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ABSTRACT

INFORMATION THEORETIC IDENTIFICATION AND
COMPENSATION OF NONLINEAR DEVICES

SEPTEMBER 2009

SEPIDEH DOLATSHAHI
B.S., UNIVERSITY OF TEHRAN
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Dennis L. Goeckel and Professor éin$&ishro-Nik

Breaking the anonymity of different wireless users with thepose of decreasing
internet crime rates is addressed in this thesis by consgleadiometric identification
techniques.

Minute imperfections and non-idealities in the differemainismitter components, espe-
cially the inherent nonlinearity in power amplifiers, rdsul variations in their Volterra
series representations which could be utilized as a signatu

For a two user scenario, signal processing algorithms basegneralized likelihood
ratio test(GLRT) and the classical likelihood ratio tes atroduced and the resulting re-

ceiver decision rules and performance curves are presehtede algorithms consider the



high signal to noise ratio(SNR) case where we have avaithblenput samples completely
at the receiver which is a practical assumption for mostxase

\olterra series are widely used in behavioral modeling efg@oamplifiers. To validate
the existence of these variations in the \Volterra seriesesgmtation of power amplifiers,
process variations are introduced as major sources. Thsibikty of our techniques are
justified by deriving and comparing the Volterra coefficgefdr the fast and slow process
corners.

Finally,an information theoretic framework is presentdteve the amount of mutual in-
formation of the output about the Volterra coefficients esgnts the amount of anonymity
taken from users. Here, some results for the low SNR caserasemed to prove the
achievability of some information about individual systensing our hardware anonymity

breaking techniques.

Vi
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CHAPTER 1
INTRODUCTION

1.1 Motivation
1.1.1 Anonymity

Modern life with the Internet as a principal part provideedent crime opportunities
and crime types. Sexual exploitation of children, productnd dissemination of contra-
band music and video, intellectual property theft, murddentity theft, financial fraud
and espionage are some instances of crimes which are eigaed or made easier by the
advent of computers and use of the internet. For exampl®iixg open wireless access
points(AP’s) hosted by private homes, businesses, andaipatities provides offenders
with de facto anonymity. Fortunately the use of computersigh offenders typically
results in digital evidence.

The primary artifacts used in investigation of internetres are the Internet Proto-
col(IP)address and Media Access Control address (MAC adiiif the suspect’'s com-
puter both of which cannot be relied on by crime investigatd@onsistent IP addresses
are assigned by an Internet Service Provider(ISP)andalhiing and outgoing messages
are tagged by this IP address. The reason why IP addressestarensidered reliable is
the proliferation of open AP’s hosted by many private andlipytlaces these days. Dy-

namic IP addresses, which are temporarily assigned IP sskedrom a pool of possible



IP addresses for the duration of that internet session @dimre other specified amount of
time, are most frequently assigned on LANs and broadbansanks by Dynamic Host
Configuration Protocol (DHCP) servers. They are used becawasoids the administra-
tive burden of assigning specific static addresses to eattedan a network. It also allows
many devices to share limited address space on a networkyifsome of them will be
online at a particular time. Being temporary they are thuscoasidered trustworthy evi-
dence. MAC addresses are similarly unreliable as they aib/@aconfigured by the user.
Another problem is the use of encrypted network connectiamsh can be employed at
the link, network, or transport layers. Wi-Fi Protected 8ss (WPA), Internet Protocol
Security(IPSec), and the Secure Shell protocol(SSH) ameive examples of these en-
cryptions. with such protection utilized, it is difficult tttribute network activities to a
particular user in terms of the content or the internet dastin. In general for software
anonymity breaking techniques usually some type of so&twsacurity and protection tech-
nique can be developed and thus the results of these angnyredking techniques are

not considered reliable evidence.

1.1.2 Imperfections at the PHY layer

In this section, we detail how we will develop new methods afexting identifying
characteristics of radio transceivers at the physicalrlayesven if the higher layers pro-
vide a high degree of anonymity. The paradigm behind ouragur is simple. There are
long-standing imperfections in the RF portion of any wissléransmitter that still exist
despite decades of significant efforts by the commercialgowrnment microwave cir-

cuits community. By exploiting these imperfections, aneylsr can group together RF
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Figure 1.1.Block Diagram of a Standard Wireless Transmitter, witéngis the sequence
of bits to be transmittedy[n] andu(t) are the digital and analog baseband waveforms,
respectively, and(t) is the transmitted signal.

signals from one radio that would otherwise be anonymougaubhanges in MAC or IP
addresses.

An extremely simplified version of the transmit chain for aeless transmitter is
shown in Figure 1.1. In particular, a digital (discreteindiscrete-amplitude) baseband
signalu|n| that carries the information bits is generated by a digitadal processor (DSP).
This signal is then converted to an analog signal, which uoperted to the desired car-
rier frequency and then amplified by the power amplifier (RA)an ideal system, the
transmitted signal would be given hyt) = Au(t) cos(2n f.t + ), where A is the gain
of the power amplifieryu(t) is the ideal analog form ai[n] (i.e., the sin¢)-interpolated
version ofu[n]), f. is the desired carrier frequency, afds the (constant) phase of the
oscillator. However:

e Thedigital-to-analog (D/A) conversion suffers from the finite precision of the dig-

ital input, but, more importantly, particularly for our fmsics work, the analog

output for a given digital input can vary significantly acsa®nverters.



e Theoscillator, which for our work will be defined as both the crystal and theozi-
ated phase-locked loop (PLL), attempts to generate theaides (27 f.t + 6), but
the actual frequency/phase of the sinusoid generated cgrgu@atly from crystal

to crystal.

e Power amplifiers, which seek to produce a linear device that takes(ify and puts
out Au(t) are often quite nonlinear — even with significant compesatAs with

the D/A converter and oscillator, this variation can be gigant across devices.

Our approach based on radiometric identity makes use of thermariations in ana-
log hardware of transmitters which manifest themselvesliasyncratic artifacts in their

emitted signals.

1.1.3 Proposed Work

First, the feasibility of this approach was investigatednbgasuring the output fre-
quency of a couple of higher quality oscillators from mamtidiaer 1 and a couple of lower
quality oscillators from manufacturer 2. The results whaech included in the following
sections showed empirically that there are some paranigtéifferent transmitter compo-
nents including the center frequency of the oscillator mrtiixer that could be exploited
to tell different users apart.

Next, we will pose the theoretical simplified problem of twonfinear systems with
different system parameters(in our case \olterra seriefficents) and we will propose
algorithms to break their anonymity. The first algorithmratluced relies on General-
ized Likelihood Ratio Test(GLRT) to differentiate betwetkie two different users in the

high signal to noise ratio(SNR) case and we will show itsctifeness.A more practical



algorithm which requires less storage is introduced nextis &lgorithm first estimates
the Volterra coefficients using least squares(LS) estonadind then solves the resulting
detection problem using the classical likelihood ratid.tes

At last, we then need to form some justified proof for our cltiat different amplifiers
even from the same manufacturer have different Volterr@seepresentation vectors, far
enough to let us differentiate between them with low prolitgtof error. This is done
by using the results of simulating a simple power amplifiedl taking into account the

process variations.

1.2 Background
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Figure 1.2. The frequencies of two oscil-
lators measured 14 times over 3.5 hours

duce the signalos(27 .t + 6) at the desire¢, demonstrating consistently measurable

. o differences and identifying characteris-
for a given channel. However, this is rarely thgcg

Oscillator. An ideal oscillator would pro-

case in practice. Instead the following signal is

produced:

y(t) = cos(2m(fe + A())t + O(t)),



where2rA(t)t + ©(t) is the (time-varying) phase noise. The frequency offsét) has
characteristics specific to a given chip, but it is time-vagydue to environmental fluc-
tuations, particularly in device temperature. When onelsege data sheets for crystal
oscillators, the numbers for this frequency offset look iegsive — measured in at most
tens of and often a fraction of a “ppm” (part per million) [3&owever, when one consid-
ers a multi-GHz carrier, these offsets become significant.

We measured the frequency of each of two very good oscifidtorthe 2.4 GHz band
over 3.5 hours, and the results are shown in Figure 1.2. éngalear that one could easily
group transmissions from one user together based on thercequency. Furthermore,
frequency compensation is a critical synchronization fiomcin any wireless receiver [37,
Chapter 6], and for small offsets, this frequency compenisas often done digitally at
the receiver by estimating the frequency offset and thefopaimg compensation by mul-
tiplication by the appropriate sinusoid on the DSP. Thugstablish communication, any
“standard” receiver for the system must be able to compugeatfiset within relatively

tight bounds, and hence a powerful eavesdropper could atsly ¢érack it as well.

Amplifier. An ideal amplifier would produce the signdk.(¢) when given the input
u(t). However, a standard power amplifier is only linear at vevy jmwers where it runs
quite inefficiently, and thus amplifiers in small wirelessdsaor cell phones, which are
what we wish to identify, are run in the nonlinear regime. egrcompensation for this
nonlinearity has been one of the most active of all researedisgfor commercial RF com-
panies. Why not simply pre-compensate for the amplifier ineakity characteristics at

design time? Therein lies the difficulty — every amplifiereevof the same part number,



exhibits different characteristics that have to be meakane then compensated individu-
ally for, if the amplifier linearity is to be improved [39]. @lwusly, it is the uniqueness of
the characteristics that we will attempt to exploit in ounposed work.
1.2.1 Other Works

There have been a numberRadio Frequency Fingerprintif@®FF) efforts over the
years. Much of the work has been in the microwave circuit comity [4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], with nob#t based on transient
analysis. A transient is a brief radio emission producedenvtiie power output of an
RF amplifier goes from idle to the level required for data camioation. The nature
of transients is such that they are difficult to detect andetli® no obvious correct way
to succinctly describe them. The extended RFF processjdimg the identification of
devices, consists of four key phases. The first phase invdhe extraction of features
(e.g. amplitude, phase or frequency information) from tlggtal signal. These features
are subsequently used to detect the start of the transiém second phase. Once the end
of the transient has been estimated, typically in an expgartal manner, the fingerprint
(features representing the transient) is obtained. Bintde transceiver of the device is
identified based on the classification of the fingerprinti@ papers on transients in the
literature, different parts of this process has been alteréor instance in [16, 17]the
feature used in the first phase is the amplitude while in [fkd]ghase information is also
exploited.In [22, 15] a wavelet analysis is used to charadehe features contained in
the transient.

The term RF fingerprinting, in general, refers to various PEyer classification ap-

proaches of RF signals. We broadly classify RF features ifitahannel-specific ones,



e.g., channel impulse response, that characterize thiegsrehannel; and (ii) transmitter-
specific ones that are independent of the channel, e.galségicoding. Since channel-
specific features uniquely identify the channel betweenttéuesmitter and the receiver,
they have been successfully adopted in robust locatiomdi&in. There have also been a
few significant recent works in the networking communityptingh location identification(channel-
specific) [24, 25, 26, 27, 28], which would allow one to grotgmsmissions from a sta-
tionary user. Some of these including [26, 27] are based tip@ability of the multipath
environment to provide a waveform whose structure an adwecannot measure or model
accurately. The rapid decorrelation properties of the ipath channel is exploited. Tem-
poral and spectral variability is reflected by two notioh®, toherence time and coherence
bandwidth of the channel. Spatial separation of one to tweelemgths is sufficient for
assuming independent fading paths.

Another location distinction based technique uses theiRegt&ignal Strength (RSS)
to distinguish transmitters [25, 28]. An RSS method simpgsithe RSS measured at
multiple receivers as a feature vector. RSS measurememtigiconformation about a link
but vary due to small-scale and frequency-selective fadsngh that its use in location
distinction requires multiple measurements at differeteivers. Also, in the network
security application, adversaries can ‘spoof’ their signat using array antennas which
send different signal strengths in the directions of défdgraccess points. Moreover, for
wireless sensor networks, multi-node collaboration iseesgve in terms of energy. These
location based techniques assume that different traressttmain active and do not move
and thus lack the ability to actually make an identificatiomexognize a previously seen

device that moved or sat silent for some time.



The transmitter specific RF fingerprinting techniques retytloe exploitation of de-
vice non-idealities(transmitter-specific) [30, 31, 32] &8&ee [30] for a thorough review
of prior work). Per above, approaches in the RF communityegaly consider very spe-
cific observed transient phenomena of the RF signal. As @septative example, Remley
et al [29] measure the envelope of a number of different w#®llocal area networks
(WLAN) cards and note that the envelopes of the waveformasawsailloscope for differ-
ent carddook different At the other extreme, recent work by Brik et al [30] used niaeh
learning techniques on collected modulation data to trata-é&gnostic classifiers that are
then able to distinguish wireless cards that are producdbldgame vendor.

On the other hand we exploit the minute imperfections in tiflerént transmitters
hardware even from the same manufacturer that manifestseleas as the difference
in the Volterra series representations of for instance tvegp amplifier in the transmitter
circuitry. We suggest signal processing detection andifieation techniques and support
the feasibility of out techniques theoretically. We alsondd need long input vectors and

we do not have big memory requirements as out procesing sEdened realtime.

1.3 Contribution
1.3.1 Formal Approach

Our broad approach to device modeling, anonymity analgsid,algorithm design is
significantly different than these prior efforts. In pautiar, the approach here is focused
on a comprehensive understanding and exploitation of teaqiena being exploited for
node identification. This will yield an accurate (generatgtistical) model amenable to

analysis by researchers at the physical layer, thus algpusrto answer fundamental ques-



tions: (1) how much anonymity is forfeited by such devic€2ywhat are the key device
characteristics that cause such anonymity loss?, andcydarty important from an oper-
ational point of view, (3) how might the nodes employ coumeasures to regain some
anonymity and how would such be thwarted? For example, itrasito the recent empir-
ical classification results of [30] on commercial 802.11dsaour modeling and analysis
could provide clear understanding of countermeasureswthiabe particularly effective

(likely frequency offset dithering) and those that will niikely amplifier nonlinearity

modification). Provable performance is the key charadtetis our approach.

1.3.2 Thesis Outline

In Chapter 2, we will discuss a simple two-user scenario ircwkhere are only two
possible transmitters transmitting in a role and a thirdetiome of them transmits. We
would like to determine which transmitter transmitted thied signal. For the high SNR
case, we propose two algorithms to distinguish differeersigirst, a Generalized Like-
lihood Ratio Test(GLRT)-based algorithm and another allgor based on the classical
likelihood ratio test are introduced. Then, the perforneaatthis technique by writing
the probability of error in terms of the difference vectortloé two systems was studied.
Also, if we consider the coefficients to be random variabtesiad some certain mean, the
performance of our algorithms are plotted versus the veeai these random variables.
The results of the simulations show that the average prbtyabi error decreases when
the norm of the difference vector of system parameters asa® and that the classical
likelihood ratio test performs better than the GLRT alduomt In addition, the classical
likelihood ratio algorithm only needs to store the voltesegies coefficients of the two or

more possible transmitters and is thus more practical ;xdénse.

10



In Chapter 2, when we talk about the system parameters, we thedruncated form
of the Volterra series coefficients. To be able to link thishte main anonymity breaking
application discussed in this introduction chapter, wedrtealiscuss some of the sources
that cause these variations in the \Volterra coefficientsiftdérént amplifiers. Chapter 3
talks about the modeling side of this project and uses thatsesf the simulations of
a simple class A amplifier and its variations due to the prosasiations of the NMOS
transistor inside the amplifier to show how different thet®ia series coefficients could
be.

Chapter 4 provides theoretical proof for the possibilitgpplying the hardware anonymity
breaking techniques to the low SNR case and in the mean tinoelirces another approach
to studying anonymity problems which is measuring the arhotimformation conveyed
by the output from the system parameters.

Finally chapter 5 concludes the work done in this thesis aiggssts future researches

in this topic.
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CHAPTER 2
IDENTIFYING AMPLIFIERS VIA VOLTERRA COEFFICIENTS

2.1 Problem statement

Assume there are only two possible users connecting to desgd AN. We have
samples from the input and output of these two wireless caeadl the input vectors of
size (M+1) X; and X,, and their output vectors of size Nf; andY; respectively. The
transmitters in the wireless cards are in general nonlisigstems because of the nonlinear
components they have including power amplifiers(PA's).urég2.1 shows another input
vector X3 passing through either system 1 or system 2. Assuming pienfearless decod-
ing of the input we have access g andYs3, the input and output, and we would like to

determine which system it went through.

2.1.1 Problem settings-high SNR case

For the high signal to noise ratio(SNR), we could accuradielyode the message and
thus know X at the receiver. This input vect&r() goes through the power amplifier
in the transmitter of the system to be identified which is ahterized by its Volterra
series coefficients.Then zero mean Gaussian channel rsoéskled to the signal and at

the receiver the output vectdf, is received.

12
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Figure 2.1. The two-system identification scenario.
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X, is the input vector of the system i known at the receiver fdr,2:3. We consider

the (M + 1) x 1 input vector to the system i is drawn from a zero-mean Gansaigdom

process with variance :

<

. i=1,2,3.

The M x 1 additive noise vector is also drawn from a zero-mean Ganssiadom

process with variance?:

IR

L i=1,2,3.

We use the \olterra series representation with memory oérotdfor our nonlinear

devices, and we assume that the nonlinear systems areapedisented using the Volterra

series up to order two, which is called a linear quadratitesysand is in the form(see

appendix A):

yl(n) = Eilzohi71(k1)xi(n - ]{71) + 2]161:0211,2:0]12'72(]{71, ]Cg)l’l(n — kl)xl(n - ]{?2) + Vl(n)

14
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+h;2(0, 0)z?(n) + hio(1, Da?(n —1) + hi2(0, ) x;(n)x;(n — 1) + vi(n) (2.2)

Note that this just simplifies notation. The concept appieekigher order Volterra

series.

Thus, the system parameters vedigwould be anV x 1 vector whereV = 5:

hi1(0)
hii(1)
h; = | h;5(0,0) ;
hi2(1,1)
i hi2(0,1) |
Now in vector form we have:

zi(n —1) ri(n—2) 2?(n—1) =z

[~
I

riin—M+1) z;(n—M)

or equivalently:

Y,=Ph,+v, ; 1

Now that we have defined the x N matricesP,

1=1,2
f(n—1)
i(n—-2)

=1,2.

zi(n)z;(n — 1)

xi(n— 1)x;(n — 2)

1=1,2,3, let'sdefine theM x N

matricesP;; and P»; formed by stacking matriceB, and P;, and P, and P; respectively:

15

hi+v,

1
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b

P = where 1=1,2
Ps
Y,

Yis= where 1=1,2
Y,

2.2 The proposed GLRT Estimation Procedure

2.2.1 The GLRT receiver
According to the generalized likelihood ratio test(GLR$tje

h,
maxﬁl{P(XpXﬂﬁhipxz’))} 2 maﬂ?ﬁz{P(Xg’XﬂEz’Xg,Xg)}
h,

Given the inputsh,, andh, are known,

Xig(Gi/UenXi?X?ﬂbi) ~ N<PZ3Q7,7 O-rzll(QMXZJ\/[)>7 1= 17 2.

Or equivalently:

1 _ <Xi3*PiS'hi)HQ(Xz'g*Pis»ﬁi)
PXMXZ vX:svbi (Xi3|£i7 XS? bz) = We 290

Now substituting these in the main GLRT formula yields:

16
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h,
minﬁl{(xl?, — Pig.h)" (Y15 — Pighy)} = ming, {Yo3 — Poshy)™ (Y3 — Pos.hy)

h,
(2.5)

Let |e;|* be:

‘ei|2 = (Xi?) - Pi3-ﬁz')H(Xz’3 - Pz'3-ﬂz‘) = |Xi3 - Pi3ﬂz’|2 i =1,2.

Minimizing |e;|? is the same problem as the Least Squares(LS) problem where th
number of equations to estimate the parameter is more tianuimber of parameters(in

this caseh,;’s with S = 5 elements). Thus we could apply the results of the LS problem:

Qi,OPT = (Rl?jﬂ?a)_lpgxg i=1,2. (2-6)

|ez’,OPT|2 = Xg(lesz — Hs(ﬂgﬂs)_lﬂjyj)xig =12 (2.7)

At the receiver the GLRT decision rule will be:

X%(I2M><2M — P13(P1gp13)_lpg)x13 2 ng(]21\/[><2M — P23(P21§P23)_1P21§)X23}

(2.8)
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2.2.2 Performance analysis
To determine the performance of this method and its abititdifferentiate between
two different transmitters, we should find the probabilifyaor in terms of some form of

distance between the two system parameters vehtoandh,.

P. = Pr{h,}.Pr{GLRT results:h,|h,} + Pr{h,}.Pr{GLRT results:h,|h,} (2.9)
Because of the symmetry:

P. = Pr{GLRT results:h,|h, } (2.10)

Or:

P, = Pr{mmm{(XB—PlSﬂl)H(213_P13-ﬁ1)} < min@{(X23—P23.QQ)H(X23—P23.Q2)}|ﬁ1}
(2.11)

According to the definition ofe; ,,|? in (2.7):

P. = Pr{lesop|” < lezop|*|hy } (2.12)

P. = Pr{Y {i(Ionxonr—Pis(P3 Pi3) ' PE)Y 15 < Y 3 (Ionrcons—Poz(Pa Paz) "' Pa3 )Y 5| Ry }
(2.13)
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Knowing that the third system was actually system 1 witheysparameters; or

equivalently substituting’,; by:

X1 P1ﬁ1 + v, v,
Y;;= = = Pish, + (2.14)
Y, Psh, + v, V3
Y BPh, +v Ph v
Yyu=| = 7 = T+ (2.15)
XS P3Q1 + v3 Pghl (o

yields:

|€1|2(GW€TLE1) = (Pish, +213)H(]2Mx2M — P13(P£P13)_1P£)(P13ﬁ1 +wv,3) (2.16)

= 2{{3213 - Q%PB(P{?{PI?»)_IP{;QM) (2.17)
where
v,
Vi3 = = 17 2
k]
And, also,
P2h Pgh
lea|* = ( | 0a3) T(Ionsons — Pos X PE( 2| 4 vg) (2.18)
P3Q1 Psﬂl
=A+B+C+D (2.19)
where:
(2.20)

X = (PEPy) ™ = (PP, + PIPy)!
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H
Ph
A= ? (]2M><2M_P23XP2I§)
P3ﬁ1 P3ﬁ1

P2ﬁ2

= (ﬂz - Ql)HP;{P2XP?{{P3(Q2 _Ql)

=d" PP, XPIPsd
where:
C_i = ﬁz - ﬁ1
Ingss — P X P —P,XPH Pyh,

_ . H
B = vy,

—PXPH  Iyew—PXPE | | Psh,

on PQXP;IP?)
= Vo3 a
—PgXP2HP2
Because of symmetry,
P,XPEP3
C=pB"=d" o Va3
—P3XP2HP2
H H
D 25{3 Inrxnr — PoX Py —P,XP, 0,1

—P3X P Inyxnr — P X PH

Rewrite (2.16) in the form:

H

(oA Inpxnr — PLXCPY —PX*P
FE = |€1|2 =
23 —PgX*PlH ]MXM—PgX*PgH 23

20

(2.21)

(2.22)

(2.23)

(2.24)
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(2.26)

(2.27)
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WhereX* = ( VH( )t = (PP + PPPy)!

Now (2.13) results:
P.=P{E>A+B+C+D}

Using some algebraic manipulations, this simplifies to:

v, 0 —(I — PLX*PH) 0 P X*PH
Pr{(| v, |—| P.d " 0 (I - P,XP)  PX*PH
v, 0 PyX*PH —P,X*PH Py(X — X*)PH

Defining the new matrices and vectors:

—(I — PLX*PH) 0 PX*PH
P= 0 (I — PBXDPy) —P,XPH

PyX*PH —P,XPH  —Py(X — X*)PH

<
I
I<

we get:

21
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L2-norm of the difference vectaor( [d] )

Figure 2.2. Probability of error vs. the norm of the difference vedor

Pr{(V sax1) + B)"Parxan(V + B) < 0} (2.32)

Figure 2.2 shows thé, versus thel,-norm of the difference vectdid||, averaged
over 10000 input vectorX;, X5, and X5 of size 100 and also the noise vectoss vs,

andwvs for the SNR=30.
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Probability of Error for SNR=30dB and for different input sizes used for the approximation M=50,100,5500
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Figure 2.3. Probability of error vs. the norm of the difference vector different input
Sizesgl

2.2.3 Supplemental performance curves

We could improve the result by using more input samples inGILRT detection algo-
rithm. Also, apparently the probability of error decreaasshe signal to noise ratio(SNR)
is increased. This way for the same amount of the norm of tiereince vectot(|), we

get less probability of error in both cases.
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Pe vs. |d| for different SNR values and for input size M=100
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Figure 2.4. Probability of error vs. the norm of the difference vectar different values

of SNRd
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Figure 2.3 shows’, versus norm of the difference vector using different inpnés
for the estimation. Figure 2.4 shows versus norm of the difference vector for different

values of the SNR.

2.3 A Simplified Algorithm Based on the Classical LikelihoodRatio
Test

We have three input/output vector paiX,,Y ), (X,,Y,), and(X,,Y ), where
the first two pairs of input/output vectors are from nonlinegstems 1 and 2, and we

would like to determine which system does the third inpufdatipair belong to.

2.3.1 Receiver decision rule

It is more practical to store the estimated system coeffis(éncated \Volterra series
representation of the systely) : = 1,2, 3 rather than having to store all the input and
output data of the first and second transmitters. Then wittessuitable distance criterion

we should determine #3 is closer toh or h,.

z;(n) zi(n —1) 22(n)  2?(n—1) zi(n)z;(n — 1)

7 7

| zi(n—1) ri(n—2) 2?(n—1) z(n-2) xi(n— 1)x;(n —2) hoie

1 —1

|~
I

riin—M+1) z;(n—M) ziln— M+ 1)x;(n — M)

or equivalently:

Y, = Ph, +e¢,

1 —1 —

e =1,2.
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wheree, : i = 1,2, 3. is the estimation error.
The M x N matricesP;, i = 1,2,3 can be determined easily from the vectors
X, i=1,2,3. A standard metric is to minimize the squared error:

|§i‘2 = |Xz - Pihi|27 1=1,2,3.
This is the classical Least-squares(LS) problem and theisalis:

h

22, 0pt =

Py, i=1,23.

hi,opt = (PiHPi)_lpiHXZW = ]-7 27 3.

Now that we have the estimatggd ¢ = 1, 2, 3. we should solve the classical decision

problem using the likelihood ratio:

PEB\Q (hslhy)

A
A(bi’)) - PEB‘E2 (Qg |Q2)

On the other hand, giveh;,

h, = (PfP)'PRY. i=1,2

by = (Py'P3) " Py Pshy + (Py' Py) " Pi'vy = by + (P Py) " Py, i=1,2.

If X is a Gaussian random vector, then seliX + bfor anyr x n vector A and any

r-vector b. Symbolically, we write:
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X~Nm,0) = AX+b~ N(Am+ b, ACA™)

then:

_ 1 ~ith,~h)ic-1(h,-h,)
P b, (Ball) = e ) (2.33)

where(C' is the covariance matrix and can simply be derived as:
C = ((Py'Ps) ' Py") s o2 Inpens * (P Py) ' P

C=on(Py'Ps)~"
Equation (2.33) yields:
1 (h,~h)#PFp)h,-h)

PQ;‘QZ(Q?JQJ = det(C)(27r)7 € 20

At the receiver the estimated Volterra coefficiehtsandh,, are stored and every time

(2.34)

an output vectoly , is received, we decode the correspondKig and estimatdy, using
the results of the LS problem. Then we calculAtg ) and decide whether it wds, or

hy:

. 20 (h,—h)# s P h,~h) . 202(h ~h)#rEp)h,-h,)
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Equivalently:

(hy — b)) (P{' P3)(hs — hy) > (hy — hy)"(P{Py)(hy — hy,)

Figure 2.5 shows the simulated probability of error versigsrtorm of the difference
vector for the classical likelihood ratio test algorithmhelGLRT performance curve is

also included for comparison reasons.

2.4 \olterra coefficients as random variables

In this section we consider the Volterra coefficients to belcan variables with vari-
anceo? around their mean and run simulations to find the curve’ ofs. the variance of
the coefficientsf?).

We also consider another algorithm which we call the naige@thm in which our
naive detection system outputs the estimated coeffici@ut®¥n,,. ;, i=1,2 which is clos-
est to the third estimated coefficients vedtgy, ; with the L,-norm criterion for measuring
the closeness:

hy
[Rppts — Bopt ol z [Popiz — Popia ||
hy
Figure 2.6 shows the performance of the GLRT algorithm, thesical likelihood ratio

algorithm and the naive algorithm in one figure. The clasdilkalihood ratio test has the
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Figure 2.5. Probability of error vs. the norm of the difference vector 8\NR = 30dB
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Figure 2.6. Probability of error vs. the variance of the Volterra coeédfitso?

best simulated results, while the GLRT has the greatestahibty of error of the three.
The GLRT makes use of the whole data all at once , while in therohethods the \olterra

coefficients vector is determined first as described above.
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CHAPTER 3
MODELING OF POWER AMPLIFIERS

In this chapter we will validate the use of Volterra serigsresentation for the study
of nonlinear system components including power amplifiexs the possible sources of
variations in the Volterra series vector of different arfipts. This way we will provide the
link between the theoretic analysis of the previous chapded the practical anonymity
breaking application.

Behavioral modeling techniques provide a convenient afidi&it means to predict
system-level performance without the computational cexipf of full circuit simulation
or physics-level analysis of nonlinear systems, theredpyicantly speeding up the analy-
sis process. General Volterra series based models havesbeegssfully applied for radio
frequency (RF) power amplifier (PA) behavioral modeling. r'itlog with Volterra series
presentations provides RF circuit designers with the digat enables them to trace the
defects in their designs and modify the circuit parameteith® circuit elements. Many
instances of the use of \Volterra series can be found in teetiire for modeling and dis-
tortion calculation of nonlinear devices([42, 43, 40, 41, 48, 49, 50, 51, 52, 53]), and
also studying the response of nonlinear systems to noise[d4,45, 46].

Weakly nonlinear systems are systems whose response toaxt@uts can be de-

scribed by a few terms in a functional series expansion sach\lterra series. On the
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other hand, excessively nonlinear systems like the classviepamplifiers have trans-
fer functions that cannot be well characterized by low oMd#terra functional series.To
model the PA's with strong nonlinearities and long memoffeds, the general \Volterra
model involves a great number of coefficients. In this respgame simplified Volterra
series based models for RF power amplifiers have been pradpose

For our purpose of identification, if we consider no comgelimits, either weakly
or excessively nonlinear amplifiers like the class D amptéfigsed in cellular phone trans-
mitters, could be characterized by enough Volterra senefficients. It is important how
well Volterra series characterize amplifiers, as any modshratch will affect the perfor-
mance of the the algorithm presented in previous chapterisbased on the assumption
that a system is characterized by Volterra series reprasemt Fortunately the broad use
of Volterra series for modeling and studying amplifiers ia tircuit community proves it
a suitable representation.

Next we need to determine how much variation there is betwid&rent amplifiers
of the same type. This will determine how well we are able ttidguish amplifiers

according to the’, versus the norm of the difference vector curves derived.

3.1 Process Variations

To be able to validate the effectiveness of our anonymitgkirg techniques, we need
to determine how the \Volterra series presentations of pawmlifiers, even though from
the same manufacturer, differ in practice by introducing source of variation. Varia-
tions in fabrication process, ambient temperature andlgwaitage affect the electrical

performance of the transistors. For example a higher tesyper and a lower supply volt-
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age make the transistor operate slower.See Appendix B faebdxplanation of process
corners.

The first important source that makes different amplifiedifferent transmitters have
distinct Volterra series coefficients which we could make osto distinguish them is the
parameter variations in production. According to [54], M@&hsistors of which the am-
plifier circuits are made always exhibit broad variationsigor device parameters among
production lots. As a result, a wide range of devices are oredsand parameters are ex-
tracted to characterize the statistical variations. Thatmotable parameter variations
include channel length, threshold voltage, and gate-akid&ness variations. Additional
models are added to the model library based on the extremtwesé key parameters.
These models are called process corners in that they capauaeneters that make the
circuit unusually fast or unusually slow.

To show the variation of the Volterra series coefficientshaise process corners, a
simple one-transistor class A amplifier was simulated. Giaesinusoidal input at the
frequencyw, the output of the circuit was measured at frequencigwy, 3wy, and4wy.
From this data considering the simplified memoryless foartier \olterra series represen-
tation, we derived these coefficients for the slow(worstgrerance, lowest power),nominal
(typical performance, typical power), and fast (best penfance, highest power) NMOS
transistor. Figure 3.1 shows the simple amplifier simulated the Tables 3.1, 3.2, and
3.3 show the output at frequencies, 2w, 3wy, and4w, for the three typical, slow, and
fast corners of operation of the NMOS transistor in the afigplcircuit. In each case the
available source power,,, is determined so that the optimum power is delivered to the

load. Corresponding estimated \Volterra series coeffisiant derived in Table 3.4. Now
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we can estimate the norm of the difference vector betweefagt@nd slow corners which
are thet 3o of the limits of the bell curve of the probability density fttion from its mean.
The resultingl,-norm of the difference is 0.0390 which probability of erguite close to
zero. according to th&, curves of chapter 2, we have a very low probability of errar fo

this norm of the difference vector.

Table 3.1. Typical NMOS corner

Ps freq Typical NMOS
PdelLopt=0.23W Pdelopt @Pavs=9.95dBm

Pus freq mag(vload)[40, ;] phase(vload)[40, ::]
10.00 1.90E+09 4.8073 -54.778
10.00 3.80E+09 0.0789 -105.760
10.00 5.70E+09 0.0053 82.483
10.00 7.60E+09 0.0010 101.338

Table 3.2.Slow NMQOS corner

Pavs freq Slow NMOS
Pdelopt=0.23W Pdelopt @Pavs=10.653dBm

Pavs freq mag(vload)[43, ;] phase(vlioad)[43, ::]
10.75 1.90E+09 4.8215 -55.841
10.75 3.80E+09 0.0717 -105.394
10.75 5.70E+09 0.0099 75.561
10.75 7.60E+09 0.0023 94.778

In these simulations the temperature and supply voltageetsffare not considered.
also, in practice class AB amplifiers are used in power arepldircuits which are even
less nonlinear but more efficient which makes our study efschkaamplifiers a worst case

analysis and results in a better probability of error.
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Figure 3.1. Class A amplifier circuit.
Table 3.3.Fast NMOS corner
Pavs freq Fast NMOS
PdelLopt=0.23W Pdelopt @9.246
Pavs freq mag(vload)[37, ::] phase(vload)[37, ::]
9.25 1.90E+09 4.7954 -53.298
9.25 3.80E+09 0.0771 -103.505
9.25 5.70E+09 0.0038 91.811
9.25 7.60E+09 0.0004 108.759
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Table 3.4.Estimated Volterra Series coefficients

Slow  Typical Fast

hi 4.791829 4.79136 4.783927
he 0.125176 0.149879 0.150715
hs 0.039517 0.02124 0.015336
h, 0.01832 0.007841 0.003528

Although the difference vector is computed betweendt3e limits which is between
the extremes. In practice two devices can vary with someiceprobability that can be

calculated from their bell curve.
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CHAPTER 4
BREAKING ANONYMITY IN THE LOW SNR CASE

In the previous chapters we have considered the high SNRvdasee the input was
decoded at the output and the anonymity breaking algoritfis@issed assumed having
access to the input vector as well. Possible future workddea done in suggesting
anonymity breaking techniques and algorithms for the loviRRidse. Here in this chapter
we only show from an information theoretic perspective thatoutput of a nonlinear sys-
tem conveys information about the system \olterra coefiisi@nd thus hardware based
techniques could be devised for anonymity breaking puipose

We will provide information theoretic formulas and boundghe performance of the
physical layer anonymity breaking techniques explaine€lvapter 1. Because of the
nonlinear nature of the formulas in this chapter, the midtiptegrals in the formulas
rarely lead to neat formulations even with the simplest pbssssumptions. But, for the
simplified case of the zero memory linear quadratic case anthé low signal to noise

ratio case, the closed form formulas are calculated.

4.1 Zero-memory Linear Quadratic System
Using the simplified Volterra series which only consistd@f tirst convolution term(A.9)which

is the linear part and the second double summations(AH®yjwadratic part, what results
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is called a linear quadratic form. In addition, we considkerzero memory case where the

Volterra series simply looks like Taylor series around pagro.
y(n) = hi(0)z(n) + ha(0,0)x(n)?* + v(n) (4.1)

What we want to find is the the amount of (Shannon)informateroutput of the nonlinear
system has about the system parameters, which is the matoathiation of the output and
system coefficients which in this case &rg0) andh.(0,0).Call the coefficients vector
h = [h1(0) h2(0,0)]”. What we are actually interested in is how the mutual infdioma

increases when we have access to more output points. Leisdsy the information of

one output about the system parameters, I(yjn);h

I(y(n); k) = h(y(n)) — h(y(n)|h) (4.2)

I(y(n);h) = h(h) — h(h|y(n)) (4.3)
We use equation (4.2) to calculate the mutual informatiahiasasier to deal with in our
case.

h(y(n)|h) = Ep,(h(y(n)|h = H) (4.4)

where

“+oo

h(y(n”ﬁ = ﬂ) = fy(n)|hzﬂ(y(n)|ﬁ = ﬂ)log(fy(n)&:ﬂ(y(n)lh = ﬂ))dy(n)

and £, means expectation with respectto

+oo

h(y(n)) = Sy ((n))log(fyem (y(n)))dy(n) (4.5)
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Thus, to be able to find(y(n)) andh(y(n)|h) we first need to findf, ) (y(n)) and
fy(n)@ which are the probability density functions gfr) andy(n) givenh.

The inputz(n) and the system coefficients are random variables. The is@ubinary
random variable with equal probability for1 and 1, and the system coefficients and
the additive noise are Gaussian random variables with mesanand variances;, , o;_,
ando? respectively. y(n) given h andz(n) is a Gaussian random variable with mean
hi(0)x(n) + ha(0,0)z(n)? and variance?. Givenz(n), h

y(n) ~ N(hi (0)x(n) + ha(0,0)(n)*, 7))

rn

Or equivalently:

1 _(y(n)—in<o>z<n>gh2<o,o>z<n)2>2
fy(n)\h,x(n) (y(n)|ha x(n)) = \/%O’ € 275 (46)
and
1 _(y(n)—in<o>z<n)5h2<o,o>z<n)2>2
fy(n)‘h(y(n”ﬁ) = Ex(n)(\/ﬁd € 2o ) (4-7)
1 -~ <y<n)—h1<o>w<n);fL2<o,O)w<n>2)2
Sy (y(n)) = Ep(Ean)( NorT Ao ) (4.8)

4.2 Low SNR approximation

In this section we use the results of [1]to find the mutual infation for the case of
binary inputs. The author in [1] finds the capacity of the bypimput additive gaussian
noise channel:

Y=X+v (4.9)
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The capacity is the maximum amount of mutual informatiordifferent input probability
mass functions which is when the inputd and1 are equiprobable. For the low SNR
case, [1] finds:

I(X;Y) = h(Y) = h(Y|X) (4.10)

Since H(Y) in [1] is the same ds(y(n)|h = H) for our problem, we can also easily find

Y| X):
hym)lh=H) =h(Y) = I(X;Y) + h(Y|X) = (4.11)
2 3 2
= logg(e)% +0(%) +Ex(h(Y|X =2)) = logg(e)% + Ex(loga(e) +1loga(V270,))
R ' 4.12)
n? o1
= 5092(€)ﬁ + 51092(6) + loga(V2mor,) (4.13)

n

In our problem we havé™ = h;(0)z(n) + ho(0,0)z(n)? + v wherexz(n)?> = 1. As

Y = hi(0)(z(n) + h,fl(%()])) + v is the scaled shifted version af = X + v, and also

as shifting does not change the amount of information, werjaed to take into account

the scaling factor which shows itself asi& coefficient in7(X;Y) and does not change
(Y |X).

Therefore,

h(y(n)|h) = Ep (h(y(n)|h = H)) = 1092(6)0—% + 11092(6) +loga(V2m0,)  (4.14)

a 202 2

According to (4.1), giverx:(n)

y(n) ~N(0, 07 + oz + 03) (4.15)
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and asr(n) shows itself only in the form of (n)? = 1. Thusy(n) has the same pdf, and

the entropy for the normal random variables is simply:

(y(n)) = loga(y/2n(0% + o + o)) + losa(c) (4.16)

and finally the mutual information of the output and the zerenmory linear quadratic

system parameters equals:

Vo2 + ol + 0} o?
p ) — l092<€)ﬁ (4.17)

n

I(y(n); k) = h(y(n)) — h(y(n)|h) = log(

In the equation 4.18 if we considef = o2 and also if we callg—g = z, then we will
have:

1 14+ 2z

I(y(n); ) = Sloga(—

) (4.18)

For the low SNR case we have a lot of noise or equivalentlyelafgand thus) < = < 1
which results in/(y(n); h) > 0 which means the output has some non-zero information
about the system \olterra coefficients.

Now if we increase the number of outputs and form the vectaugbuts:

Y =[yn)y(n—1) ...y(n— M +1)]"

where

y(n — i) = hi(0)z(n — i) + hao(0,0)%2(n — i) +v, i =0,...., M — 1
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and the vector of system parametgrs [h,(0) h2(0,0)] Now as we considered the system
parameters known(deterministic) for findihgy(n)|h = H), if we increase the number
of outputs, stilly(n — i) givenh are independent and thus:

2

WY |h) = By (h(Y |h = H)) = M(loga(e) 2o + sloga(c) + log2(VIr0,)  (4.19)

But for finding (Y ; ) we still need to find hY") which is not as easy agn — i)’s are

not independent.

4.3 The General Case
The general input output relationship for a nonlinear systath limited memoryL

and only considering the terms until and including ffidold summations is of the form:

y(n) = S S S ohe (K, o k) (n — ky)oz(n — k) (4.20)
= Zﬁl_zlohl(k‘l)f(” — k1) (4.22)
+2£1_:102£2_:10h2<k17 ko)z(n — ki)z(n — ko) (4.22)

+...
+Z£1_:102]€;i0h1\7(k17 ey kN)x(n — k‘l)x(n — ]{,‘N% (423)

and also after observiny/ output sample¥Y = [y, Yn_1 -.- Yn_2]", we will have:
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M—1 (y(n—i)—hqy (0)x(n—i)—ho(0,0)z(n—i)2)2
1 Mot 1(0)z(n )2 2( (n—i)

fy hx (ylh,z) = WG 2on (4.24)

This is because given(n — i)’s andh y(n — i)’s are i.i.d. Gaussian.

f ( |h,) > ( 1 sMo1 (y(ni)hl(O)w(ni)2h2(0,0)60(ni)2)2) (4.25)
= Pl = 207, .
Y hYiR 2\ (V2ro, )M
B g 1 sMo1 (y(nfi)fhl(O)w(nfi)thQ(O,O)w(nfi)2)2 (4.26)
— - = 20% .
v =y (e <<¢%>M€ )
+o0o
b¥) = [ [ |ty wiontry w)idy (4.27)

+oo
iyl =) = [ [ [ fyp oyl = Bog(yn (el = H)dy  (4:28)

h(y(n)|h) = Ep (h(y(n)|h = H) (4.29)

To find neat formulations or bounds to the above equations ewel ho solve multi-
ple integrals of the function (4.25) or (4.24) which are lfacomplicated functions the

integrals of which do not have closed form solutions.
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CHAPTER 5
CONCLUSION

In this thesis, with the motivation of digital forensics ameaking anonymity, an ap-
proach to identify users is presented. The main idea is tcerngk of the minute imper-
fections in the different components of the transmitteestuware even for the case where
they are made by the same manufacturer.

First the feasibility and effectiveness of this approackhswn empirically by mea-
suring the output frequency of some oscillators from theesamanufacturer.We saw that
although the two oscillators were low noise oscillatorgrirthe same manufacturer they
had different center frequencies and this difference cteldleployed along with other
parameters to identify different users.

Next,for the high signal to noise ratio(SNR) case, whereitpet is fully recovered
at the receiver, two algorithms based on the generalizeditidod ratio test(GLRT) and
classical likelihood ratio test were proposed and the #ffecess of these algorithms was
shown by drawing the”, versus the norm of the difference vector between the two sets
of system parameters. The nonlinear systems are presgntedtérra series coefficients,
the appropriateness of which was addressed in the moddiamgter. Also one source of
the difference in Volterra series coefficients of differ&mainsmitters which is the process

variations and how it causes variations in the \Volterraeserepresentation of different
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power amplifiers was studied. In practice class AB amplifa@esused in the transmitter
systems which are more nonlinear than the class A amplifielies.

Finally, for the low SNR case, only the fact that some cergaimount of information
about the system coefficients from the output could be déyiwas proved, leaving the
task of devising new algorithms capable of this to futureaeshers.

Future researches could be done by improvising new sepataithniques for the low
SNR case. Also the apparent generalization of the intratlatgrithms for the high SNR
case to the scenario where there are more than two possétearsd the resulting perfor-
mance curves is another possible future research topio, tis possible countermeasures
and studying the susceptibility of our techniques to thesssible countermeasures could

be done as another complementary research project.
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APPENDIX A
VOLTERRA SERIES REPRESENTATION

A linear, causal system with memory can be described by theatotion representa-

tion:
y(t) = /_ h(T)x(t — T)dr (A1)
y(n) = E5__h(m)z(n —m) (A.2)

wherex(t) is the input,y(¢) the output, andi(¢) the impulse response of the system. A

nonlinear system without memory can be described with aofagries:
y(t) = B2 an[z(t)]" (A.3)

y(n) = X5 an[z(n)]" (A.4)

where, againg(t) is the input and;(t) the output. The,, are the Taylor series coefficients.
A \olterra series combines the above two representatiodggaoribe a nonlinear system

with memory:

- 1 +oo +o0o
y(t) = Zn:lm dul [ dungn(ula ) un) H IL’(t - ur) (A5)

—00 e} r=1
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1 [t

=T duigr(uq)z(t — uy) (A.6)
1 +o0 +o0o
+§ duq / duggs(uq, ug)x(t — uq)z(t — us) (A.7)
+o0o +o0o +oo
+§ du, / dus / duszgs(us, uz, uz)x(t — uy)wv(t —uz)z(t —uz) (A.8)

+...

x(t) is the input,y(t) is the output, and the,(u,, ..., u,) are called the Volterra kernels
of the system or simply the kernels . Theare time variables. Fat = 1, g;(u;) will
be recognized as the familiar impulse response (A.1); thuger n > 1 are rather like
"higher-order impulse responses”. These serve to chaiaetde various orders of nonlin-
earity . The first few terms of (A.5) have been explicitly weit out; (A.6) is the familiar
convolution integral (A.1), and (A.7) and (A.8) may be thbugf as two-fold and three-
fold convolution. (A.5) is an infinite sum of n-fold convolan integrals. The leading
% is omitted by most authors.For causal systems the lowerdotiall integrals equals
zero. Equation (A.9) shows the discrete-time version objAvhich we use throughout

this thesis:

y(n) = EﬁIZZT:_m...ZZf:_OOhT(k:l, o k)x(n —ky)..x(n — k) (A.9)
=X —_ohi(k)z(n — k) (A.10)
_'_Ez?:—oozzz:—ooh?(kl? ]Cg)l’(’fl — /{Zl)ﬂf(n — ]{72) (All)

+...

In the above equations for causal discrete-time systemewlez bound of the summations

becomes zero and for the systems with limited menigrhe upper bound of summations
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should be replaced with. Also we can approximate a nonlinear system witt\&h order

approximation having the sum of firsfold summations where< N:

y(n) = S, S S ohe (ko k) z(n = ky)a(n — k) (A.12)
=Sy i (k)z(n — ky) (A.13)
+3 oS Zoha(ky, ko) (n — ky)a(n — ko) (A.14)
+...
+35 B Lohw (b, o k) x(n — ky).x(n — k) (A.15)
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APPENDIX B

CMOS PROCESS CORNERS

Transistors have uncertainty in their process parametetraigo due to environmental
variations. Variations towards a shorter; ;(effective channel length), lowé,(threshold
voltage), and a thinner,,(oxide thickness) make the device faster and the device gets
slower if we have variations in the opposite direction. Adéswironmental variations like
higherVp and lower temperature makes the device faster.

A process corner represents a three sigma(standard @eyigéiriation from nominal
doping concentrations (and other parameters) in tramsisio a silicon wafer. This vari-
ation may occur for many reasons, such as minor changes huthelity or temperature
changes in the clean-room between wafers, or due to thegositthe die relative to the
center of the wafer. Apart from the typical corner, therefast and slow corners, where
the carrier mobilities are higher and lower than normalpeesively.

According to the normal probability density function thdiacacterizes the process,
fast and slow corners are considered withiBo of the mean, which makes it improba-

ble(with probability less than 1 percent) for them to be mgthese values.
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Figure B.1. Normal probability distribution curve.
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