I noticed during my preliminary study, that there was a striking difference in the transient 

cycles in hamsters in the CP-781 214 + NAN-190 + light pulse group and the vehicle + light 

pulse group at CT 19. In the drug-treated group, the shift on the first day after a light pulse 

appeared to be almost equivalent to the stable phase shift achieved on the fourth day. The 

resetting seemed to be without transient cycles. (See a representative actogram from CT 19 in 

Fig. 16.) To quantify this phenomenon observed in Experiment 2, I calculated the phase shift 

on the first day after treatment as a percent of the steady state phase achieved on the fourth 

day after treatment (see Fig. 17 and Fig. 18). The vehicle-treated group (n = 10) achieved 

42.9 % of the stable phase shift, as measured on Day 4, on the day immediately following 

treatment. The CP-760, 542 + NAN-190–treated group (n = 9) attained 82.6 % of the stable 

phase shift, measured on Day 4, on the day immediately following treatment. This difference 

was statistically significant (P < 0.05).  
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Figure 16. Representative double-plotted 
actograms showing the potentiation of 
light induced phase advances in hamsters 
by combined treatment with the NPY Y5 
antagonist, CP-781-214, and the 5-HT1A 
partial agonist, NAN-190. Treatment: (A) 
Vehicle injection at CT 18.25 + no light at 
CT 19 (B) treatment with vehicle, 32% 
cyclodextrin 45 minutes prior to a light 
pulse at CT 19 and (C) treatment with CP-
781-214 and NAN-190 45 minutes prior to 
a light pulse at CT 19. The black marks 
indicate revolutions of the running wheel 
of an individual hamster collected in one-
minute bins. Animals were entrained to 14 
h light: 10 h dark and then maintained in 
DD for 10 days prior to treatment. Light 
pulses are indicated by the triangle (). 
Note that these hamsters were older (14 
months at the time of this treatment as 
compared to young hamsters, less than 6 
months, used in Experiment 2). It is 
significant that the phase advance 
following treatment with combined CP-
781-214 and NAN-190 and light was 
without transient cycles.  
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B 

A 

Figure 17.  Transient cycles in hamsters treated with either (A) vehicle injection 45 minutes to light pulse and (B) CP-760, 542 
+ NAN-190 45 minutes to a light pulse. The bar on the left  represents the phase shift measured on the first day after the 
light pulse while the bar on the right  represents the steady state phase shift achieved on the fourth day after treatment.  
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Figure 18. Percent of the stable phase shift, as measured on day 4 post-treatment, achieved on day 1. 
The average percent of the final shift achieved on the first day after treatment was 42.9 % by the animals receiving vehicle + 
LP (n = 10); the average percent of the final shift achieved on the first day post treatment by the hamsters treated with CP-
760, 542 + NAN-190 + LP (n = 9) was 82.6 %. The difference between the groups was statistically significant (P < 0.05). 
Error bars indicate S.E.M. 

  ∗ 
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CHAPTER V 

DISCUSSION 

 

A. Blocking NPY and 5-HT input does not potentiate photic phase delays in mice 

 
This is the first study to investigate the effects of combined inhibition of NPY and 5-HT 

input on photic phase shifting in mice. Mice were given CP-781, 214 and NAN-190 in a 

single i.p. injection because my preliminary study determined combined injections of the 

drugs prior to a light pulse elicited statistically larger phase shifts in hamsters than light 

alone. The most significant finding from Experiment 1 was that blocking NPY and 5-HT 

input with combined injection of CP-781, 214 and NAN-190 did not potentiate photic phase 

delays in C57BL/6 mice (shown in Fig. 10). My finding suggests two possible 

interpretations. Lall (2006) reported that CP-760, 542 and NAN-190 potentiated phase shifts 

in hamsters when given during late subjective night, when light advances the clock. 

However, in my experiment mice were treated with the drug prior to light pulses during the 

early subjective night, a time when light delays the circadian clock. Does the combined 

inhibition of NPY and 5-HT input modulate photic phase shifts only during the late 

subjective night? (Experiment 2 was designed to address this question and it is discussed in 

detail in the next section.)  

Another possibility is that there are significant species differences in the 

responsiveness of the circadian system to modulation by systemically delivered NPY and 

serotonin agents. There is substantial evidence that neuropeptide Y has a primary role in 

mediating the effects of non-photic input on photic phase shifting in the mouse and hamster 

circadian systems (Biello, 1995; Biello et al., 1997; Marchant et al., 1997; Maywood, 
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Okamura and Hastings, 2002). In addition, serotonin antagonists influence the 

responsiveness of the hamster circadian system to light stimuli (Smart and Biello, 2001). 

Gannon (2003) determined that blocking 5-HT1A input elicited large magnitude phase 

advances (5-6 hours) in Syrian hamsters. However, the serotonergic modulation of light-

induced phase shifts has not been well established in mice.  Systemic injection of the 5-

HT1A/7 agonist, 8-OH-DPAT, failed to significantly attenuate light induced phase shifting in 

mice, although it inhibited photic phase advances in hamsters (Antle, Oglive, Pickard and 

Mistlberger, 2003). There are other controversies in the literature regarding the role of 

serotonin in entrainment in the mouse.  In one study, lesions of serotonergic fibers in mice 

increased phase delays to nighttime light pulse at CT 14 (Bradbury, Dement and Edgar, 

1997). However, Marchant (1997) determined that complete loss of 5-HT in mice (as a result 

of 5-HT lesions with neurotoxin 5,7-DHT) does not prevent modulations of the pacemaker 

by behavioral stimuli.  A caveat to interpreting lesion studies is that destruction of the raphe-

SCN afferent may also affect NPY input to the SCN, as the IGL is innervated by the dorsal 

raphe (Meyer-Bernstein and Morin, 1996).  

An important future experiment should determine what effects serotonin input has on the 

regulation of photic phase shifting in mice. I think this could be addressed with 

pharmacological treatment using NAN-190 alone to determine the role the 5-HT1A receptor 

has in regulating circadian phase setting in the C57/BL6 mouse.  

However, if we find that phase delays are not potentiated in hamsters then we will 

need to investigate the first interpretation that NPY and 5-HT modulate photic shifting only 

during late subjective night, in mice. We could readdress the question of phase advances in 

mice, although it is difficult to elicit consistent phase advances in the C57/BL6 species.  
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Specifically, treatment with the antagonists, CP-781, 214 and NAN-190, should be given 

prior to light pulses at CT 22.5 and CT 23; times when light elicits the largest advances phase 

in the C57/BL6. Although phase advances in mice are small and inconsistent, blocking NPY 

and 5-HT input may potentiate the advances. It would be even better to give the drug 

treatment to mice under an advancing light/dark cycle. For example, after mice are entrained 

for two weeks under a12:12 L:D cycle, the lights are advanced  each day by coming on 6 

hours earlier than on the previous day.  We could determine whether blocking both 5-HT and 

NPY input eliminates transient cycles, accelerating the rate of re-entrainment in the mouse 

under advancing light cycles (see Future Directions section). 

A third interpretation of the failure to potentiate phase shifts in the mouse may be due 

to the dose of the NPY Y5 antagonist, CP-781, 214, used in my work with mice. I used a 

dose for CP-781, 214 determined in pilot studies in our lab for Syrian hamsters (Lall, 

unpublished, 2004). Before it is concluded that combined treatment with NAN-190 and CP-

781, 214 cannot potentiate phase shifts in mice, a dose response study for CP-781, 214 

should be conducted in C57/BL6 mice to establish the effective dose. Finally, the sample size 

was small and the investigator was new to giving mice injections under dim red light. 

Potentiation of phase shifts with combined NPY Y5 antagonist and NAN-190 could be a 

valuable tool to investigate reentrainment in mice, especially given the availability of mouse 

knockout models and luciferase reporter mice. This important work should be pursued with 

larger sample sizes after dose response for the NPY Y5 antagonist for C57/BL6 mice is 

determined (specific suggestions may be found in the Future Studies section). 

 

 
 



 49 

 
B. NPY and 5-HT regulate photic phase shifting during a temporal window in late 

subjective night 
 

One of the most significant findings of Experiment 2 was that the effects of blocking NPY 

and 5-HT input might be phase-dependent. A statistically significance difference was found 

between mean phase shifts in the drug-treated group and vehicle-treated group to a light 

pulse at CT 20 but not at CT 14.  Blocking non-photic input might potentiate phase resetting 

only during the late subjective night; or more specifically, the combined inhibition of NPY 

and 5-HT input with CP-760, 542 + NAN-190 might only be effective in potentiating phase 

shifts to light during late subjective night. In fact, treatment with CP-760, 542 + NAN-190 

attenuated the phase delay following light at CT 14, while CP-760, 542 + NAN-190 

treatment augmented the light-induced phase shift at all phases tested during late subjective 

night (see Fig. 15). While Lall and Harrington (2006) demonstrated significant potentiation 

of light-induced phase advances with combined inhibition of NPY and 5-HT input, there are 

no previous reports in the literature investigating the effects of combined inhibition of NPY 

and 5-HT on photic phase delays. Novel wheel exposure as well as either NPY activation or 

5-HT activation modulate photic phase advances during late subjective night (Lall and 

Biello, 2002). However, the results of my experiments are consistent with many studies 

reporting that light-induced phase delays are not significantly attenuated by behavioral 

activation, NPY or serotonin  (Challet, Turek, Laute and Van Reeth, 2001; Mistlberger and 

Antle, 1998; Weber and Rea, 1997). Lall and Biello (2003), on the other hand, reported that 

NPY agonists block phase advances (by about 90%) and inhibit phase delays (40%) in 

hamsters via the NPY Y1 and/or the Y5 receptors. They are the first to report that NPY and 

the NPY Y1/Y5 agonist, (Leu 31Pro    34) NPY attenuated phase delays as well phase advances 
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in vivo. Neuropeptide Y applied in vitro attenuates light and NMDA induced phase delays 

(Yannielli and Harrington, 2001a; Yannielli and Harrington, 2001b). To address the role of 

NPY in modulating photic phase delays in the hamster, hamsters should be treated with the 

NPY Y5 CP-760, 542 alone prior to light pulses at multiple phases throughout the subjective 

night. 

The finding that the circadian clock’s responsiveness to NPY and 5-HT differ during 

early and late subjective night, adds to the growing body of literature illustrating cases where 

photic entrainment is influenced by biochemical pathways that regulate sensitivity in a phase-

dependent manner. For example, light-induced phase delays but not advances are prevented 

with bicuculline, a GABA A receptor antagonist (Ralph and Menaker, 1985).  Light-induced 

phase delays were increased by the benzodiazepine triazolam, a GABAA agonist, while light-

induced phase advances were decreased by triazolam and by another GABAA agonist, 

diazepam (Joy and Turek, 1992; Subramanian and Subbaraj, 1996).  During late subjective 

night, light pulses increase cyclic guanosine monophosphate (cGMP) levels in the SCN 

whereas light pulses given in early subjective night do not affect cGMP levels (Golombek, 

Agostino, Plano and Ferreyra, 2004).  In addition, inhibitors of PKG (guanosine 3’5’ –cyclic 

nucleotide-dependent kinase) attenuated light induced phase advances during late subjective 

night, but had no effect on light induced phase delays during early subjective night (Ferreyra 

and Golombek, 2001). Light input may be mediated at different circadian time points by 

functionally separate pathways.  Moreover, nonphotic input may differentially regulate 

photic responsiveness of the circadian system throughout the night. 

Another consideration is that, the lack of potentiation of light-induced phase delays 

with pharmacologically blocking NPY Y5 and 5-HT 1A receptors may be due to the higher 
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extracellular levels of endogenous serotonin and neuropeptide Y early in the night  

(Harrington, 2005). Additionally, light in the early night can increase levels of NPY in the 

SCN of the rat (Shinohara, Tominga, Isobe and Inouye, 1993).  It is possible that treatment 

with CP-760, 542 and NAN-190 was not sufficient to block the higher levels of endogenous 

NPY and 5-HT during the early night, while capable of blocking the lower endogenous tone 

of the neuropeptides during the late night. 

The results suggest that neuropeptide Y and serotonin regulate photic phase shifting 

only during a temporal window in late subjective night. However, a caveat to interpreting the 

results from Experiment 2 is that small subject numbers were used for each treatment. The 

difference in photic phase shifts between vehicle-treated animals and drug-treated animals 

reached statistical significance at CT 20. There was a trend for increased phase shift in drug 

treated subjects at CT 16, CT 18 and CT 22, however, the differences did not reach statistical 

significance at other circadian phases during the late subjective night. It is important to 

replicate the study across subjective night with larger numbers of subjects, and especially to 

replicate findings that phase shifts were not augmented, and may have been attenuated, at CT 

14.  
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C. Blocking NPY and 5-HT input eliminated transient cycles in photic phase shifts 
 

 

Phase advances after treatment with CP-760, 542 + NAN-190 antagonists were 

without transient cycles (see actograms Fig. 14 and Fig. 16).  Transient cycles are thought to 

reflect disequilibrium between the SCN and the overt rhythm (locomotor activity in this case) 

(Johnson et al., 2003). Transients are more prevalent in phase advances and may underlie the 

fatigue, insomnia and gastrointestinal symptoms of jet lag. Jet lag is usually worse after 

traveling eastward, which requires the circadian pacemaker advance. Why were transients 

eliminated when NPY and 5-HT input was blocked prior light stimuli during the late night? 

Although the master circadian clock resets rapidly in response to light (Best, 1999), the 

oscillations synchronized by the clock are not immediately reset (Balsalobre, 2000; 

Yamazaki et al., 2000; Buijs and Kalsbeek, 2001).  The SCN uses a variety of autonomic, 

paracrine and endocrine cues to regulate behavioral and physiological processes (Meyer-

Bernstein et al., 1999; Cheng et al., 2002; Maywood, O’Neill, Wong, Reddy and Hastings, 

2006). In this study, blocking NPY and 5-HT reduces the time required to reach a steady 

state resetting of locomotor activity rhythms after a light pulse during the late subjective 

night.  I suggest that tonic levels of NPY and 5-HT may contribute to the prolonged resetting 

of locomotor activity and possibly other oscillations driven by the master clock.  Photic 

information converges with non-photic information to determine circadian phase; this 

coordination between non-photic and photic information and the signals required to integrate 

the information may slow down the message relayed to peripheral oscillators. Eliminating the 

non-photic input may mean that light information is conveyed rapidly to other brain areas 

and to peripheral tissues, and transients  (at least those observed in locomotor activity) are 
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thus eliminated.  This rapid signaling would depend upon neural communication or possibly 

a gaseous transmitter, possibly nitric oxide, and not slower acting endocrine signals.  

The SCN coordinates rhythmic timing cues for light entrainment to oscillators in 

peripheral tissues lacking photoreceptors. It is possible that blocking NPY and 5-HT input 

affects expression of clock genes and that this modulates the SCN’s coordination of 

peripheral oscillators. In addition, a number of diffusible factors have been identified as 

timing signals including vasopressin, transforming growth factor-α, prokineticin 2 and 

cardiotropin-like cytokine (Liu, Lewis, and Kay, 2007). Possibly, blocking the NPY and 

serotonin pathways leads to an interaction with one or more of these factors to attenuate 

transient cycles during phase-resetting following light during the late night. We need to better 

understand why transients occur before we can begin to answer the question, “how does 

pharmacologically blocking NPY and 5-HT input eliminate transient cycles following phase 

advances?”  

In my study, blocking NPY and 5-HT input eliminated transient cycles in locomotor 

activity following photic phase advances. Whether transients in other shifted rhythms 

(endocrine rhythms, metabolism, cell cycle for example) are eliminated or reduced warrants 

further investigation (see Future Studies). The elimination of transients is important for the 

clinical applications of this research as it might reduce the symptoms of jet lag, enhance rest-

activity rhythms in the elderly and possibly attenuate the negative impact the ‘24-7 lifestyle’ 

has on human health  (Filipski et al., 2004).    
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D. Experiment 2 failed to replicate large phase advances previously measured with 
CP-760, 542 + NAN-190 treatment 

 
 

My study did not replicate the large light-induced phase advances that were elicited in 

response to CP-760, 542 + NAN-190 treatment at CT 19 by Lall (2006). Lall reported a mean 

photic phase shift of 7.1 h after CP-760, 542 + NAN-190 treatment at CT 19; the largest 

mean shift in my study was 3.05 h at CT 18. There are several differences in protocol that 

may have affected the size of the phase shifts.  I did not measure phase shifts following light 

at CT 19, the time for maximal photic phase advances, according to the hamster photic phase 

response curve. In addition, I combined CP-760, 542 and NAN-190 in a single 

intraperitoneal injection, while Lall gave separate injections  (CP-760, 542 dissolved in 

DMSO delivered in a subcutaneous injection and NAN-190 dissolved in cyclodextrin in an 

intraperiotoneal injection).  My preliminary study found that phase shifts with CP-781.214  + 

NAN-190 in a single i.p. injection significantly potentiated phase shifts compared to light 

alone at CT 19, (see Fig. 9) however I did not use CP-781, 214 for Experiment 2. The 

Harrington Lab has extensive preliminary data using the NPY Y5 antagonist, CP-760, 542 

(Pfizer), and we chose to use CP-760, 542 for these studies in order to supplement the 

preliminary findings and because CP-760, 542 was more readily available from Pfizer at the 

time of this study. The Pfizer drug I used, CP-760, 542, is difficult to dissolve; maintaining a 

good solution with CP-760, 542 may have been confounded by the use of cyclodextrin as a 

vehicle and the addition of NAN-190 to the mixture.  This may have resulted in decreased 

drug delivery. 

I also want to consider the role that stress has in the outcome of these experiments. Is 

it possible that administration of two separate injections increased the stress response of the 
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hamsters in Lall’s study?  There is evidence that both neuropeptide Y and serotonin 

antagonize the behavioral consequences of stress through their actions within the brain. 

Activation of 5-HT1a receptors (with the agonists 8-OH-DPAT or WAY-100635) 

counteracted the behavioral effects of stress (Roja et al., 2004).  Neuropeptide Y1 and Y5 

agonists can mediate the anti-stress actions of NPY (Hellig, 2004).  In addition, a recent 

study suggests that NPY functions as an integrator between different stress signals such as 

immobilization, cold and pain, and a neuroendocrine response (Dimitrov, DeJoseph, 

Brownfield and Urban, 2007).  Is it possible that light at night is also a stressor? Might 

blocking NPY and 5-HT input allow an increased response to the stressor of the light pulse 

and thus potentiate the phase shift? In this case, anything that occurred during the 

experimental procedure to increase the animal’s stress level might also increase the photic 

phase shift. Although, not fully studied, light stimuli during the night may be associated with 

emotionality (Valentinuzzi et al., 2000).  Although only conjecture, I think it would be 

worthwhile to determine if additional stressors (i.e. pain, noise, cold, handling) increase the 

response to nighttime light pulses when NPY and 5-HT input are blocked. If this is the case, 

can we conclude that blocking NPY and 5-HT input may increase anxiety levels elicited by 

nighttime light?  This question might be addressed by measuring anxious behavior levels in 

an elevated-plus maze in drug and control animals exposed to nighttime light.  

Differences in the age of the hamsters at time of treatment, prior light treatment and 

individual variation in responses to light may also have influenced the magnitude of the 

phase shifts. One other issue is that Pfizer has discontinued production of the NPY Y5 

antagonists, so that the drugs used in Experiment 2 were older than those used in the previous 
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study. Although Pfizer will no longer produce CP-760, 542 and CP-781, 214, new potent and 

selective NPY Y5 antagonists are available for future studies (including  

S 255853/4 and US Patent 6989379; for reference see Della-Zuana et al., 2004 and Patent 

Storm, 2006). 
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CHAPTER VI 

FUTURE DIRECTIONS 

 

A. Will blocking NPY and 5-HT input eliminate transients of per 2 rhythms in the SCN 
and peripheral organs following phase advances? 

 

It is noteworthy that treatment with CP-760, 542 + NAN-190 potentiated phase advances without 

the usual transient cycles. Transients may contribute to the malaise experienced during jet lag and 

shift work and are usually more pronounced for phase advances (Merrow et al., 2005). Although, it 

is difficult to study phase advances in mice due to their small and inconsistent shifts to light in late 

subjective night, a future study could determine whether treatment with CP-760, 542 + NAN-190 

can be used to reaccelerate entrainment following advancing potentiate light-induced phase 

advances in mice.  Under advancing light-cycles, the light comes on regular number of hours 

earlier each day while maintaining a 12:12 LD for mice. This could allow us to use the PER2:: 

LUC knockin mouse to measure bioluminescence rhythms of PER2 in the SCN and peripheral 

organs using the LumiCycle. Are these rhythms of PER::2 luminescence without transients? On 

the other hand, if we find that the pharmacological treatment does not affect mice, we could use in 

situ hybridization to measure levels of per expression in the SCN and quantitative RT-PCR to 

measure per levels in peripheral organs of hamsters to determine whether there are transient cycles 

in per expression following phase shifts elicited by light in combination with this pharmacological 

treatment. It is important to gain understanding of the factors regulating transient cycles in 

peripheral organs for in order to develop therapeutic agents to treat the misalignment of peripheral 

oscillations experienced in transient cycles. 
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B. Will blocking NPY and 5-HT input eliminate transients in physiological rhythms 

following phase advances? 
 
 
In addition to measuring levels of per gene expression in peripheral oscillators it will be important 

to measure changes in physiological rhythms regulated by the circadian system following abrupt 

light changes in animals receiving both NPY Y5 antagonist and NAN-190. Body temperature and 

heart rate could be monitored in hamsters following light pulses during the late subjective night 

and under advancing light cycles which model jet lag conditions. Levels of plasma corticosterone 

secreted by the adrenal cortex are under circadian regulation, and could be measured in animals 

using this drug + light protocol.  

Future studies should also include female hamsters (and mice) to investigate whether 

blocking NPY and 5-HT can affect circadian rhythms of behavior and physiology in female 

subjects as well as males. In women, increased breast cancer risk and menstrual irregularities have 

been associated with working the night shift and as flight attendants (Stevens, 2005; Nagata et al., 

2008). The SCN has a central role in regulating timing of the luteinizing hormone (LH) surge, 

which may regulate circadian rhythmicity in the ovaries (Karman and Tischkau, 2006). Rhythms 

of hormone secretion and reproductive behavior could be studied in female subjects receiving the 

drug treatment under conditions simulating altered light cycles. The role that inhibition of NPY 

and serotonin input may have in regulating phase resetting to light and alleviating transient cycles, 

which may lead to circadian desynchrony in females, is an important area for investigation. 
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C. Will combined inhibition of NPY and 5-HT input modulate light-induced phase shifts 
in the tau mutant hamster? Is CK Iε  involved in the regulation of photic shifting by 
nonphotic input? 

 

I think the tau mutant hamsters discovered by Ralph and Menaker (1988) would be a useful tool 

for future research investigating the effects of inhibition of NPY and 5-HT input on photic phase 

shifts. The tau mutation is a semi-dominant autosomal allele that shortens the circadian period 

length to 20 hours in the homozygous mutant animals and 22 hours in the heterozygous mutant 

(wild type hamsters have a period of approximately 24 hours). A missense mutation within the 

substrate region of casein kinase Iε is responsible for the tau mutation (Gietzen and Virshup, 

1999). Recently the hamster tau mutation has been identified as a gain of function in vivo, 

increasing phosphorylation-dependent degradation of PER proteins and thus speeding up the 

circadian clock (Gallego, Eide, Woolf, Virshup and Forger, 2006). Hamsters with the tau mutation 

have an altered response to light exposure during the subjective night. The tau hamster responds to 

a 1 h light pulse at CT 15 with a large phase advance of approximately 11 hours, compared to the 

one hour advances measured for wild type hamsters (Scarbrough and Turek, 1996; Grosse, Loudon 

and Hastings, 2000). While the magnitude of the advance shift differed significantly between the 

two phenotypes, light induced phase delays were equivalent (approximately one hour). The tau 

mutation also alters response to nonphotic stimuli and to NPY (Mrosovsky, Salmon, Menaker and 

Ralph, 1992; Biello and Mrosovsky, 1996). The amplitude of the response of the PRC to nonphotic 

stimuli and NPY is greater in the homozygous tau mutants. I suggest treating the tau mutant 

hamsters with CP-760, 542 + NAN-190 to determine if phase shifts are regulated by these 

antagonists. If tau hamsters have an altered response to the antagonists than wildtype hamsters, 

than it is possible that CK Iε is involved in the regulation of photic shifting by nonphotic input. 

The effects of a novel CKIε inhibitor, PF-670462, (Pfizer, CT) on the inhibition of nonphotic input 
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on photic phase shifting might also be evaluated in wildtype hamsters and mice (for reference see 

Badura et al., 2007).   The tau mutant hamsters and the ability to inhibit CKIε with PF-670462 are 

useful tools for further study of the interaction between nonphotic and photic input in the circadian 

system. 

Why are tau hamsters more responsive to light during late subjective night than wild type 

hamsters?  Scarborough and Turek (1996) found that levels of vasopressin (AVP) and vasoactive 

intestinal peptide (VIP) in the SCN were significantly lower in the tau mutant hamsters than wild 

type following prolonged time in DD. They suggest that the differences in peptide levels may be 

responsible for the qualitative differences in phase shifts.  Measuring VIP and AVP levels with in 

situ hybridization in brains collected from hamsters treated with CP-781, 214 (or CP-740, 542) + 

NAN-190 could determine if the treatment increased levels of these peptides in the SCN. 

 Animals with the altered tau gene have reduced longevity, accompanied by severe 

cardiovascular and renal disease. A recent study (Martino et al., 2008) demonstrated that circadian 

disorganization caused by the tau mutation, and not the mutation itself, is responsible for 

cardiomyopathy and renal disease. Significantly, when tau hamsters were maintained in a 12:10 

LD, allowing them to entrain to an appropriate light cycle, abnormal cardiac and renal measures 

were not observed. 
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D. Does blocking NPY and 5-HT during the late subjective night potentiate phase 
shifting via enhanced activation of the PKG pathway?  

 
 

This pharmaceutical protocol could also be used to investigate the signal transduction 

pathways for photic phase shifting. Signal transduction pathways differ for photic phase 

advances and phase delays (Golombek et al., 2000). Light stimulation during the night 

induces clock resetting through an excitatory signal transduction pathway mediated by 

glutamate (Glu), NMDA receptor activation, stimulation of nitric oxide synthase (NOS), and 

intercellular movement of nitric oxide (NO) (for review see Ding et al., 1997).  However, 

light stimulation activates the guanylyl cyclase-cGMP-cGMP-dependent kinase (PKG) 

pathway only during late subjective night. Light induced phase advances, but not delays, are 

blocked by pharmacological inhibition of cGMP-dependent protein kinase (Weber, Gannon 

and Rea, 1995; Ferreyra and Golombek, 2001).  In vitro, cGMP analogs and activation of 

PKG induce phase shifts only during the late subjective night. Is it possible that a blockade of  

NPY and 5-HT input converges on the PKG pathway to potentiate the phase advancing 

effects of light on the SCN?  To determine whether NPY and 5-HT inhibition activates the 

PKG pathway, PKG activity could be measured in hamsters treated with CP-760542 + NAN-

190 with light and compared to PKG activity in hamsters treated with light alone with an in 

vitro phosphorylation assay using a PKG specific substrate (Peninsula Labs, Belmont, CA). 

In addition cGMP levels could be compared using an enzyme immunoassay kit (Correlate-

EIA, Assay Designs, Ann Arbor, Michigan). Significantly, a recent study determined that 

administration of sildenafil, which inhibits c-GMP-specific phosphodiesterase V (an enzyme 

which degrades cGMP), allowing increased accumulation of cGMP, increases phase 

advances at CT 18 by 50% and accelerates reentrainment to advancing light cycles 
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(Agostino, Plano and Golombek, 2007). I think it is important to evaluate the possible role 

that activation of cGMP and PKG has in mediating the effects NPY and 5-HT on photic 

phase shifts during late subjective night. Identifying biochemical events associated with the 

potentiation of phase advances by these drugs may increase our basic understanding of the 

circadian clock. 
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CHAPTER VII 

CONCLUSION 

 

The potentiation of phase shifts may have important clinical value. Individuals with seasonal 

affective disorder, familial sleep disorders or Alzheimer’s disease might benefit from treatment to 

phase shift a delayed circadian system. In addition, blocking non-photic input might allow the 

circadian system to adjust more quickly to shift work and travel across time zones. Any therapeutic 

value will depend upon minimizing the side effects of this treatment.  This study also underscores 

the necessity to consider time of day for treatment with prescription drugs. In particular, the role of 

5-HT in blocking phase advances and possibly impairing entrainment should be considered when 

prescribing serotonergic agents. Significantly, blocking NPY and 5-HT input eliminated the 

normal time lag required for a steady state phase shift to be reached after a light pulse during the 

late subjective night.  The transient cycles before a stable phase relationship is reached between the 

circadian clock and peripheral oscillator may also contribute to human circadian dysynchrony. 

Some of the health risks associated with circadian dysynchrony may be alleviated by 

pharmacological treatments that target both NPY and serotonin levels. 

In addition, the potentiation of phase shifts, which are elicited with the combined NPY Y5 

antagonist and 5-HT1A partial agonist, provides an excellent opportunity to study differences 

between phase advances and delays, elucidate the interaction between photic and non-photic input 

to the circadian system, and to increase basic understanding of the circadian system. 
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