Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks@UMass Amherst

University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

2009

Task Partitioning and Mapping Algorithms for

Multi-core Packet Processing Systems

Wei Chen
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Chen, Wei, "Task Partitioning and Mapping Algorithms for Multi-core Packet Processing Systems" (2009). Masters Theses 1911 -
February 2014.255.
Retrieved from https://scholarworks.umass.edu/theses/255

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact

scholarworks@library.umass.edu.

https://core.ac.uk/display/13599051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/255?utm_source=scholarworks.umass.edu%2Ftheses%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

TASK PARTITIONING AND MAPPING ALGORITHMS FOR
MULTI-CORE PACKET PROCESSING SYSTEMS

A Thesis Presented

by
WEI CHEN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING
February 2009

Electrical and Computer Engineering

TASK PARTITIONING AND MAPPING ALGORITHMS FOR
MULTI-CORE PACKET PROCESSING SYSTEMS

A Thesis Presented
by
WEI| CHEN

Approved as to style and content by:

Tilman Wolf, Chair

Wayne Burleson, Member

Russell Tessier, Member

C.V.Hollot, Department Head
Electrical and Computer Engineering

TABLE OF CONTENTS

Page
LIST OF FIGURES e e e e e e e e e \
CHAPTER
1. INTRODUCTION .. e e e e e e e e e e aas 1
2. RELATED WORK ... e e 4
2.1 Classesof Parallel Computerscc oo 4
211 CIUSEEI. oottt e 5
2.1.2 MURIPrOCESSOr . .\ttt e et 5
2.1.3 Multicore Computingottt e 6
2.1.4 Network ProCessor.ttt e e e e e 6
2.2 Task Partitioning Algorithms i 7
2.21 AnalysisScheme 8
2.2.2 Construction SCheme. ... e 9
2.3 Task Mapping Algorithms e 10
2.3.1 Graph Theoretic Algorithms. cvuue... 10
2.3.2 Mathematical Programmingouuitmmmmeenannn. 10
2.3.3 Heuristic Algorithms 11
3. SYSTEM CONFIGURATIONPROCESS. i 12
3.1 Application Partitioningt e 12
3.2 TaskMappingoonii 13
3.2.1 Task Mapping Problem Statementc.......... 14
3.2.2 RuntimeProfiling 15
3.3 Dynamic Adaptationt e 16

4. APPLICATION MAPPING .. e 18

4.1 TaskDuplication 18
4.2 UDFS Mapping Algorithmo e 21
4.3 KLalgorithm e 22
4.4 Extended KL Algorithm e e 23
4.5 Simulated Annealing Algorithm 25
4.6 Mergingand Duplication 26

5. EVALUATION OF ALGORITHMS e 30
5.1 Simulation ENVIrONMeNt.o e 30
5.2 Profiling 32
5.3 Duplication i e 36
5.4 Mapping:UDFS e 37
5.5 Mapping: KL Algorithm 40
5.6 Mapping: Extended KL e 40
5.7 Mapping: Simulated Annealing Algorithm 42
5.8 Mergingand Duplication 45
5.9 Architecture Exploration i 51

6. IMPLEMENTATION CONSIDERATIONS ON INTEL IXP SYSTEM 56
6.1 System Architecture i e 56
6.2 Model Implementation e 56
6.2.1 ProcessingUNItSt 57
6.2.2 Inter-processor Communicationceeueuiiiin.. 58
6.3 Applicability and Limitation of Task Mapping Model 59

7. CONCLUSIONS . .. o e e e e e e 61

BIBLIOGRAPHY . e 62

Figure
2.1
2.2
3.1
3.2
4.1
4.2
4.3
4.4
4.5
5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

LIST OF FIGURES

Page

Generic Network Processor Architecture, 7
Parallel program developmentflow oouuiii.. 8
Application Graph o 12
Task graph ... 14
Task Duplication Example e e e 19
Workload distribution comparison.ccioeiiiii i 20
Situations where Nodes A and B cannotbe merged 28
Situations where Nodes Aand Bcanbemerged 28
Comparison of duplicate and merge-then-duplicaterseke 29
Overall Simulation FIow e e 31
Experimental application. 33
Workload for Trace 1.t e 34
Workload for Trace 2.o e 34
Utilization of tasksfor Trace 1.o 35
Utilization of tasksfor Trace 2. i 35
Distribution of Workw/ per Task Instance Before and After Duplication

fOr Trace L. . . oo 36

Distribution of Workw/ per Task Instance Before and After Duplication
fOr TraCe 2. . . 37

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

6.1

Interconnect Bandwidin Comparison to Processor Utilizatioirfor
Different Mapping Algorithms. 39

Interconnect Bandwidihin Comparison to Processor Utilizatidifor
Different Mapping Algorithms. 41

Interconnect Bandwidihin Comparison to Processor Utilizatidifor
Differenta.o e 43

Interconnect Bandwidihin Comparison to Processor Utilizatidifor
Differentl. s 44

Interconnect Bandwidihin Comparison to Processor Utilizatidifor
Different Mapping Algorithms. 46

Distribution of Workw, per Task Instance with and without merging for

TraCE 2. . o e 47
Interconnect Bandwidihin Comparison to Processor Utilization 48
Interconnect Bandwidihin Comparison to Processor Utilization 49
Interconnect Bandwidihin Comparison to Processor Utilization 50

Interconnect Bandwidihin Comparison to Processor Utilizatiarfor All

Mapping Algorithms 51
Architecture Exploration: Catalog 1lccouuiiiiiiion.. 53
Architecture Exploration: Catalog 2 oo, 54
Architecture Exploration: Catalog3ccoumiiiiiiiin.. 55
IXP 2400 network processor data path architecture..........57

Vi

CHAPTER 1
INTRODUCTION

Routers are the devices that connect scattered networksraate a unified Internet
which keeps changing every aspect of our lives. Since 1970&s Internet has never
stopped evolving and there is no sign that it will slow dowhefiefore, routers, which serve
as the key devices of Internet technology, also need to kaep with the development
of the Internet. Although routers were originally desigreedsimple store-and-forward
“dumb” devices, nowadays, researchers and designersyamg to put more intelligence
into them to meet the requirements of high performance,rdggcand flexibility etc. [13]
Applications such as firewall, NAT, encryti@ecryption for VPN are integrated into these
devices. With the evolution of the Internet, more applimasi, protocols and services are
expected to push the network into one that will require nmute be stronger and more
flexible.

Router applications could be implemented either in sowarin hardware. In most
cases, hardware designs are faster but require longemdegites. While for software
implementations, it is much easier for developers to build debug their codes, but the
performance of their application will be limited by the atyilof target hardware platform.
Therefore, router designers will always have to find a badretween performance and
development time. To meet the need for rapid high performaratwork application de-
velopment, packet processing engines are widely accep@ddays. In a typical packet
processing system such as Intel IXP2400, there is a genere¢ssor which serves as a
control plane, and tens of simpler packet processing uritsiwin general have limited in-

struction set but are optimized for network packets prangsspplications. These packet

processing processors form the data plane in a router, andbde to download new ap-
plications at any time. The packet processing engine actite also reflects technology
progress in multi-core architecture. Unlike ASICs, wharergthing is hard-wired into the
chip, these multi-core, programmable processors are mexibli. Every time network
designers have new ideas about applications, protocolgaritams, they can program the
device and get the router running. In the ASIC world, thisasthe case. ASIC designers
normally need much longer develop time to implement the agkwlesigner’s idea on the
chip. What is worse, as the Internet technology changesstpvidaen the ASIC is done,
probably the originally “new” idea is already outdated. tiddion, these multi-core, pro-
grammable processors have far more processing power thmajjgpurpose processors.
This processing power comes from the fact that network egptin has inherent paral-
lelism and diferent packets can be processed by multiple cores at the saee This
greatly improves the throughput of the packet processistegy. We can see that specially
design network processors are more suitable for networkcapipon than a general purpose
processor while more flexible than ASIC chips [18].

While multi-core, programmable systems are good canddatenetwork applications,
there is an important problem not solved yet. It is not easgrégram these systems to
make full use of their processing power. As these systems imaNtiple cores and diverse
shared resources, the problem of how to balance workloadch@multiple cores comes
when we try to assign tasks to cores. Since the workload ¢ésys determined not only
by applications that run on processing cores, but also bgdhéent of network trdic. It
is not obvious how to reasonably assign tasks to each coreasdhtere will not be any
bottleneck that might compromise the performance of theéesys In this thesis, | am
trying to find a method that cartfectively program the multi-core devices to unleash their
processing power.

My method involves the following steps.

e Application partitioning. This step involves partitiogirthe network application
graph into more detailed task graph. Nodes in task graphhardasic computa-
tion steps in the network application. This step is necgsbacause we need to
divide the application into pieces so that each one of thembeaprocessed by one

of the processors.

e Task mapping. Task graph is annotated by profiling inforamatiThe annotated task
graph is then mapped to the multi-core, packet processstgiss using mapping al-
gorithms. This step is crucial because it determines héectvely those computing

resources can be utilized and how much contention occurhaned resources.

e Dynamic Adaptation. This step involves the dynamic chaggihthe mapping after
some time interval. This step is important because netwsogdynamic system. A
single fixed mapping will not create afrffieient network processing system, so we

need to monitor the online tfizc and adjust the mapping accordingly.

CHAPTER 2
RELATED WORK

Parallel Computing is a form of computation in which manytiastions are carried out
simultaneously [15], operating on the principle that lapgeblems can often be divided
into smaller ones, which are then solved concurrently. @laee several flierent forms
of parallel computing: bit-level parallelism [12], insttion-level parallelism [21], data
parallelism [16] and task parallelism [19]. Bit-level pefism is achieved by increasing
the word size of the computer. Instruction-level paradiglican be done in many ways, such
as by reordering of the program so that a program can be ceubito diferent groups that
can be executed in parallel without changing the resultapatallelism means distributing
data across flierent computing nodes to be processed in parallel. Taskelema targets
the program that entirely fierent calculations can be performed on either the same or
different sets of data. Parallel computers can be roughly tesiccording to the level
at which the hardware supports parallelism - multi-core andti-processor computers
having multiple processing elements within a single maghivhile clusters and grids use
multiple computers to work on the same task.The followingfise discusses the classes
of parallel computers. Then we present the previous worlerutilization of the parallel

computers including task partitioning algorithms and taslpping algorithms.

2.1 Classes of Parallel Computers
Parallel computers can be roughly classified accordingddetel at which the hard-
ware supports parallelism. The classification reflects ilfier@nce between computing

nodes, the memory organization and the connecting medium.

2.1.1 Cluster

A cluster [11] is a group of loosely coupled computers thatkntogether closely, so
that in some respects they can be regarded as a single cor@tugéers are composed of
multiple stand-alone machines connected by a network ssifdmsalocal area network. So
each computing node is a single computer. It is not necesisargomputers in the cluster
be symmetric, load balancing will be easier to achieve iy hwe. The most common type
of cluster is the Beowulf cluster [20], which is a cluster iempented on multiple identical
commercial éf-the-shelf computers connected with a TiBPEthernet local area network.
Beowulf technology was originally developed by ThomasI8tgrand Donald Becker. The
vast majority of the TOP500 supercomputers are clusters.

It is worth to mention grid computing, a special type of cerstomputing system [7].
Grid computing makes use of computers communicating owelriternet to work on a
given problem. Because the grid computing nodes communibabugh Internet, the cost
of communication is relatively high. So itis optimized foomloads which consist of many
independent jobs or packets of work, which do not have toesdata between the jobs
during the computation process. Grids serve to managelteatbn of jobs to computers
which will perform the work independently of the rest of thedgcluster. Resources such
as storage may be shared by all the nodes, but intermedsatiksref one job do notféect

other jobs in progress on other nodes of the grid.

2.1.2 Multiprocessor

A multiprocessor system has multiple processors on the samtteerboard. These pro-
cessors can be symmetric (SMP) [22] or asymmetric(ASMP)The most common type
of multiprocessor is symmetric multiprocessors. A syminatrultiprocessor is a com-
puter system with multiple identical processors that sinaeenory and connect via a bus.
These systems allow any processor to work on any task no métere the data for that

task are located in memory. Bus contention prevents bustactires from scaling. As a

result, this kind of systems generally does not compriseerttzain 32 processors.Because
of the small size of the processors and the significant remtuah the requirements for
bus bandwidth achieved by large caches, such symmetrigpradessors are extremely
cost-dfective, provided that a flicient amount of memory bandwidth exists. An asym-
metric multiprocessor is comprised of multiple unique gssors, normally with a master
processor and multiple slave processors that are designagpécific tasks. Examples of
asymmetric multiprocessing include many media procedspscthat are a relatively slow

base processor assisted by a number of hardware accelevedsr

2.1.3 Multicore Computing

A multicore processor is a processor that includes mulggéution units on the same
chip [3]. A multicore processor can issue multiple instioies per cycle from multiple
instruction streams. Cores in a multicore device may shaiagle coherent cache at the
highest on-device cache level (e.g. L2 for the Intel Corer2nay have separate caches
(e.g. current AMD dual-core processors).The processesmssilare the same interconnect
to the rest of the system. The proximity of multiple CPU cooesthe same die allows
the cache coherency circuitry to operate at a much highekdadlate than is possible if
the signals have to travelffechip. Multi-core systems are very popular nowadays, the

representative systems include Core, Core 2 and Xeon fraghdtc.

2.1.4 Network Processor

A network processor is an integrated circuit which has aufeaset specifically de-
signed for the networking application domain [24]. The geneetwork processor has the
architecture shown in figure 2.1. We can see that a networgegsmr normally includes
multiple RISC cores. It also has dedicated hardware for commetworking operations,
high-speed memory interfaces, high-speed 10 interfatesface to general purpose CPU
etc. Network processor designers fronffelient companies have made vastlifetient de-

cisions about/O interfaces, memory interfaces, and programming modgstes archi-

Figure 2: Generic network processor

- ST — e —

CPU Interface Memory Interface
| mmcon e naons | [veccon
_lét.:..tm_e_ : l:,:,;:, _nsc:m
i PC |"’E’[“"‘_ H;ngh ﬂpeﬁdhtelfm

Figure 2.1. Generic Network Processor Architecture

tecture and the type of hardware acceleration to include.eXamples of existing network
processors include C-5 digital communication processoy, [htel 1XP2400 [18], Lucent

network processor, Sitera network processor etc [23].

2.2 Task Partitioning Algorithms

Parallel program development includes four stags as shoviigure 2.2. The parti-
tioning stage of a design is intended to expose opportsribieparallel execution. Hence,
the focus is on defining a large number of small tasks in ordetigld what is termed a
fine-grained decomposition of a problem.The tasks gerelgta partition are intended to
execute concurrently but cannot, in general, execute iruldgntly. The computation to be
performed in one task will typically require data assodatgth another task. Data must
then be transferred between tasks so as to allow computatfgmoceed. This information
flow is specified in the communication phase of a design.Irtid stage, we move from
the abstract toward the concrete. We revisit decisions nmetthe partitioning and commu-
nication phases with a view to obtaining an algorithm thakt eéxecute diciently on some
class of parallel computer. In particular, we consider \Wwheit is useful to combine, or

agglomerate, tasks identified by the partitioning phasessi provide a smaller number

Partitioning

v

Communication

v

Agglomeration

v

Mapping

Figure 2.2. Parallel program development flow

of tasks, each of greater size. We also determine whetrewbithwhile to replicate data
andor computation.In the fourth and final stage of the paraligbathm design process,
we specify where each task is to execute [6].

In this section, we discuss the related work done in tasktjpening area. Task parti-
tioning is a crucial step for parallel computing applicatidf task is well partitioned and
the dependency among modules is minimized then the pacalteputing system is more

possible to be fully utilized.

2.2.1 Analysis Scheme

The philosophy of analysis scheme is to take a program dedigy an application
designer in a traditional programming language such as+G, €c, analyze the program
and partition it into multiple independent tasks. This oséni fact an ideal method for
task partition since we can still follow our familiar seqtiahprogramming style and at
the same time enjoy the power of parallel computing. Thedddgia of this scheme is to

extract the program dependency graph and partition thjghgréhere are several proposed

methods in this scheme. These methods are distinguishé&e igranularity at which the
program is partitioned. In a coarse level, the original paog is investigated for parts of
program that can be executed in parallel by inserting quig@s In a refined level, the
original program is compiled and the asm code is investthatel reordered then grouped
together to achieve parallelism [29]. The granularity céso e adapted as needed as
in [35]. Analysis scheme hides the parallel architecturesmfsoftware designer, which
can facilitate the development of the software. But thisesed has a big limitation since
it is not obvious how to partition the program into parts twét not have communication

and synchronization issues such data dependency, datatency etc.

2.2.2 Construction Scheme

The construction scheme tackles the parallel problem inffardint way. Instead of
trying to partition the program, this scheme creates newnarmming models at the very
beginning, the program is designed with parallelism in mifildese parallel programming
languages make assumptions about the underlying memaohnjtettire - shared mem-
ory, distributed memory, or shared distributed memory. r&thanemory programming
languages communicate by manipulating shared memoryblasia Distributed memory
uses message passing. POSIX Threads [9] and OpenMP [4] aref twost widely used
shared memory APIs, whereas Message Passing Interfacg [@fiBthe most widely used
message-passing system API. One concept used in progrgnpauiallel programs is the
future concept, where one part of a program promises toatadivequired datum to another
part of a program at some future time. In network applicatoea, Click module router
toolkit [14] also follows this scheme. The building block® dasic network processing

steps. The network application is built by connecting thedeenents together.

2.3 Task Mapping Algorithms

Task mapping is another very crucial step in parallel comguparadigm. It directly
affects the performance of the parallel computing system. @kle mapping algorithms
can be roughly classified as: graph theoretic algorithmshemaatical programming and

heuristic algorithms. In this section we review these atbaors.

2.3.1 Graph Theoretic Algorithms

Graph theoretic algorithms are very popular algorithmgdsk mapping because task
partitioning process can normally generate dependenphgrithe program which fit right
into the graph theoretic algorithms. The input to graph tego algorithms is a graph of
partitioned tasks annotated by task execution time, congation cost or some other pa-
rameters. The graph theoretic algorithms are used to ipartihe annotated graph into
multiple subgraphs and assign each one of them to the apai@pKecution cores. Exam-
ples of graph theoretic algorithms for task mapping incloetvork flow algorithm in [32]
which uses Max FloyMin Cut algorithm to find assignments which minimize totakex
cution and communication costs, shortest tree algorith{Blimwhich describes a shortest
tree algorithm that minimize the sum of execution and comation costs for arbitrarily
connected distributed systems with arbitrary number o€g@ssors provided the intercon-
nection pattern of the modules forms a tree, A* algorithm] [dich describes a graph
matching approach that match task graph with distributatiesy to achieve optimal task

assignment.

2.3.2 Mathematical Programming

Mathematical programming [36] [34] [27] approaches th& tagpping problem in an-
other way. This method considers the resource constrairiteeanultiprocessor systems
such as computation resource constraint, memory capamsti@int, communication con-

straint. The constraints are represented by mathematealalities and mathematical pro-

10

gramming is formulated. The filerent constraints such as computation, communication,

memory lead to many fferent versions of mathematical programming.

2.3.3 Heuristic Algorithms

Since task mapping problem is NP problem, heuristic algor#t are often developed
to tackle such problem. These algorithms include well-kn@wnulated annealing (SA)
algorithm [31] which recursively searches the mapping spand stop when the criterion
is met, genetic algorithms [5] which simulate the evolutpocess and let the mapping
evolves itself until a good mapping is obtained. Other cméted heuristic algorithms
include modified flow algorithm in [25] which augments the flalgorithm with additional
parameters and objectives to achieve a better balanceoceakkAlso some algorithms do
some extra operations such as duplication to the task goagthieve a better balance [26].
The decision of which tasks should be duplicated is derivewh the profiling information
of the task graph. Heuristic algorithms are where innovetican be made as long as we

can pinpoint the key property of the problem.

11

CHAPTER 3
SYSTEM CONFIGURATION PROCESS

As we mentioned above, router design with multi-core, pragnable device involves
three steps as (1) Application partitioning (2) Task maggnd (3) Dynamic Adaptation.

Here in this chapter, we are going to describe the designabf ebthese steps.

3.1 Application Partitioning

When we start our router design process, the first thing weloas to write the source
code for the application. Then we can construct an apptinagiraph according to the
source code. In the application graph, we have nodes repnegéhe processing steps we
need in our packet processing system and the connectionsdreinodes that specify the
sequences of the processing steps. An application grapthé@dsrm as Figure 3.1. Each
block node represents the processing step and a directedratigates that there may exist
some packets that require a processing step from where ¢fesceiginates followed by the

step to which the edge points.

A2

A5

> —> An -
A6

|
"/

A4

Figure 3.1. Application Graph

12

After an application graph has been constructed, we needrtdipn the applications
to smaller pieces so that they can be processed by procassisgn the processors. We
call these smaller pieces “tasks”, which are also the basjgpimg units in our work. One
important issue here is how to determine the granularityheftasks. In the finest level,
where each task represents each instruction, the outcolineenan incredibly large task
graph and intractable number of tasks. In an ideal world,revlvee can have a super
intelligent computer, this partition scheme maybe perfetause we can explore every
possible parallelism in our application. But the realityfas from perfect, neither our
computer is able to store such a large amount of informatarcan it process them fast
enough. In the other end, if the task is too coarse, then welagié a lot of valuable
information in the application. We will not be able to utdizhe parallelism inside the
application enough which will lead to a low-performancekeeprocessing system. So we
should carefully set our task granularity to find a balandatgmetween these two extremes.

In our work, we define the tasks by examining the source codddamtifying major
functions. So semantically, these tasks represent fundi@ierocessing operations that
occur in the context of packet processing (e.g. protocotéeaxtraction, loop within
router lookup algorithm, checksum computation etc.). Ifwge Click modules to design
the router, then the Click modular router configuration readly a task graph itself. The

partitioning result is illustrated by Figure 3.2.

3.2 Task Mapping

From application partitioning, we have constructed a taskly of our packet process-
ing system. Our mission now is to assign each of these taspeotessing units. This
process is the most critical step in our work because it hiréetermines the performance
of our system. Generally speaking, this step is a graphtjoenitig problem which can be

formalized as below.

13

0==0
T e

o)
Dy O O iy O e
: > o

/

Figure 3.2. Task graph

3.2.1 Task Mapping Problem Statement

From application partitioning, we have a task graph wiitimodest,, t,, ..., tt and di-
rected edges, ; that represent processing dependencies betweert @stt;. As for our
target processing system, we assume that therdl gm®cessors withM processing units
on each one of them. Each unit can process one task at a tirhe sgdtem can process
N x M tasks concurrently. We also assume that processor inteecbprovides connectiv-
ity from any processor to any other processor. The objectivair mission is to partition
theT-node graph intdN pieces with each piece has no more thnodes. In mathematical
format, we are going to find a mappingthat puts each of tasks to one oN processors:
m: t,....,tt — [1,N]. The mapping has to meet the constraint of resource lirartat
¥, 1< j<N:tm{)=jl <M.

The objective is to find a mapping that can maximize the thinpug or a mapping
that can provide the most balanced processor utilizatione fivo goals are equivalent
because such a mapping can provide the highest overallghpo without overloading
any particular processor.

We need to mention here that tasks can be assigned to onetglepitocessors or even

not be assigned at all. The reason is thélfedent tasks may haveftkrent computation

14

requirements in dierent situations. We will further discuss this issue whertaile about
task duplication in the later section.

Now we have formalized the problem. But the task graph fropliegtion partitioning
only gives us the functionality and connectivity of nodasotder to maximize the through-
put of our system, we need to get the information of the watlof each node so that we
can do the mapping. So before we can actually do the mappiadnawe an initialization

step in which we collect the workload profile of the applioati

3.2.2 Runtime Profiling

There are two profiling schemes called static and dynamicthénstatic profiling
scheme, workload information is collecteff-bne and used to do the mapping for the
system while dynamic profiling collects the workload infatmon when the system is op-
erating. We know that the workload of the packet processysgesn is #ected by two
factors. One is the computation characteristics of thestasthe systems. The other is the
network trdfic that exercises the processing system. While the compo#dtcharacteris-
tics of the tasks are fixed in a particular system, the netivefic is changing every minute
during operation. Especially when more and more serviceadted to packet processing
systems, the number of fia types will increase quickly and processing requiremefit wi
become more data-dependant. So to accurately charadieeizeorkload information, we
need to use runtime profiling scheme.

During runtime, we collect the following information:

1. Task service tims: For each task;, we determine the service tineemeasured in
number of instructions executed per packet. Since thisevalay be dterent for

each packet, we considsras the expected value from a random varighle

2. Edge utilizationu(e ;): Atthe completion of each processing tasks, we observeavhe
the packet is processed next. This transition from tas& taskt; is denoted as

utilization u(e ;) of edges, ;.

15

3. Task utilizationu(t;): Based on edge utilization, we can derive the utilizatibm o

particular task; which is denoted by(t;).

Based on these values, we can derive the values to anncgatesthgraph.
After constructing this annotated workload graph, we carelibg our task mapping al-

gorithm to do the actual mapping. Algorithms are descrilpetthé following two chapters.

3.3 Dynamic Adaptation

In order to make the packet processing system always runoptmal setting, we need
to dynamically change the mapping. We call this process miymadaptation. The step is
important because the processing workload required byarkttvattic cannot be known
in advance because end-systems may send packets to amgrgro@stination using any
protocol in any time. Generally, we have two ways to tackls fitoblem. One is to over-
provision for any possible tfAc scenario. Using this measure, we need to predict all the
possible tréic and set our parameters to meet the worse case scenario.€fisemin one
hand can not produce best performance since it pessintigtastimates the situation, in
the other hand, it is getting harder to predict thefitsbefore hand since more and more
services are added on the packet processing systems. Beauwfahese shortcomings, we
decided to take the second method, which is to dynamicalpour system.

To collect the real time tféic information, we need to monitor the dynamic trends of
the processing workload. We collect the run-time utiligatparameten(t;) andu(e, ;).
These values can be directly used in the next mapping procassext problem we need
to answer is how frequently we should do the re-mapping. Ifdeghe re-mapping in
too short a time period, then the re-mapping cost will be tigh land d@fect the overall
system performance. Also it can generate re-mapping tlaiieisted by tréfic bursts that
are not representative of the overall workload. But if we li®te-mapping in an extended
period of time, the system may alsai&r from inferior performance because of unsuitable

mapping. So we need to carefully find a mapping interval tlsett lbalance these two

16

situations. Generally, the interval should depend on theklwad change patterns. If the
workload changes a lot, that means that we need to do the ngapgain. In our current

work, we use a fixed mapping interval according to our expege

17

CHAPTER 4
APPLICATION MAPPING

From last chapter, we know that the system configurationlwegthree steps as (1)
application partitioning (2) task mapping (3) runtime atddjpn. We also had formalized

the task mapping problem. In this chapter, we describe #itgos for task mapping.

4.1 Task Duplication

From runtime profiling step, we have collected three runfpraemeters of the system.
Using these parameters we can find the values that can clegghsent the real workload
that a task can place on processing resources. In order telthodl computationally de-
manding a task is we need to consider both its expected catigutime and its frequency

of being used. So we assign to each task rpthe weight:

w;, = u(t) - E[Si]. (4.1)

During our runtime-profiling phase, we found th#t) for some tasks can be very large
in some periods of time which lead to a langevalue. This phenomenon is not good for
our mapping phase because task computation complexigemaitterent from each other.
So we need to try to evenly distribute the valuesyfThe measure we take is to duplicate
those heavy-duty tasks. That is to create additional icsfor those heavy-duty tasks.
These duplicated instances are fully connected to the samde@essor and successor tasks
as the original task. We assume that the predecessor disipackets uniformly among
all task instances and thuffectively reduces the utilization of each task instance.sThi

procedure can be illustrated by Figure 4.1.

18

task duplication

Figure 4.1. Task Duplication Example

Now here comes the problem of how to duplicate the task. Wel nealetermine
which task to duplicate and how many instances should beetted he intuition is that
we should duplicate the most heavy-duty ones first and baldre amount of work that
each task performs in order to simplify the mapping proddsthe same time, we also
need to meet the constraint that the total number of tasknest is not more than the
number of computing units. So we can use a greedy scheme &ajerour duplication
and continuously check the constraints. To better desonbeluplication scheme, we use
some new notations. We use parameteto indicate the number of duplicated instances
for taskt. These instances are naméd..,t*. Any incoming edges;; from taskt; to t
is duplicated:ej;s, ..., €4 Outgoing edges are also duplicated in the similar way. Due t
the reduced edge utilization afe;;)/d;, fewer packets are processed by each task instance
and the task utilization decreasesu{))/d;. So the amount of work required by each task
instance is denoted ag:

W = u(t)

o E[Si]. (4.2)

The algorithm is described by Algorithm 1. Heaegmax (w/) is a function that returns

the ID of node with maximum workload.

19

Algorithm 1 Task Duplication Algorithm.
1: while ¥, di < N-Mdo
2: j < argmaxw,
3: dj — dj +1

4: end while
F T T T T T T

2M | -
w0
[
S
B
=

£ 1.5M .
£
ks
)
o]

IS iM i
5
2
=
K

O 500K i
=<
o
=

0_H+ MR MR T e

0 10 20 30 40 50 60

Instance Number
Standard —+— Duplicate ---+---

Figure 4.2. Workload distribution comparison

This algorithm can produce a more balanced workload. Thigsiigied by our experi-
mental results. One impressive result is shown by Figurd-tbgn the figure, we can see
that before duplication, only 25 task instances exist andgssing requirementsttér by
several orders of magnitude. After duplication, we haveas4 tnstances (sind¢- M = 64
in our experimental setup) with much more balanced workl@dus result also illustrates
how difficult it would be to find a balanced mapping when using taskisawit duplication.
A single task with large processing requirements wouldesgnt a bottleneck in the packet

processing system.

20

4.2 UDFS Mapping Algorithm

A mapping problem has been formalized in the last chaptee dijectives of map-
ping are to evenly distribute the tasks to processing uniismainimize the communication
between dterent processors. In our duplication phase, we have slieediy tasks into
smaller ones toféectively generate tasks with similar workload requirem&ut when we
do the mapping, the workload of each processor can be evitiibdted considering that
each processor has the same number of processing units emamea of these process-
ing units can process one task at a time. As for minimizingcth®munication between
processors, this is crucial because communication resasixery limited in current multi-
core, programmable system. Over frequent communicatibndss: processors requires
more storage resource and communication links and will@sise long queue etc. which
greatly depreciate the overall system performance. So wmaldhry to keep adjacent tasks
in the same core, in this way, when a task passes packets tioeariask, the state can
efficiently be transferred through local registers. So our gjiné is that we should try to
cluster adjacent tasks together and we should also put thigbautilization edges in one
core instead of letting them cross two cores. Following ghisleline, we can construct our
intuitive algorithm which we called utilization-based dejfirst(UDFS) algorithm. The al-
gorithm greedily clusters tasks on a processor until alcessing units are fully utilized.
The key aspect of the algorithm is the order in which the taslplg is traversed. High-
utilization edges are traversed first to increase taskitlycahd reduce interconnect usage.
The algorithm is shown in Algorithm 2.

A more detailed description of this algorithm is as followse initially map node;,
which is assumed to be the ingress node for affitrato the first processor. Then, using
the map_next function, we search among all outgoing edges to find that thi¢hhighest
utilization. If there are still resources available on tlaeng processor, the task that is
pointed to by this edge is mapped to the same processor. V@$ieit is mapped to the

next processor. This process is repeated recursively teaeldepth-first mapping. The

21

Algorithm 2 UDFS Task Mapping Algorithm.
1: function mapnext(,p)
2: while 3 e ; with t; unmappealo
3: k.« argmax(u(e,j)) /find the node connected by the heaviest utilized edge
4 if tasksallocatedto(p) < M then
5 //if there are still available processing units on core p.
6 m(ty) < p//assigny to core p
7 p « mapnextk,p) /map the next node
8
9

else
//if there are not available processing units left on core p

10: m(ty) < p+ 1//assignt to corep + 1
11: p « mapnextk,p + 1) /map the next node
12 endif
13: end while
14: return p
15:
16: function map()
17: m(ty) « 1
18: map.next(1,1)
19: return m

recursion terminates when a node has no outgoing edges tappad tasks. The variabte
keeps track of which processor is currently being used &k &location.

We should also note that (1) The algorithm maps tasks anddbplicates. To simplify
notation, only tasks are mentioned. (2) If the ingress tashfierent fromt,, the algorithm
can be easily adapted. (3) We assume that a packet transfgrdreprocessors is the basic
unit of interconnect usage. In some cases, it may be pogbiale¢he interconnect usage
is variable. This can occur whenfliirent amounts of processing state needs to be sent
between processors. In such a scenario, the algorithm wsela diferent function inside

the argmax function.

4.3 KL algorithm
UDFS is simple and intuitive. It can produce decent mappiogthe packet processing
system but it, by no means, is the best mapping algorithm. éalnlthat task mapping is

essentially a graph partitioning process. So we can exjtotiee well researched graph

22

partitioning field and pick some existing algorithms andeext them for our purposes.
One of the good candidates is Kernigfan Algorithm (KL) algorithm.KL algorithm is
an iterative graph partitioning algorithm. Given a graph= (N, E, Wg) with nodes and
weighted edges and an initial partitioning of the graph at G; + G, and|G,| = |G|
Here |G| is the number of nodes iG. Now letC = cost(Gy,Gy) = X WEVE(Gy, Gy),
that is the cost of the partitioning is equal to the weightslbthe edges that cross the
partitioning. The goal is to minimiz€ for a givenG. To do that, letX be a subset of
nodes ofG; andY be a subset of nodes (&, such thatX| = |Y|. If we were to switchX
andY, we would not change the number of nodes in each of the tworaphg. However
we could then calculate a new cost of partitioning with ¢ X) JY and G, - Y)U X;

if the cost of the new subgraphs is less than the cost of theudddraphs, then we should
accept the new subgraphs in place of the old subgraphs. Tdkeotr KL algorithm is
efficiently finding subsets of nodesandY to swap. LetEx(n) equal the external cost of
leaving noden in subgraplG, (i.e. Y, WeVE(n, G,)) andln(n) equal the internal savings of
leaving noden in subgraphG; (i.e. >, WeVE(n, G1)). The value of switching node into
subgraplG; is D(n) = Ex(n) — In(n). D(n) can be similarly calculated for all nodes@3.
With theseD(n) values assigned to each node, the comparison of two subgimcomes
simple. The value of switching two nodesandY betweenG; andG, is: gain(X,Y) =
D(X) + D(Y) — 2« WE(X,Y). Note that sinceX andY remain in diferent subgroups, the
benefit of removin@Ve(X, Y) disappears for switching. The Kernighiam Algorithm thus

steps through the problem of improving a partitioning asdbed by Algorithm 3.

4.4 Extended KL Algorithm

From the description of KL algorithm in the last section, ve@ cee that KL algorithm
has limitations when applied to our mapping problem. KL alipon requires that all the
nodes have the same amount of weight and the initial parsitttave the same number

of nodes in each partition. These two conditions are nosfsadi in our problem. Our

23

Algorithm 3 KL Task Mapping Algorithm.
1: repeat
2. ComputeD(n) for all nodesnin graph.
Unmark all nodes in the graph.
while Unmarked nodes exisio
Find two unmarked nodes andY that maximizegjain(X,Y)
Add X, Y andgain(X, Y) to ordered list.
Mark nodesx andY.
UpdateD(n) for all unmarked nodes asX andY had switched.
end while
10: Pick j maximizing Gain, the sum of the firgtgains on the ordered list.
11: if Gain> Othen

e A A

12: UpdateG]_ =G —-X+Y.

13: Updater =G,-Y+ X

14: Updatecost(G1, G,) = costyg(Gy, Gy) — Gain.
15: end if

16: until Gain< 0

task nodes have fiierent workloads thus flerent weights and the initial partitions are not
well balanced either. When these conditions are not satjdfies KL algorithm, which is
designed for min-cut problem, may give us low communicagiartitions but with inferior
workload balance.

In order to overcome this problem, we decided to modify thie §anction in original
KL algorithm. In original KL algorithm, only edgecut gainsseconsidered. In our modified
gain function, we also consider the balance gain, that id¢iceease in workload fierence
between two partitions. With balance in mind, our new gaincfion is formulated as 4.3,
wheregainggec IS formulated as 4.4 angainpance iS formulated as 4.6. We can see
that Aegect IS the originalgain(X,Y) in KL algorithm. Parametew is used to set the
percentages of gains from edgecut and workload balanceettotal gain. The bigger is
thea, the higher percentage of edgecut gain contributes to takdain. Whenr is equal

to 1, this algorithm becomes the original KL algorithm.

gain(X,Y) = @ - gaiNeggecut + (1 — @) - gai Npajance (4.3)

24

gai nedgecut = Aedgecut/ edgeCUtold (4-4)

Aedgecut = €dQECULyq — €QECUL ey (4.5)

0ai Npajance = Aworkioadni £ /WOrkloadDi f foq (4.6)
workloadDi f f = |workload(X) — workload(Y) 4.7)
Aworkioadpiff = WorkloadDi f fyq — workloadDi f frey (4.8)

4.5 Simulated Annealing Algorithm

Simulated annealing(SA) is a probabilistic and iteratilgoathm. It simulates the
metallic annealing process. During this process, the met#ist heated to a very high
temperature so the atoms gain enough energy to break cHdmitds and become free
to move. The metal is then slowly cooled down to a lower iraéemergy. The metal is
then heated again and again to get the atoms out of local mmimternal energy and give
them a chance to find the global minimum internal energy state

When applying this technique to our problem, we can see beatawest energy we
are going to get here is the inter-processor communicabehar the workload dierence
between the processors or both. So itis easy to come up withitdm 4. The diiculties
are in how to tune the algorithm to get the best results. Inukited annealing algorithm,
parameters such as initial temperature, temperature sfgaagheme and number of itera-
tions under each temperature greatlget the &ectiveness of the algorithm.

In our experiment, the initial temperatufg is determined by first pairwise swapping
the nodes in two initial random partitions until all the nedeave been swapped to the
other partition. In each swapping, the energy which is theriprocessor communica-
tion cost of the resulting partitions is computed. The alitemperature is then set to 20
times the standard deviation of the energy for these swabis sStheme can generate an
initial temperature that accepts high percentage of swapsei initial stages of annealing

algorithm [33].

25

In our experiment, the temperatufeis updated byl « k- T, where O< k < 1is
an update factor. The adjustment of temperafurgan involve complex procedure [33].
But in our experiment, we just keep it simple and use a cohstamberk to update the
temperature.

The number of iterations under each temperature has a hygeciran the quality on
the partition. Our guideline is to find a number that can giseawdecent result but does
not cost a lot of computation time. In our experiment, we us&lumberof Nodes as the
number.L is determined by doing experiments and pick the smallekat can satisfy our

needs.

Algorithm 4 SA Task Mapping Algorithm.
1. T« To
2. generate a starting solutien
3: while T > Tgop do

4 fori=1toi =L-Number of Nodesdo

5: generate a new solutidnn the neighbor ok
6: AE « E(t) — E(9)

7 if AE < Othen

8 St

9 else ifexp(—AE/Tk) > random[0, 1] then
10: St

11: end if

12: end for

13: T« k-T

14: end while

4.6 Merging and Duplication

In the last chapter, duplication method is proposed. Thdichtpn process slices the
big nodes to multiple smaller nodes. This process greathyawves the balance of overall
workload distribution. But after we do the duplication, frdhe resulting figure of node
workload distribution, we can still find variations in woddd distribution. The problem is
caused by the smallest nodes. Those smallest nodes reitfleredmputation power but

they still seize processors for themselves. The duplingirocess is not able to tackle this

26

problem so we need to do the inverse operation “merging” tinéw improve the balance
of workload distribution. The idea is that we merge thoselbnmales together to produce
large one or merge those small nodes to its bigger neighbotisis way, it will yield spare
computing units so we can have more processing units to ddupkcation to improve
the workload distribution. But the merge process is not esgttforward as duplication
process. We can not arbitrarily merge any two small node® riire we need to follow
is that, when we merge two nodes we simply combine these twesitmgether, we don’t
add any new functionalities to the merged node. Figure 4pctiethree situations where
nodesA andB are not able to be merged. In case 1, node A and B are not negghlmo
case 2, node A has more than one outgoing edge. In case 3, nbds mBore than one
incoming edge. These three situations are where nodes ¢drenoerged. In situation
depicted by Figure 4.4, node A and B can be safely merged.idrsituation, node A has
only one outgoing edge and node B has only one incoming edggid situation, we call
node A and node B are eligible to be merged. This is one of thatgns that our merge
algorithm will try to identify and use.

Following these rules, we can develop our merge-and-dafglialgorithm. There are
three possible schemes depending on the order we do the aredgduplication. We can
do the merge first then do the duplication. Or we can do theichtpn first and then
do the merge operation. Or we can do the duplication and natgmatively. Here we
explore the first scheme. We first do the merge and then we dhutiiecation. The process
goes as follows. We first compute the optimal balanced warkfor each processing unit.
Then we search our task graph to find the nodes that have veorkéss than the optimal
workload. We then try to merge the nodes together or to treghbors. The process can
be depicted by the algorithm 5.

Our experimental result shows that this merge-then-daggialgorithm can produce a
better workload distribution then the original duplicatiamlgorithm. This is verified by the

Figure 4.5.

27

.
o

Case 1

Case 2

’>@—> Case 3

Figure 4.3. Situations where Nodes A and B can not be merged

Figure 4.4. Situations where Nodes A and B can be merged

28

Algorithm 5 Task Merge-then-duplicate Algorithm.

1: unmark all nodes
20 Wopt = Wiota /N - M
3: while 3 unmarked node, with w(node) < Wep: do
find the unmarkeaode with the smallest wode)
check with its neighbors
if mergeableéhen
merge the node to its neighbor
else
marknode
10: endif
11: end while
12: do the duplication

©ce N a-s

T T T T T T
140K - _
%))
c
il
S 120K | -
2
17
£ 100K - -
.,.6 +—++++++++++++++++k ++
f— H_k\
2 80K | H —
S BT
> ‘\
Z 60K i —
£ by
© “
© 40K - \ -
X Py,
o | \ -
= 20K +*-|—|—+++
0 ! ! ! ! ! L %
0 10 20 30 40 50 60
Instance Number
Duplicate ---+--- Merge-then-duplicate

Figure 4.5. Comparison of duplicate and merge-then-duplicate schemes

29

CHAPTER 5
EVALUATION OF ALGORITHMS

In this chapter, we implement the algorithms described enaist chapter, generate the
results, plot them and do the comparison. We also searchdauitable parameters for ex-
tended KL algorithm and simulated annealing algorithmalyrwe do the explorations in
an architectural perspective. We apply our algorithms fiedént multi-core architectures

and plot and analyze the results.

5.1 Simulation Environment

Our simulation can be divided into two phases: Workload Bngfand Task Mapping.
During workload profiling, we use PacketBench [28] to eviduihie processing require-
ments of each packet in a trace of networkiica PacketBench provides an instruction
trace of each processor instruction executed and thussliswo accurately determine uti-
lization parameters™(t;) andu™ (e j) for each intervat and the distribution of service time
Si (measured in instructions executed). During task mappasis are duplicatéeherged
and mapped as described above. This process is repeateacfoingervalr. The over-
all process is depicted by the flow graph 5.1. In figure 5.1mndiads represent files and
rectangles represent programs. First PacketBench takkstgeace file and network appli-
cation source file and produces instruction trace file. Gggaterator then takes network
application file and instruction trace file and produces w@siph. Then task graph and
instruction trace file are put in profile generator to get acaated task graph. Then our

mapping algorithm is used to generate mapping for our system

30

Packet

Trace File
P Network
PacketBench |« APPs
y A
Instruction o
Trace File »{ Graph Generator

Profile Generator

< Task Graph

A

Annotated
Task Graph

4

Architecture
Settings

Mapping/Merging/
Duplication
Algorithms

l

A

System
Configuratio
n

Figure 5.1. Overall Simulation Flow

31

In our simulation, we first assume a packet processing systdmN = 8 processors
with M = 8 threads each. The processor interconnection providesectivity from any
processor to any other processor. More architecture getline examined in the archi-
tecture exploration section. We assume that re-mappirgstplace at intervals of 1000
packets.

We use two dierent packet traces in our experiments in order to exerhsaystem

with network trdfic that exhibits dferent levels of workload dynamics:

e Trace 1: This trace is obtained from the Internet uplink afiostitutional network.
It represents real network tiec and exhibits a low amount of dynamic variation. The

trace is 100 intervals long.

e Trace 2: This trace was generated synthetically by splisexgral diferent traces
together. The resulting workload changes dramaticallyyet® intervals so require

a drastic change in allocated processing tasks. The traceimgervals long.

The processing applications in our workload are shown imeid.2(a) with their re-
spective dependencies. By partitioning these eight agipdics, we obtain the task graph
shown in Figure 5.2(b). The 25 tasks shown in Figure 5.2(b)l@veled with their func-

tional descriptions. Edges illustrate the possible patipgokets through the system.

5.2 Profiling

The results of the profiling phase are shown in Figure 5.3 agdr& 5.4. For each
processing task from Figure 5.2(b), we show the amount ofgesing workw;, that is
necessary. Recall that this value depends on the processimglexity of the task and
its utilization. The utilization of tasks for both tracesalso shown in Figure 5.5 and
Figure 5.6

From the workload profiling figures, we could observe thatehsg a very large dier-

ence between tasks in terms of processing requirementsvartagion ofw; for any given

32

packet
classifier

IPSec
decryption

quality of
service

IPv4
forwarding
(LC trie)

packet
trans-
mission

(a) Application Graph

ipsec_decryption

pattern_search ipsec_encryption

ipsec_dec_ttl
packet_classifier ipsec_construct_header

ipsec_padding

DES3_CBCUpdate

@ ipv4_radix_routing @

B

ipsec_post_process

extract_ip_header ipv4_radix_validate_packet
Update_flow '
ipv4_lctrie_routing

ipv4_|ctrie_validate_packet
ipv4_lctrie_check_ttl

ipv4_radix_check_ttl
ipv4_radix_lookup

send_out_packet
ipv4_|ctrie_lookup

(b) Task Graph

Figure 5.2. Experimental application.

Workload (processing time)

Workload (processing time)

2.5e+06 |-
2e+06 »T
i
1
i
i
i
15e406 1 1 |
N
il
i
L* +
i
iy
10406 [
500000

29 R
= ' ‘\ v B3, A
Pofn, Lo EHE"EBBE‘EEE{ Eraﬂ Dﬂﬁ

Bon, pa
12|
BpgeRgy Ped s g E‘

&X g iii 'uﬁn m"‘"‘u‘Eiﬁ"‘ii‘ﬁs**wﬂ**«‘*W“H*Hk&*x"*"*x‘*‘x’t***“ﬂ“ *x%*ﬁxﬂ**x*ﬂ**mx

0 10 20 30

DES3 CBCUpdale —
DES3_Encrypt ---+---

create_new_flow

drop_packet -+

extract_ip_header ——+-
ipsec_construct_header —<—
ipsec_crypt ---x---

ipsec_dec_ttl

ipsec_decryption -

40 50 60
Mapping interval (1000 packets)
ipsec_encryption ——x-—
. ipsec_padding —*—
ipsec_post_process ---%---
ipv4_lctrie_check_ttl
ipv4_lctrie_lookup %
ipv4_lctrie_routing ——%-—
ipv4_lctrie_validate_packet —&—
ipvé4_radix_check_ttl ---&---

ipv4_radix_lookup

70 80 90

ipv4_radix_routing &
ipv4_I rad|>< validate_packet —-&-—
mwmSearch ——#-—
packet_classifier ——#--—
pattern_search
qos_flow - =
update_flow -

Figure 5.3. Workload for Trace 1.

3.5e+06 3

3e+06

2.5e+06 -

frombo b e

2e+06

1.5e+06 [

1e+06

500000

DES3 CBCUpdale
DES3_Encrypt ---+---
create_new_flow
drop_packet
extract_ip_header
ipsec_construct_header
ipsec_crypt
ipsec_dec_ttl
ipsec_decryption -

Mapping interval (1000 packets)

ipsec_encryption ——x-—
—w—

. ipsec_padding
ipsec_post_process ---%---
ipv4_lctrie_check_ttl
ipv4_lctrie_lookup ~*
ipv4_lctrie_routing ——%-—
ipv4_lctrie_validate_packet —&—
ipv4_radix_check_ttl ---&---

ipv4_radix_lookup

- a L =
O S SRR
o~ = e - T - B

ipv4_radix_routing &
ipv4_I rad|>< validate_packet —-8-—
mwmSearch ——#-—
packet_classifier ——#--—
pattern_search
qos_flow - =
update_flow —-#--—

Figure 5.4. Workload for Trace 2.

34

Number of calls

Number of calls

1400

1200

1000

200

1800

1600

1400

1200

1000

800

600

400

200

0

Mg%ﬁﬂﬂb%j\wﬂ&a%ﬁaﬂa

0 10 20
Mapping interval (1000 packets)
DES3_CBCUpdate —+— ipsec_encryption ——x-— ipv4_radix_routing &
DES3_Encrypt ---+--- ipsec_padding —*— ipv4_radix_validate_packet —-8---
create_new_flow ipsec_post_process ---%--- mwmSearch ——#—
drop_packet -+ ipv4_lctrie_check_ttl packet_classifier ——#--—
extract_ip_header ——+— ipv4_lctrie_lookup % pattern_search
ipsec_construct_header —— ipv4_lctrie_routing ——%— gos_flow — =
ipsec_crypt ---x--- ipv4_lctrie_validate_packet —&— update_flow —-m--—
ipsec_dec_ttl ipv4_radix_check_ttl ---8---
ipsec_decryption - ipv4_radix_lookup
L
X [—
o N S S
|
-
e S BREES e . . ‘
0 5 10 15 20 25 30 35
Mapping interval (1000 packets)
DES3_CBCUpdate —+— ipsec_encryption ——x-— ipv4_radix_routing &
DES3_Encrypt ---+--- ipsec_padding —*— ipv4_radix_validate_packet —-8--
create_new_flow ipsec_post_process ---%--- mwmSearch ——#—
drop_packet ipv4_lctrie_check_ttl packet_classifier ——#--—
extract_ip_header ipv4_lctrie_lookup % pattern_search
ipsec_construct_header ipv4_lctrie_routing ——%— gos_flow — =
ipsec_crypt ipv4_lctrie_validate_packet —&— update_flow —-m--—
ipsec_dec_ttl ipv4_radix_check_ttl ---8---

ipsec_decryption

ipv4_radix_lookup

Figure 5.6. Utilization of tasks for Trace 2.

35

I T T T T T T
2M =
)
c
X
3]
2
% 1.5M -
=
©
@
o
£ IM _
S
Z
£
B
© 500K _
=<
o
=
0-_H+ MR MR T e
0 10 20 30 40 50 60

Instance Number
Standard —+— Duplicate ---+---

Figure 5.7. Distribution of Workw, per Task Instance Before and After Duplication for
Trace 1.

task is low for Trace 1 (Figure 5.3). In contrast, Figure Hdvgs high variations due to the
changes in network tfac every 10 intervals.

For the utilization of tasks graphs, we could also obsera¢ ditilization of tasks are
highly dependent on the content offtie.

These profiling results provide evidence for two observetiwe have made earlier: (1)
there is a big dference in processing requirements among tasks and (2)rdtgseements

change dynamically as network fii@ changes.

5.3 Duplication

From the previous chapters, we know that duplication is s&egy to obtain a balanced
workload distribution. So we first use duplication of sedectasks to obtain a more bal-
anced workload. The resulting work (from Equation 4.2) is shown in Figure 5.7 and
Figure 5.8. These figures show the amount of work per tasknestbefore and after du-

plication for one interval from Trace 1 and Trace 2 respetyivBefore duplication, only

36

2M [| | | | | §

1.5M _

500K

Workload in Number of Instructions
[EEY
<
T
|

Instance Number
Standard —+— Duplicate ---+---

Figure 5.8. Distribution of Workw, per Task Instance Before and After Duplication for
Trace 2.

25 task instances exist and their processing requireméiis by several orders of magni-
tude. After duplication, we have 64 task instances (siceM = 64 in our experimental

setup) with very balanced (except for the smallest tasks).

5.4 Mapping:UDFS
This section presents the results from previously desighgieS algorithm. To evaluate

the quality of the mapping algorithm, we consider two metric

e Average Processor Utilizatian The average utilization of all processors is the sum

of all work allocated to each processor dividedbyimes the maximum allocation:

U=

PO (Z{ilm(ti)=j} Wi) . (5.1)

N - max (im)- i) W)

When each processor’s work allocation is close to the maxinthen the overall

average utilization is high. Higher utilization impliesatrmore work gets done and

37

more packets get processed (since the total amount of Whkka; is constant for
any mapping result). Thus, utilization is directly relatedthe maximum line rate
(i.e., throughputR of the packet processing systeR~ U. Thus, higher utilization

uindicates higher system performance.

e Average Inter-Processor Communication Gosthe average communication c@st
represents the number of times a packet has to be sent ategaotessor intercon-

nect:
C= Z{i,jlm(ti);&m(tj)} u(e;). (5.2)

At a minimum, each packet has to be sent once from the incomiegface to a
processor and once from the processor to the outgoingaceeriThusg > 2. Higher
values forC imply more load on the interconnect. Therefore, lower valoEc are

desirable.

Figure 5.9 produced by previously designed algorithms steoaomparison of the per-
formance of three dlierent algorithms using metricsandC. As baselinestatic applica-
tion mapping is shown, which represents the conventional approach kontemagement
on multi-core packet processing systems. Each applicaios allocated to a dierent
processor. The UDFS algorithm is shown in two instances kowit duplication and with
duplication. The prior is an intermediate result to illas&r the importance of task dupli-
cation. The ideal scenario of full utilization and a two pecikkansmission (one ingress,
one egress) is also shown for comparison. The data in Fig@rsh®w clearly that UDFS
mapping with task duplication achieves the highest systéination ti and thus the highest
data ratdR. UDFS mapping without task duplication is practically eglent to static map-
ping since the imbalance in the amount of warkper task prevents arfective utilization
of processors.

The overall performance improvement of UDFS (with dupima} over conventional

static application mapping is shown in Table 5.1. An incesaghroughput (due t& ~ U)

38

2

o 10 T T T T T
c

.8

85

g‘é 8 I * -
3 ®©

EQ

Eo

g2 6 T 7
26

22 L |
S E

o2

oS static application mapping

Ec 2T UDFS without duplication ~ + ®
o) UDFS with duplication X

& ideal ®

‘5 0 | | | | |
s 0% 20% 40% 60% 80% 100%

average processor utilization
(a) Trace 1

10 | | | | |

in transmissions per packet

#
4 | ¥ R -
static application mapping
2r UDFS without duplication ~ + ®
UDFS with duplication X
ideal e
0 | | | | |

average inter-processor communication cost

0% 20% 40% 60% 80% 100%
average processor utilization
(b) Trace 2

Figure 5.9. Interconnect Bandwidth in Comparison to Processor Utilizatidifor Differ-
ent Mapping Algorithms.

39

Table 5.1. Comparison of UDSF Mapping to Static Application Mapping.

Communication Cost | ThroughpuR
Trace 1 1.49% 2.3
Trace 2 1.64x 2.8

Table 5.2.Comparison of KL Mapping to UDFS Mapping.

Communication Cost | ThroughpuR
Trace 1 0.81x 1.01x
Trace 2 0.80x 1.00x

of 2.39-2.8% can be achieved at a cost of 1.49—X@xgher inter-processor communica-

tion.

5.5 Mapping: KL Algorithm

In this section, we implement the KL algorithm and plot theules. We also do the
comparison between KL algorithm and previously designgdrihms.

With our improved algorithm, we can get even better resutagared to UDFS algo-
rithm. We show the results of KL algorithm in Figure 5.10. Wansee that KL algorithm
produces mappings that require less inter-processor cameation cost while maintaining
the similar throughput as UDFS algorithm.

So the overall performance improvement of KL algorithm osenventional static ap-
plication mapping is better than that of UDFS algorithm. [€ah.2 shows that KL algo-
rithm only requires 0.89 of the communication cost as UDFS algorithm while obtaining

the same or even better throughput.

5.6 Mapping: Extended KL
As we mentioned in the previous chapters, KL algorithm hasesbmitations when
applied to our mapping problem. So we modify the basic KL atgm and come up with

this extended version of KL algorithm. In this extended Kggaithm, the gain function is

40

10 T T T T

@
o
o
&
= 8 - .
8¢
5§
EX
58 o X g 1
©n
Q9
sg T i}
[oN e
L @
g]
£E
o 2r —
? KL algorithm
o UDFS w/o Duplication ~ x
@ | | UDFIS w/ Duplicatilon X

0

0% 20% 40% 60% 80% 100%

average processor utilization
(a) Trace 1

- 10 T T T « T
8 »
o
[Kx
il *
= . 8 L e)5%2* _
Q¥
5§
EX
ES 6 < i]
. #<
S5
gg 4 + X Xzé&%gx |
o c
L @
g fre]
£c
o 2 —
? KL algorithm
o UDFS w/o Duplication ~ x
@ | | UDFIS w/ Duplicatilon X

0

0% 20% 40% 60% 80% 100%

average processor utilization
(b) Trace 2

Figure 5.10. Interconnect Bandwidt in Comparison to Processor Utilizatiarfor Dif-
ferent Mapping Algorithms.

41

modified to not only consider the edgecut gain but also wadklbalance. The new gain
function is described by function 4.3. We plot the resultsdidferenta in figure 5.11.

From the figures, we can see that as we increase,ttiee average processor utilization
decreases and the inter-processor communication desreaseThis is because when
is small, we put moreféort to optimize the processor utilization, whiteis approaching
1, we put more fort on inter-processor communication. To find the best patam for
this algorithm, we need to consider the particular systenthé case where inter-processor
communication bandwidth is well flicient, we may want to pick a smalleiso that we can
get a better utilization. While we have limited inter-preser communication but ficient

computing power, we will want a biggerto get a better overall performance.

5.7 Mapping: Simulated Annealing Algorithm

As mentioned in the previous chapters, th@éidulty of simulated annealing algorithm
is to find a good set of parameters that can give us good paditiWe already explained
the ways to obtain some of the parameters. In this sectiorshee the way to obtain
parameter L, the factor for the number of iterations in eaohgerature. Then we show the
results of simulated annealing algorithms and compare tbaesults from KL algorithm.

First, we use inter-communication cost as energy functimhdo the following experi-
ments. To search for the suitable value of L, we run the sitadlannealing algorithm for
L from 1 to 20 and choose the one that give us the best resuksrits of communication
cost and utilization. The results are plotted in the Figue5

From the above figures, we can see that flom 1 toL = 20, the inter-processor com-
munication costs and utilizations have only small variaéidSo to speed up the algorithm,
we useL = 1 as the parameter for all the following SA algorithm implenagion. The
results are plotted in the figure 5.13(a) and figure 5.10(tWmRhe figures, we can see that

SA algorithm can produce the mappings that have the similalify as produced by KL

42

- T T T T
3 14 + + -
o
&
= 4 12 I E -
8¢
[« &}
28 10} ° -
£ A
8 o
o) g 8 a=0 + v .
2% a=0.1
Q.2 6 L a=0.2 X |
o& a=0.3 ©
S a=0.4
L= 4| a=0.5 _
£e a=0.6 e
(&) a=0.7 A
g 2L a=08 =+ -
o a=0.9 v
®© a=1

0 1 1 1 1

0% 20% 40% 60% 80% 100%
average processor utilization
(a) Trace 1

- T T T T
a 14 .
o
S +
‘% = 12 ~ =
of O %
[« &}
28 10 i
S E A []
8 o A
5 g 8 I a=0 + -]
2% a=0.1
= N — V.
S a=0.4
L= 4| a=0.5 _
fSp= a=0.6 e
O a=0.7 A
g 2L a=08 =+ -
o a=0.9 v
®© a=1

0 1 1 1 1

0% 20% 40% 60% 80% 100%

average processor utilization
(b) Trace 2

Figure 5.11. Interconnect Bandwidt in Comparison to Processor Utilizatiarfor Dif-
ferenta.

43

SANNMITODONODOANMITNONOO O
LA T T O U T T O e B e e B B B B B By N
R R s 1 1 LI I A T 1

o
—

|_
_ _ _ _
[ce} © < N

19x9ed Jad suoissiwsuel] ul
1S02 UoIIeIIUNWWOI J10SSad0.d-1a1ul abelane

40% 60% 80% 100%
average processor utilization

20%

0%

(a) Trace 1

8D

ANNMITODONODOANMITNONOO O
ot i eA A A A A A =N
R R 1 1 I I A T 1

o
—

|_
_ _ _ _
[ce} © < N

19x9ed Jad suoissiwsuel] ul
1S02 UoIeIIUNWWOI 10Ssad0.d-1a1ul abelane

40% 60% 80% 100%
average processor utilization

20%

0%

(b) Trace 2

Figure 5.12. Interconnect Bandwidti in Comparison to Processor Utilizatiarfor Dif-

ferentL.

44

Table 5.3.Comparison of SA Mapping to UDFS Mapping.

Communication Cost | ThroughpuR
Trace 1 0.83x 1.00x
Trace 2 0.81x 1.00x

Table 5.4.Comparison of UDFS algorithm with and without merging.

Communication Cost | ThroughpuR
Trace 1 0.63x 1.22«
Trace 2 0.69% 1.20x

algorithm. The exact number is shown in the table 5.3. We earttsat the mapping results

from KL algorithm are slightly better than KL algorithms.

5.8 Merging and Duplication

As mentioned in the last chapter, duplication can not fullgrdy distribute the work-
load on processors. This is where merging comes to the re¥éialso show some trivial
results in the last chapter. In this section, we will seeeflew graph can actually improve
the utilization and hopefully the inter-processor comneation cost also.

First we show the workload distribution after merging psxwith original duplication
only workload distribution in Figure 5.14 and Figure 5.15e \¢an see that with merging
operation, the workload distribution becomes more even tigh duplication only.

Using this new task graph, we run our algorithms again toinlitee new mappings.
The results are depicted in the Figures 5.16, 5.17, 5.18mEhe figures, we can see
that merging and duplication process improves both intecgssor communication and

utilization. The exact numbers are shown in the table 5bleta.5 and table 5.6.

Table 5.5.Comparison of KL algorithm with and without merging.

Communication Cost | ThroughpuR
Trace 1 0.80x 1.21x
Trace 2 0.82« 1.21x

45

10 T T T T

7
o
o
&
= - 8 ~ _
8e
58
EX
58 o - 1
©n
Q.9
sg T i}
[oN e
L @
g]
£E
o 2r SAalgorithm 7
IS KL algorithm
o UDFS w/o Duplication
@ | | UDFIS w/ Duplicatilon o

0

0% 20% 40% 60% 80% 100%

average processor utilization
(a) Trace 1

_ 10 T T T T
2 W
: S8 -
. 8 B N o =
3e B
cQ g+
S5 ®© %
EX
58 6r = B .]
Y » & uRL:
o ek ERY,
a2 : %
25
Q.9
§g 4 ¥* %W .
o c
L @
g fre]
£c
o 2r SAalgorithm 7
IS KL algorithm
o UDFS w/o Duplication
@ | | UDFIS w/ Duplicatilon o

0

0% 20% 40% 60% 80% 100%

average processor utilization
(b) Trace 2

Figure 5.13. Interconnect Bandwidti in Comparison to Processor Utilizatiarfor Dif-
ferent Mapping Algorithms.

46

T T T T T T
140K]
)
c
il
B 120K | -
=
7]
£ 100K -
.,6 +—++++++++++++++++k ++
p— H_k\
2 80K HHH -
E ++"'
> ‘\
Z 60K I ++{ -
£ :H-.|‘.
8 40K F \ .
(@] \
X P,
(@] | \ n
= 20K **kHJ,H\
+
0 | | | | | L %
0 10 20 30 40 50 60
Instance Number
Duplicate ---+--- Merge-then-duplicate

Figure 5.14. Distribution of Workw/ per Task Instance with and without merging for Trace
1.

T T T T T T

140K 4
2
o +—+++++
8 120K | ’I—I—I—l—l—l—-H-+-H—H—|—H—H-+-H--H—l-_|r -
= kst
72} b
£ 100K - \ -
S ¥
é 80K |- * .

1N
Z 60K | % .
£ ‘3'_
B +
g 40K | 1
= 4
S 20K Hr,
0 1 1 1 1 1 I}*s.
0 10 20 30 40 50 60
Instance Number
Duplicate ---+--- Merge-then-duplicate

Figure 5.15. Distribution of Workw/ per Task Instance with and without merging for Trace
2.

a7

10 T T T T
@
o
o
s
= 8+ _
3¢
S
I o
52 6 -
©n
Q.9
s)
o C
<L ©
oE
££
o 2]
()]
B
@ UDFS w/ Duplication ~ +
© UIII)FS algorithn? w/ Merging Iand DupIicatilon

0
0% 20% 40% 60% 80% 100%
average processor utilization
(a) Trace 1

10 T T T T
= 4
8 #
o
c +4+
R=t + g
T D 8 b +ﬁﬁ+ _
O x
5
= o
ES e e :
©n
Q.9
s i}
o C
<L ©
oE
££
o 2 r]
(@]
B
@ UDFS w/ Duplication +
© UIII)FS algorithn? w/ Merging Iand DupIicatilon

0
0% 20% 40% 60% 80% 100%
average processor utilization
(b) Trace 2

Figure 5.16.Interconnect Bandwidth in Comparison to Processor Utilizatioin

Table 5.6.Comparison of SA algorithm with and without merging.

Communication Cost | ThroughpuR
Trace 1 0.77x 1.22«
Trace 2 0.80x 1.20x

48

10 T T T T

@
o
o
&
= 8 - .
8¢
58
EX
58 6f .
©n
Q9
sg T i}
o C
L @
g fre]
£E
o 2 —
(@]
g
o KL algorithm +
© | KL algorithlm with Mergilng

0

0% 20% 40% 60% 80% 100%
average processor utilization
(a) Trace 1
10 T T T T

@
o
o
&
g 8T i+]
£3 i+
Sa #
E
58 6f X .
Ca +
258 EaA
wn n
.2
sg T i}
o c
L @
g]
£E
o 2 —
(@]
g
o KL algorithm +
© | KL algorithlm with Mergilng

0

0% 20% 40% 60% 80% 100%

average processor utilization
(b) Trace 2

Figure 5.17.Interconnect Bandwidth in Comparison to Processor Utilizatioin

49

10 T T T T
@
o
o
&
= 8 - .
8¢
5§
EX
58 6f .
©n
Q9
sg T i}
o C
L @
g fre]
£E
o 2 —
(@]
g
o SA algorithm +
© | SA algorithlm with Mergilng

0
0% 20% 40% 60% 80% 100%
average processor utilization
(a) Trace 1

10 T T T T
@
3
5 *
83 8 +i+ : 7]
) A+
Lx g
EQ t; T
=21
[g + «H:{ﬁ&
3.9 + 7
83
sg T i}
o c
L @
g]
£E
) 2 - _
(@]
g
o SA algorithm +
© | SA algorithlm with Mergilng

0
0% 20% 40% 60% 80% 100%
average processor utilization
(b) Trace 2

Figure 5.18.Interconnect Bandwidth in Comparison to Processor Utilizatioin

50

T T T T T

@ 14 | UDFS w/o duplication ~ + N
8 UDFS w/ duplication
c KL algorithm x
2 o 12+ SA algorithm O i _
8¢ Extended KL algorithm :
53 UDFS w/ merging
ge 10 KL w/ merging 4
Eo SAw/ merging 2
3 % optimal curve w/o merging - -
55 8r ideal & f =
0n.= /
83 g
T ‘ o
o C
58
e 4T]
()
()]
B 2 - Ao
e
®

0 1 1 1 1 1

0% 20% 40% 60% 80% 100%

average processor utilization

Figure 5.19. Interconnect Bandwidtic in Comparison to Processor Utilizatianfor All
Mapping Algorithms

After we got all the simulation results of all the algorithnitsis more informative to
put all of them in one figure. In figure 5.19, results from afj@ithms are plotted. From

figure, we can see that with merging process, better mappsuts can be obtained.

5.9 Architecture Exploration

After developing the mapping algorithms for our packet pssing systems, we will
apply the algorithms to élierent packet processing system architectures in thisosecti

Our default architecture has 8 processing cores and eacltamme@ccommodate 8
threads. In this architecture, the total number of threads ¢an run in parallel is 64.
This architecture serves as a good starting point for owrdhgns research. But it will
be very interesting to see how performance can change asamgethe number of cores
or number of threads of each core. In this section, we ap@ydtveloped algorithms to

different architectures. We then plot the results and do the ansgm.

51

We organize the architectures into three catalogs. In thiecitalog, we fix the number
of cores and change the number of threads in each core. Ietlad catalog, we fix the
number of threads in each core and change the number of darése third catalog, we
fix the total number of threads and change the number of coit¢he number threads in
each core at the same time.

In this first catalog, the number of cores is 8. The number céatls in each core
changes from 4 to 64. In the second catalog, the number ochdkren each core is 8
and the number of cores changes from 4 to 64. In the thirdamtdéhe total number of
threads is 512. The architectures include 4x128, 8x64, 2,633x16, 64x8, 128x4 with
form AxB where A is the number of cores and B is the number ofdls in each core.
The results are shown in the figure 5.20, figure 5.21 figur@.5Rrom the figures, we
can see that in catalog 1, as the number of threads in eaclo-Bmngine increases, the
average inter-processor communication cost decreases. isThecause more nodes are
processed in the same core so less inter-processor comatianics required. On the
other hand, the average processor utilization increasegeasimber total number threads
available increases except for UDFS without duplicatiorexghtotal number of node is
limited to 25. In catalog 2, the average utilization folloth® same trend. As for inter-
processor communication cost, because the number of thieaach core is fixed and the
number of cores increase the inter-processor communicatist increase. This is because
more tasks are distributed tofidirent cores and more communication between tasks are
required. In catalog 3, we can clearly see that because weditotal number of threads,
so when the number of threads in each core decreases, th@riotessor communication
cost increases. As for utilization, except for UDFS withduplication algorithm, others
maintain the consistent average processor utilizations iBrbecause the total number of

threads is fixed.

52

20 T T T L
UDFS w/o Duplication
UDFS w/ Duplication

KL Algorithm w/o Merging
15 F KL algorithm w/ Merging

111

10

in transmissions per packet

average inter-processor communication cost

8x16 8x32 8x64
Archltecture #MEx#Thread/ME
(a) average inter-processor communication cost

I I I I

UDFS w/o Duplication s

UDFS w/ Duplication s
IS KL Algorithm w/o Merging e
S KL algorithm w/ Merging e
2 100% [.
5
S 80% |- -
(%]
3
o 60% .
o
Q
2 40% .
3
© 20% .

0%
8x4 8x16 8x32 8x64

Archltecture #MEx#Thread/ME
(b) average processor utilization

Figure 5.20. Architecture Exploration: Catalog 1

53

20 T T T L
UDFS w/o Duplication
UDFS w/ Duplication

KL Algorithm w/o Merging
15 F KL algorithm w/ Merging

1 I i .

in transmissions per packet

average inter-processor communication cost

16x8 32x8 64x8
Archltecture #MEx#Thread/ME
(a) average inter-processor communication cost

I I I I

UDFS w/o Duplication s

UDFS w/ Duplication s
IS KL Algorithm w/o Merging e
S KL algorithm w/ Merging e
2 100% [.
5
S 80% |- -
(%]
3
o 60% 4
o
Q
2 40% -
3
© 20% .

0%
4x8 16x8 32x8 64x8

Archltecture #MEx#Thread/ME
(b) average processor utilization

Figure 5.21. Architecture Exploration: Catalog 2

54

20

| UDFSI w/o Dup;lication
UDFS w/ Duplication

KL Algorithm w/o Merging

15 F KL algorithm w/ Merging

10
5* l i
0

in transmissions per packet

average inter-processor communication cost

4x128 8x64 16x32 32x16 64x8 128x4
Architecture #MEx#Thread/ME
(a) average inter-processor communication cost

average processor utilization

| | UDFSI w/o Dupl)lication

UDFS w/ Duplication

KL Algorithm w/o Merging

KL algorithm w/ Merging
100%
80%
60%
40%
20%
0%

4x128 8x64 16x32 32x16 64x8 128x4
Architecture #MEx#Thread/ME
(b) average processor utilization

Figure 5.22. Architecture Exploration: Catalog 3

55

CHAPTER 6
IMPLEMENTATION CONSIDERATIONS ON INTEL IXP SYSTEM

Our model is designed for multi-core,packet processingesys especially network
processors. In this chapter, we discuss the architectuheddtest Intel network processor.
Then based on the architecture, we introduce the mappingekeatelements in our model
and the real hardware. Finally, we discuss the applicglalid limitation of task mapping

model on real network processor systems.

6.1 System Architecture

Intel's IXP2xxx series network processors are chip mudtiecprocessors. The data
path architecture is shown in Figure 6.1. In the figure, wetdh® control processor -
an Intel Xscale core and two media interfaces. In the figure,can see that IXP2400
network processor has eight integrated programmable emgioes. Each one of them has
4K instruction stores. Microengines are connected se@lrity next neighbor registers.
The connections are annotated in the figure by red lines. Ngghbor registers are fast
paths for microengines to talk to their neighbors. The IXB2#Aetwork processor also has
one memory interface for DDR DRAM, two interfaces for QDR S®RAnd one on-chip
16-K byte scratchpad memory. These three types of memorghaned among all of the

microengines.

6.2 Model Implementation
From the previous chapters, we know that there are tfi@réint types of elements

in our model: tasks and edges. When the model is to be impletem a real network

56

DDRAM —I MEO ME1 > ME2 > ME3 —

QDR SRAM

!

Scratchpad
ME7 < ME6 < MES5 < ME4 -

Figure 6.1. IXP 2400 network processor data path architecture

processor system, there are certain constraints on theingaggation between each type
of element and the hardware resource. In this section, veeiskshow hardware resources
relate to elements in our model. First we give an overview @raengines and hardware
threading, and introduce how tasks are mapped to hardwerad$fr Then, we focus on

memory subsystem, and how edges are mapped to each type afrynem

6.2.1 Processing Units

A task is a collection of instructions that perform certarmngessing step in a network
application. Therefore, execution of tasks must be peréokon processing units. On IXP
2xxx series network processors, the execution units amwesae threads in each micro-
engine. Each hardware thread has its own set of registars,niicroengine can switch
between hardware threads without additional overhead.allysuhe events that trigger
thread switches are waiting on external events such as nyemf@rence and signal han-
dling. By switching threads, network processors can hidddhe cycles spent on waiting,
therefore increasing the speed of overall application etiec.

However, the number of hardware threads in one microengilmited to eight on IXP
2400 due to the fact that registers are expensive in chigdeSince it is not possible to run
more than one task in the same hardware thread,in a potemgiEEimentation on a network

processor, we assume that each hardware thread can hossiabmeotask.Furthermore,

57

network processors have a limited amount of local instoucstore size, which posts a

restriction on the total amount of instructions that couddhrapped on one microengine.

6.2.2 Inter-processor Communication

To achieve communication between tasks, it is importantotesicer inter-processor
communication in our model. In the IXP 2400 network processystem, there are two
types of communication mechanism. One is based on sharedbmend the other is

based on next neighbor registers.

e Memory based inter-processor communication. IXP 2400 oktywrocessor system
has two types of memory: SRAM and DRAM. A large amount of sloRRAM is
used to provide low-cost storage capacity, while a smadl sizfast SRAM is used
to reduce execution time by hosting frequently used datas $RAM is available
in the form of scratchpad SRAM and QDR SRM. In IXP 2400, s¢rpédd SRAM
is for parameters and inter-processor communications. @BRM is for packet
gueue storage and lookup table while DDR DRAM is for packstigeed storage.
All these memories are shared among all microengines vigghms, especially can
be accessed directly by each hardware thread. With thedhaeenory, threads on
microengines can communicate with each other by storingages in the memory

and inform the receivers to collect the data by accessingdhee storage location.

e Next neighbor register based inter-processor communitaBesides shared mem-
ories, IXP 2400 network processors also include next neghdgisters to facilitate
the communication between two adjacent microengines. dpelagy of the con-
nection is shown in figure 6.1. We can see that microenginesannected in a
sequential manner. Only adjacent microengines can conuatgndirectly with their

next neighbors.

Although many techniques on general purpose computingsysste.g, hardware thread-

ing and shared memories) are adopted in network processaits is not a widely accepted

58

practice. The fiiciency of cache is determined by locality in data. Unforteha content
of packet, which is the biggest portion of data on networkcpssor systems, can not be
predicted. Packet processing systems have to examine me@rgacket in order to do fur-
ther processing. Thus, the use of cache is limited to somafapapplications such as IP
table lookup etc. For this reason, cache is often omittectwork processor design. IXP

2400 does not have any cache. Therefore, we ignore cache dhisamussion.

6.3 Applicability and Limitation of Task Mapping Model

Our work is a conceptual model for general multi-core pagkeicessing systems.
When it is adapted to a real network processor system likeRe400, the actual perfor-
mance could be elierent from the result predicted by the model. In this sectidiscuss
the applicability and limitation of our model on real system

The system parameters used in the evaluation in previoygehia directly related to
the IXP2400 architecture. In our model, we have 8 cores aol eare can accommodate
8 threads. This is the same as the IXP 2400 network procegsians which has 8 micro-
engines and each one has 8 hardware threads. Thus, our naod®asonably reflect the
real system processor utilization.

As for inter-processor communication model, we have twesitds situations. In our
model, we assume that each processor can communicate withotlaer. So if inter-
processor communication is implemented using shared megmor model reflect model
the real situation except that our model does not consigenthing issue related to memory
access. That is, in our model, we consider the communicatshas the amount of data
transferred between processors without considering resatontention and delay when
multiple processors want to access the same memory. Theyefor simulation results
may not be exactly accurate,but can still be used to comp#fisreht algorithms.

If the inter-processor communication is implemented usiexg neighbor registers, then

our model is not suitable for this implementation. The reasothat in next neighbor

59

register based communication, only adjacent processore@amunication directly via
next neighbor registers. Our assumption that any two psarescan communicate with
each other is not satisfied. Also our mapping algorithm tiaefind the mapping with the
minimum total inter-processor communication cost and am¢sonsider communication
between any two processors. Thus, it is possible that twogssors may generate a large
amount of communication that exceeds the available bartdwidone such point to point
communication link. For such a scenario a new mapping algoriwould need to be

developed.

60

CHAPTER 7
CONCLUSIONS

In this work, we have exploredflierent task mapping algorithms for multi-core, packet
processing systems. we also implemented these algorithdhsoempared the results of the
algorithms.

We first reviewed the previously designed algorithms whitdiude UDFS algorithm
and duplication process. We then applied the KL algorithiwuioproblem and were able to
reduce the inter-processor communication by 20% while tagimg the similar utilization.
We then modified the original KL algorithm by considerindiatition during the mapping
process. In this extended KL algorithm, we incorporatedadddt factor a to tradedt
between inter-processor communication and processaatidn. The best is different
for different system configurations in terms of communication baattivand computing
power. Simulated annealing(SA) algorithm was then implete&. The parameters for SA
algorithm were decided by following literatures or by dogperiments. Results from SA
algorithm shows that it can produce decent results thatargarable to KL algorithm. In
order to further improve the utilization, merging operatiwas applied to the task graph
before mapping algorithms were applied. The mapping reshlowed that merging is a
good way to improve the utilization and at the same time kéepcommunication cost
lower. Finally, we applied the mapping algorithms tdéfelient packet processing system
architectures. The results show how inter-processor camuation cost and processor

utilization change as system architecture changes.

61

BIBLIOGRAPHY

[1] Asymmetric multiprocessing.http://en.wikipedia.org/wiki/Asymmetric_

multiprocessing.

[2] Message passing interface. http://en.wikipedia.org/wiki/Message_

Passing_Interface.
[3] Multi-core computinghttp://en.wikipedia.org/wiki/Multi-core.
[4] Openmp.http://openmp.org.

[5] A. Tengg, A. Klausner, B. Rinner. Task allocation in dilstited embedded systems
by genetic programming. 18th International Conference on parallel and distributed

computing, application and technologies (2007).

[6] Ananth Grama, George Karypis, Vipin Kumar Anshul Guptaroduction to Parallel
Computing. Addison Wesley, 2003.

[7] Berman Fran, Anthony Hey, Géioey Fox. Grid Computing: Making The Global
Infrastructure a Reality. Wiley, March 2003.

[8] Bokhari, S.H. A shortest tree algorithm for optimal @agsnents across space and
time in a distributed processor system&EE transaction on software engineering

(November 1981).
[9] Butenhof, David R.Programming with POSI X Threads. Addison-Wesley.

[10] C.C. Shen, W.H. Tsai. A graph matching approach to opitiassk assignment in dis-
tributed computing system using a minimax criteridBEE transaction on computer

(March 1985).

62

[11] D.A Bader, R. Pennington. Cluster computing: Applicas. The International Jour-
nal of High Performance Computing 15, 2 (May 2001), 181-185.

[12] David E. Culler, Jaswinder Pal Singh, Anoop GugRarallel Computer Architecture
- A Hardware/Software Approach. Morgan Kaufmann Publishers, 1999.

[13] Eatherton, W. The push of network processing to the fap®pyramid. InKeynote
Presentation at ACM/IEEE Symposium on Architectures for Networking and Commu-
nication Systems (ANCS) (Princeton, NJ, Oct. 2005).

[14] E.Kohler. The click modular routerACM transaction on Computer System 18, 3
(August 2000).

[15] G.S. Almasi, A. GottliebHighly Parallel Computing. Benjamin-Cummings publish-
ers, Redwood city, CA, 1989.

[16] Hillis, W. Daniel, Steele Guy L. Data parallel algonitis. Communications of the
ACM (December 1986).

[17] Husak, Dave. The c-5 digital communication procesktmtChips (2000).
[18] Intel Corporation.Intel 1XP2400 Network Processor.

[19] J, Quinn MichaelParallel Programming in C with MPI and OpenMP. McGraw-Hill
Inc., 2004.

[20] Jacek Radajewski, Douglas Eadline. Beowulf howto.ukilocumentation project,

November 1998.

[21] John L. Hennessy, David A. PattersoGomputer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann Publishers.

[22] John L. Hennessy, David A. Patterso8ymmetric multiprocessing. Morgan Kauf-

mann, September 2006.

63

[23] Kohler, Mark. NP complete. Embedded Systems Programming, November 2000,
pp. 45-60.

[24] Lekkas, Panos C.Network Processors : Architectures, Protocols and Platforms.

McGraw-Hill Professional, 2003.

[25] Lo, 7. V. M. Heuristic algorithms for task assignmentdistributed systemslEEE

transaction on computer, 11 (November 1988).

[26] Mallik, A., and Memik, G. Automated task distribution multicore network proces-
sors using statistical analysis. Bnoc. of ACM/IEEE Symposiumon Architectures for

Networking and Communication Systems (ANCS) (Orlando, FL, Dec. 2007).

[27] N. Fisher, J.H. Anderson, S. Baruah. Task partitionipgn memory-constrained
multiprocessors. IProceedings of the 11th IEEE International Conference on Em-

bedded and Real-Time Computing Systems and Applications (August 2005).

[28] Ramaswamy, R., and Wolf, T. PacketBench: A tool for woakl characterization of
network processing. IRroc. of IEEE 6th Annual Workshop on Workload Character-
ization (WWC-6) (Austin, TX, Oct. 2003), pp. 42-50.

[29] Ramaswamy, Ramaswamy, Weng, Ning, and Wolf, Tilmanpliation analysis and
resource mapping for heterogeneous network processoiteattiies. InNetwork
Processor Design: Issues and Practices, Volume 3, Mark A. Franklin, Patrick Crow-
ley, Haldun Hadimioglu, and Peter Z. Onufryk, Eds. Morgarutt@ann Publishers,
Feb. 2005, ch. 13, pp. 277-306.

[30] Robert Ennals, Richard Sharp, Alan Mycroffask Partitioning for Multi-core Net-

work Processors. Springer Berliry Heidelberg, 2005.

[31] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimizatidoy simulated annealing.
Science 220, 4598 (1983).

64

[32] Stone, H.S. Multiprocessor scheduling with the aidetfiwork flow algorithmsIEEE

transaction on software engineering, 1 (January 1977).

[33] Tessier, Russell.Fast Place and Route Approaches for FPGAs. PhD thesis, Mas-

sachusetts Institute of Technology, 1992.

[34] V.B.Gylys, J.A.Edwards. Optimal partitioning of wddad for distributed systems.
Digest of Papers, COMPCON (Sept. 1976).

[35] W.Plishker. Automated task allocation for network @eesors. IrProc. Network

System Design Conf. (2004).

[36] W.W.Chu. Optimal file allocation in a multiple compugiisystem.|EEE transaction
on computer, 10 (Oct. 1969).

65

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2009

	Task Partitioning and Mapping Algorithms for Multi-core Packet Processing Systems
	Wei Chen

	Task Partitioning and Mapping Algorithms for Multi-core Packet Processing Systems

