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ABSTRACT

INFORMATION THEORETIC IDENTIFICATION AND
COMPENSATION OF NONLINEAR DEVICES

SEPTEMBER 2009

SEPIDEH DOLATSHAHI

B.S., UNIVERSITY OF TEHRAN

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Dennis L. Goeckel and Professor Hossein Pishro-Nik

Breaking the anonymity of different wireless users with thepurpose of decreasing

internet crime rates is addressed in this thesis by considering radiometric identification

techniques.

Minute imperfections and non-idealities in the different transmitter components, espe-

cially the inherent nonlinearity in power amplifiers, result in variations in their Volterra

series representations which could be utilized as a signature.

For a two user scenario, signal processing algorithms basedon generalized likelihood

ratio test(GLRT) and the classical likelihood ratio test are introduced and the resulting re-

ceiver decision rules and performance curves are presented. These algorithms consider the
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high signal to noise ratio(SNR) case where we have availablethe input samples completely

at the receiver which is a practical assumption for most cases.

Volterra series are widely used in behavioral modeling of power amplifiers. To validate

the existence of these variations in the Volterra series representation of power amplifiers,

process variations are introduced as major sources. The plausibility of our techniques are

justified by deriving and comparing the Volterra coefficients for the fast and slow process

corners.

Finally,an information theoretic framework is presented where the amount of mutual in-

formation of the output about the Volterra coefficients represents the amount of anonymity

taken from users. Here, some results for the low SNR case are presented to prove the

achievability of some information about individual systems using our hardware anonymity

breaking techniques.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Anonymity

Modern life with the Internet as a principal part provides different crime opportunities

and crime types. Sexual exploitation of children, production and dissemination of contra-

band music and video, intellectual property theft, murder,identity theft, financial fraud

and espionage are some instances of crimes which are either created or made easier by the

advent of computers and use of the internet. For example exploiting open wireless access

points(AP’s) hosted by private homes, businesses, and municipalities provides offenders

with de facto anonymity. Fortunately the use of computers bysuch offenders typically

results in digital evidence.

The primary artifacts used in investigation of internet crimes are the Internet Proto-

col(IP)address and Media Access Control address (MAC address) of the suspect’s com-

puter both of which cannot be relied on by crime investigators. Consistent IP addresses

are assigned by an Internet Service Provider(ISP)and all incoming and outgoing messages

are tagged by this IP address. The reason why IP addresses arenot considered reliable is

the proliferation of open AP’s hosted by many private and public places these days. Dy-

namic IP addresses, which are temporarily assigned IP addresses from a pool of possible

1



IP addresses for the duration of that internet session or forsome other specified amount of

time, are most frequently assigned on LANs and broadband networks by Dynamic Host

Configuration Protocol (DHCP) servers. They are used because it avoids the administra-

tive burden of assigning specific static addresses to each device on a network. It also allows

many devices to share limited address space on a network if only some of them will be

online at a particular time. Being temporary they are thus not considered trustworthy evi-

dence. MAC addresses are similarly unreliable as they are easily reconfigured by the user.

Another problem is the use of encrypted network connectionswhich can be employed at

the link, network, or transport layers. Wi-Fi Protected Access (WPA), Internet Protocol

Security(IPSec), and the Secure Shell protocol(SSH) are respective examples of these en-

cryptions. with such protection utilized, it is difficult toattribute network activities to a

particular user in terms of the content or the internet destination. In general for software

anonymity breaking techniques usually some type of software security and protection tech-

nique can be developed and thus the results of these anonymity breaking techniques are

not considered reliable evidence.

1.1.2 Imperfections at the PHY layer

In this section, we detail how we will develop new methods of collecting identifying

characteristics of radio transceivers at the physical layer — even if the higher layers pro-

vide a high degree of anonymity. The paradigm behind our approach is simple. There are

long-standing imperfections in the RF portion of any wireless transmitter that still exist

despite decades of significant efforts by the commercial andgovernment microwave cir-

cuits community. By exploiting these imperfections, an observer can group together RF

2



Figure 1.1.Block Diagram of a Standard Wireless Transmitter, whereb[n] is the sequence
of bits to be transmitted,u[n] andu(t) are the digital and analog baseband waveforms,
respectively, andx(t) is the transmitted signal.

signals from one radio that would otherwise be anonymous dueto changes in MAC or IP

addresses.

An extremely simplified version of the transmit chain for a wireless transmitter is

shown in Figure 1.1. In particular, a digital (discrete-time, discrete-amplitude) baseband

signalu[n] that carries the information bits is generated by a digital signal processor (DSP).

This signal is then converted to an analog signal, which is upconverted to the desired car-

rier frequency and then amplified by the power amplifier (PA).In an ideal system, the

transmitted signal would be given byx(t) = Au(t) cos(2πfct + θ), whereA is the gain

of the power amplifier,u(t) is the ideal analog form ofu[n] (i.e., the sinc(·)-interpolated

version ofu[n]), fc is the desired carrier frequency, andθ is the (constant) phase of the

oscillator. However:

• Thedigital-to-analog (D/A) conversion suffers from the finite precision of the dig-

ital input, but, more importantly, particularly for our forensics work, the analog

output for a given digital input can vary significantly across converters.
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• Theoscillator, which for our work will be defined as both the crystal and the associ-

ated phase-locked loop (PLL), attempts to generate the sinusoidcos (2πfct + θ), but

the actual frequency/phase of the sinusoid generated can vary greatly from crystal

to crystal.

• Power amplifiers, which seek to produce a linear device that takes inu(t) and puts

outAu(t) are often quite nonlinear — even with significant compensation. As with

the D/A converter and oscillator, this variation can be significant across devices.

Our approach based on radiometric identity makes use of the minor variations in ana-

log hardware of transmitters which manifest themselves as idiosyncratic artifacts in their

emitted signals.

1.1.3 Proposed Work

First, the feasibility of this approach was investigated bymeasuring the output fre-

quency of a couple of higher quality oscillators from manufacturer 1 and a couple of lower

quality oscillators from manufacturer 2. The results whichare included in the following

sections showed empirically that there are some parametersin different transmitter compo-

nents including the center frequency of the oscillator in the mixer that could be exploited

to tell different users apart.

Next, we will pose the theoretical simplified problem of two nonlinear systems with

different system parameters(in our case Volterra series coefficients) and we will propose

algorithms to break their anonymity. The first algorithm introduced relies on General-

ized Likelihood Ratio Test(GLRT) to differentiate betweenthe two different users in the

high signal to noise ratio(SNR) case and we will show its effectiveness.A more practical

4



algorithm which requires less storage is introduced next. This algorithm first estimates

the Volterra coefficients using least squares(LS) estimation and then solves the resulting

detection problem using the classical likelihood ratio test.

At last, we then need to form some justified proof for our claimthat different amplifiers

even from the same manufacturer have different Volterra series representation vectors, far

enough to let us differentiate between them with low probability of error. This is done

by using the results of simulating a simple power amplifier and taking into account the

process variations.

1.2 Background

There are many vulnerabilities that we could

Figure 1.2.The frequencies of two oscil-
lators measured 14 times over 3.5 hours
demonstrating consistently measurable
differences and identifying characteris-
tics

exploit to perform our forensic work. We could

use non-idealities in different transmitter com-

ponents including:

Oscillator. An ideal oscillator would pro-

duce the signalcos(2πfct+ θ) at the desiredfc

for a given channel. However, this is rarely the

case in practice. Instead the following signal is

produced:

y(t) = cos( 2π(fc + ∆(t))t + Θ(t) ),

5



where2π∆(t)t + Θ(t) is the (time-varying) phase noise. The frequency offset∆(t) has

characteristics specific to a given chip, but it is time-varying due to environmental fluc-

tuations, particularly in device temperature. When one reads the data sheets for crystal

oscillators, the numbers for this frequency offset look impressive — measured in at most

tens of and often a fraction of a “ppm” (part per million) [36]. However, when one consid-

ers a multi-GHz carrier, these offsets become significant.

We measured the frequency of each of two very good oscillators for the 2.4 GHz band

over 3.5 hours, and the results are shown in Figure 1.2. It is very clear that one could easily

group transmissions from one user together based on the carrier frequency. Furthermore,

frequency compensation is a critical synchronization function in any wireless receiver [37,

Chapter 6], and for small offsets, this frequency compensation is often done digitally at

the receiver by estimating the frequency offset and then performing compensation by mul-

tiplication by the appropriate sinusoid on the DSP. Thus, toestablish communication, any

“standard” receiver for the system must be able to compute this offset within relatively

tight bounds, and hence a powerful eavesdropper could also easily track it as well.

Amplifier. An ideal amplifier would produce the signalAu(t) when given the input

u(t). However, a standard power amplifier is only linear at very low powers where it runs

quite inefficiently, and thus amplifiers in small wireless cards or cell phones, which are

what we wish to identify, are run in the nonlinear regime. Hence, compensation for this

nonlinearity has been one of the most active of all research areas for commercial RF com-

panies. Why not simply pre-compensate for the amplifier nonlinearity characteristics at

design time? Therein lies the difficulty — every amplifier, even of the same part number,
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exhibits different characteristics that have to be measured and then compensated individu-

ally for, if the amplifier linearity is to be improved [39]. Obviously, it is the uniqueness of

the characteristics that we will attempt to exploit in our proposed work.

1.2.1 Other Works

There have been a number ofRadio Frequency Fingerprinting(RFF) efforts over the

years. Much of the work has been in the microwave circuit community [4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], with mostof it based on transient

analysis. A transient is a brief radio emission produced while the power output of an

RF amplifier goes from idle to the level required for data communication. The nature

of transients is such that they are difficult to detect and there is no obvious correct way

to succinctly describe them. The extended RFF process, including the identification of

devices, consists of four key phases. The first phase involves the extraction of features

(e.g. amplitude, phase or frequency information) from the digital signal. These features

are subsequently used to detect the start of the transient inthe second phase. Once the end

of the transient has been estimated, typically in an experimental manner, the fingerprint

(features representing the transient) is obtained. Finally, the transceiver of the device is

identified based on the classification of the fingerprint.In the papers on transients in the

literature, different parts of this process has been altered. For instance in [16, 17]the

feature used in the first phase is the amplitude while in [14] the phase information is also

exploited.In [22, 15] a wavelet analysis is used to characterize the features contained in

the transient.

The term RF fingerprinting, in general, refers to various PHYlayer classification ap-

proaches of RF signals. We broadly classify RF features into: (i) channel-specific ones,

7



e.g., channel impulse response, that characterize the wireless channel; and (ii) transmitter-

specific ones that are independent of the channel, e.g., signal encoding. Since channel-

specific features uniquely identify the channel between thetransmitter and the receiver,

they have been successfully adopted in robust location distinction. There have also been a

few significant recent works in the networking community, through location identification(channel-

specific) [24, 25, 26, 27, 28], which would allow one to group transmissions from a sta-

tionary user. Some of these including [26, 27] are based uponthe ability of the multipath

environment to provide a waveform whose structure an adversary cannot measure or model

accurately. The rapid decorrelation properties of the multipath channel is exploited. Tem-

poral and spectral variability is reflected by two notions, the coherence time and coherence

bandwidth of the channel. Spatial separation of one to two wavelengths is sufficient for

assuming independent fading paths.

Another location distinction based technique uses the Received Signal Strength (RSS)

to distinguish transmitters [25, 28]. An RSS method simply uses the RSS measured at

multiple receivers as a feature vector. RSS measurements contain information about a link

but vary due to small-scale and frequency-selective fading, such that its use in location

distinction requires multiple measurements at different receivers. Also, in the network

security application, adversaries can ‘spoof’ their signalprint using array antennas which

send different signal strengths in the directions of different access points. Moreover, for

wireless sensor networks, multi-node collaboration is expensive in terms of energy. These

location based techniques assume that different transmitters remain active and do not move

and thus lack the ability to actually make an identification or recognize a previously seen

device that moved or sat silent for some time.
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The transmitter specific RF fingerprinting techniques rely on the exploitation of de-

vice non-idealities(transmitter-specific) [30, 31, 32, 29] (see [30] for a thorough review

of prior work). Per above, approaches in the RF community generally consider very spe-

cific observed transient phenomena of the RF signal. As a representative example, Remley

et al [29] measure the envelope of a number of different wireless local area networks

(WLAN) cards and note that the envelopes of the waveforms on an oscilloscope for differ-

ent cardslook different. At the other extreme, recent work by Brik et al [30] used machine

learning techniques on collected modulation data to train data-agnostic classifiers that are

then able to distinguish wireless cards that are produced bythe same vendor.

On the other hand we exploit the minute imperfections in the different transmitters

hardware even from the same manufacturer that manifest themselves as the difference

in the Volterra series representations of for instance the power amplifier in the transmitter

circuitry. We suggest signal processing detection and classification techniques and support

the feasibility of out techniques theoretically. We also donot need long input vectors and

we do not have big memory requirements as out procesing is considered realtime.

1.3 Contribution

1.3.1 Formal Approach

Our broad approach to device modeling, anonymity analysis,and algorithm design is

significantly different than these prior efforts. In particular, the approach here is focused

on a comprehensive understanding and exploitation of the phenomena being exploited for

node identification. This will yield an accurate (generallystatistical) model amenable to

analysis by researchers at the physical layer, thus allowing us to answer fundamental ques-
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tions: (1) how much anonymity is forfeited by such devices?,(2) what are the key device

characteristics that cause such anonymity loss?, and, particularly important from an oper-

ational point of view, (3) how might the nodes employ countermeasures to regain some

anonymity and how would such be thwarted? For example, in contrast to the recent empir-

ical classification results of [30] on commercial 802.11 cards, our modeling and analysis

could provide clear understanding of countermeasures thatwill be particularly effective

(likely frequency offset dithering) and those that will not(likely amplifier nonlinearity

modification). Provable performance is the key characteristic to our approach.

1.3.2 Thesis Outline

In Chapter 2, we will discuss a simple two-user scenario in which there are only two

possible transmitters transmitting in a role and a third time one of them transmits. We

would like to determine which transmitter transmitted the third signal. For the high SNR

case, we propose two algorithms to distinguish different users.First, a Generalized Like-

lihood Ratio Test(GLRT)-based algorithm and another algorithm based on the classical

likelihood ratio test are introduced. Then, the performance of this technique by writing

the probability of error in terms of the difference vector ofthe two systems was studied.

Also, if we consider the coefficients to be random variables around some certain mean, the

performance of our algorithms are plotted versus the variance of these random variables.

The results of the simulations show that the average probability of error decreases when

the norm of the difference vector of system parameters increases and that the classical

likelihood ratio test performs better than the GLRT algorithm. In addition, the classical

likelihood ratio algorithm only needs to store the volterraseries coefficients of the two or

more possible transmitters and is thus more practical in this sense.
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In Chapter 2, when we talk about the system parameters, we mean the truncated form

of the Volterra series coefficients. To be able to link this tothe main anonymity breaking

application discussed in this introduction chapter, we need to discuss some of the sources

that cause these variations in the Volterra coefficients of different amplifiers. Chapter 3

talks about the modeling side of this project and uses the results of the simulations of

a simple class A amplifier and its variations due to the process variations of the NMOS

transistor inside the amplifier to show how different the Volterra series coefficients could

be.

Chapter 4 provides theoretical proof for the possibility ofapplying the hardware anonymity

breaking techniques to the low SNR case and in the mean time introduces another approach

to studying anonymity problems which is measuring the amount of information conveyed

by the output from the system parameters.

Finally chapter 5 concludes the work done in this thesis and suggests future researches

in this topic.
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CHAPTER 2

IDENTIFYING AMPLIFIERS VIA VOLTERRA COEFFICIENTS

2.1 Problem statement

Assume there are only two possible users connecting to a wireless LAN. We have

samples from the input and output of these two wireless cards. Call the input vectors of

size (M+1)X1 andX2, and their output vectors of size M,Y1 andY2 respectively. The

transmitters in the wireless cards are in general nonlinearsystems because of the nonlinear

components they have including power amplifiers(PA’s). Figure 2.1 shows another input

vectorX3 passing through either system 1 or system 2. Assuming perfect errorless decod-

ing of the input we have access toX3 andY3, the input and output, and we would like to

determine which system it went through.

2.1.1 Problem settings-high SNR case

For the high signal to noise ratio(SNR), we could accuratelydecode the message and

thus know X at the receiver. This input vector(X i) goes through the power amplifier

in the transmitter of the system to be identified which is characterized by its Volterra

series coefficients.Then zero mean Gaussian channel noise is added to the signal and at

the receiver the output vectorY i is received.
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Figure 2.1.The two-system identification scenario.
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X i is the input vector of the system i known at the receiver for i=1,2,3. We consider

the(M + 1)× 1 input vector to the system i is drawn from a zero-mean Gaussian random

process with varianceσ2
X :

X i =



















xi(n)

xi(n − 1)

...

xi(n − M)



















; i = 1, 2, 3.

The M × 1 additive noise vector is also drawn from a zero-mean Gaussian random

process with varianceσ2
n:

νi =



















νi(n)

νi(n − 1)

...

νi(n − M)



















; i = 1, 2, 3.

We use the Volterra series representation with memory of order 1 for our nonlinear

devices, and we assume that the nonlinear systems are well-represented using the Volterra

series up to order two, which is called a linear quadratic system and is in the form(see

appendix A):

yi(n) = Σ1
k1=0hi,1(k1)xi(n − k1) + Σ1

k1=0Σ
1
k2=0hi,2(k1, k2)xi(n − k1)xi(n − k2) + νi(n)

(2.1)

14



yi(n) = hi,1(0)xi(n) + hi,1(1)xi(n − 1)

+hi,2(0, 0)x2
i (n) + hi,2(1, 1)x2

i (n − 1) + hi,2(0, 1)xi(n)xi(n − 1) + νi(n) (2.2)

Note that this just simplifies notation. The concept appliesto higher order Volterra

series.

Thus, the system parameters vectorhi would be anN × 1 vector whereN = 5:

hi =

























hi,1(0)

hi,1(1)

hi,2(0, 0)

hi,2(1, 1)

hi,2(0, 1)

























; i = 1, 2.

Now in vector form we have:

Y i =



















xi(n) xi(n − 1) x2
i (n) x2

i (n − 1) xi(n)xi(n − 1)

xi(n − 1) xi(n − 2) x2
i (n − 1) x2

i (n − 2) xi(n − 1)xi(n − 2)

...
...

...
...

...

xi(n − M + 1) xi(n − M) · · · · · · xi(n − M + 1)xi(n − M)



















hi+νi

or equivalently:

Y i = Pihi + νi ; i = 1, 2.

Now that we have defined theM×N matricesPi i = 1, 2, 3, let’s define the2M×N

matricesP13 andP23 formed by stacking matricesP1 andP3, andP2 andP3 respectively:
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Pi3 =







Pi

P3






where i = 1, 2

Y i3 =







Y i

Y 3






where i = 1, 2

2.2 The proposed GLRT Estimation Procedure

2.2.1 The GLRT receiver

According to the generalized likelihood ratio test(GLRT test):

maxh
1
{P (Y 1, Y 3 |h1, X1, X3)}

h2

≷

h1

maxh
2
{P (Y 2, Y 3 |h2, X2, X3)} (2.3)

Given the inputs,h1, andh2 are known,

Y i3(GivenX i, X3, hi) ∼ N(Pi3.hi, σ
2
nI(2M×2M)), i = 1, 2.

Or equivalently:

PY
i3
|X

i
,X

3
,h

i

(Y i3|Xi, X3, hi) =
1

(
√

2πσn)2M
e
−

(Y
i3−Pi3.h

i
)H (Y

i3−Pi3.h
i
)

2σ2
n (2.4)

Now substituting these in the main GLRT formula yields:
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minh1
{(Y 13 − P13.h1)

H(Y 13 − P13.h1)}
h1

≷

h2

minh2
{Y 23 − P23.h2)

H(Y 23 − P23.h2)

(2.5)

Let |ei|2 be:

|ei|2 = (Y i3 − Pi3.hi)
H(Y i3 − Pi3.hi) = |Y i3 − Pi3.hi|2 i = 1, 2.

Minimizing |ei|2 is the same problem as the Least Squares(LS) problem where the

number of equations to estimate the parameter is more than the number of parameters(in

this casehi’s with S = 5 elements). Thus we could apply the results of the LS problem:

hi,OPT = (P H
i3 Pi3)

−1P H
i3 Y H

i3 , i = 1, 2. (2.6)

|ei,OPT |2 = Y H
i3(I2M×2M − Pi3(P

H
i3 Pi3)

−1P H
i3 )Y i3 , i = 1, 2. (2.7)

At the receiver the GLRT decision rule will be:

Y H
13(I2M×2M − P13(P

H
13P13)

−1P H
13)Y 13

h1

≷

h2

Y H
23(I2M×2M − P23(P

H
23P23)

−1P H
23)Y 23}

(2.8)
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2.2.2 Performance analysis

To determine the performance of this method and its ability to differentiate between

two different transmitters, we should find the probability of error in terms of some form of

distance between the two system parameters vectorsh1 andh2.

Pe = Pr{h1}.P r{GLRT results:h2|h1} + Pr{h2}.P r{GLRT results:h1|h2} (2.9)

Because of the symmetry:

Pe = Pr{GLRT results:h2|h1} (2.10)

We are interested inPr{maxh1
{P (Y1, Y3 |h1, X1, X3)} < maxh2

{P (Y2, Y3 |h2, X2, X3)}|h1}

Or:

Pe = Pr{minh1
{(Y 13−P13.h1)

H(Y 13−P13.h1)} < minh2
{(Y 23−P23.h2)

H(Y 23−P23.h2)}|h1}

(2.11)

According to the definition of|ei,opt|2 in (2.7):

Pe = Pr{|e1,opt|2 < |e2,opt|2|h1} (2.12)

Pe = Pr{Y H
13(I2M×2M−P13(P

H
13P13)

−1P H
13)Y 13 < Y H

23(I2M×2M−P23(P
H
23P23)

−1P H
23)Y 23|h1}

(2.13)
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Knowing that the third system was actually system 1 with system parametersh1 or

equivalently substitutingY i3 by:

Y 13 =







Y 1

Y 3






=







P1h1 + v1

P3h1 + v3






= P13h1 +







v1

v3






(2.14)

Y 23 =







Y 2

Y 3






=







P2h2 + v2

P3h1 + v3






=







P2h2

P3h1






+







v1

v3






(2.15)

yields:

|e1|2(Givenh1) = (P13h1 + v13)
H(I2M×2M − P13(P

H
13P13)

−1P H
13)(P13h1 + v13) (2.16)

= vH
13v13 − vH

13P13(P
H
13P13)

−1P H
13v13) (2.17)

where

vi3 =







vi

v3






, i = 1, 2.

And, also,

|e2|2 = (







P2h2

P3h1






+ v23)

H(I2M×2M − P23XP H
23)(







P2h2

P3h1






+ v23) (2.18)

= A + B + C + D (2.19)

where:

X = (P H
23P23)

−1 = (P H
2 P2 + P H

3 P3)
−1 (2.20)
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A =







P2h2

P3h1







H

(I2M×2M − P23XP H
23)







P2h2

P3h1






(2.21)

= (h2 − h1)
HP H

2 P2XP H
3 P3(h2 − h1) (2.22)

= dHP H
2 P2XP H

3 P3d (2.23)

where:

d = h2 − h1 (2.24)

B = vH
23







IM×M − P2XP H
2 −P2XP H

3

−P3XP H
2 IM×M − P3XP H

3













P2h2

P3h1






(2.25)

= vH
23







P2XP H
3 P3

−P3XP H
2 P2






d (2.26)

Because of symmetry,

C = BH = dH







P2XP H
3 P3

−P3XP H
2 P2






v23 (2.27)

D = vH
23







IM×M − P2XP H
2 −P2XP H

3

−P3XP H
2 IM×M − P3XP H

3






v23 (2.28)

Rewrite (2.16) in the form:

E = |e1|2 =







v1

v3







H 





IM×M − P1X
∗P H

1 −P1X
∗P H

3

−P3X
∗P H

1 IM×M − P3X
∗P H

3













v1

v3






(2.29)
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,whereX∗ = (







P1

P3






)H(







P1

P3






)−1 = (P H

1 P1 + P H
3 P3)

−1

Now (2.13) results:

Pe = P{E > A + B + C + D} (2.30)

Using some algebraic manipulations, this simplifies to:

Pr{(













V 1

V 2

V 3













−













0

P2.d

0













)H













−(I − P1X
∗P H

1 ) 0 P1X
∗P H

3

0 (I − P2XP2) P2X
∗P H

3

P3X
∗P H

1 −P3X
∗P H

2 P3(X − X∗)P H
3













.(













V 1

V 2

V 3













−













0

P2.d

0













) < 0}

(2.31)

Defining the new matrices and vectors:

P =













−(I − P1X
∗P H

1 ) 0 P1X
∗P H

3

0 (I − P2XP2) −P2XP H
3

P3X
∗P H

1 −P3XP H
2 −P3(X − X∗)P H

3













B =













0

P2.d

0













V =













V 1

V 2

V 3













we get:
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Figure 2.2.Probability of error vs. the norm of the difference vectord

Pr{(V (3M×1) + B)HP(3M×3M)(V + B) < 0} (2.32)

Figure 2.2 shows thePe versus theL2-norm of the difference vector||d||2 averaged

over 10000 input vectorsX1,X2, andX3 of size 100 and also the noise vectorsv1, v2,

andv3 for the SNR=30.
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2.2.3 Supplemental performance curves

We could improve the result by using more input samples in ourGLRT detection algo-

rithm. Also, apparently the probability of error decreasesas the signal to noise ratio(SNR)

is increased. This way for the same amount of the norm of the difference vector(|d|), we

get less probability of error in both cases.
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Figure 2.3 showsPe versus norm of the difference vector using different input sizes

for the estimation. Figure 2.4 showsPe versus norm of the difference vector for different

values of the SNR.

2.3 A Simplified Algorithm Based on the Classical LikelihoodRatio

Test

We have three input/output vector pairs(X1, Y 1), (X2, Y 2), and(X3, Y 3), where

the first two pairs of input/output vectors are from nonlinear systems 1 and 2, and we

would like to determine which system does the third input/output pair belong to.

2.3.1 Receiver decision rule

It is more practical to store the estimated system coefficients(truncated Volterra series

representation of the system)hi i = 1, 2, 3 rather than having to store all the input and

output data of the first and second transmitters. Then with some suitable distance criterion

we should determine ifh3 is closer toh1 or h2.

Y i =



















xi(n) xi(n − 1) x2
i (n) x2

i (n − 1) xi(n)xi(n − 1)

xi(n − 1) xi(n − 2) x2
i (n − 1) x2

i (n − 2) xi(n − 1)xi(n − 2)

...
...

...
...

...

xi(n − M + 1) xi(n − M) · · · · · · xi(n − M + 1)xi(n − M)



















hi+ei

or equivalently:

Y i = Pihi + ei ; i = 1, 2.
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whereei : i = 1, 2, 3. is the estimation error.

The M × N matricesPi, i = 1, 2, 3 can be determined easily from the vectors

X i, i = 1, 2, 3. A standard metric is to minimize the squared error:

|ei|2 = |Y i − Pihi|2, i = 1, 2, 3.

This is the classical Least-squares(LS) problem and the solution is:

hi,opt = P
†
i Y i, i = 1, 2, 3.

hi,opt = (P H
i Pi)

−1P H
i Y i, i = 1, 2, 3.

Now that we have the estimatedhi, i = 1, 2, 3. we should solve the classical decision

problem using the likelihood ratio:

Λ(h3) ,
Ph3|h1

(h3|h1)

Ph3|h2
(h3|h2)

On the other hand, givenhi,

h3 = (P H
3 P3)

−1P H
3 Y i, i = 1, 2.

h3 = (P H
3 P3)

−1P H
3 P3hi + (P H

3 P3)
−1P H

3 ν3 = hi + (P H
3 P3)

−1P H
3 ν3, i = 1, 2.

If X is a Gaussian random vector, then so isAX + bfor anyr × n vector A and any

r-vector b. Symbolically, we write:
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X ∼ N(m, C) ⇒ AX + b ∼ N(Am + b, ACAH)

then:

Ph
3
|h

i

(h3|hi) =
1

√

det(C)(2π)
n
2

e−
1
2
(h

3
−h

i
)HC−1(h

3
−h

i
) (2.33)

whereC is the covariance matrix and can simply be derived as:

C = ((P H
3 P3)

−1P H
3 ) ∗ σ2

nIM×M ∗ ((P H
3 P3)

−1P H
3 )H

C = σ2
n(P H

3 P3)
−1

Equation (2.33) yields:

Ph
3
|h

i

(h3|hi) =
1

√

det(C)(2π)
n
2

e
− 1

2σ2
n

(h3−h
i
)H (P H

3 P3)(h3−h
i
)

(2.34)

At the receiver the estimated Volterra coefficientsh1 andh2, are stored and every time

an output vectorY 3 is received, we decode the correspondingX3 and estimateh3 using

the results of the LS problem. Then we calculateΛ(h3) and decide whether it wash1 or

h2:

e
− 1

2σ2
n

(h3−h1)H(P H
3 P3)(h3−h1)

h1

≷

h2

e
− 1

2σ2
n

(h3−h2)
H (P H

3 P3)(h3−h2)
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Equivalently:

(h3 − h1)
H(P H

3 P3)(h3 − h1)

h2

≷

h1

(h3 − h2)
H(P H

3 P3)(h3 − h2)

Figure 2.5 shows the simulated probability of error versus the norm of the difference

vector for the classical likelihood ratio test algorithm. The GLRT performance curve is

also included for comparison reasons.

2.4 Volterra coefficients as random variables

In this section we consider the Volterra coefficients to be random variables with vari-

anceσ2
h around their mean and run simulations to find the curves ofPe vs. the variance of

the coefficients(σ2
h).

We also consider another algorithm which we call the naive algorithm in which our

naive detection system outputs the estimated coefficients vectorhopt,i, i=1,2 which is clos-

est to the third estimated coefficients vectorhopt,3 with theL2-norm criterion for measuring

the closeness:

||hopt,3 − hopt,2||
h2

≷

h1

||hopt,3 − hopt,1||

Figure 2.6 shows the performance of the GLRT algorithm, the classical likelihood ratio

algorithm and the naive algorithm in one figure. The classical likelihood ratio test has the
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best simulated results, while the GLRT has the greatest probability of error of the three.

The GLRT makes use of the whole data all at once , while in the other methods the Volterra

coefficients vector is determined first as described above.
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CHAPTER 3

MODELING OF POWER AMPLIFIERS

In this chapter we will validate the use of Volterra series representation for the study

of nonlinear system components including power amplifiers and the possible sources of

variations in the Volterra series vector of different amplifiers.This way we will provide the

link between the theoretic analysis of the previous chapters and the practical anonymity

breaking application.

Behavioral modeling techniques provide a convenient and efficient means to predict

system-level performance without the computational complexity of full circuit simulation

or physics-level analysis of nonlinear systems, thereby significantly speeding up the analy-

sis process. General Volterra series based models have beensuccessfully applied for radio

frequency (RF) power amplifier (PA) behavioral modeling. Working with Volterra series

presentations provides RF circuit designers with the insight that enables them to trace the

defects in their designs and modify the circuit parameters or the circuit elements. Many

instances of the use of Volterra series can be found in the literature for modeling and dis-

tortion calculation of nonlinear devices([42, 43, 40, 41, 47, 48, 49, 50, 51, 52, 53]), and

also studying the response of nonlinear systems to noise as in [44, 45, 46].

Weakly nonlinear systems are systems whose response to external inputs can be de-

scribed by a few terms in a functional series expansion such as a Volterra series. On the
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other hand, excessively nonlinear systems like the class D power amplifiers have trans-

fer functions that cannot be well characterized by low orderVolterra functional series.To

model the PA’s with strong nonlinearities and long memory effects, the general Volterra

model involves a great number of coefficients. In this respect, some simplified Volterra

series based models for RF power amplifiers have been proposed.

For our purpose of identification, if we consider no complexity limits, either weakly

or excessively nonlinear amplifiers like the class D amplifiers used in cellular phone trans-

mitters, could be characterized by enough Volterra series coefficients. It is important how

well Volterra series characterize amplifiers, as any model mismatch will affect the perfor-

mance of the the algorithm presented in previous chapter as it is based on the assumption

that a system is characterized by Volterra series representation. Fortunately the broad use

of Volterra series for modeling and studying amplifiers in the circuit community proves it

a suitable representation.

Next we need to determine how much variation there is betweendifferent amplifiers

of the same type. This will determine how well we are able to distinguish amplifiers

according to thePe versus the norm of the difference vector curves derived.

3.1 Process Variations

To be able to validate the effectiveness of our anonymity breaking techniques, we need

to determine how the Volterra series presentations of poweramplifiers, even though from

the same manufacturer, differ in practice by introducing one source of variation. Varia-

tions in fabrication process, ambient temperature and supply voltage affect the electrical

performance of the transistors. For example a higher temperature and a lower supply volt-
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age make the transistor operate slower.See Appendix B for a brief explanation of process

corners.

The first important source that makes different amplifiers indifferent transmitters have

distinct Volterra series coefficients which we could make use of to distinguish them is the

parameter variations in production. According to [54], MOStransistors of which the am-

plifier circuits are made always exhibit broad variations inmajor device parameters among

production lots. As a result, a wide range of devices are measured and parameters are ex-

tracted to characterize the statistical variations. The most notable parameter variations

include channel length, threshold voltage, and gate-oxidethickness variations. Additional

models are added to the model library based on the extremes ofthese key parameters.

These models are called process corners in that they captureparameters that make the

circuit unusually fast or unusually slow.

To show the variation of the Volterra series coefficients at these process corners, a

simple one-transistor class A amplifier was simulated. Given a sinusoidal input at the

frequencyω0 the output of the circuit was measured at frequenciesω0, 2ω0, 3ω0, and4ω0.

From this data considering the simplified memoryless fourthorder Volterra series represen-

tation, we derived these coefficients for the slow(worst performance, lowest power),nominal

(typical performance, typical power), and fast (best performance, highest power) NMOS

transistor. Figure 3.1 shows the simple amplifier simulatedand the Tables 3.1, 3.2, and

3.3 show the output at frequenciesω0, 2ω0, 3ω0, and4ω0 for the three typical, slow, and

fast corners of operation of the NMOS transistor in the amplifier circuit. In each case the

available source powerPavs is determined so that the optimum power is delivered to the

load. Corresponding estimated Volterra series coefficients are derived in Table 3.4. Now
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we can estimate the norm of the difference vector between thefast and slow corners which

are the±3σ of the limits of the bell curve of the probability density function from its mean.

The resultingL2-norm of the difference is 0.0390 which probability of errorquite close to

zero. according to thePe curves of chapter 2, we have a very low probability of error for

this norm of the difference vector.

Table 3.1.Typical NMOS corner

Pavs freq Typical NMOS

Pdel opt=0.23W Pdelopt @Pavs=9.95dBm
Pavs freq mag(vload)[40, ::] phase(vload)[40, ::]
10.00 1.90E+09 4.8073 -54.778
10.00 3.80E+09 0.0789 -105.760
10.00 5.70E+09 0.0053 82.483
10.00 7.60E+09 0.0010 101.338

Table 3.2.Slow NMOS corner

Pavs freq Slow NMOS

Pdel opt=0.23W Pdelopt @Pavs=10.653dBm
Pavs freq mag(vload)[43, ::] phase(vload)[43, ::]
10.75 1.90E+09 4.8215 -55.841
10.75 3.80E+09 0.0717 -105.394
10.75 5.70E+09 0.0099 75.561
10.75 7.60E+09 0.0023 94.778

In these simulations the temperature and supply voltage effects are not considered.

also, in practice class AB amplifiers are used in power amplifier circuits which are even

less nonlinear but more efficient which makes our study of class A amplifiers a worst case

analysis and results in a better probability of error.
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Figure 3.1.Class A amplifier circuit.

Table 3.3.Fast NMOS corner

Pavs freq Fast NMOS

Pdel opt=0.23W Pdelopt @9.246
Pavs freq mag(vload)[37, ::] phase(vload)[37, ::]
9.25 1.90E+09 4.7954 -53.298
9.25 3.80E+09 0.0771 -103.505
9.25 5.70E+09 0.0038 91.811
9.25 7.60E+09 0.0004 108.759
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Table 3.4.Estimated Volterra Series coefficients

Slow Typical Fast

h1 4.791829 4.79136 4.783927
h2 0.125176 0.149879 0.150715
h3 0.039517 0.02124 0.015336
h4 0.01832 0.007841 0.003528

Although the difference vector is computed between the±3σ limits which is between

the extremes. In practice two devices can vary with some certain probability that can be

calculated from their bell curve.
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CHAPTER 4

BREAKING ANONYMITY IN THE LOW SNR CASE

In the previous chapters we have considered the high SNR casewhere the input was

decoded at the output and the anonymity breaking algorithmsdiscussed assumed having

access to the input vector as well. Possible future work could be done in suggesting

anonymity breaking techniques and algorithms for the low SNR case. Here in this chapter

we only show from an information theoretic perspective thatthe output of a nonlinear sys-

tem conveys information about the system Volterra coefficients and thus hardware based

techniques could be devised for anonymity breaking purposes.

We will provide information theoretic formulas and bounds to the performance of the

physical layer anonymity breaking techniques explained inChapter 1. Because of the

nonlinear nature of the formulas in this chapter, the multiple integrals in the formulas

rarely lead to neat formulations even with the simplest possible assumptions. But, for the

simplified case of the zero memory linear quadratic case and for the low signal to noise

ratio case, the closed form formulas are calculated.

4.1 Zero-memory Linear Quadratic System

Using the simplified Volterra series which only consists of the first convolution term(A.9)which

is the linear part and the second double summations(A.10), the quadratic part, what results
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is called a linear quadratic form. In addition, we consider the zero memory case where the

Volterra series simply looks like Taylor series around point zero.

y(n) = h1(0)x(n) + h2(0, 0)x(n)2 + ν(n) (4.1)

What we want to find is the the amount of (Shannon)informationthe output of the nonlinear

system has about the system parameters, which is the mutual information of the output and

system coefficients which in this case areh1(0) andh2(0, 0).Call the coefficients vector

h = [h1(0) h2(0, 0)]T . What we are actually interested in is how the mutual information

increases when we have access to more output points. Let’s consider the information of

one output about the system parameters, I(y(n);h):

I(y(n); h) = h(y(n)) − h(y(n)|h) (4.2)

I(y(n); h) = h(h) − h(h|y(n)) (4.3)

We use equation (4.2) to calculate the mutual information asit is easier to deal with in our

case.

h(y(n)|h) = Eh(h(y(n)|h = H) (4.4)

where

h(y(n)|h = H) =

∫ +∞

−∞

f
y(n)|h=H

(y(n)|h = H)log(f
y(n)|h=H

(y(n)|h = H))dy(n)

andEh means expectation with respect toh.

h(y(n)) =

∫ +∞

−∞

fy(n)(y(n))log(fy(n)(y(n)))dy(n) (4.5)
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Thus, to be able to findh(y(n)) andh(y(n)|h) we first need to findfy(n)(y(n)) and

f
y(n)|h which are the probability density functions ofy(n) andy(n) givenh.

The inputx(n) and the system coefficients are random variables. The input is a binary

random variable with equal probability for−1 and 1, and the system coefficients and

the additive noise are Gaussian random variables with mean zero and variancesσ2
h1

, σ2
h2

,

andσ2
n respectively. y(n) given h andx(n) is a Gaussian random variable with mean

h1(0)x(n) + h2(0, 0)x(n)2 and varianceσ2
n. Givenx(n), h

y(n) ∼ N(h1(0)x(n) + h2(0, 0)x(n)2, σ2
n)

Or equivalently:

f
y(n)|h,x(n)

(y(n)|h, x(n)) =
1√

2πσn

e
−

(y(n)−h1(0)x(n)−h2(0,0)x(n)2)2

2σ2
n (4.6)

and

f
y(n)|h(y(n)|h) = Ex(n)(

1√
2πσn

e
−

(y(n)−h1(0)x(n)−h2(0,0)x(n)2)2

2σ2
n ) (4.7)

fy(n)(y(n)) = Eh(Ex(n)(
1√

2πσn

e
−

(y(n)−h1(0)x(n)−h2(0,0)x(n)2)2

2σ2
n )) (4.8)

4.2 Low SNR approximation

In this section we use the results of [1]to find the mutual information for the case of

binary inputs. The author in [1] finds the capacity of the binary-input additive gaussian

noise channel:

Y = X + ν (4.9)
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The capacity is the maximum amount of mutual information fordifferent input probability

mass functions which is when the inputs−1 and1 are equiprobable. For the low SNR

case, [1] finds:

I(X; Y ) = h(Y ) − h(Y |X) (4.10)

Since H(Y) in [1] is the same ash(y(n)|h = H) for our problem, we can also easily find

h(Y |X) :

h(y(n)|h = H) = h(Y ) = I(X; Y ) + h(Y |X) = (4.11)

= log2(e)
h2

1

2σ2
n

+ o(
h3

1

σ3
n

)+EX(h(Y |X = x)) = log2(e)
h2

1

2σ2
n

+EX(log2(e)+ log2(
√

2πσn))

(4.12)

= log2(e)
h2

1

2σ2
n

+
1

2
log2(e) + log2(

√
2πσn) (4.13)

In our problem we haveY = h1(0)x(n) + h2(0, 0)x(n)2 + ν wherex(n)2 = 1. As

Y = h1(0)(x(n) + h2(0,0)
h1(0)

) + ν is the scaled shifted version ofY = X + ν, and also

as shifting does not change the amount of information, we just need to take into account

the scaling factor which shows itself as ah2
1 coefficient inI(X; Y ) and does not change

h(Y |X).

Therefore,

h(y(n)|h) = Eh(h(y(n)|h = H)) = log2(e)
σ2

1

2σ2
n

+
1

2
log2(e) + log2(

√
2πσn) (4.14)

According to (4.1), givenx(n)

y(n) ∼ N(0, σ2
n + σ2

1x
2
n + σ2

2) (4.15)
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and asx(n) shows itself only in the form ofx(n)2 = 1. Thusy(n) has the same pdf, and

the entropy for the normal random variables is simply:

h(y(n)) = log2(
√

2π(σ2
n + σ2

1 + σ2
2)) +

1

2
log2(e) (4.16)

and finally the mutual information of the output and the zero memory linear quadratic

system parameters equals:

I(y(n); h) = h(y(n)) − h(y(n)|h) = log2(

√

σ2
n + σ2

1 + σ2
2

σn

) − log2(e)
σ2

1

2σ2
n

(4.17)

In the equation 4.18 if we considerσ2
1 = σ2

2 and also if we callσ
2
1

σ2
n

= x, then we will

have:

I(y(n); h) =
1

2
log2(

1 + 2x

ex
) (4.18)

For the low SNR case we have a lot of noise or equivalently largeσ2
n and thus0 < x < 1

which results inI(y(n); h) > 0 which means the output has some non-zero information

about the system Volterra coefficients.

Now if we increase the number of outputs and form the vector ofoutputs:

Y = [y(n) y(n − 1) ... y(n − M + 1)]T

where

y(n − i) = h1(0)x(n − i) + h2(0, 0)2x(n − i)2 + ν , i = 0, ..., M − 1
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and the vector of system parametersh = [h1(0) h2(0, 0)] Now as we considered the system

parameters known(deterministic) for findingh(y(n)|h = H), if we increase the number

of outputs, stilly(n − i) givenh are independent and thus:

h(Y |h) = Eh(h(Y |h = H)) = M(log2(e)
σ12

2σ2
+

1

2
log2(e) + log2(

√
2πσn)) (4.19)

But for findingI(Y ; h) we still need to find h(Y ) which is not as easy asy(n − i)’s are

not independent.

4.3 The General Case

The general input output relationship for a nonlinear system with limited memoryL

and only considering the terms until and including theN-fold summations is of the form:

y(n) = ΣN
r=1Σ

L−1
k1=0...Σ

L−1
kr=0hr(k1, ..., kr)x(n − k1)...x(n − kr) (4.20)

= ΣL−1
k1=0h1(k1)x(n − k1) (4.21)

+ΣL−1
k1=0Σ

L−1
k2=0h2(k1, k2)x(n − k1)x(n − k2) (4.22)

+...

+ΣL−1
k1=0...Σ

L−1
kN=0hN(k1, ..., kN)x(n − k1)...x(n − kN), (4.23)

and also after observingM output samplesY = [yn yn−1 ... yn−2]
T , we will have:
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fY |h,X (y|h, x) =
1

(
√

2πσn)M
e
ΣM−1

i=0
(y(n−i)−h1(0)x(n−i)−h2(0,0)x(n−i)2)2

2σ2
n (4.24)

This is because givenx(n − i)’s andh y(n − i)’s are i.i.d. Gaussian.

fY |h(y|h) = Ex

(

1

(
√

2πσn)M
e
ΣM−1

i=0
(y(n−i)−h1(0)x(n−i)−h2(0,0)x(n−i)2)2

2σ2
n

)

(4.25)

fY (y) = Eh

(

Ex

(

1

(
√

2πσn)M
e
ΣM−1

i=0
(y(n−i)−h1(0)x(n−i)−h2(0,0)x(n−i)2)2

2σ2
n

))

(4.26)

h(Y ) =

∫ ∫

...

∫ +∞

−∞

fY (y)log2(fY (y))dy (4.27)

h(y|h = H) =

∫ ∫

...

∫ +∞

−∞

fY |h=H
(y|h = H)log(fy|h=H

(y|h = H))dy (4.28)

h(y(n)|h) = Eh(h(y(n)|h = H) (4.29)

To find neat formulations or bounds to the above equations we need to solve multi-

ple integrals of the function (4.25) or (4.24) which are fairly complicated functions the

integrals of which do not have closed form solutions.
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CHAPTER 5

CONCLUSION

In this thesis, with the motivation of digital forensics andbreaking anonymity, an ap-

proach to identify users is presented. The main idea is to make use of the minute imper-

fections in the different components of the transmitters’ hardware even for the case where

they are made by the same manufacturer.

First the feasibility and effectiveness of this approach isshown empirically by mea-

suring the output frequency of some oscillators from the same manufacturer.We saw that

although the two oscillators were low noise oscillators from the same manufacturer they

had different center frequencies and this difference couldbe deployed along with other

parameters to identify different users.

Next,for the high signal to noise ratio(SNR) case, where theinput is fully recovered

at the receiver, two algorithms based on the generalized likelihood ratio test(GLRT) and

classical likelihood ratio test were proposed and the effectiveness of these algorithms was

shown by drawing thePe versus the norm of the difference vector between the two sets

of system parameters. The nonlinear systems are presented by volterra series coefficients,

the appropriateness of which was addressed in the modeling chapter. Also one source of

the difference in Volterra series coefficients of differenttransmitters which is the process

variations and how it causes variations in the Volterra series representation of different
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power amplifiers was studied. In practice class AB amplifiersare used in the transmitter

systems which are more nonlinear than the class A amplifier studied.

Finally, for the low SNR case, only the fact that some certainamount of information

about the system coefficients from the output could be derived, was proved, leaving the

task of devising new algorithms capable of this to future researchers.

Future researches could be done by improvising new separation techniques for the low

SNR case. Also the apparent generalization of the introduced algorithms for the high SNR

case to the scenario where there are more than two possible users and the resulting perfor-

mance curves is another possible future research topic. Also, the possible countermeasures

and studying the susceptibility of our techniques to these possible countermeasures could

be done as another complementary research project.
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APPENDIX A

VOLTERRA SERIES REPRESENTATION

A linear, causal system with memory can be described by the convolution representa-

tion:

y(t) =

∫ +∞

−∞

h(τ)x(t − τ)dτ (A.1)

y(n) = Σ∞
m=−∞h(m)x(n − m) (A.2)

wherex(t) is the input,y(t) the output, andh(t) the impulse response of the system. A

nonlinear system without memory can be described with a Taylor series:

y(t) = Σ+∞
n=1an[x(t)]n (A.3)

y(n) = Σ+∞
n=1an[x(n)]n (A.4)

where, again,x(t) is the input andy(t) the output. Thean are the Taylor series coefficients.

A Volterra series combines the above two representations todescribe a nonlinear system

with memory:

y(t) = Σ∞
n=1

1

n!

∫ +∞

−∞

du1...

∫ +∞

−∞

dungn(u1, ..., un)
n

∏

r=1

x(t − ur) (A.5)
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=
1

1!

∫ +∞

−∞

du1g1(u1)x(t − u1) (A.6)

+
1

2!

∫ +∞

−∞

du1

∫ +∞

−∞

du2g2(u1, u2)x(t − u1)x(t − u2) (A.7)

+
1

3!

∫ +∞

−∞

du1

∫ +∞

−∞

du2

∫ +∞

−∞

du3g3(u1, u2, u3)x(t − u1)x(t − u2)x(t − u3) (A.8)

+...

x(t) is the input,y(t) is the output, and thegn(u1, ..., un) are called the Volterra kernels

of the system or simply the kernels . Theui are time variables. Forn = 1, g1(u1) will

be recognized as the familiar impulse response (A.1); thus,gn for n > 1 are rather like

”higher-order impulse responses”. These serve to characterize the various orders of nonlin-

earity . The first few terms of (A.5) have been explicitly written out; (A.6) is the familiar

convolution integral (A.1), and (A.7) and (A.8) may be thought of as two-fold and three-

fold convolution. (A.5) is an infinite sum of n-fold convolution integrals. The leading

1
n!

is omitted by most authors.For causal systems the lower bound of all integrals equals

zero. Equation (A.9) shows the discrete-time version of (A.5),which we use throughout

this thesis:

y(n) = Σ∞
r=1Σ

∞
k1=−∞...Σ∞

kr=−∞hr(k1, ..., kr)x(n − k1)...x(n − kr) (A.9)

= Σ∞
k1=−∞h1(k1)x(n − k1) (A.10)

+Σ∞
k1=−∞Σ∞

k2=−∞h2(k1, k2)x(n − k1)x(n − k2) (A.11)

+...

In the above equations for causal discrete-time systems thelower bound of the summations

becomes zero and for the systems with limited memoryL, the upper bound of summations
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should be replaced withL. Also we can approximate a nonlinear system with anN th order

approximation having the sum of firsti-fold summations wherei ≤ N :

y(n) = ΣN
r=1Σ

L−1
k1=0...Σ

L−1
kr=0hr(k1, ..., kr)x(n − k1)...x(n − kr) (A.12)

= ΣL−1
k1=0h1(k1)x(n − k1) (A.13)

+ΣL−1
k1=0Σ

L−1
k2=0h2(k1, k2)x(n − k1)x(n − k2) (A.14)

+...

+ΣL−1
k1=0...Σ

L−1
kN=0hN (k1, ..., kN)x(n − k1)...x(n − kN) (A.15)
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APPENDIX B

CMOS PROCESS CORNERS

Transistors have uncertainty in their process parameters and also due to environmental

variations. Variations towards a shorterLeff (effective channel length), lowerVt(threshold

voltage), and a thinnertox(oxide thickness) make the device faster and the device gets

slower if we have variations in the opposite direction. Alsoenvironmental variations like

higherVDD and lower temperature makes the device faster.

A process corner represents a three sigma(standard deviation) variation from nominal

doping concentrations (and other parameters) in transistors on a silicon wafer. This vari-

ation may occur for many reasons, such as minor changes in thehumidity or temperature

changes in the clean-room between wafers, or due to the position of the die relative to the

center of the wafer. Apart from the typical corner, there arefast and slow corners, where

the carrier mobilities are higher and lower than normal, respectively.

According to the normal probability density function that characterizes the process,

fast and slow corners are considered within±3σ of the mean, which makes it improba-

ble(with probability less than 1 percent) for them to be outside these values.
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Figure B.1. Normal probability distribution curve.
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