
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

2009

Task Partitioning and Mapping Algorithms for
Multi-core Packet Processing Systems
Wei Chen
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Chen, Wei, "Task Partitioning and Mapping Algorithms for Multi-core Packet Processing Systems" (2009). Masters Theses 1911 -
February 2014. 255.
Retrieved from https://scholarworks.umass.edu/theses/255

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13599051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/255?utm_source=scholarworks.umass.edu%2Ftheses%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

TASK PARTITIONING AND MAPPING ALGORITHMS FOR
MULTI-CORE PACKET PROCESSING SYSTEMS

A Thesis Presented

by

WEI CHEN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2009

Electrical and Computer Engineering

TASK PARTITIONING AND MAPPING ALGORITHMS FOR
MULTI-CORE PACKET PROCESSING SYSTEMS

A Thesis Presented

by

WEI CHEN

Approved as to style and content by:

Tilman Wolf, Chair

Wayne Burleson, Member

Russell Tessier, Member

C.V.Hollot, Department Head
Electrical and Computer Engineering

TABLE OF CONTENTS

Page

LIST OF FIGURES v

CHAPTER

1. INTRODUCTION 1

2. RELATED WORK 4

2.1 Classes of Parallel Computers 4

2.1.1 Cluster 5
2.1.2 Multiprocessor 5
2.1.3 Multicore Computing 6
2.1.4 Network Processor 6

2.2 Task Partitioning Algorithms .. 7

2.2.1 Analysis Scheme 8
2.2.2 Construction Scheme. 9

2.3 Task Mapping Algorithms 10

2.3.1 Graph Theoretic Algorithms 10
2.3.2 Mathematical Programming 10
2.3.3 Heuristic Algorithms 11

3. SYSTEM CONFIGURATION PROCESS .12

3.1 Application Partitioning .. 12
3.2 Task Mapping 13

3.2.1 Task Mapping Problem Statement 14
3.2.2 Runtime Profiling 15

3.3 Dynamic Adaptation 16

iii

4. APPLICATION MAPPING .18

4.1 Task Duplication 18
4.2 UDFS Mapping Algorithm. 21
4.3 KL algorithm 22
4.4 Extended KL Algorithm 23
4.5 Simulated Annealing Algorithm 25
4.6 Merging and Duplication 26

5. EVALUATION OF ALGORITHMS .30

5.1 Simulation Environment 30
5.2 Profiling 32
5.3 Duplication 36
5.4 Mapping:UDFS 37
5.5 Mapping: KL Algorithm 40
5.6 Mapping: Extended KL 40
5.7 Mapping: Simulated Annealing Algorithm 42
5.8 Merging and Duplication 45
5.9 Architecture Exploration 51

6. IMPLEMENTATION CONSIDERATIONS ON INTEL IXP SYSTEM56

6.1 System Architecture 56
6.2 Model Implementation 56

6.2.1 Processing Units 57
6.2.2 Inter-processor Communication 58

6.3 Applicability and Limitation of Task Mapping Model 59

7. CONCLUSIONS 61

BIBLIOGRAPHY62

iv

LIST OF FIGURES

Figure Page

2.1 Generic Network Processor Architecture 7

2.2 Parallel program development flow 8

3.1 Application Graph 12

3.2 Task graph 14

4.1 Task Duplication Example 19

4.2 Workload distribution comparison 20

4.3 Situations where Nodes A and B can not be merged 28

4.4 Situations where Nodes A and B can be merged 28

4.5 Comparison of duplicate and merge-then-duplicate schemes 29

5.1 Overall Simulation Flow 31

5.2 Experimental application. .. 33

5.3 Workload for Trace 1. 34

5.4 Workload for Trace 2. 34

5.5 Utilization of tasks for Trace 1. 35

5.6 Utilization of tasks for Trace 2. 35

5.7 Distribution of Workw′i per Task Instance Before and After Duplication
for Trace 1. 36

5.8 Distribution of Workw′i per Task Instance Before and After Duplication
for Trace 2. 37

v

5.9 Interconnect Bandwidthc in Comparison to Processor Utilizationu for
Different Mapping Algorithms. 39

5.10 Interconnect Bandwidthc in Comparison to Processor Utilizationu for
Different Mapping Algorithms. 41

5.11 Interconnect Bandwidthc in Comparison to Processor Utilizationu for
Differentα. .. . 43

5.12 Interconnect Bandwidthc in Comparison to Processor Utilizationu for
DifferentL. .. . 44

5.13 Interconnect Bandwidthc in Comparison to Processor Utilizationu for
Different Mapping Algorithms. 46

5.14 Distribution of Workw′i per Task Instance with and without merging for
Trace 1. 47

5.15 Distribution of Workw′i per Task Instance with and without merging for
Trace 2. 47

5.16 Interconnect Bandwidthc in Comparison to Processor Utilizationu. 48

5.17 Interconnect Bandwidthc in Comparison to Processor Utilizationu. 49

5.18 Interconnect Bandwidthc in Comparison to Processor Utilizationu. 50

5.19 Interconnect Bandwidthc in Comparison to Processor Utilizationu for All
Mapping Algorithms 51

5.20 Architecture Exploration: Catalog 1 53

5.21 Architecture Exploration: Catalog 2 54

5.22 Architecture Exploration: Catalog 3 55

6.1 IXP 2400 network processor data path architecture 57

vi

CHAPTER 1

INTRODUCTION

Routers are the devices that connect scattered networks andcreate a unified Internet

which keeps changing every aspect of our lives. Since 1970’s, the Internet has never

stopped evolving and there is no sign that it will slow down. Therefore, routers, which serve

as the key devices of Internet technology, also need to keep pace with the development

of the Internet. Although routers were originally designedas simple store-and-forward

“dumb” devices, nowadays, researchers and designers are trying to put more intelligence

into them to meet the requirements of high performance, security, and flexibility etc. [13]

Applications such as firewall, NAT, encrytion/decryption for VPN are integrated into these

devices. With the evolution of the Internet, more applications, protocols and services are

expected to push the network into one that will require routers to be stronger and more

flexible.

Router applications could be implemented either in software or in hardware. In most

cases, hardware designs are faster but require longer design cycles. While for software

implementations, it is much easier for developers to build and debug their codes, but the

performance of their application will be limited by the ability of target hardware platform.

Therefore, router designers will always have to find a balance between performance and

development time. To meet the need for rapid high performance network application de-

velopment, packet processing engines are widely accepted nowadays. In a typical packet

processing system such as Intel IXP2400, there is a general processor which serves as a

control plane, and tens of simpler packet processing units which in general have limited in-

struction set but are optimized for network packets processing applications. These packet

1

processing processors form the data plane in a router, and are able to download new ap-

plications at any time. The packet processing engine architecture also reflects technology

progress in multi-core architecture. Unlike ASICs, where everything is hard-wired into the

chip, these multi-core, programmable processors are more flexible. Every time network

designers have new ideas about applications, protocols or algorithms, they can program the

device and get the router running. In the ASIC world, this is not the case. ASIC designers

normally need much longer develop time to implement the network designer’s idea on the

chip. What is worse, as the Internet technology changes so fast, when the ASIC is done,

probably the originally “new” idea is already outdated. In addition, these multi-core, pro-

grammable processors have far more processing power than general purpose processors.

This processing power comes from the fact that network application has inherent paral-

lelism and different packets can be processed by multiple cores at the same time. This

greatly improves the throughput of the packet processing system. We can see that specially

design network processors are more suitable for network application than a general purpose

processor while more flexible than ASIC chips [18].

While multi-core, programmable systems are good candidates for network applications,

there is an important problem not solved yet. It is not easy toprogram these systems to

make full use of their processing power. As these systems have multiple cores and diverse

shared resources, the problem of how to balance workload among multiple cores comes

when we try to assign tasks to cores. Since the workload of system is determined not only

by applications that run on processing cores, but also by thecontent of network traffic. It

is not obvious how to reasonably assign tasks to each core so that there will not be any

bottleneck that might compromise the performance of the system. In this thesis, I am

trying to find a method that can effectively program the multi-core devices to unleash their

processing power.

My method involves the following steps.

2

• Application partitioning. This step involves partitioning the network application

graph into more detailed task graph. Nodes in task graph are the basic computa-

tion steps in the network application. This step is necessary because we need to

divide the application into pieces so that each one of them can be processed by one

of the processors.

• Task mapping. Task graph is annotated by profiling information. The annotated task

graph is then mapped to the multi-core, packet processing systems using mapping al-

gorithms. This step is crucial because it determines how effectively those computing

resources can be utilized and how much contention occurs on shared resources.

• Dynamic Adaptation. This step involves the dynamic changing of the mapping after

some time interval. This step is important because network is a dynamic system. A

single fixed mapping will not create an efficient network processing system, so we

need to monitor the online traffic and adjust the mapping accordingly.

3

CHAPTER 2

RELATED WORK

Parallel Computing is a form of computation in which many instructions are carried out

simultaneously [15], operating on the principle that largeproblems can often be divided

into smaller ones, which are then solved concurrently. There are several different forms

of parallel computing: bit-level parallelism [12], instruction-level parallelism [21], data

parallelism [16] and task parallelism [19]. Bit-level parallelism is achieved by increasing

the word size of the computer. Instruction-level parallelism can be done in many ways, such

as by reordering of the program so that a program can be combined into different groups that

can be executed in parallel without changing the result. Data parallelism means distributing

data across different computing nodes to be processed in parallel. Task parallelism targets

the program that entirely different calculations can be performed on either the same or

different sets of data. Parallel computers can be roughly classified according to the level

at which the hardware supports parallelism - multi-core andmulti-processor computers

having multiple processing elements within a single machine, while clusters and grids use

multiple computers to work on the same task.The following section discusses the classes

of parallel computers. Then we present the previous work on the utilization of the parallel

computers including task partitioning algorithms and taskmapping algorithms.

2.1 Classes of Parallel Computers

Parallel computers can be roughly classified according to the level at which the hard-

ware supports parallelism. The classification reflects the difference between computing

nodes, the memory organization and the connecting medium.

4

2.1.1 Cluster

A cluster [11] is a group of loosely coupled computers that work together closely, so

that in some respects they can be regarded as a single computer.Clusters are composed of

multiple stand-alone machines connected by a network such as fast local area network. So

each computing node is a single computer. It is not necessarythat computers in the cluster

be symmetric, load balancing will be easier to achieve if they are. The most common type

of cluster is the Beowulf cluster [20], which is a cluster implemented on multiple identical

commercial off-the-shelf computers connected with a TCP/IP Ethernet local area network.

Beowulf technology was originally developed by Thomas Sterling and Donald Becker. The

vast majority of the TOP500 supercomputers are clusters.

It is worth to mention grid computing, a special type of cluster computing system [7].

Grid computing makes use of computers communicating over the Internet to work on a

given problem. Because the grid computing nodes communicate through Internet, the cost

of communication is relatively high. So it is optimized for workloads which consist of many

independent jobs or packets of work, which do not have to share data between the jobs

during the computation process. Grids serve to manage the allocation of jobs to computers

which will perform the work independently of the rest of the grid cluster. Resources such

as storage may be shared by all the nodes, but intermediate results of one job do not affect

other jobs in progress on other nodes of the grid.

2.1.2 Multiprocessor

A multiprocessor system has multiple processors on the samemotherboard. These pro-

cessors can be symmetric (SMP) [22] or asymmetric(ASMP) [1]. The most common type

of multiprocessor is symmetric multiprocessors. A symmetric multiprocessor is a com-

puter system with multiple identical processors that sharememory and connect via a bus.

These systems allow any processor to work on any task no matter where the data for that

task are located in memory. Bus contention prevents bus architectures from scaling. As a

5

result, this kind of systems generally does not comprise more than 32 processors.Because

of the small size of the processors and the significant reduction in the requirements for

bus bandwidth achieved by large caches, such symmetric multiprocessors are extremely

cost-effective, provided that a sufficient amount of memory bandwidth exists. An asym-

metric multiprocessor is comprised of multiple unique processors, normally with a master

processor and multiple slave processors that are designed for specific tasks. Examples of

asymmetric multiprocessing include many media processor chips that are a relatively slow

base processor assisted by a number of hardware acceleratorcores.

2.1.3 Multicore Computing

A multicore processor is a processor that includes multipleexecution units on the same

chip [3]. A multicore processor can issue multiple instructions per cycle from multiple

instruction streams. Cores in a multicore device may share asingle coherent cache at the

highest on-device cache level (e.g. L2 for the Intel Core 2) or may have separate caches

(e.g. current AMD dual-core processors).The processors also share the same interconnect

to the rest of the system. The proximity of multiple CPU coreson the same die allows

the cache coherency circuitry to operate at a much higher clock rate than is possible if

the signals have to travel off-chip. Multi-core systems are very popular nowadays, the

representative systems include Core, Core 2 and Xeon from Intel etc.

2.1.4 Network Processor

A network processor is an integrated circuit which has a feature set specifically de-

signed for the networking application domain [24]. The generic network processor has the

architecture shown in figure 2.1. We can see that a network processor normally includes

multiple RISC cores. It also has dedicated hardware for common networking operations,

high-speed memory interfaces, high-speed IO interfaces,interface to general purpose CPU

etc. Network processor designers from different companies have made vastly different de-

cisions about I/O interfaces, memory interfaces, and programming models, system archi-

6

Figure 2.1.Generic Network Processor Architecture

tecture and the type of hardware acceleration to include. The examples of existing network

processors include C-5 digital communication processor [17], Intel IXP2400 [18], Lucent

network processor, Sitera network processor etc [23].

2.2 Task Partitioning Algorithms

Parallel program development includes four stags as shown in figure 2.2. The parti-

tioning stage of a design is intended to expose opportunities for parallel execution. Hence,

the focus is on defining a large number of small tasks in order to yield what is termed a

fine-grained decomposition of a problem.The tasks generated by a partition are intended to

execute concurrently but cannot, in general, execute independently. The computation to be

performed in one task will typically require data associated with another task. Data must

then be transferred between tasks so as to allow computationto proceed. This information

flow is specified in the communication phase of a design.In thethird stage, we move from

the abstract toward the concrete. We revisit decisions madein the partitioning and commu-

nication phases with a view to obtaining an algorithm that will execute efficiently on some

class of parallel computer. In particular, we consider whether it is useful to combine, or

agglomerate, tasks identified by the partitioning phase, soas to provide a smaller number

7

Partitioning

Agglomeration

Mapping

Communication

Figure 2.2. Parallel program development flow

of tasks, each of greater size. We also determine whether it is worthwhile to replicate data

and/or computation.In the fourth and final stage of the parallel algorithm design process,

we specify where each task is to execute [6].

In this section, we discuss the related work done in task partitioning area. Task parti-

tioning is a crucial step for parallel computing application. If task is well partitioned and

the dependency among modules is minimized then the parallelcomputing system is more

possible to be fully utilized.

2.2.1 Analysis Scheme

The philosophy of analysis scheme is to take a program designed by an application

designer in a traditional programming language such as C, C++ etc, analyze the program

and partition it into multiple independent tasks. This one is in fact an ideal method for

task partition since we can still follow our familiar sequential programming style and at

the same time enjoy the power of parallel computing. The basic idea of this scheme is to

extract the program dependency graph and partition this graph. There are several proposed

8

methods in this scheme. These methods are distinguished in the granularity at which the

program is partitioned. In a coarse level, the original program is investigated for parts of

program that can be executed in parallel by inserting queues[30]. In a refined level, the

original program is compiled and the asm code is investigated and reordered then grouped

together to achieve parallelism [29]. The granularity can also be adapted as needed as

in [35]. Analysis scheme hides the parallel architectures from software designer, which

can facilitate the development of the software. But this scheme has a big limitation since

it is not obvious how to partition the program into parts thatwill not have communication

and synchronization issues such data dependency, data consistency etc.

2.2.2 Construction Scheme

The construction scheme tackles the parallel problem in a different way. Instead of

trying to partition the program, this scheme creates new programming models at the very

beginning, the program is designed with parallelism in mind. These parallel programming

languages make assumptions about the underlying memory architecture - shared mem-

ory, distributed memory, or shared distributed memory. Shared memory programming

languages communicate by manipulating shared memory variables. Distributed memory

uses message passing. POSIX Threads [9] and OpenMP [4] are two of most widely used

shared memory APIs, whereas Message Passing Interface (MPI) [2]is the most widely used

message-passing system API. One concept used in programming parallel programs is the

future concept, where one part of a program promises to deliver a required datum to another

part of a program at some future time. In network applicationarea, Click module router

toolkit [14] also follows this scheme. The building blocks are basic network processing

steps. The network application is built by connecting theseelements together.

9

2.3 Task Mapping Algorithms

Task mapping is another very crucial step in parallel computing paradigm. It directly

affects the performance of the parallel computing system. The task mapping algorithms

can be roughly classified as: graph theoretic algorithms, mathematical programming and

heuristic algorithms. In this section we review these algorithms.

2.3.1 Graph Theoretic Algorithms

Graph theoretic algorithms are very popular algorithms fortask mapping because task

partitioning process can normally generate dependency graph of the program which fit right

into the graph theoretic algorithms. The input to graph theoretic algorithms is a graph of

partitioned tasks annotated by task execution time, communication cost or some other pa-

rameters. The graph theoretic algorithms are used to partition the annotated graph into

multiple subgraphs and assign each one of them to the appropriate execution cores. Exam-

ples of graph theoretic algorithms for task mapping includenetwork flow algorithm in [32]

which uses Max Flow/Min Cut algorithm to find assignments which minimize total exe-

cution and communication costs, shortest tree algorithm in[8] which describes a shortest

tree algorithm that minimize the sum of execution and communication costs for arbitrarily

connected distributed systems with arbitrary number of processors provided the intercon-

nection pattern of the modules forms a tree, A* algorithm [10] which describes a graph

matching approach that match task graph with distributed system to achieve optimal task

assignment.

2.3.2 Mathematical Programming

Mathematical programming [36] [34] [27] approaches the task mapping problem in an-

other way. This method considers the resource constraints of the multiprocessor systems

such as computation resource constraint, memory capacity constraint, communication con-

straint. The constraints are represented by mathematical inequalities and mathematical pro-

10

gramming is formulated. The different constraints such as computation, communication,

memory lead to many different versions of mathematical programming.

2.3.3 Heuristic Algorithms

Since task mapping problem is NP problem, heuristic algorithms are often developed

to tackle such problem. These algorithms include well-known simulated annealing (SA)

algorithm [31] which recursively searches the mapping spaces and stop when the criterion

is met, genetic algorithms [5] which simulate the evolutionprocess and let the mapping

evolves itself until a good mapping is obtained. Other customized heuristic algorithms

include modified flow algorithm in [25] which augments the flowalgorithm with additional

parameters and objectives to achieve a better balance workload. Also some algorithms do

some extra operations such as duplication to the task graph to achieve a better balance [26].

The decision of which tasks should be duplicated is derived from the profiling information

of the task graph. Heuristic algorithms are where innovations can be made as long as we

can pinpoint the key property of the problem.

11

CHAPTER 3

SYSTEM CONFIGURATION PROCESS

As we mentioned above, router design with multi-core, programmable device involves

three steps as (1) Application partitioning (2) Task mapping and (3) Dynamic Adaptation.

Here in this chapter, we are going to describe the design of each of these steps.

3.1 Application Partitioning

When we start our router design process, the first thing we cando is to write the source

code for the application. Then we can construct an application graph according to the

source code. In the application graph, we have nodes representing the processing steps we

need in our packet processing system and the connections between nodes that specify the

sequences of the processing steps. An application graph hasthe form as Figure 3.1. Each

block node represents the processing step and a directed edge indicates that there may exist

some packets that require a processing step from where the edge originates followed by the

step to which the edge points.

A2

A3

A4

A1

A5

A6

An...

Figure 3.1. Application Graph

12

After an application graph has been constructed, we need to partition the applications

to smaller pieces so that they can be processed by processingunits in the processors. We

call these smaller pieces “tasks”, which are also the basic mapping units in our work. One

important issue here is how to determine the granularity of the tasks. In the finest level,

where each task represents each instruction, the outcome will be an incredibly large task

graph and intractable number of tasks. In an ideal world, where we can have a super

intelligent computer, this partition scheme maybe perfectbecause we can explore every

possible parallelism in our application. But the reality isfar from perfect, neither our

computer is able to store such a large amount of information nor can it process them fast

enough. In the other end, if the task is too coarse, then we will lose a lot of valuable

information in the application. We will not be able to utilize the parallelism inside the

application enough which will lead to a low-performance packet-processing system. So we

should carefully set our task granularity to find a balance point between these two extremes.

In our work, we define the tasks by examining the source code and identifying major

functions. So semantically, these tasks represent fundamental processing operations that

occur in the context of packet processing (e.g. protocol header extraction, loop within

router lookup algorithm, checksum computation etc.). If weuse Click modules to design

the router, then the Click modular router configuration is already a task graph itself. The

partitioning result is illustrated by Figure 3.2.

3.2 Task Mapping

From application partitioning, we have constructed a task graph of our packet process-

ing system. Our mission now is to assign each of these tasks toprocessing units. This

process is the most critical step in our work because it directly determines the performance

of our system. Generally speaking, this step is a graph partitioning problem which can be

formalized as below.

13

t1 t3

t2

t4

t5

t6

t8 t10

t9

t11 t12

t13 t14

t15

t16

t17 t19

t18

t7

Figure 3.2.Task graph

3.2.1 Task Mapping Problem Statement

From application partitioning, we have a task graph withT nodest1, t2, ..., tT and di-

rected edgesei, j that represent processing dependencies between taskti andt j. As for our

target processing system, we assume that there areN processors withM processing units

on each one of them. Each unit can process one task at a time so the system can process

N ×M tasks concurrently. We also assume that processor interconnect provides connectiv-

ity from any processor to any other processor. The objectiveof our mission is to partition

theT -node graph intoN pieces with each piece has no more thanM nodes. In mathematical

format, we are going to find a mappingm that puts each ofT tasks to one ofN processors:

m : t1, ..., tT −→ [1,N]. The mapping has to meet the constraint of resource limitations:

∀ j, 1 ≤ j ≤ N : |ti|m(ti) = j| ≤ M.

The objective is to find a mapping that can maximize the throughput or a mapping

that can provide the most balanced processor utilization. The two goals are equivalent

because such a mapping can provide the highest overall throughput without overloading

any particular processor.

We need to mention here that tasks can be assigned to one or multiple processors or even

not be assigned at all. The reason is that different tasks may have different computation

14

requirements in different situations. We will further discuss this issue when wetalk about

task duplication in the later section.

Now we have formalized the problem. But the task graph from application partitioning

only gives us the functionality and connectivity of nodes. In order to maximize the through-

put of our system, we need to get the information of the workload of each node so that we

can do the mapping. So before we can actually do the mapping, we have an initialization

step in which we collect the workload profile of the application.

3.2.2 Runtime Profiling

There are two profiling schemes called static and dynamic. Inthe static profiling

scheme, workload information is collected off-line and used to do the mapping for the

system while dynamic profiling collects the workload information when the system is op-

erating. We know that the workload of the packet processing system is affected by two

factors. One is the computation characteristics of the tasks in the systems. The other is the

network traffic that exercises the processing system. While the computational characteris-

tics of the tasks are fixed in a particular system, the networktraffic is changing every minute

during operation. Especially when more and more services are added to packet processing

systems, the number of traffic types will increase quickly and processing requirement will

become more data-dependant. So to accurately characterizethe workload information, we

need to use runtime profiling scheme.

During runtime, we collect the following information:

1. Task service timesi: For each taskti, we determine the service timesi measured in

number of instructions executed per packet. Since this value may be different for

each packet, we considersi as the expected value from a random variableS i.

2. Edge utilizationu(ei, j): At the completion of each processing tasks, we observe where

the packet is processed next. This transition from taskti to task t j is denoted as

utilizationu(ei, j) of edgeei, j.

15

3. Task utilizationu(ti): Based on edge utilization, we can derive the utilization of a

particular taskti which is denoted byu(ti).

Based on these values, we can derive the values to annotate the task graph.

After constructing this annotated workload graph, we can develop our task mapping al-

gorithm to do the actual mapping. Algorithms are described in the following two chapters.

3.3 Dynamic Adaptation

In order to make the packet processing system always run in anoptimal setting, we need

to dynamically change the mapping. We call this process dynamic adaptation. The step is

important because the processing workload required by network traffic cannot be known

in advance because end-systems may send packets to any arbitrary destination using any

protocol in any time. Generally, we have two ways to tackle this problem. One is to over-

provision for any possible traffic scenario. Using this measure, we need to predict all the

possible traffic and set our parameters to meet the worse case scenario. The measure in one

hand can not produce best performance since it pessimistically estimates the situation, in

the other hand, it is getting harder to predict the traffic before hand since more and more

services are added on the packet processing systems. Because of these shortcomings, we

decided to take the second method, which is to dynamically adapt our system.

To collect the real time traffic information, we need to monitor the dynamic trends of

the processing workload. We collect the run-time utilization parameteru(ti) and u(ei, j).

These values can be directly used in the next mapping process. The next problem we need

to answer is how frequently we should do the re-mapping. If wedo the re-mapping in

too short a time period, then the re-mapping cost will be too high and affect the overall

system performance. Also it can generate re-mapping that isaffected by traffic bursts that

are not representative of the overall workload. But if we do the re-mapping in an extended

period of time, the system may also suffer from inferior performance because of unsuitable

mapping. So we need to carefully find a mapping interval that can balance these two

16

situations. Generally, the interval should depend on the workload change patterns. If the

workload changes a lot, that means that we need to do the mapping again. In our current

work, we use a fixed mapping interval according to our experience.

17

CHAPTER 4

APPLICATION MAPPING

From last chapter, we know that the system configuration involves three steps as (1)

application partitioning (2) task mapping (3) runtime adaptation. We also had formalized

the task mapping problem. In this chapter, we describe algorithms for task mapping.

4.1 Task Duplication

From runtime profiling step, we have collected three runtimeparameters of the system.

Using these parameters we can find the values that can closelyrepresent the real workload

that a task can place on processing resources. In order to model how computationally de-

manding a task is we need to consider both its expected computation time and its frequency

of being used. So we assign to each task nodeti the weight:

wi = u(ti) · E[S i]. (4.1)

During our runtime-profiling phase, we found thatu(ti) for some tasks can be very large

in some periods of time which lead to a largewi value. This phenomenon is not good for

our mapping phase because task computation complexities are so different from each other.

So we need to try to evenly distribute the values ofwi. The measure we take is to duplicate

those heavy-duty tasks. That is to create additional instances for those heavy-duty tasks.

These duplicated instances are fully connected to the same predecessor and successor tasks

as the original task. We assume that the predecessor distributes packets uniformly among

all task instances and thus effectively reduces the utilization of each task instance. This

procedure can be illustrated by Figure 4.1.

18

Figure 4.1. Task Duplication Example

Now here comes the problem of how to duplicate the task. We need to determine

which task to duplicate and how many instances should be created. The intuition is that

we should duplicate the most heavy-duty ones first and balance the amount of work that

each task performs in order to simplify the mapping process.At the same time, we also

need to meet the constraint that the total number of task instances is not more than the

number of computing units. So we can use a greedy scheme to generate our duplication

and continuously check the constraints. To better describeour duplication scheme, we use

some new notations. We use parameterdi to indicate the number of duplicated instances

for task ti. These instances are namedt1
i , ..., t

di
i . Any incoming edgee j,i from taskt j to ti

is duplicated:e j,i1, ..., e j,idi . Outgoing edges are also duplicated in the similar way. Due to

the reduced edge utilization ofu(e j,i)/di, fewer packets are processed by each task instance

and the task utilization decreases tou(ti)/di. So the amount of work required by each task

instance is denoted asw′i :

w′i =
u(ti)
di
· E[S i]. (4.2)

The algorithm is described by Algorithm 1. Hereargmaxi(w′i) is a function that returns

the ID of node with maximum workload.

19

Algorithm 1 Task Duplication Algorithm.

1: while
∑T

i=1 di < N · M do
2: j← argmaxi w′i
3: d j ← d j + 1
4: end while

0

500K

1M

1.5M

2M

 0 10 20 30 40 50 60

W
or

kl
oa

d
in

 N
um

be
r

of
 In

st
ru

ct
io

ns

Instance Number

Standard Duplicate

Figure 4.2. Workload distribution comparison

This algorithm can produce a more balanced workload. This isverified by our experi-

mental results. One impressive result is shown by Figure 4.2.From the figure, we can see

that before duplication, only 25 task instances exist and processing requirements differ by

several orders of magnitude. After duplication, we have 64 task instances (sinceN ·M = 64

in our experimental setup) with much more balanced workload. This result also illustrates

how difficult it would be to find a balanced mapping when using tasks without duplication.

A single task with large processing requirements would represent a bottleneck in the packet

processing system.

20

4.2 UDFS Mapping Algorithm

A mapping problem has been formalized in the last chapter. The objectives of map-

ping are to evenly distribute the tasks to processing units and minimize the communication

between different processors. In our duplication phase, we have sliced the big tasks into

smaller ones to effectively generate tasks with similar workload requirement. So when we

do the mapping, the workload of each processor can be evenly distributed considering that

each processor has the same number of processing units and each one of these process-

ing units can process one task at a time. As for minimizing thecommunication between

processors, this is crucial because communication resource is very limited in current multi-

core, programmable system. Over frequent communication between processors requires

more storage resource and communication links and will alsocause long queue etc. which

greatly depreciate the overall system performance. So we should try to keep adjacent tasks

in the same core, in this way, when a task passes packets to another task, the state can

efficiently be transferred through local registers. So our guideline is that we should try to

cluster adjacent tasks together and we should also put thosehigh utilization edges in one

core instead of letting them cross two cores. Following thisguideline, we can construct our

intuitive algorithm which we called utilization-based depth-first(UDFS) algorithm. The al-

gorithm greedily clusters tasks on a processor until all processing units are fully utilized.

The key aspect of the algorithm is the order in which the task graph is traversed. High-

utilization edges are traversed first to increase task locality and reduce interconnect usage.

The algorithm is shown in Algorithm 2.

A more detailed description of this algorithm is as follows:We initially map nodet1,

which is assumed to be the ingress node for all traffic, to the first processor. Then, using

the map next function, we search among all outgoing edges to find that withthe highest

utilization. If there are still resources available on the same processor, the task that is

pointed to by this edge is mapped to the same processor. Otherwise it is mapped to the

next processor. This process is repeated recursively to achieve depth-first mapping. The

21

Algorithm 2 UDFS Task Mapping Algorithm.
1: function mapnext(i,p)
2: while ∃ ei, j with t j unmappeddo
3: k ← argmaxj(u(ei, j)) //find the node connected by the heaviest utilized edge
4: if tasksallocatedto(p) ≤ M then
5: //if there are still available processing units on core p.
6: m(tk)← p //assigntk to core p
7: p←map next(k,p) //map the next node
8: else
9: //if there are not available processing units left on core p

10: m(tk)← p + 1 //assigntk to corep + 1
11: p←map next(k,p + 1) //map the next node
12: end if
13: end while
14: return p
15:

16: function map()
17: m(t1)← 1
18: map next(1,1)
19: return m

recursion terminates when a node has no outgoing edges to unmapped tasks.The variablep

keeps track of which processor is currently being used for task allocation.

We should also note that (1) The algorithm maps tasks and their duplicates. To simplify

notation, only tasks are mentioned. (2) If the ingress task is different fromt1, the algorithm

can be easily adapted. (3) We assume that a packet transfer between processors is the basic

unit of interconnect usage. In some cases, it may be possiblethat the interconnect usage

is variable. This can occur when different amounts of processing state needs to be sent

between processors. In such a scenario, the algorithm woulduse a different function inside

the argmax function.

4.3 KL algorithm

UDFS is simple and intuitive. It can produce decent mappingsfor the packet processing

system but it, by no means, is the best mapping algorithm. We learn that task mapping is

essentially a graph partitioning process. So we can explorein the well researched graph

22

partitioning field and pick some existing algorithms and extend them for our purposes.

One of the good candidates is Kernighan/Lin Algorithm (KL) algorithm.KL algorithm is

an iterative graph partitioning algorithm. Given a graphG = (N, E,WE) with nodes and

weighted edges and an initial partitioning of the graph thatG = G1 + G2 and |G1| = |G2|.

Here |G| is the number of nodes inG. Now let C = cost(G1,G2) =
∑

WE∀E(G1,G2),

that is the cost of the partitioning is equal to the weights ofall the edges that cross the

partitioning. The goal is to minimizeC for a givenG. To do that, letX be a subset of

nodes ofG1 andY be a subset of nodes inG2, such that|X| = |Y |. If we were to switchX

andY, we would not change the number of nodes in each of the two subgraphs. However

we could then calculate a new cost of partitioning with (G1 − X)
⋃

Y and (G2 − Y)
⋃

X;

if the cost of the new subgraphs is less than the cost of the oldsubgraphs, then we should

accept the new subgraphs in place of the old subgraphs. The trick of KL algorithm is

efficiently finding subsets of nodesX andY to swap. LetEx(n) equal the external cost of

leaving noden in subgraphG1 (i.e.
∑

WE∀E(n,G2)) andIn(n) equal the internal savings of

leaving noden in subgraphG1 (i.e.
∑

WE∀E(n,G1)). The value of switching noden into

subgraphG2 is D(n) = Ex(n) − In(n). D(n) can be similarly calculated for all nodes inG2.

With theseD(n) values assigned to each node, the comparison of two subgroups becomes

simple. The value of switching two nodesX andY betweenG1 andG2 is: gain(X, Y) =

D(X) + D(Y) − 2 ∗ WE(X, Y). Note that sinceX andY remain in different subgroups, the

benefit of removingWE(X, Y) disappears for switching. The Kernighan/Lin Algorithm thus

steps through the problem of improving a partitioning as described by Algorithm 3.

4.4 Extended KL Algorithm

From the description of KL algorithm in the last section, we can see that KL algorithm

has limitations when applied to our mapping problem. KL algorithm requires that all the

nodes have the same amount of weight and the initial partitions have the same number

of nodes in each partition. These two conditions are not satisfied in our problem. Our

23

Algorithm 3 KL Task Mapping Algorithm.
1: repeat
2: ComputeD(n) for all nodesn in graph.
3: Unmark all nodes in the graph.
4: while Unmarked nodes existdo
5: Find two unmarked nodesX andY that maximizesgain(X, Y)
6: Add X, Y andgain(X, Y) to ordered list.
7: Mark nodesX andY.
8: UpdateD(n) for all unmarked nodes as ifX andY had switched.
9: end while

10: Pick j maximizing Gain, the sum of the firstj gains on the ordered list.
11: if Gain> 0 then
12: UpdateG1 = G1 − X + Y.
13: UpdateG2 = G2 − Y + X.
14: Updatecost(G1,G2) = costold(G1,G2) −Gain.
15: end if
16: until Gain ≤ 0

task nodes have different workloads thus different weights and the initial partitions are not

well balanced either. When these conditions are not satisfied, this KL algorithm, which is

designed for min-cut problem, may give us low communicationpartitions but with inferior

workload balance.

In order to overcome this problem, we decided to modify the gain function in original

KL algorithm. In original KL algorithm, only edgecut gains are considered. In our modified

gain function, we also consider the balance gain, that is thedecrease in workload difference

between two partitions. With balance in mind, our new gain function is formulated as 4.3,

wheregainedgecut is formulated as 4.4 andgainbalance is formulated as 4.6. We can see

that ∆edgecut is the originalgain(X, Y) in KL algorithm. Parameterα is used to set the

percentages of gains from edgecut and workload balance to the total gain. The bigger is

theα, the higher percentage of edgecut gain contributes to the total gain. Whenα is equal

to 1, this algorithm becomes the original KL algorithm.

gain(X, Y) = α · gainedgecut + (1− α) · gainbalance (4.3)

24

gainedgecut = ∆edgecut/edgecutold (4.4)

∆edgecut = edgecutold − edgecutnew (4.5)

gainbalance = ∆workloadDi f f /workloadDi f fold (4.6)

workloadDi f f = |workload(X) − workload(Y)| (4.7)

∆workloadDi f f = workloadDi f fold − workloadDi f fnew (4.8)

4.5 Simulated Annealing Algorithm

Simulated annealing(SA) is a probabilistic and iterative algorithm. It simulates the

metallic annealing process. During this process, the metalis first heated to a very high

temperature so the atoms gain enough energy to break chemical bonds and become free

to move. The metal is then slowly cooled down to a lower internal energy. The metal is

then heated again and again to get the atoms out of local minimum internal energy and give

them a chance to find the global minimum internal energy state.

When applying this technique to our problem, we can see that the lowest energy we

are going to get here is the inter-processor communication cost or the workload difference

between the processors or both. So it is easy to come up with algorithm 4. The difficulties

are in how to tune the algorithm to get the best results. In simulated annealing algorithm,

parameters such as initial temperature, temperature changing scheme and number of itera-

tions under each temperature greatly affect the effectiveness of the algorithm.

In our experiment, the initial temperatureT0 is determined by first pairwise swapping

the nodes in two initial random partitions until all the nodes have been swapped to the

other partition. In each swapping, the energy which is the inter-processor communica-

tion cost of the resulting partitions is computed. The initial temperature is then set to 20

times the standard deviation of the energy for these swaps. This scheme can generate an

initial temperature that accepts high percentage of swaps in the initial stages of annealing

algorithm [33].

25

In our experiment, the temperatureT is updated byT ← k · T , where 0< k < 1 is

an update factor. The adjustment of temperatureT can involve complex procedure [33].

But in our experiment, we just keep it simple and use a constant numberk to update the

temperature.

The number of iterations under each temperature has a huge impact on the quality on

the partition. Our guideline is to find a number that can give us a decent result but does

not cost a lot of computation time. In our experiment, we useL · Numbero f Nodes as the

number.L is determined by doing experiments and pick the smallestL that can satisfy our

needs.

Algorithm 4 SA Task Mapping Algorithm.
1: T ← T0

2: generate a starting solutions
3: while T > Tstop do
4: for i = 1 to i = L · Number o f Nodes do
5: generate a new solutiont in the neighbor ofs
6: ∆E ← E(t) − E(s)
7: if ∆E < 0 then
8: s← t
9: else if exp(−∆E/Tk) > random[0, 1] then

10: s← t
11: end if
12: end for
13: T ← k · T
14: end while

4.6 Merging and Duplication

In the last chapter, duplication method is proposed. The duplication process slices the

big nodes to multiple smaller nodes. This process greatly improves the balance of overall

workload distribution. But after we do the duplication, from the resulting figure of node

workload distribution, we can still find variations in workload distribution. The problem is

caused by the smallest nodes. Those smallest nodes require little computation power but

they still seize processors for themselves. The duplication process is not able to tackle this

26

problem so we need to do the inverse operation “merging” to further improve the balance

of workload distribution. The idea is that we merge those small nodes together to produce

large one or merge those small nodes to its bigger neighbors.In this way, it will yield spare

computing units so we can have more processing units to do theduplication to improve

the workload distribution. But the merge process is not as straightforward as duplication

process. We can not arbitrarily merge any two small nodes. The rule we need to follow

is that, when we merge two nodes we simply combine these two nodes together, we don’t

add any new functionalities to the merged node. Figure 4.3 depicts three situations where

nodesA andB are not able to be merged. In case 1, node A and B are not neighbors. In

case 2, node A has more than one outgoing edge. In case 3, node Bhas more than one

incoming edge. These three situations are where nodes can not be merged. In situation

depicted by Figure 4.4, node A and B can be safely merged. In this situation, node A has

only one outgoing edge and node B has only one incoming edge. In this situation, we call

node A and node B are eligible to be merged. This is one of the situations that our merge

algorithm will try to identify and use.

Following these rules, we can develop our merge-and-duplicate algorithm. There are

three possible schemes depending on the order we do the mergeand duplication. We can

do the merge first then do the duplication. Or we can do the duplication first and then

do the merge operation. Or we can do the duplication and mergealternatively. Here we

explore the first scheme. We first do the merge and then we do theduplication. The process

goes as follows. We first compute the optimal balanced workload for each processing unit.

Then we search our task graph to find the nodes that have workload less than the optimal

workload. We then try to merge the nodes together or to their neighbors. The process can

be depicted by the algorithm 5.

Our experimental result shows that this merge-then-duplicate algorithm can produce a

better workload distribution then the original duplication algorithm. This is verified by the

Figure 4.5.

27

A

B

A B

A B

Case 1

Case 2

Case 3

Figure 4.3.Situations where Nodes A and B can not be merged

A B

Figure 4.4.Situations where Nodes A and B can be merged

28

Algorithm 5 Task Merge-then-duplicate Algorithm.
1: unmark all nodes
2: wopt = Wtotal/N · M
3: while ∃ unmarked nodei with w(nodei) < wopt do
4: find the unmarkednodei with the smallest w(nodei)
5: check with its neighbors
6: if mergeablethen
7: merge the node to its neighbor
8: else
9: marknodei

10: end if
11: end while
12: do the duplication

0

20K

40K

60K

80K

100K

120K

140K

 0 10 20 30 40 50 60

W
or

kl
oa

d
in

 N
um

be
r

of
 In

st
ru

ct
io

ns

Instance Number

Duplicate Merge-then-duplicate

Figure 4.5.Comparison of duplicate and merge-then-duplicate schemes

29

CHAPTER 5

EVALUATION OF ALGORITHMS

In this chapter, we implement the algorithms described in the last chapter, generate the

results, plot them and do the comparison. We also search for the suitable parameters for ex-

tended KL algorithm and simulated annealing algorithm. Finally we do the explorations in

an architectural perspective. We apply our algorithms to different multi-core architectures

and plot and analyze the results.

5.1 Simulation Environment

Our simulation can be divided into two phases: Workload Profiling and Task Mapping.

During workload profiling, we use PacketBench [28] to evaluate the processing require-

ments of each packet in a trace of network traffic. PacketBench provides an instruction

trace of each processor instruction executed and thus allows us to accurately determine uti-

lization parametersuτ(ti) anduτ(ei, j) for each intervalτ and the distribution of service time

S i (measured in instructions executed). During task mapping,tasks are duplicated/merged

and mapped as described above. This process is repeated for each intervalτ. The over-

all process is depicted by the flow graph 5.1. In figure 5.1, diamonds represent files and

rectangles represent programs. First PacketBench takes packet trace file and network appli-

cation source file and produces instruction trace file. Graphgenerator then takes network

application file and instruction trace file and produces taskgraph. Then task graph and

instruction trace file are put in profile generator to get a annotated task graph. Then our

mapping algorithm is used to generate mapping for our system.

30

Packet

Trace File

PacketBench
Network

APPs

Instruction

Trace File
Graph Generator

Task GraphProfile Generator

Annotated

Task Graph

Architecture

Settings

Mapping/Merging/

Duplication

Algorithms

System

Configuratio

n

Figure 5.1.Overall Simulation Flow

31

In our simulation, we first assume a packet processing systemwith N = 8 processors

with M = 8 threads each. The processor interconnection provides connectivity from any

processor to any other processor. More architecture settings are examined in the archi-

tecture exploration section. We assume that re-mapping takes place at intervals of 1000

packets.

We use two different packet traces in our experiments in order to exercise the system

with network traffic that exhibits different levels of workload dynamics:

• Trace 1: This trace is obtained from the Internet uplink of our institutional network.

It represents real network traffic and exhibits a low amount of dynamic variation. The

trace is 100 intervals long.

• Trace 2: This trace was generated synthetically by splicingseveral different traces

together. The resulting workload changes dramatically every 10 intervals so require

a drastic change in allocated processing tasks. The trace is40 intervals long.

The processing applications in our workload are shown in Figure 5.2(a) with their re-

spective dependencies. By partitioning these eight applications, we obtain the task graph

shown in Figure 5.2(b). The 25 tasks shown in Figure 5.2(b) are labeled with their func-

tional descriptions. Edges illustrate the possible paths of packets through the system.

5.2 Profiling

The results of the profiling phase are shown in Figure 5.3 and Figure 5.4. For each

processing task from Figure 5.2(b), we show the amount of processing work,wi, that is

necessary. Recall that this value depends on the processingcomplexity of the task and

its utilization. The utilization of tasks for both traces are also shown in Figure 5.5 and

Figure 5.6

From the workload profiling figures, we could observe that there is a very large differ-

ence between tasks in terms of processing requirements. Thevariation ofwi for any given

32

������������	 ��

��
�������

��� ���� �	��
� ���
��������
� �� �����������
� �����

����	�
� �
� ������ �
�������	�
� �
� ����
�� ���
��� �������
������� ���
(a) Application Graph

packet_classifier

DES3_Encrypt

ipv4_radix_check_ttl

ipv4_lctrie_validate_packet

pattern_search ipsec_encryption

ipv4_lctrie_lookup

ipsec_post_process

create_new_flow

ipsec_crypt

ipv4_radix_routing

ipv4_radix_validate_packet

DES3_CBCUpdate

ipv4_lctrie_routing

mwmSearch

ipsec_dec_ttl

ipsec_construct_header

ipv4_lctrie_check_ttl

ipsec_decryption

extract_ip_header

update_flow

ipsec_padding

ipv4_radix_lookup

qos_flow

send_out_packet

(b) Task Graph

Figure 5.2.Experimental application.

33

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 10 20 30 40 50 60 70 80 90

W
or

kl
oa

d
(p

ro
ce

ss
in

g
tim

e)

Mapping interval (1000 packets)

DES3_CBCUpdate
DES3_Encrypt

create_new_flow
drop_packet

extract_ip_header
ipsec_construct_header

ipsec_crypt
ipsec_dec_ttl

ipsec_decryption

ipsec_encryption
ipsec_padding

ipsec_post_process
ipv4_lctrie_check_ttl

ipv4_lctrie_lookup
ipv4_lctrie_routing

ipv4_lctrie_validate_packet
ipv4_radix_check_ttl

ipv4_radix_lookup

ipv4_radix_routing
ipv4_radix_validate_packet

mwmSearch
packet_classifier

pattern_search
qos_flow

update_flow

Figure 5.3.Workload for Trace 1.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 5 10 15 20 25 30 35

W
or

kl
oa

d
(p

ro
ce

ss
in

g
tim

e)

Mapping interval (1000 packets)

DES3_CBCUpdate
DES3_Encrypt

create_new_flow
drop_packet

extract_ip_header
ipsec_construct_header

ipsec_crypt
ipsec_dec_ttl

ipsec_decryption

ipsec_encryption
ipsec_padding

ipsec_post_process
ipv4_lctrie_check_ttl

ipv4_lctrie_lookup
ipv4_lctrie_routing

ipv4_lctrie_validate_packet
ipv4_radix_check_ttl

ipv4_radix_lookup

ipv4_radix_routing
ipv4_radix_validate_packet

mwmSearch
packet_classifier

pattern_search
qos_flow

update_flow

Figure 5.4.Workload for Trace 2.

34

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 c

al
ls

Mapping interval (1000 packets)

DES3_CBCUpdate
DES3_Encrypt

create_new_flow
drop_packet

extract_ip_header
ipsec_construct_header

ipsec_crypt
ipsec_dec_ttl

ipsec_decryption

ipsec_encryption
ipsec_padding

ipsec_post_process
ipv4_lctrie_check_ttl

ipv4_lctrie_lookup
ipv4_lctrie_routing

ipv4_lctrie_validate_packet
ipv4_radix_check_ttl

ipv4_radix_lookup

ipv4_radix_routing
ipv4_radix_validate_packet

mwmSearch
packet_classifier

pattern_search
qos_flow

update_flow

Figure 5.5.Utilization of tasks for Trace 1.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35

N
um

be
r

of
 c

al
ls

Mapping interval (1000 packets)

DES3_CBCUpdate
DES3_Encrypt

create_new_flow
drop_packet

extract_ip_header
ipsec_construct_header

ipsec_crypt
ipsec_dec_ttl

ipsec_decryption

ipsec_encryption
ipsec_padding

ipsec_post_process
ipv4_lctrie_check_ttl

ipv4_lctrie_lookup
ipv4_lctrie_routing

ipv4_lctrie_validate_packet
ipv4_radix_check_ttl

ipv4_radix_lookup

ipv4_radix_routing
ipv4_radix_validate_packet

mwmSearch
packet_classifier

pattern_search
qos_flow

update_flow

Figure 5.6.Utilization of tasks for Trace 2.

35

0

500K

1M

1.5M

2M

 0 10 20 30 40 50 60

W
or

kl
oa

d
in

 N
um

be
r

of
 In

st
ru

ct
io

ns

Instance Number

Standard Duplicate

Figure 5.7. Distribution of Workw′i per Task Instance Before and After Duplication for
Trace 1.

task is low for Trace 1 (Figure 5.3). In contrast, Figure 5.4 shows high variations due to the

changes in network traffic every 10 intervals.

For the utilization of tasks graphs, we could also observe that utilization of tasks are

highly dependent on the content of traffic.

These profiling results provide evidence for two observations we have made earlier: (1)

there is a big difference in processing requirements among tasks and (2) theserequirements

change dynamically as network traffic changes.

5.3 Duplication

From the previous chapters, we know that duplication is necessary to obtain a balanced

workload distribution. So we first use duplication of selected tasks to obtain a more bal-

anced workload. The resulting workw′i (from Equation 4.2) is shown in Figure 5.7 and

Figure 5.8. These figures show the amount of work per task instance before and after du-

plication for one interval from Trace 1 and Trace 2 respectively. Before duplication, only

36

0

500K

1M

1.5M

2M

 0 10 20 30 40 50 60

W
or

kl
oa

d
in

 N
um

be
r

of
 In

st
ru

ct
io

ns

Instance Number

Standard Duplicate

Figure 5.8. Distribution of Workw′i per Task Instance Before and After Duplication for
Trace 2.

25 task instances exist and their processing requirements differ by several orders of magni-

tude. After duplication, we have 64 task instances (sinceN · M = 64 in our experimental

setup) with very balancedw′i (except for the smallest tasks).

5.4 Mapping:UDFS

This section presents the results from previously designedUDFS algorithm. To evaluate

the quality of the mapping algorithm, we consider two metrics:

• Average Processor Utilizationu: The average utilizationu of all processors is the sum

of all work allocated to each processor divided byN times the maximum allocation:

u =

∑N
j=1

(

∑

{i|m(ti)= j} w
′
i

)

N ·maxj

(

∑

{i|m(ti)= j} w
′
i

) . (5.1)

When each processor’s work allocation is close to the maximum, then the overall

average utilization is high. Higher utilization implies that more work gets done and

37

more packets get processed (since the total amount of work
∑T

i=1 wi is constant for

any mapping result). Thus, utilization is directly relatedto the maximum line rate

(i.e., throughput)R of the packet processing system:R ∼ u. Thus, higher utilization

u indicates higher system performance.

• Average Inter-Processor Communication Costc: The average communication costc

represents the number of times a packet has to be sent across the processor intercon-

nect:

c =
∑

{i, j|m(ti),m(t j)} u(ei j). (5.2)

At a minimum, each packet has to be sent once from the incominginterface to a

processor and once from the processor to the outgoing interface. Thus,c ≥ 2. Higher

values forc imply more load on the interconnect. Therefore, lower values of c are

desirable.

Figure 5.9 produced by previously designed algorithms shows a comparison of the per-

formance of three different algorithms using metricsu andc. As baseline,static applica-

tion mapping is shown, which represents the conventional approach to task management

on multi-core packet processing systems. Each applicationai is allocated to a different

processor. The UDFS algorithm is shown in two instances – without duplication and with

duplication. The prior is an intermediate result to illustrate the importance of task dupli-

cation. The ideal scenario of full utilization and a two packet transmission (one ingress,

one egress) is also shown for comparison. The data in Figure 5.9 show clearly that UDFS

mapping with task duplication achieves the highest system utilization u and thus the highest

data rateR. UDFS mapping without task duplication is practically equivalent to static map-

ping since the imbalance in the amount of workwi per task prevents an effective utilization

of processors.

The overall performance improvement of UDFS (with duplication) over conventional

static application mapping is shown in Table 5.1. An increase in throughput (due toR ∼ u)

38

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%a
v
e

ra
g

e
 i
n

te
r-

p
ro

c
e

s
s
o

r
c
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

in
 t

ra
n

s
m

is
s
io

n
s
 p

e
r

p
a

c
k
e

t

average processor utilization

static application mapping
UDFS without duplication

UDFS with duplication
ideal

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%a
v
e

ra
g

e
 i
n

te
r-

p
ro

c
e

s
s
o

r
c
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

in
 t

ra
n

s
m

is
s
io

n
s
 p

e
r

p
a

c
k
e

t

average processor utilization

(a) Trace 1

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%a
v
e

ra
g

e
 i
n

te
r-

p
ro

c
e

s
s
o

r
c
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

in
 t

ra
n

s
m

is
s
io

n
s
 p

e
r

p
a

c
k
e

t

average processor utilization

static application mapping
UDFS without duplication

UDFS with duplication
ideal

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%a
v
e

ra
g

e
 i
n

te
r-

p
ro

c
e

s
s
o

r
c
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

in
 t

ra
n

s
m

is
s
io

n
s
 p

e
r

p
a

c
k
e

t

average processor utilization

(b) Trace 2

Figure 5.9. Interconnect Bandwidthc in Comparison to Processor Utilizationu for Differ-
ent Mapping Algorithms.

39

Table 5.1.Comparison of UDSF Mapping to Static Application Mapping.

Communication Costc ThroughputR
Trace 1 1.49× 2.39×
Trace 2 1.64× 2.89×

Table 5.2.Comparison of KL Mapping to UDFS Mapping.

Communication Costc ThroughputR
Trace 1 0.81× 1.01×
Trace 2 0.80× 1.00×

of 2.39–2.89× can be achieved at a cost of 1.49–1.64× higher inter-processor communica-

tion.

5.5 Mapping: KL Algorithm

In this section, we implement the KL algorithm and plot the results. We also do the

comparison between KL algorithm and previously designed algorithms.

With our improved algorithm, we can get even better results compared to UDFS algo-

rithm. We show the results of KL algorithm in Figure 5.10. We can see that KL algorithm

produces mappings that require less inter-processor communication cost while maintaining

the similar throughput as UDFS algorithm.

So the overall performance improvement of KL algorithm overconventional static ap-

plication mapping is better than that of UDFS algorithm. Table 5.2 shows that KL algo-

rithm only requires 0.80× of the communication cost as UDFS algorithm while obtaining

the same or even better throughput.

5.6 Mapping: Extended KL

As we mentioned in the previous chapters, KL algorithm has some limitations when

applied to our mapping problem. So we modify the basic KL algorithm and come up with

this extended version of KL algorithm. In this extended KL algorithm, the gain function is

40

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

KL algorithm
UDFS w/o Duplication

UDFS w/ Duplication

(a) Trace 1

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

KL algorithm
UDFS w/o Duplication

UDFS w/ Duplication

(b) Trace 2

Figure 5.10. Interconnect Bandwidthc in Comparison to Processor Utilizationu for Dif-
ferent Mapping Algorithms.

41

modified to not only consider the edgecut gain but also workload balance. The new gain

function is described by function 4.3. We plot the results for differentα in figure 5.11.

From the figures, we can see that as we increase theα, the average processor utilization

decreases and the inter-processor communication decreases too. This is because whenα

is small, we put more effort to optimize the processor utilization, whileα is approaching

1, we put more effort on inter-processor communication. To find the best parameterα for

this algorithm, we need to consider the particular system. In the case where inter-processor

communication bandwidth is well sufficient, we may want to pick a smallerα so that we can

get a better utilization. While we have limited inter-processor communication but sufficient

computing power, we will want a biggerα to get a better overall performance.

5.7 Mapping: Simulated Annealing Algorithm

As mentioned in the previous chapters, the difficulty of simulated annealing algorithm

is to find a good set of parameters that can give us good partitions. We already explained

the ways to obtain some of the parameters. In this section, weshow the way to obtain

parameter L, the factor for the number of iterations in each temperature. Then we show the

results of simulated annealing algorithms and compare themto results from KL algorithm.

First, we use inter-communication cost as energy function and do the following experi-

ments. To search for the suitable value of L, we run the simulated annealing algorithm for

L from 1 to 20 and choose the one that give us the best results interms of communication

cost and utilization. The results are plotted in the Figure 5.12

From the above figures, we can see that fromL = 1 to L = 20, the inter-processor com-

munication costs and utilizations have only small variations. So to speed up the algorithm,

we useL = 1 as the parameter for all the following SA algorithm implementation. The

results are plotted in the figure 5.13(a) and figure 5.10(b). From the figures, we can see that

SA algorithm can produce the mappings that have the similar qualify as produced by KL

42

 0

 2

 4

 6

 8

 10

 12

 14

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

a=0
a=0.1
a=0.2
a=0.3
a=0.4
a=0.5
a=0.6
a=0.7
a=0.8
a=0.9

a=1

(a) Trace 1

 0

 2

 4

 6

 8

 10

 12

 14

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

a=0
a=0.1
a=0.2
a=0.3
a=0.4
a=0.5
a=0.6
a=0.7
a=0.8
a=0.9

a=1

(b) Trace 2

Figure 5.11. Interconnect Bandwidthc in Comparison to Processor Utilizationu for Dif-
ferentα.

43

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

L=1
L=2
L=3
L=4
L=5
L=6
L=7
L=8
L=9

L=10
L=11
L=12
L=13
L=14
L=15
L=16
L=17
L=18
L=19
L=20

(a) Trace 1

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

L=1
L=2
L=3
L=4
L=5
L=6
L=7
L=8
L=9

L=10
L=11
L=12
L=13
L=14
L=15
L=16
L=17
L=18
L=19
L=20

(b) Trace 2

Figure 5.12. Interconnect Bandwidthc in Comparison to Processor Utilizationu for Dif-
ferentL.

44

Table 5.3.Comparison of SA Mapping to UDFS Mapping.

Communication Costc ThroughputR
Trace 1 0.83× 1.00×
Trace 2 0.81× 1.00×

Table 5.4.Comparison of UDFS algorithm with and without merging.

Communication Costc ThroughputR
Trace 1 0.63× 1.22×
Trace 2 0.69× 1.20×

algorithm. The exact number is shown in the table 5.3. We can see that the mapping results

from KL algorithm are slightly better than KL algorithms.

5.8 Merging and Duplication

As mentioned in the last chapter, duplication can not fully evenly distribute the work-

load on processors. This is where merging comes to the rescue. We also show some trivial

results in the last chapter. In this section, we will see if the new graph can actually improve

the utilization and hopefully the inter-processor communication cost also.

First we show the workload distribution after merging process with original duplication

only workload distribution in Figure 5.14 and Figure 5.15. We can see that with merging

operation, the workload distribution becomes more even than with duplication only.

Using this new task graph, we run our algorithms again to obtain the new mappings.

The results are depicted in the Figures 5.16, 5.17, 5.18. From the figures, we can see

that merging and duplication process improves both inter-processor communication and

utilization. The exact numbers are shown in the table 5.4, table 5.5 and table 5.6.

Table 5.5.Comparison of KL algorithm with and without merging.

Communication Costc ThroughputR
Trace 1 0.80× 1.21×
Trace 2 0.82× 1.21×

45

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

SA algorithm
KL algorithm

UDFS w/o Duplication
UDFS w/ Duplication

(a) Trace 1

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

SA algorithm
KL algorithm

UDFS w/o Duplication
UDFS w/ Duplication

(b) Trace 2

Figure 5.13. Interconnect Bandwidthc in Comparison to Processor Utilizationu for Dif-
ferent Mapping Algorithms.

46

0

20K

40K

60K

80K

100K

120K

140K

 0 10 20 30 40 50 60

W
or

kl
oa

d
in

 N
um

be
r

of
 In

st
ru

ct
io

ns

Instance Number

Duplicate Merge-then-duplicate

Figure 5.14.Distribution of Workw′i per Task Instance with and without merging for Trace
1.

0

20K

40K

60K

80K

100K

120K

140K

 0 10 20 30 40 50 60

W
or

kl
oa

d
in

 N
um

be
r

of
 In

st
ru

ct
io

ns

Instance Number

Duplicate Merge-then-duplicate

Figure 5.15.Distribution of Workw′i per Task Instance with and without merging for Trace
2.

47

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

UDFS w/ Duplication
UDFS algorithm w/ Merging and Duplication

(a) Trace 1

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

UDFS w/ Duplication
UDFS algorithm w/ Merging and Duplication

(b) Trace 2

Figure 5.16.Interconnect Bandwidthc in Comparison to Processor Utilizationu.

Table 5.6.Comparison of SA algorithm with and without merging.

Communication Costc ThroughputR
Trace 1 0.77× 1.22×
Trace 2 0.80× 1.20×

48

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

KL algorithm
KL algorithm with Merging

(a) Trace 1

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

KL algorithm
KL algorithm with Merging

(b) Trace 2

Figure 5.17.Interconnect Bandwidthc in Comparison to Processor Utilizationu.

49

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

SA algorithm
SA algorithm with Merging

(a) Trace 1

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

SA algorithm
SA algorithm with Merging

(b) Trace 2

Figure 5.18.Interconnect Bandwidthc in Comparison to Processor Utilizationu.

50

 0

 2

 4

 6

 8

 10

 12

 14

0% 20% 40% 60% 80% 100%

av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

average processor utilization

UDFS w/o duplication
UDFS w/ duplication

KL algorithm
SA algorithm

Extended KL algorithm
UDFS w/ merging

KL w/ merging
SA w/ merging

optimal curve w/o merging
ideal

Figure 5.19. Interconnect Bandwidthc in Comparison to Processor Utilizationu for All
Mapping Algorithms

After we got all the simulation results of all the algorithms, it is more informative to

put all of them in one figure. In figure 5.19, results from all algorithms are plotted. From

figure, we can see that with merging process, better mapping results can be obtained.

5.9 Architecture Exploration

After developing the mapping algorithms for our packet processing systems, we will

apply the algorithms to different packet processing system architectures in this section.

Our default architecture has 8 processing cores and each onecan accommodate 8

threads. In this architecture, the total number of threads that can run in parallel is 64.

This architecture serves as a good starting point for our algorithms research. But it will

be very interesting to see how performance can change as we change the number of cores

or number of threads of each core. In this section, we apply the developed algorithms to

different architectures. We then plot the results and do the comparison.

51

We organize the architectures into three catalogs. In the first catalog, we fix the number

of cores and change the number of threads in each core. In the second catalog, we fix the

number of threads in each core and change the number of cores.In the third catalog, we

fix the total number of threads and change the number of cores and the number threads in

each core at the same time.

In this first catalog, the number of cores is 8. The number of threads in each core

changes from 4 to 64. In the second catalog, the number of threads in each core is 8

and the number of cores changes from 4 to 64. In the third catalog, the total number of

threads is 512. The architectures include 4x128, 8x64, 16x32, 32x16, 64x8, 128x4 with

form AxB where A is the number of cores and B is the number of threads in each core.

The results are shown in the figure 5.20, figure 5.21,figure 5.22. From the figures, we

can see that in catalog 1, as the number of threads in each micro-engine increases, the

average inter-processor communication cost decreases. This is because more nodes are

processed in the same core so less inter-processor communication is required. On the

other hand, the average processor utilization increases asthe number total number threads

available increases except for UDFS without duplication where total number of node is

limited to 25. In catalog 2, the average utilization followsthe same trend. As for inter-

processor communication cost, because the number of threads in each core is fixed and the

number of cores increase the inter-processor communication cost increase. This is because

more tasks are distributed to different cores and more communication between tasks are

required. In catalog 3, we can clearly see that because we fix the total number of threads,

so when the number of threads in each core decreases, the inter-processor communication

cost increases. As for utilization, except for UDFS withoutduplication algorithm, others

maintain the consistent average processor utilization. This is because the total number of

threads is fixed.

52

 0

 5

 10

 15

 20

8x4 8x8 8x16 8x32 8x64av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

Architecture #MEx#Thread/ME

UDFS w/o Duplication
UDFS w/ Duplication

KL Algorithm w/o Merging
KL algorithm w/ Merging

(a) average inter-processor communication cost

0%

20%

40%

60%

80%

100%

8x4 8x8 8x16 8x32 8x64

av
er

ag
e

pr
oc

es
so

r
ut

ili
za

tio
n

Architecture #MEx#Thread/ME

UDFS w/o Duplication
UDFS w/ Duplication

KL Algorithm w/o Merging
KL algorithm w/ Merging

(b) average processor utilization

Figure 5.20.Architecture Exploration: Catalog 1

53

 0

 5

 10

 15

 20

4x8 8x8 16x8 32x8 64x8av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

Architecture #MEx#Thread/ME

UDFS w/o Duplication
UDFS w/ Duplication

KL Algorithm w/o Merging
KL algorithm w/ Merging

(a) average inter-processor communication cost

0%

20%

40%

60%

80%

100%

4x8 8x8 16x8 32x8 64x8

av
er

ag
e

pr
oc

es
so

r
ut

ili
za

tio
n

Architecture #MEx#Thread/ME

UDFS w/o Duplication
UDFS w/ Duplication

KL Algorithm w/o Merging
KL algorithm w/ Merging

(b) average processor utilization

Figure 5.21.Architecture Exploration: Catalog 2

54

 0

 5

 10

 15

 20

4x128 8x64 16x32 32x16 64x8 128x4av
er

ag
e

in
te

r-
pr

oc
es

so
r

co
m

m
un

ic
at

io
n

co
st

 in
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

Architecture #MEx#Thread/ME

UDFS w/o Duplication
UDFS w/ Duplication

KL Algorithm w/o Merging
KL algorithm w/ Merging

(a) average inter-processor communication cost

0%

20%

40%

60%

80%

100%

4x128 8x64 16x32 32x16 64x8 128x4

av
er

ag
e

pr
oc

es
so

r
ut

ili
za

tio
n

Architecture #MEx#Thread/ME

UDFS w/o Duplication
UDFS w/ Duplication

KL Algorithm w/o Merging
KL algorithm w/ Merging

(b) average processor utilization

Figure 5.22.Architecture Exploration: Catalog 3

55

CHAPTER 6

IMPLEMENTATION CONSIDERATIONS ON INTEL IXP SYSTEM

Our model is designed for multi-core,packet processing systems especially network

processors. In this chapter, we discuss the architecture ofthe latest Intel network processor.

Then based on the architecture, we introduce the mapping between elements in our model

and the real hardware. Finally, we discuss the applicability and limitation of task mapping

model on real network processor systems.

6.1 System Architecture

Intel’s IXP2xxx series network processors are chip multi-core processors. The data

path architecture is shown in Figure 6.1. In the figure, we omit the control processor -

an Intel Xscale core and two media interfaces. In the figure, we can see that IXP2400

network processor has eight integrated programmable microengines. Each one of them has

4K instruction stores. Microengines are connected sequentially by next neighbor registers.

The connections are annotated in the figure by red lines. Nextneighbor registers are fast

paths for microengines to talk to their neighbors. The IXP2400 network processor also has

one memory interface for DDR DRAM, two interfaces for QDR SRAM and one on-chip

16-K byte scratchpad memory. These three types of memory areshared among all of the

microengines.

6.2 Model Implementation

From the previous chapters, we know that there are two different types of elements

in our model: tasks and edges. When the model is to be implemented on a real network

56

ME0 ME1 ME2 ME3

ME4ME5ME6ME7

DDRAM

QDR SRAM

Scratchpad

Figure 6.1. IXP 2400 network processor data path architecture

processor system, there are certain constraints on the mapping relation between each type

of element and the hardware resource. In this section, we discuss how hardware resources

relate to elements in our model. First we give an overview on microengines and hardware

threading, and introduce how tasks are mapped to hardware threads. Then, we focus on

memory subsystem, and how edges are mapped to each type of memory.

6.2.1 Processing Units

A task is a collection of instructions that perform certain processing step in a network

application. Therefore, execution of tasks must be performed on processing units. On IXP

2xxx series network processors, the execution units are hardware threads in each micro-

engine. Each hardware thread has its own set of registers, thus microengine can switch

between hardware threads without additional overhead. Usually, the events that trigger

thread switches are waiting on external events such as memory reference and signal han-

dling. By switching threads, network processors can hide the idle cycles spent on waiting,

therefore increasing the speed of overall application execution.

However, the number of hardware threads in one microengine is limited to eight on IXP

2400 due to the fact that registers are expensive in chip design. Since it is not possible to run

more than one task in the same hardware thread,in a potentialimplementation on a network

processor, we assume that each hardware thread can host at most one task.Furthermore,

57

network processors have a limited amount of local instruction store size, which posts a

restriction on the total amount of instructions that could be mapped on one microengine.

6.2.2 Inter-processor Communication

To achieve communication between tasks, it is important to consider inter-processor

communication in our model. In the IXP 2400 network processor system, there are two

types of communication mechanism. One is based on shared memory and the other is

based on next neighbor registers.

• Memory based inter-processor communication. IXP 2400 network processor system

has two types of memory: SRAM and DRAM. A large amount of slower DRAM is

used to provide low-cost storage capacity, while a small size of fast SRAM is used

to reduce execution time by hosting frequently used data. This SRAM is available

in the form of scratchpad SRAM and QDR SRM. In IXP 2400, scratchpad SRAM

is for parameters and inter-processor communications. QDRSRAM is for packet

queue storage and lookup table while DDR DRAM is for packet payload storage.

All these memories are shared among all microengines via shared bus, especially can

be accessed directly by each hardware thread. With the shared memory, threads on

microengines can communicate with each other by storing messages in the memory

and inform the receivers to collect the data by accessing thesame storage location.

• Next neighbor register based inter-processor communication. Besides shared mem-

ories, IXP 2400 network processors also include next neighbor registers to facilitate

the communication between two adjacent microengines. The topology of the con-

nection is shown in figure 6.1. We can see that microengines are connected in a

sequential manner. Only adjacent microengines can communicate directly with their

next neighbors.

Although many techniques on general purpose computing systems (e.g, hardware thread-

ing and shared memories) are adopted in network processors,cache is not a widely accepted

58

practice. The efficiency of cache is determined by locality in data. Unfortunately, content

of packet, which is the biggest portion of data on network processor systems, can not be

predicted. Packet processing systems have to examine everynew packet in order to do fur-

ther processing. Thus, the use of cache is limited to some specific applications such as IP

table lookup etc. For this reason, cache is often omitted in network processor design. IXP

2400 does not have any cache. Therefore, we ignore cache in our discussion.

6.3 Applicability and Limitation of Task Mapping Model

Our work is a conceptual model for general multi-core packetprocessing systems.

When it is adapted to a real network processor system like theIXP 2400, the actual perfor-

mance could be different from the result predicted by the model. In this section, we discuss

the applicability and limitation of our model on real systems.

The system parameters used in the evaluation in previous chapter is directly related to

the IXP2400 architecture. In our model, we have 8 cores and each core can accommodate

8 threads. This is the same as the IXP 2400 network processor system which has 8 micro-

engines and each one has 8 hardware threads. Thus, our model can reasonably reflect the

real system processor utilization.

As for inter-processor communication model, we have two possible situations. In our

model, we assume that each processor can communicate with each other. So if inter-

processor communication is implemented using shared memory, our model reflect model

the real situation except that our model does not consider the timing issue related to memory

access. That is, in our model, we consider the communicationcost as the amount of data

transferred between processors without considering resource contention and delay when

multiple processors want to access the same memory. Therefore, our simulation results

may not be exactly accurate,but can still be used to compare different algorithms.

If the inter-processor communication is implemented usingnext neighbor registers, then

our model is not suitable for this implementation. The reason is that in next neighbor

59

register based communication, only adjacent processors can communication directly via

next neighbor registers. Our assumption that any two processors can communicate with

each other is not satisfied. Also our mapping algorithm triesto find the mapping with the

minimum total inter-processor communication cost and doesnot consider communication

between any two processors. Thus, it is possible that two processors may generate a large

amount of communication that exceeds the available bandwidth of one such point to point

communication link. For such a scenario a new mapping algorithm would need to be

developed.

60

CHAPTER 7

CONCLUSIONS

In this work, we have explored different task mapping algorithms for multi-core, packet

processing systems. we also implemented these algorithms and compared the results of the

algorithms.

We first reviewed the previously designed algorithms which include UDFS algorithm

and duplication process. We then applied the KL algorithm toour problem and were able to

reduce the inter-processor communication by 20% while maintaining the similar utilization.

We then modified the original KL algorithm by considering utilization during the mapping

process. In this extended KL algorithm, we incorporated a tradeoff factor α to tradeoff

between inter-processor communication and processor utilization. The bestα is different

for different system configurations in terms of communication bandwidth and computing

power. Simulated annealing(SA) algorithm was then implemented. The parameters for SA

algorithm were decided by following literatures or by doingexperiments. Results from SA

algorithm shows that it can produce decent results that are comparable to KL algorithm. In

order to further improve the utilization, merging operation was applied to the task graph

before mapping algorithms were applied. The mapping results showed that merging is a

good way to improve the utilization and at the same time keep the communication cost

lower. Finally, we applied the mapping algorithms to different packet processing system

architectures. The results show how inter-processor communication cost and processor

utilization change as system architecture changes.

61

BIBLIOGRAPHY

[1] Asymmetric multiprocessing.http://en.wikipedia.org/wiki/Asymmetric_

multiprocessing.

[2] Message passing interface. http://en.wikipedia.org/wiki/Message_

Passing_Interface.

[3] Multi-core computing.http://en.wikipedia.org/wiki/Multi-core.

[4] Openmp.http://openmp.org.

[5] A. Tengg, A. Klausner, B. Rinner. Task allocation in distributed embedded systems

by genetic programming. In8th International Conference on parallel and distributed

computing, application and technologies (2007).

[6] Ananth Grama, George Karypis, Vipin Kumar Anshul Gupta.Introduction to Parallel

Computing. Addison Wesley, 2003.

[7] Berman Fran, Anthony Hey, Geoffrey Fox. Grid Computing: Making The Global

Infrastructure a Reality. Wiley, March 2003.

[8] Bokhari, S.H. A shortest tree algorithm for optimal assignments across space and

time in a distributed processor systems.IEEE transaction on software engineering

(November 1981).

[9] Butenhof, David R.Programming with POSIX Threads. Addison-Wesley.

[10] C.C. Shen, W.H. Tsai. A graph matching approach to optimal task assignment in dis-

tributed computing system using a minimax criterion.IEEE transaction on computer

(March 1985).

62

[11] D.A Bader, R. Pennington. Cluster computing: Applications.The International Jour-

nal of High Performance Computing 15, 2 (May 2001), 181–185.

[12] David E. Culler, Jaswinder Pal Singh, Anoop Gupta.Parallel Computer Architecture

- A Hardware/Software Approach. Morgan Kaufmann Publishers, 1999.

[13] Eatherton, W. The push of network processing to the top of the pyramid. InKeynote

Presentation at ACM/IEEE Symposium on Architectures for Networking and Commu-

nication Systems (ANCS) (Princeton, NJ, Oct. 2005).

[14] E.Kohler. The click modular router.ACM transaction on Computer System 18, 3

(August 2000).

[15] G.S. Almasi, A. Gottlieb.Highly Parallel Computing. Benjamin-Cummings publish-

ers, Redwood city, CA, 1989.

[16] Hillis, W. Daniel, Steele Guy L. Data parallel algorithms. Communications of the

ACM (December 1986).

[17] Husak, Dave. The c-5 digital communication processor.HotChips (2000).

[18] Intel Corporation.Intel IXP2400 Network Processor.

[19] J, Quinn Michael.Parallel Programming in C with MPI and OpenMP. McGraw-Hill

Inc., 2004.

[20] Jacek Radajewski, Douglas Eadline. Beowulf howto. Linux documentation project,

November 1998.

[21] John L. Hennessy, David A. Patterson.Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann Publishers.

[22] John L. Hennessy, David A. Patterson.Symmetric multiprocessing. Morgan Kauf-

mann, September 2006.

63

[23] Kohler, Mark. NP complete. Embedded Systems Programming, November 2000,

pp. 45–60.

[24] Lekkas, Panos C.Network Processors : Architectures, Protocols and Platforms.

McGraw-Hill Professional, 2003.

[25] Lo, 7. V. M. Heuristic algorithms for task assignment indistributed systems.IEEE

transaction on computer, 11 (November 1988).

[26] Mallik, A., and Memik, G. Automated task distribution in multicore network proces-

sors using statistical analysis. InProc. of ACM/IEEE Symposium on Architectures for

Networking and Communication Systems (ANCS) (Orlando, FL, Dec. 2007).

[27] N. Fisher, J.H. Anderson, S. Baruah. Task partitioningupon memory-constrained

multiprocessors. InProceedings of the 11th IEEE International Conference on Em-

bedded and Real-Time Computing Systems and Applications (August 2005).

[28] Ramaswamy, R., and Wolf, T. PacketBench: A tool for workload characterization of

network processing. InProc. of IEEE 6th Annual Workshop on Workload Character-

ization (WWC-6) (Austin, TX, Oct. 2003), pp. 42–50.

[29] Ramaswamy, Ramaswamy, Weng, Ning, and Wolf, Tilman. Application analysis and

resource mapping for heterogeneous network processor architectures. InNetwork

Processor Design: Issues and Practices, Volume 3, Mark A. Franklin, Patrick Crow-

ley, Haldun Hadimioglu, and Peter Z. Onufryk, Eds. Morgan Kaufmann Publishers,

Feb. 2005, ch. 13, pp. 277–306.

[30] Robert Ennals, Richard Sharp, Alan Mycroft.Task Partitioning for Multi-core Net-

work Processors. Springer Berlin/ Heidelberg, 2005.

[31] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated annealing.

Science 220, 4598 (1983).

64

[32] Stone, H.S. Multiprocessor scheduling with the aid of network flow algorithms.IEEE

transaction on software engineering, 1 (January 1977).

[33] Tessier, Russell.Fast Place and Route Approaches for FPGAs. PhD thesis, Mas-

sachusetts Institute of Technology, 1992.

[34] V.B.Gylys, J.A.Edwards. Optimal partitioning of workload for distributed systems.

Digest of Papers, COMPCON (Sept. 1976).

[35] W.Plishker. Automated task allocation for network processors. InProc. Network

System Design Conf. (2004).

[36] W.W.Chu. Optimal file allocation in a multiple computing system.IEEE transaction

on computer, 10 (Oct. 1969).

65

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2009

	Task Partitioning and Mapping Algorithms for Multi-core Packet Processing Systems
	Wei Chen

	Task Partitioning and Mapping Algorithms for Multi-core Packet Processing Systems

