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ABSTRACT

DOMAIN EFFECTS IN THE FINITE/INFINITE TIME
STABILITY PROPERTIES OF A VISCOUS SHEAR

FLOW DISCONTINUITY

SEPTEMBER 2008

KRANTHI KUMAR KOLLI

B.E.M.E., OSMANIA UNIVERSITY, HYDERABAD, INDIA

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kumar M. Bobba

Whether it is designing and controlling super-efficient high speed transport sys-

tems or understanding environmental fluid flows, a key question that arises is: what

state does the fluid flow take and why? An answer to this question lies in under-

standing the hydrodynamic stability properties of the flow as a function of parame-

ters. While much work has been done in this area in the past, there are many open

questions that need to be addressed. Here we study the effect of spatial domain size,

number of modes, non-hermitianness and non-normality on the finite time and infinite

time stability properties of a standing, viscous, shock flow problem.

It has been shown that the above problems are not only non-normal but also non-

hermitian, when the base flow has shear. The eigenvalue problems corresponding to

infinite spatial domain, finite spatial domain, forward and L2 adjoint problems are

solved exactly by converting the linear partial differential equations into nonlinear
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Riccati equations. In the finite domain case, the full time dependent solutions are

obtained analytically using the bi-orthogonal basis functions.

In the infinite spatial domain case, the point spectrum of the forward operator

is shown to be unbounded and that of the adjoint operator to be empty. In the

unbounded case, the spectrum fills the entire area on one side of a parabola in the

complex plane and is connected. As the fluid viscosity decreases, the width of the

parabola increases and in the limit of zero viscosity covers almost the entire left half

plane. On the other hand, as the fluid viscosity increases, the width of the parabola

decreases and in the limit of infinite viscosity becomes the negative real axis, which

is the spectrum of the heat equation. The spectrum of the adjoint problem is empty

for all values of the viscosity and prescribed velocity.

In the finite spatial domain case, the point spectrum lies in the open left half

plane for all the Reynolds numbers and hence asymptotically stable. The results

shown that perturbations grow substantially large for finite time before they decay

at large times. It is also found that retaining right number of modes is crucial for

observing transient growth phenomena. Finally, the linear results are compared with

the nonlinear finite amplitude simulation results.

The relevance of current results to other fluid flows is also presented.
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CHAPTER 1

INTRODUCTION

Flow stability theory plays a central role in our physical, theoretical and compu-

tational understanding of fluid flow instabilities, transition to turbulence and even

fully developed turbulence. These in turn are related to many of the practical ques-

tions designers are interested like, resistance, rate of mixing between different fluids,

heat transfer and others. Hydrodynamic stability theory [1] has received a great deal

of attention over the past decades and is still a field of active and ongoing research

because of many yet to be answered questions.

1.1 Linear Stability Theory

The basic strategy in studies of hydrodynamic stability [1] is to understand the

effects of disturbances on a steady mean flow. In linear theory the disturbances are as-

sumed to be small and the nonlinear terms of the equations governing the disturbances

are neglected. The traditional way of analyzing the linearized problem has been a nor-

mal mode approach resulting in an eigenvalue problem. For pipe flow the assumption

is a streamwise (x), azimuthal (φ) and time dependence of form exp i(α(x− ct) + nφ),

where α and n are the streamwise and azimuthal wavenumbers and c is the complex

wave speed. For planar flows the corresponding form is exp i(α(x− ct) + βz) where

z is the spanwise coordinate and β is the corresponding wavenumber. If α and β)

is real c will be complex and is determined from a (temporal) eigenvalue problem.

The imaginary part of c determines whether the perturbations are damped (ci < 0),

1



neutrally stable (ci = 0) or growing (ci > 0). If the frequency is kept real as it would

be in a vibrating ribbon experiment, α becomes the complex (spatial) eigenvalue.

Linear stability is defined in an asymptotic manner as t→∞. If for a given value

of the flow parameters any, sufficiently small perturbation dies out, the system is said

to be linearly stable for this particular choice of parameters. In the case of exponen-

tially growing perturbations, the system is linearly unstable and nonlinear effects will

become significant once initially small perturbations reach sufficient amplitudes.

When the theoretical predictions of stability are compared with experimental ob-

servations of transition to turbulence, in most cases some discrepancies are observed.

In pipe flow experiments, transition has been found to occur for Reynolds numbers

down to about 2000 (Wygnanski et. al. [2] ), but flow may remain laminar even at

considerable larger values. In plane Poiseuille flow [3], the lowest Reynolds number

for transition observed is about 1000 and in plane Couette flow [4] transition oc-

curs at Re=360. The conclusion drawn from the above is that the linear eigenvalue

problem is in general not capable of predicting all the aspects of transition. The

discrepancy between the predictions of linear theory and experimental observations

has then naturally focused the interest on nonlinear effects.

1.2 Weakly Nonlinear Theory

If the disturbances are considered to be finite in amplitude, nonlinearities are

introduced in governing equations. In an examination whether finite-amplitude equi-

librium waves exist in viscous shear flows, Noether noticed that the mean flow profile

becomes distorted owing to action of Reynolds stresses if a steady wave is present.

This implication was further developed for Plane Poiseuille flow by Meksyn and Stuart

[5], who derived approximate solutions to Noether’s equations.

By including nonlinear terms and expanding the governing equations in powers

of disturbance amplitude, Stuart and Watson [6] derived evolution equations for the

2



amplitude. The equations are of Landau [7] type and the effect of nonlinearity is

then essentially determined by sign of coefficients (Landau coefficients) of nonlinear

terms. For plane Poiseuille flow [8, 9] calculated the first Landau coefficient and found

that plane Poiseuille flow is subcritically unstable, i.e. becomes unstable at a lower

Reynolds number than found in linear theory.

1.3 Finite Amplitude Disturbances

In global theories, arbitrary large disturbances are studied by considering integral

inequalities of disturbance quantities. In this way stability criteria and conditions

for disturbance growth or decay can be derived. In pipe flow, Joseph & Carmi [10]

obtained a Reynolds number 82.88 for absolute stability of a disturbance with a

azimuthal periodicity of one and no streamwise variation. In flows where global

properties are important for the instability like in centrifugal instabilities, the global

theories are quite successful in predicting conditions for stability. In the case of

plane Couette flow, the flow is shown to be nonlinearly and globally stable for all Re

(Reynolds number) under the assumption of streamwise constant disturbances [11].

In shear flows local mechanisms are thought to be important and the global theories

give thus rather rough bounds for stability.

1.4 Transient Algebraic Growth

Eigenvalue analysis is traditionally performed to investigate the linear stability

of a given flow configuration. The least stable among the exponentially decaying

eigensolutions to the linearized disturbance equations provides information about the

flow behavior at large times. However, initial conditions which give transient energy

growth may exist, i.e. a possibility related to the non-normality of the governing

operator. This transient energy amplification is also referred to as non-modal since it

is not due to the behavior of a single eigenmode but it is caused by the superposition
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of several. In some cases the energy growth can be large enough to trigger nonlinear

interactions and take the flow into a new configuration.

The initial disturbance that is able to induce the largest perturbation at a given

time is called optimal and can be computed by applying optimization techniques [12].

1.4.1 Non-normal Effects

As an alternative to traditional models of instability, the significance of algebraic

initial growth has recently become recognized. Algebraic growth can occur from

the coalescence of eigenvalues (i.e. degeneracies) of the governing equations. The

existence of degeneracies or direct resonances have potential to give an initial growth

even for damped modes since they produce terms of the form [t . exp(ci t)] which

may grow initially even for ci < 0.

Nevertheless, the degeneracies or direct resonances are not the only mechanisms

for an algebraic growth to occur in parallel shear flows. Rather algebraic growth is

a general property of all parallel shear flows. Mathematically, the amplification is

due to non-normal properties of the governing operators. The eigen functions of the

system are then non-orthogonal. For such systems damped eigen modes can initially

cancel each other but due to different damping rates later interact to produce a large

amplification decay.

The transient growth (before final decay) of infinitesimal perturbations has gen-

erally been attributed to the existence of degenerate or nearly degenerate eigenvalues

of the stability problem. It has been argued that non-normality associated to non-

commutability with adjoint of linearized differential operator can be systematically

responsible for the transient linear growth of disturbances. Misfit directions with re-

spect to eigen directions can then grow, if their growth is sufficient enough, they can

interact through nonlinearities and can cause a transition to new flow state.
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The first indication of transient growth was found by Orr (1907) who examined

two-dimensional linear Couette flow problem but the extent of transient growth was

however not quantified. Algebraic growth for inviscid three-dimensional disturbances

has also been demonstrated by Wilke. Landahl [13] gave a physical interpretation of

no-eigenmode growth by showing that the lifting up of fluid elements in the normal

direction generates streamwise velocity disturbances. This so-called lift-up mechanism

is of an algebraic nature and for streamwise independent disturbances, Ellengsen &

Palm [14] found an algebraic instability. For this particular type of disturbance the

streamwise disturbance increases linearly with time since vertical velocity disturbance

is independent of time.

In the viscous linear case, in an attempt to explain the formation of streaks in

boundary layers, Hultgren & Gustavsson [15] considered the development of stream-

wise independent disturbances with a spanwise dependence. In this case, the vertical

velocity disturbance consists solely of a Continuous spectrum which is found to have

substantial amplitude inside the boundary layer in contrast to findings by Grosch

& Salwen (1978) for spanwise independent disturbances. The forcing of the verti-

cal velocity disturbance in the streamwise disturbance equation then gives an initial

algebraic growth of the streamwise disturbance.

Farrell [12] examined the problem of finding the optimal transient growth for two

dimensional viscous disturbances in plane Poiseuille and plane Couette flow. A rapid

transient growth was found and for plane poiseuille flow the growth rates were almost

two orders of magnitude larger than the growth of unstable mode at Reynolds number

10000. Gustavsson [16] considered three dimensional initial value problem for plane

poiseuille flow. A large amplification of disturbance energy was obtained at subcritical

Reynolds number where only damped modes exist. The growth is substantially larger

than in the two dimensional case and can be interpreted as induced by forcing the

normal velocity in vertical vorticity equation (this forcing is absent in two-dimensional
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case). Subsequently, Butler & Farrell [17] used a variational technique to calculate the

largest possible amplification of energy for three dimensional disturbances in plane

Poiseuille, Couette and Boundary layer flows. In all cases considerable amplifications

were found.

Non-normal operators can conveniently be analyzed by considering the pseu-

dospectra (Trefethen 1992) and numerical range of governing operators. For ex-

ponentially damped disturbances, transient growth is then indicated by the extent

of pseudospectra and numerical range into unstable half-plane. Emanating from this

concept, transient growth has been studied by Reddy, Schmid & Henningson [18].

The dependence of growth on wavenumbers, time and Reynolds number was exam-

ined and high eigenvalue sensitivity of governing operators was pointed out. In Reddy

& Henningson [19] both three and two dimensional disturbances in addition to the

effect of degenerate eigenvalues were investigated.

In experiments on the evolution of a localized disturbance in plane Poiseuille flow,

Klingmann [20] found that transient growth occurs when the disturbance evolves. By

Direct Numerical Simulations of the linearized Navier-Stokes equations, Henningson,

Lundbladh & Johansson [21] found that three dimensionality allows for algebraic

growth of the normal vorticity. The growth was the largest at small streamwise wave

numbers and generated therefore primary streamwise elongated structures.

While the previous studies focused on the non-normality of operators and its

relation to initial condition uncertainty [24], the effect of other kinds of uncertainties

has not been addressed. Bobba and his coworkers [22, 23, 24] studied the effect of

body forcing uncertainty, both deterministic and stochastic, in wall bounded channel

flows. Various normed based measures of characterizing growth and the importance

of using various other stability notions in instability studies are also addressed here.
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1.5 Present Thesis

The motivation for the chosen problem is given in Chapter 2. Chapter 3 discusses

the infinite domain spectral problem. Chapter 4 discusses the stability problem in

the finite domain. Exact time dependent solutions are generated in Chapter 5. Com-

parison of linear and nonlinear results is done in Chapter 6. Finally, Conclusion and

Summary of main results are presented in Chapter 7.

In this thesis we study the effect of spatial domain size, number of modes, non-

hermitianness and non-normality on the transient and asymptotic stability properties

of a standing, viscous compressible flow problem.
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CHAPTER 2

DISSIPATING SHOCK WAVE EQUATION

2.1 Motivation

One of the motivations of this thesis is to study the domain size effects on the

spectral and stability properties of the Navier-Stokes (NS)equations. Because of the

complexity of the NS equations, this is a very hard question to solve. With the

above limitation, we are interested in studying a simpler nonlinear partial differen-

tial equation that shares similar features to the NS equations. If this simpler PDE

can be understood thoroughly, (1) we can draw approximate conclusions for the NS

equations, (2) tells us what to expect in the NS equations case and (3) what kind of

techniques work for the NS case.

Incompressible NS equations in 3D are governed by

∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
= 0, (2.1)

ρ

(
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

)
= −∂p

∂x
+ µ

(
∂2ux

∂x2
+
∂2ux

∂y2
+
∂2ux

∂z2

)
+ f1,

ρ

(
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

)
= −∂p

∂y
+ µ

(
∂2uy

∂x2
+
∂2uy

∂y2
+
∂2uy

∂z2

)
+ f2,

ρ

(
∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

)
= −∂p

∂z
+ µ

(
∂2uz

∂x2
+
∂2uz

∂y2
+
∂2uz

∂z2

)
+ f3.

Some of the key features of the above NS equations are quadratic nonlinearity, un-

steadiness, and dissipation, and they interact with each other in generating complex
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motions. An equation that shares many of the above features is the Burgers equation

given by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f(x, t) , (2.2)

where u is the velocity field and is a function of space x and time t, ν is kinematic

viscosity of fluid with ν ≥ 0 a nominally small positive parameter, and f(x,t) is the

forcing function.

Burgers’ equation is a quasi-linear parabolic equation introduced by J. M. Burgers

[25] as a one-dimensional scalar analog for isotropic turbulence. It has been been

studied by many authors [25], [27], [26], [29] in different contexts, like turbulence,

large eddy simulation (LES), statistical closures, numerical methods, gasdynamic

shocks and others.

Burgers’ equation 2.2 describes the evolution of the field u = u(x, t) under non-

linear advection and linear dissipation. When the viscosity ν is zero (inviscid) the

field will develop a shock. For small viscosity the solution will be a slightly smoothed

version of the inviscid (shock) solution. That is, sharp gradients will develop and

slowly dissipate as t → ∞ and the solution decays to zero. For moderate values of

the viscosity the solution decays to zero and gradients do not intensify [28].

2.2 Time Independent Nonlinear Base State

The steady state Burgers’ equation in the absence of forcing is

∂

∂x

(
1

2
u2(x)− νux(x)

)
= 0 x ∈ (c, d), (2.3)

with the dirichlet boundary conditions u(c) = wc > wd = u(d), further solving the

above equation leads to

νux(x) =
1

2

(
u2(x)− c0

)
, (2.4)
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Figure 2.1. Plot of steady state solution for different viscosity values

where c0 is a constant. Since u(c) = wc > wd = u(d), the solution u(.) must decrease

somewhere in the interval (c,d) and so u(.) must be also negative somewhere in the

interval. Then (2.4) implies that c0 must be positive, and the above equation is solved

to give

ū(x) = −2a tanh
(
ax

ν
+ b

)
, (2.5)

where a and b are constants.

This hyperbolic tangent profile is nearly constant throughout the interval (c,d) with

a shock located somewhere in the interior of the interval (see Figure (2.1)). The

shock becomes more pronounced as ν becomes small. As the viscosity becomes large

but not infinite the solution tends to be more smooth, can also be stated otherwise

as, higher viscosity prevents sharp discontinuities in the solution. This property of

viscosity can also be seen in real fluid problems.
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CHAPTER 3

SPECTRUM OF THE DISCONTINUITY IN THE
INFINITE DOMAIN

A finite dimensional differential equation ẋ(t) = Ax, x ∈ Rn, A ∈ Rn×n has finite

size spectrum, of size precisely n. A partial differential equation can have countably

infinite number of eigenvalues, for example, one dimensional heat equation on a finite

domain [0, L]. By countably infinite, it means there exist a bijection between the set of

natural numbers N and the set of eigenvalues. If there is no such bijection we call the

set uncountably infinite. A partial differential equation can also have uncountably

infinite number of eigenvalues, for example, one dimensional heat equation on the

infinite domain [0,∞].

In the heat equation case, the eigenvalues are λn = −n2π2/L2, n ∈ N ∪ 0 in

finite domain case with zero Dirichlet boundary conditions. The distance between

two adjacent eigenvalues tends to zero as L → ∞ and in the infinite domain case

leads to branch cut. The branch cut is the negative real axis in the complex plane.

The spectrum set in the above case fills the entire line (and hence will be called line

spectrum in our terminology), is unbounded and is connected. By connected it means

that one can draw a continuous line between any two eigenvalues in spectrum set and

all the points on this line will also lie in the spectrum set. In this terminology, the

finite size and countably infinite size spectrum’s mentioned before form a disconnected

set and they will be referred to as point spectrum, this also makes sense from their

physical structure point of view. While the spectrum’s of aforementioned shapes are

well known in fluid mechanics literature, to the best of our knowledge, we’re not
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aware of fluid operators whose spectrum either occupies an unbounded area and is

connected or is empty.

In this chapter we present two infinite dimensional fluid operators arising from 1D

Burgers equation in infinite spatial domain whose spectrum is empty in one case and

unbounded in another case.

3.1 Base Flow Structure

The nonlinear forced Burgers equation is given by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
x ∈ (−∞,∞). (3.1)

From previous chapter it can be seen that

ū(x) = −2a tanh
(
ax

ν
+ b

)
(3.2)

is a time independent nonlinear solution of (3.1). Without loss of generality, picking a

co-ordinate system such that ū(0) = 0 and this implies b = 0, and hence ū(∞) = −2a

and ū(−∞) = 2a. As can be seen, the base state here is a smooth discontinuity at

the origin of magnitude 4a.

3.2 Forward Evolution Operator

Now we will linearize the above nonlinear equations about the base flow. Writing

the velocity field as

u(x, t) = ū(x) + U(x, t), (3.3)

and linearizing the Burgers equation about the steady state solution we obtain

∂U

∂t
+ ū(x)

∂U

∂x
+ U(x, t)

dū

dx
= ν

∂2U

∂x2
(3.4)
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with U(x = ±∞) = 0. This condition comes from the fact and assumption that

perturbations should decay at infinity. The above equations can be written in the

operator form as

∂U

∂t
≡ AU, where AU(x, t) ≡ ν

∂2U

∂x2
− ū

∂U

∂x
− dū

dx
U . (3.5)

3.3 Definition of the Inner Product Space

In this thesis, we are interested in the L2 inner product space, though the function

space of Burgers equation is H2 Banach space. We mention that the notion of adjoint

depends on the choice of the inner product space and hence one has to be careful in

applying the conclusions.

The spatial Lebesgue L2 inner product is defined as

〈F1(x), F2(x)〉L2 =
∫ ∞

−∞
F1(x)F2(x)dx, (3.6)

and the adjoint operator A∗ of operator A is defined using the inner product norm as

〈AF1(x), F2(x)〉L2 = 〈F1(x), A
∗F2(x)〉L2 . (3.7)

3.4 Adjoint Evolution Operator: Non Hermitianness and

Non-normality

Integrating by parts and implementing the above said Boundary conditions, the

adjoint operator can be written as

A∗V (x, t) = ν
∂2V

∂x2
+ ū

∂V

∂x
where V (x = ±∞) = 0 . (3.8)
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From A and A∗ it can be seen that A 6= A∗ and therefore A is non-Hermitian. It

can also be shown after some lengthy algebra that,

AA∗ = ν2 ∂
4

∂x4
+

(
−ū2 + νū′

) ∂2

∂x2
+ (−2ūū′ + νū′′)

∂

∂x
,

A∗A = ν2 ∂
4

∂x4
+ (−ū2 − 2νū′)

∂2

∂x2
+ (−ūū′ − νū′′)

∂

∂x
− ūū′′ − νū′′′,

where ′ denotes d/dx. From the above it can be seen that

A 6= A∗, (3.9)

AA∗ 6= A∗A, (3.10)

and hence A is not only non-Hermitian but also non-normal in the chosen L2 inner

product.

An interesting question is under what limits does the above equations become

Hermitian and Normal? It can be seen that when base state, ū, is zero the equations

are Hermitian and also Normal. On the other hand, when the base state has no shear

(i.e. no spatial gradients) the operators are Normal but non-Hermitian. Obviously

both these effects play a significant role at the location of the shock where they are

maximum.

3.5 Non-dimensionalization

Non-dimensionalizing A and A∗, so as to write the equations in an unified way:

Since there is no length scale in the problem, but there is velocity scale a. Using a

and ν, one can form length scale as ν/a and time scale as a2/ν. Denoting s = tν/a2,

y = xa/ν, M = U/a and N = V/a we get the non-dimensional A equations as

∂M

∂s
≡ BM where M(y = ±∞) = 0 and (3.11)
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BM(y, s) =
∂2M

∂y2
+ 2tanh(y)

∂M

∂y
+ 2sech2(y)M . (3.12)

B is the non-dimensional form of forward operator(A). Similarly the adjoint B∗ equa-

tions corresponding to A∗ can be written as

∂N

∂s
≡ B∗N where N(y = ±∞) = 0 and (3.13)

B∗N(y, s) =
∂2N

∂y2
− 2tanh(y)

∂N

∂y
. (3.14)

3.6 Point Spectrum of the Adjoint Operator

Considering the simpler adjoint equation first. Assuming that the time depen-

dence of perturbations can be expressed in the form of exp(µ t),the linear Initial-

boundary-value problem(3.13) can be reduced to eigenvalue problem (EVP) given

by

B∗φ(y) = µφ(y), φ(y = ±∞) = 0 ⇒ ∂2φ

∂y2
− 2tanh(y)

∂φ

∂y
= µφ(y) . (3.15)

Where µ and φ are the respective eigenvalues and eigenfunctions of the Adjoint op-

erator. The second order ordinary differential equations corresponding to EVP are

solved exactly for the above.

Let, p1(y) = −2 tanh (y) , p0(y) = −µ and

η(y) = φ(y)exp
∫

(p1(y)/2) dy = φ(y)sech(y) . (3.16)

This transforms (3.13) into,

η′′(y) + q0(y)η(y) = 0 where η(±∞) = 0 (3.17)
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and q0(y) = p0 − (p2
1/4)− (p′1/2) = 2sech2(y)− 1− µ .

The idea here is to generate a non-trivial solution for (3.17). And utilizing that

transform the above second order equation into first order and then solve for the

solutions.

Let η1(y) be a solution of (3.17) and the other solution is of the form

η2(y) = η1(y)
∫
η̄2(y)dy differentiating this equation gives

η′2(y) = η′1(y)
∫
η̄2(y)dy + η1(y)η̄2(y) and

η′′2(y) = η′′1(y)
∫
η̄2(y)dy + 2η′1(y)η̄2(y) + η1(y)η̄′2(y) .

Substituting in (3.17) gives

∫
η̄2(y)dy

(
η′′1(y) +

(
2sech2(y)− 1− µ

)
η1(y)

)
+ 2η′1(y)η̄2(y) + η1(y)η̄′2(y) = 0

⇒ 2η′1(y)η̄2(y) + η1(y)η̄′2(y) = 0

⇒ η̄2(y) = η−2
1 (y),

η2(y) = η1(y)
∫
η−2

1 (y)dy.

General solution is of the form η(y) = Aη1(y) + Bη2(y). The only unknown here is

η1(y). To generate a solution for η1(y) factorize (3.17) into the equivalent form as

shown below and solving for η1(y) gives

(D + α1(y)) (D + α2(y)) η(y) = 0, D =
d

dy
. (3.18)

Assuming that the solution η(y) is such that (D + α2(y)) η(y) = 0. Expanding (3.18)

gives

(
D2 +Dα2(y) + α1(y)D + α1(y)α2(y) + α′2(y)

)
η(y) = 0
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⇒
(
D2η(y) +Dα2(y)η(y)︸ ︷︷ ︸ +α1(y)Dη(y) + α1(y)α2(y)η(y) + α′2(y)η(y)

)
= 0

⇒
(
D2η(y) + η(y)Dα2(y) + α2(y)Dη(y)︸ ︷︷ ︸ +α1(y)Dη(y)

)
+

(α1(y)α2(y)η(y) + α′2(y)η(y)) = 0

⇒
(
D2 + (α1(y) + α2(y))D + α1(y)α2(y) + α′2(y)

)
η(y) = 0 . (3.19)

Comparing (3.17) and (3.19) and equating the coefficients gives the following

α1(y) + α2(y) = 0 ⇒ α1(y) = −α2(y) and

α1(y)α2(y) + α′2(y) = q0(y) = 2sech2(y)− 1− µ

⇒ α′2(y)− α2
2(y) = 2sech2(y)− 1− µ . (3.20)

With slight abuse of notation, denoting d/dy still by ′ results in a nonlinear equation.

Equation (3.20) is nonlinear and non-homogeneous, and is called the Riccati equation,

being nonlinear it has many solutions. Solving the equation further for η(y), using the

transformation β2(y) = α2 − tanh(y), (3.20) transforms into another form of Riccati

equation

β′2 − β2
2 − 2β2 tanh(y) + µ = 0 . (3.21)

Making another transformation γ2(y) = µ/β2 transforms (3.21) to,

γ′2 − γ2
2 + 2 tanh(y)γ2 + µ = 0 . (3.22)

An explicit solution of (3.22) is,

γ2(y) = tanh(y)−
√

1 + µ tanh
(
y
√

1 + µ
)
. (3.23)
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Substituting backwards through all the steps for the solution

α2(y) = tanh(y) +
µ(

tanh(y)−√1 + µ tanh
(
y
√

1 + µ
)) .

From (3.18) a solution of (3.17) is given by

(D + α2(y)) η(y) = 0 ⇒ dη1(y)

dy
+ α2(y)η1(y) = 0 ⇒ η1(y) = e−

∫
α2(y)dy .

Using Risch algorithm[30] η1 is solved for as

η1(y) =
√

1 + µ sinh(y
√

1 + µ)− tanh(y) cosh(y
√

1 + µ) . (3.24)

When µ = 0 the above solution becomes a trivial solution and hence this case need

to be treated separately. Similarly by Risch algorithm η2(y) becomes

η2(y) =
1

2µ
√

1 + µ
[tanh(y) sinh(y

√
1 + µ)−

√
1 + µ cosh(y

√
1 + µ)] . (3.25)

When µ = −1 the above solution becomes indeterminate and when µ = 0 it blows up,

hence these cases also need to be treated separately. Therefore, when µ 6= 0,−1 the

general solution to (3.17) is η(y) = a1η1(y) + a2η2(y) with a1 and a2 being constants.

When µ = 0, (3.17) becomes η′′(y)+(2sech2(y)−1)η = 0, and the two independent

solutions are found to be,

η
(0)
1 (y) = −ysech(y)

2
− sinh(y)

2
and

η
(0)
2 (y) = −sech(y) .

When µ = −1, (3.17) becomes η′′(y) + 2sech2(y)η = 0 and the solutions are

η
(−1)
1 (y) = − tanh(y) and η

(−1)
2 (y) = 1− y tanh(y) .
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Combining the above results, the general solution of (3.15) is,

φ(y) = a1φ
(b)
1 (y) + a2φ

(b)
2 (y) where (3.26)

φ
(b)
1 (y) = cosh(y)η

(b)
1 (y) and φ

(b)
2 (y) = cosh(y)η

(b)
2 (y) .

Here b is empty when µ 6= 0,−1, b = 0 when µ = 0 and b = −1 when µ = −1. The

eigenvalues and values of constants a1 and a2 are determined from (3.15).

When µ 6= 0,−1, substituting the boundary condition φ(y = ±∞) = 0 in (3.26), and

by letting k=
√

1 + µ

φ(y) = a1 cosh(y) (k sinh(ky)− tanh(y) cosh(ky)) +

a2 cosh(y) (k cosh(ky)− tanh(y) sinh(ky)) .

As y→ ±∞ in the above equation cosh(y) → ey/2 and tanh(y) → 1,

φ(±∞) = a1(e
y/2)

(
k

(
(eky − e−ky)/2

)
−

(
(eky + e−ky)/2

))
+

a2(e
y/2)

(
k

(
eky + e−ky)/2

)
−

(
(eky − e−ky)/2

))
,

= (a1/4)
(
k

(
e(k+1)y − e−(k−1)y

)
−

(
e(k+1)y + e−(k−1)y

))
+

(a2/4)
(
k

(
e(k+1)y + e−(k−1)y

)
−

(
e(k+1)y − e−(k−1)y

))
.

Consider k = a+ib to be a complex number, for the above boundary condition

to satisfy the exponential should only have negative powers, meaning Re[k + 1] <

0 ⇒ Re[
√

1 + µ + 1] < 0 and Re[k − 1] > 0 ⇒ Re[
√

1 + µ − 1] > 0 i.e... a < -1

and a > 1. Obviously there is no value of µ that simultaneously satisfies the above

two conditions and hence any µ 6= 0,−1 is not an eigenvalue. Considering µ = 0

⇒ a1 = a2 = 0 to satisfy the boundary conditions. But for µ to be an eigenvalue,
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it should have a nontrivial solution, which is not the case here hence µ = 0 is not

an eigenvalue. Similar thing happens when µ = −1 and hence µ = −1 is also not

an eigenvalue. The above conditions together imply that the spectrum Sµ of B∗ is

empty, i.e.

Sµ = { }

3.7 Point Spectrum of the Forward Operator

Assuming that the time dependence of perturbations can be expressed in the

form of exp(λ t), the linear Initial-boundary-value problem(3.11) can be reduced to

eigenvalue problem (EVP) given by

Bψ(y) = λψ(y) where ψ(y = ±∞) = 0. (3.27)

Where λ, ψ represent the respective eigenvalues and eigenfunctions of the forward

operator. As before, solving this EVP exactly by reducing the first order differential

component:

Implementing

r1(y) = 2 tanh(y) and r0(y) = 2sech2(y)− λ, (3.28)

and using the transformation

ζ(y) = ψ(y)exp
∫

(r1(y)/2) dy = ψ(y)cosh(y) (3.29)

(3.11) transforms into

ζ ′′(y) + s0(y)ζ(y) = 0 ζ(±∞) = 0 (3.30)

where s0(y) = r0 − (r2
1/4)− (r′1/2) = 2sech2(y)− 1− λ.
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Comparing (3.30) with (3.17), we see that (3.30) will be same as (3.17) if λ is

replaced by µ. Implying that the intermediate transformation solution is the same

for adjoint and forward Operator’s respectively. Hence, solving the (3.30) will result

in solutions obtained as before for adjoint operator. In the case: λ 6= 0,−1

ζ1(y) =
√

1 + λ sinh(y
√

1 + λ)− tanh(y) cosh(y
√

1 + λ),

ζ2(y) =
1

2λ
√

1 + λ
[tanh(y) sinh(y

√
1 + λ)−

√
1 + λ cosh(y

√
1 + λ)] .

When λ = 0 the two independent solutions of (3.30) are

ζ
(0)
1 (y) = −ysech(y)

2
− sinh(y)

2
and ζ

(0)
2 (y) = −sech(y).

When λ = −1 the solutions are

ζ
(−1)
1 (y) = − tanh(y) and ζ

(−1)
2 (y) = 1− y tanh(y).

Combining the above results, the general solution of (3.27) is,

ψ(y) = c1ψ
(b)
1 (y) + c2ψ

(b)
2 (y) where (3.31)

ψ
(b)
1 (y) = sech(y)ζ

(b)
1 (y) and ψ

(b)
2 (y) = sech(y)ζ

(b)
2 (y) .

Here b is empty when λ 6= 0,−1, b = 0 when λ = 0 and b = −1 when λ = −1.

The eigenvalues, and values of constants c1 and c2 are determined from the boundary

conditions (3.27). In the case λ 6= 0,−1, substituting the boundary condition ψ(y =

±∞) = 0 in (3.31),with k=
√

1 + λ

ψ(y) = a1sech(y) (k sinh(ky)− tanh(y) cosh(ky)) + a2sech(y) (k cosh(ky)− tanh(y) sinh(ky)) .
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Figure 3.1. First eigenfunction ψ
(b)
1 (y) of B corresponding to λ = −1 + i. The real

part is shown in solid line and the imaginary part in dashed line. Horizontal axis is
the spatial co-ordinate y.

As y→ ±∞ in the above equation sech(y) → 2/ey and tanh(y) → 1

ψ(±∞) = a1(2/e
y)

(
k

(
(eky − e−ky)/2

)
−

(
(eky + e−ky)/2

))
+

a2(2/e
y)

(
k

(
eky + e−ky)/2

)
−

(
(eky − e−ky)/2

))

= a1

(
k

(
e(k−1)y − e−(k+1)y

)
−

(
e(k−1)y + e−(k+1)y

))
+

a2

(
k

(
e(k−1)y + e−(k+1)y

)
−

(
e(k−1)y − e−(k+1)y

))
.

As before Considering k=a+ib to be a complex number, for the boundary condi-

tion ψ(±∞) = 0 to be satisfied the exponential in the above equation should have neg-

ative number in the exponent, indicating decay of eigen functions in the given domain.

i.e.Re[(k− 1) < 0] ⇒ Re[
√

1 + λ− 1] < 0 and Re[(k+ 1) > 0 ⇒ Re[
√

1 + λ+ 1] > 0,

leading to the relations (a-1)<0 and (a+1)>0 ⇒ |a| < 1 .
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Figure 3.2. Second eigenfunction ψ
(b)
2 (y) of B corresponding to λ = −1 + i. The

real part is shown in solid line and the imaginary part in dashed line. Horizontal axis
is the spatial co-ordinate y.

From the λ, k relationship we have, λ = k2 − 1 = a2 − b2 − 1 + i(2 ∗ a ∗ b) ⇒
Re[λ] = (a2 − 1)− b2, the term (a2 − 1) < 0 already, therefore ∀ b Re[λ] < 0 always.

Therefore any λ such that Re[
√

1 + λ] ∈ (−1, 1) is an eigenvalue of (3.27) and the

corresponding eigenfunctions are ψ1(y, λ) and ψ2(y, λ). Considering λ = 0, it is un-

derstood that a1 = 0 in order to satisfy the boundary conditions and hence there is

only one eigenfunction ψ
(0)
2 (y) for this case. Finally when λ = −1, the boundary con-

ditions are satisfied for any value of a1 and a2, and hence there are two eigenfunctions

ψ
(−1)
1 (y) and ψ

(−1)
2 (y). The above conditions together imply that the spectrum λ of

B is

Sλ = {λ : Re[
√

1 + λ] ∈ (−1, 1)} ∪ {0,−1}.
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Since the eigenvalues λ can be complex in general, the relations between λ and
√

1 + λ

can be formulated as shown below.

Re[λ] = (Re[
√

1 + λ])︸ ︷︷ ︸
a

2 − (Im[
√

1 + λ])︸ ︷︷ ︸
b

2 − 1, (3.32)

Im[λ] = 2 (Re[
√

1 + λ])︸ ︷︷ ︸
a

(Im[
√

1 + λ])︸ ︷︷ ︸
b

. (3.33)

For a fixed Re[
√

1 + λ], (3.32) and (3.33) are equations representing a parabola,

parametrized by Im[
√

1 + λ]. The boundary for the set Sλ occurs when Re[
√

1 + λ] =

1 or −1 and is given by the generalized parabola (Im[λ])2 = −4Re[λ]. The above

boundary parabola is a limiting parabola and is not included in Sλ, however the point

0 + i0 on the parabola is included in spectrum set Sλ.

-4 -3 -2 -1 0
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Figure 3.3. The eigenvalue spectrum of the infinite dimensional operator B in the
complex plane.

As Re[
√

1 + λ] varies from -1 to 1 the spectrum sweeps an entire area. The shaded

area in Figure 3.3 is the net spectrum in complex plane. The real part is shown on
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horizontal axis and imaginary part on the vertical axis. From Figure 3.3, it can be

seen that the spectrum of B is unbounded, is connected and fills the entire area to

the left of parabola.

3.8 Spectrum Variation with Viscosity and Baseflow

The key parameters in this problem are viscosity ν and the base flow velocity a.

An interesting observation and explanation of how the spectrum and eigenfunctions

change as ν and a are varied is presented below.

-4 -3 -2 -1 0

-5

0

5

ReHΘL

Im
HΘ
L

Figure 3.4. Effect of Fluid viscosity on the spectrum SΘ in the complex plane. The
area on the left of the dashed line is for a2

ν
= 5, the area on the left of solid line is for

a2

ν
= 1, the area on the left of dotted line is for a2

ν
= 0.1. Symmetry of each curve

with Re[θ] is shown in different colors.

Since µ and λ are the eigenvalues of the nondimensional adjoint and forward oper-

ators respectively, we denote the respective eigenvalues of the dimensional operators

as ∆, Θ (the associated spectrum as S∆ and SΘ). From the non-dimensional relations
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we have ∆ = µa2

ν
and Θ = λa2

ν
. Since increasing (or decreasing) ν with a fixed is

equivalent to decreasing( or increasing) a at fixed ν. For the following, we assume

that a is fixed and λ is varied. Utilizing the above facts we have the boundary set

SΘ become (Im[Θ])2 = (4a2

ν
)Re[Θ]. This implies that as the viscosity decreases, the

size or vertical width of the parabola grows and in the limit of zero viscosity covers

almost entire left half plane. On the other hand, as viscosity increases the width

of parabola decreases and in the limit of infinite viscosity SΘ becomes negative real

axis. This happens to be the spectrum of 1D Heat equation on an infinite domain, as

mentioned at the beginning of this chapter. We also point out that the parabolas right

most point (0 + i0) always remains the same, as viscosity is varied. The spectrum of

adjoint problem S∆ is empty.

The above observation that the spectrum of A tends to the spectrum of the heat

equation, in the limit of increasing viscosity can also be shown true with the following:

From (3.5) it can be seen that as ν →∞ i.e. as the value of ν increases we can see that

forward operator A→ ν ∂2

∂x2 which is similar to the operator form of one dimensional

heat equation. This can be seen as an explanation to the coincidence of the respective

spectrums of forward operator and heat equation, in the limit of viscosity approaching

higher values.

Similarly from (3.8), we can see that the adjoint operator A∗ → ν ∂2

∂x2 for very high

values of ν ( also generalized as ν →∞). But interestingly their limit spectrums are

not alike, the adjoint operator has an empty set to its spectrum and heat equation

the negative real axis. Though this might look as a surprise, operators of this kind,

where the limit of spectrum of operators( the adjoint operator here) is different from

the spectrum of the limit operator (heat equations operator), are not uncommon in

functional analysis literature.
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3.9 Discussion

Two infinite dimensional operators, that arise in the context of fluid mechanics,

whose spectrum is empty in one case and unbounded in another case are presented. In

the unbounded case, the spectrum fills the entire area on one side of a parabola in the

complex plane and is connected. The variation of the spectrum and eigenfunctions

as the viscsosity and eigenfunctions are varied is also presented.

To put in a larger perspective, fluid operators of the kind presented in this chapter

pose several new challenges from theoretical fluid mechanics and feedback flow control

standpoint. In the former case, it is not clear how techniques like eigenfunction

expansion, Laplace transforms, etc. can be applied here. In the latter case, no

practical controller can manipulate, or relocate open loop eigenvalues in complex

plane, that many modes at the same time.

In the next chapter we consider how the spectrum and stability properties vary

as the domain size is made finite in size.
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CHAPTER 4

STABILITY OF THE DISCONTINUITY IN THE FINITE
DOMAIN

In this chapter we will study

1. the effect of domain size on the point spectrum of Burgers equation and

2. the exponential stability behavior of the base flow state.

4.1 Linearized Forward Disturbance Equation

The afore mentioned Burgers’ equation [39] in a finite domain is

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f(x, t) where x ∈ (−c, c). (4.1)

Here u is the velocity field and is a function of space x and time t, ν is kinematic

viscosity of fluid with ν ≥ 0 and c is the domain size. The forcing term f(x,t) is

assumed to be zero. We have seen before that

ū(x) = −2a tanh
(
ax

ν
+ b

)
(4.2)

is a time independent solution of (4.1).

Without loss of generality one can take b = 0 and in this case ū(0) = 0, ū(c) = β

and ū(−c) = α , where α = −β are the boundary conditions.
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Figure 4.1. Plot of steady state solution for different viscosity values

In physical terms, this steady state can be thought of as a standing shock wave at

the origin. Writing the velocity field as

u(x, t) = ū(x) + U(x, t) (4.3)

and linearizing the Burgers’ equation about the steady state solution gives

∂U

∂t
+ ū(x)

∂U

∂x
+ U(x, t)

dū

dx
= ν

∂2U

∂x2
(4.4)

where U(x = ±c) = 0 (assuming that the perturbations decay at the boundaries).

The above equations can be written in the operator form as

∂U

∂t
≡ AU where A ≡ ν

∂2

∂x2
− ū

∂

∂x
− dū

dx
. (4.5)
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4.2 Adjoint Disturbance Equation

Defining the spatial L2 inner product to be

〈F1(x), F2(x)〉L2 =
∫ c

−c
F1(x)F2(x)dx .

Using this, the adjoint (A∗) of operator A is defined as

〈AF1(x), F2(x)〉L2 = 〈F1(x), A
∗F2(x)〉L2 . (4.6)

Considering the left hand side of expression initially leads to

〈AF1(x), F2(x)〉L2 =
∫ c

−c

(
ν
∂2F1(x)

∂x2
− ū

∂F1(x)

∂x
− F1(x)

dū

dx

)
F2(x) dx .

Individually the above three integrands are

∫ c

−c
ν
∂2F1(x)

∂x2
F2(x) dx =

(
νF2(x)

∂F1(x)

∂x

)c

−c

−
∫ c

−c
ν
∂F2(x)

∂x

∂F1(x)

∂x

= −
(
ν
∂F2(x)

∂x

)c

−c

+ ν
∫ c

−c

∂2F1(x)

∂x2
F1(x) dx

= ν
∫ c

−c

∂2F1(x)

∂x2
F1(x) dx . (4.7)

since F1(±c) = 0 , from (4.4)

−
∫ c

−c

∂ū

∂x
F1(x)F2(x) dx = −

∫ c

−c

∂ū

∂x
F2(x)F1(x) dx . (4.8)

−
∫ c

−c
ū
∂F1(x)

∂x
F2(x) dx = − (ūF2(x)F1(x))

c
−c +

∫ c

−c
F1(x)

∂ūF2(x)

∂x
dx . (4.9)

From (4.7),(4.8) and(4.9) it is understood that there is a constitutive expression for

the left hand side of expression in (4.6) which is equal to the right hand side

〈F1(x), A
∗F2(x)〉L2 =

∫ c

−c
F1(x)A

∗F2(x) dx .
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Comparing the Integral terms on both right and left hand side respectively

A∗F2(x) = ν
∂2F2(x)

∂x2
− ∂ū

∂x
F2(x) +

∂(ūF2(x)

∂x

= ν
∂2F2(x)

∂x2
− ∂ū

∂x
F2(x) +

∂ū

∂x
F2(x) + ū

∂F2(x)

∂x

= ū
∂F2(x)

∂x
+ ν

∂2F2(x)

∂x2
.

A∗V (x, t) = ν
∂2V

∂x2
+ ū

∂V

∂x
, V (x = ±c) = 0 . (4.10)

4.3 Non-Normality and Non-Hermitian Properties

From the values of A and A∗ obtained in (4.5),(4.10) it can be seen that A 6= A∗

and therefore A is non-Hermitian. On a side note, it can also be seen that

AA∗ = ν2 ∂
4

∂x4
+

(
−ū2 + νū′

) ∂2

∂x2
+ (−2ūū′ + νū′′)

∂

∂x
and (4.11)

A∗A = ν2 ∂
4

∂x4
+ (−ū2 − 2νū′)

∂2

∂x2
+ (−ūū′ − νū′′)

∂

∂x
− ūū′′ − νū′′′ . (4.12)

Where ′ denotes d/dx. From above we see that AA∗ 6= A∗A and hence A is not only

non-hermitian but also non-normal in the chosen inner product.

One can see that it is only in the limit when base flow velocity ū =0, that the

operators A = A∗ and AA∗ = A∗A , showing hermitian and normal operator behavior

unlike above.

4.4 Non-Dimensionalization

Since there is no length scale in the problem, but there is velocity scale a,using a

and ν, one can form length scale as ν/a and time scale as a2/ν. Denoting s = tν/a2,

y = xa/ν, M = U/a and N = V/a we get the non-dimensional A equation as

∂M

∂s
≡ BM where M(y = ±c) = 0 and
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BM(y, s) =
∂2M

∂y2
+ 2tanh(y)

∂M

∂y
+ 2sech2(y)M . (4.13)

B is the non-dimensional A. Similarly the adjoint A∗ equations become

∂N

∂s
≡ B∗N where N(y = ±c) = 0 and

B∗N(y, s) =
∂2N

∂y2
− 2tanh(y)

∂N

∂y
. (4.14)

4.5 Eigen Spectrum of the Adjoint Operator

Considering the adjoint equation, the corresponding eigenvalue problem (EVP)(4.14)

is given by

B∗φ(y) = µφ(y) where φ(y = ±c) = 0 . (4.15)

µ and φ are the corresponding eigenvalues and eigenfunctions respectively. Solving

these second order ordinary differential equations corresponding to EVP exactly:

Let,

p1(y) = −2 tanh (y) and p0(y) = −µ. (4.16)

And using the transformation

η(y) = φ(y)exp
∫

(p1(y)/2) dy = φ(y)sech(y) (4.17)

(4.14) becomes

η′′(y) + q0(y)η(y) = 0 where η(±c) = 0, (4.18)

and q0(y) = p0− (p2
1/4)− (p′1/2) = 2sech2(y)− 1−µ. If one of the solution η1(y) can

be found to (4.18), the other independent solution is given by

η2(y) = η1(y)
∫
η−2

1 (y)dy.

32



We will generate a solution to (4.18) by factorizing it into the following form

(
d

dy
+ α1(y))(

d

dy
+ α2(y))η = 0 . (4.19)

Solving the above equation gives the following relations

α′2(y)− α2
2(y) = 2sech2(y)− 1− µ (4.20)

and α1 = −α2. With slight abuse of notation, denote d/dy by still ′. The above

equation is a nonlinear non-homogeneous Riccati equation, which has many solutions

owing to it’s nonlinearity.

Making the transformation β2(y) = α2− tanh(y), (4.20) transforms into a nonlin-

ear Bernoulli equation

β′2 − β2
2 − 2β2 tanh(y) + µ = 0 . (4.21)

Making the transformation γ2(y) = µ/β2, (4.21) transforms into

γ′2 − γ2
2 + 2 tanh(y)γ2 + µ = 0 . (4.22)

An explicit solution of (4.22) is given by

γ2(y) = tanh(y)−
√

1 + µ tanh
(
y
√

1 + µ
)
. (4.23)

Substituting and solving back for the intermediate transformed solution we have

α2 = tanh(y) +
µ(

tanh(y)−√1 + µ tanh
(
y
√

1 + µ
)) .
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From (4.19) a solution of (4.18) is given by

η1(y) = e−
∫

α2(y)dy . (4.24)

Using Risch algorithm η1 can be solved for as

η1(y) =
√

1 + µ sinh(y
√

1 + µ)− tanh(y) cosh(y
√

1 + µ). (4.25)

When µ = 0 the above solution becomes a trivial solution and hence this case need

to be treated separately. Similarly by Risch algorithm η2(y) can be solved for as

η2(y) =
1

2µ
√

1 + µ
[tanh(y) sinh(y

√
1 + µ)−

√
1 + µ cosh(y

√
1 + µ)] . (4.26)

When µ = −1 the above solution becomes trivial and hence this case also needs to

be treated separately. Therefore, when µ 6= 0,−1 the general solution to (4.18) is

η(y) = a1η1(y) + a2η2(y) with a1 and a2 being constants.

When µ = 0, (4.18) becomes η′′(y)+(2sech2(y)−1)η = 0, and the two independent

solutions are

η
(0)
1 (y) = −ysech(y)

2
− sinh(y)

2
and (4.27)

η
(0)
2 (y) = −sech(y) .

When µ = −1, (4.18) becomes η′′(y) + 2sech2(y)η = 0, and the solutions are

η
(−1)
1 (y) = − tanh(y) and η

(−1)
2 (y) = 1− y tanh(y) . (4.28)

4.5.1 Eigen Functions of the Adjoint Operator

Combining the above results, the general solution of (4.15) are

φ(y) = a1φ
(b)
1 (y) + a2φ

(b)
2 (y) where (4.29)
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φ
(b)
1 (y) = cosh(y)η

(b)
1 (y) and φ

(b)
2 (y) = cosh(y)η

(b)
2 (y) . (4.30)

When µ 6= 0,−1 b is empty, when µ = 0 b = 0 and when µ = −1 b = −1. The

eigenvalues and corresponding values of a1 and a2 are determined from the boundary

conditions (4.15). By considering the finite domain (c,-c) to be (-2,2) and substituting

the boundary conditions in (4.29), the analysis can be done in the following three cases

for the eigen values

Case (a) k=
√

1 + µ = 1 Implementing the boundary condition with k=1 in

φ(y) = a1(cosh(y))[(
√

1 + µ sinh(y
√

1 + µ)− tanh(y) cosh(y
√

1 + µ)] +

a2(cosh(y))[(
1

2µ
√

1 + µ
[tanh(y) sinh(y

√
1 + µ)−

√
1 + µ cosh(y

√
1 + µ)]]

results into the following coupled set of equations

φ(+y) = a1[tanh(y) + sech2(y)] + a2[sech
2(y)] = 0 and

φ(−y) = a1[− tanh(y) + sech2(y)] + a2[sech
2(y)] = 0 .

Solving the above two equations gives a1 = 0 and a2 = 0. Hence k=1 does not provide

non trivial solutions for the eigen function.

Case (b) k=
√

1 + µ = 0 Implementing the boundary condition with k=0 in

φ(y) = a1(cosh(y))[(
√

1 + µ sinh(y
√

1 + µ)− tanh(y) cosh(y
√

1 + µ)] +

a2(cosh(y))[
1

2µ
√

1 + µ
[tanh(y) sinh(y

√
1 + µ)−

√
1 + µ cosh(y

√
1 + µ)]]

results into the following coupled set of equations

φ(+y) = a1[sech
2(y)(1− y tanh(y))] + a2[−sech(y) tanh(y)] = 0 and
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φ(−y) = a1[sech
2(y)(1− y tanh(y))] + a2[sech(y) tanh(y)] = 0.

Solving the above two equations leads to a1 = 0 and a2 = 0. Hence k=0 also

does not provide non trivial solutions for the eigenfunctions.

Case (c) k =
√

1 + µ 6= 1,−1, 0

φ(y) = a1(cosh(y))[(
√

1 + µ sinh(y
√

1 + µ)− tanh(y) cosh(y
√

1 + µ)] +

a2(cosh(y))[(
1

2µ
√

1 + µ
[tanh(y) sinh(y

√
1 + µ)−

√
1 + µ cosh(y

√
1 + µ)]]

implementing the boundary conditions in the above equation we have

φ(−2) = a1φ1(−2) + a2φ2(−2) = 0 and

φ(2) = a1φ1(2) + a2φ2(2) = 0

The Nontrivial solution of above equations exists if the determinant of the coefficient

matrix vanishes. This condition leads to the following characteristic equation:

(
√

1 + µ tanh(y
√

1 + µ)− tanh(y)) ∗ (
√

1 + µ coth(y
√

1 + µ)− tanh(y)) = 0 .

√
1 + µ tanh(y

√
1 + µ)− tanh(y) = 0 and (4.31)

√
1 + µ coth(y

√
1 + µ)− tanh(y) = 0 (4.32)

(i) Consider k=
√

1 + µ has real roots:

Evaluating (4.31) ⇒ k=0,±δ as the roots where for small values of y , δ → 0 Eval-

uating (4.32) ⇒ k=1,−1, but from above analysis it is understood that there is no

nontrivial solution for these values of k, hence these does not represent the solution.
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Figure 4.2. Plot showing eigenvalue µ1 calculation for Case (c), for k1 Real.

(ii) Consider k having purely imaginary roots i.e. k=iz substituting in (4.31),(4.32)

we have

z tan(zy) + tanh(y) = 0 z coth(y)− tan(zy) = 0

Solving which we have k=i1.24047 and k=i2.145 ..... . ., as shown in Figure (4.2) and

Figure (4.3)

(iii) Consider k to be a complex number we have i.e... k= p + iq, where p is the

real part and q is the complex part. Upon evaluating with the complex form of k in

(4.31),(4.32) it can be seen that to have non-trivial solutions the imaginary part of

k must be 0, indicating that the complex assumption reduces itself to REAL form,

hence there is no k in complex form.

The eigenvalues thus obtained from the above analysis are tabulated in Table

(4.1).

Since we have the eigenvalues, substituting them in (4.29) gives the individual

eigenfunction explicitly as a function of non-dimensional domain length.
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Figure 4.3. Plot showing eigenvalue’s µ2, . . . , µ6 calculated for Case (c) with
k2, . . . , k6 being purely complex.
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Figure 4.4. Plot of eigenvalues of the adjoint operator B∗
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Table 4.1. Eigen Values of B∗ in the finite domain case

Symbol Value

µ1 -0.16129
µ2 -2.53877
µ3 -5.60103
µ4 -9.91273
µ5 -22.24564
µ6 -30.26388
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Figure 4.5. The eigenfunction of the finite dimensional operator B∗ corresponding
to eigenvalue µ1
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Figure 4.6. The eigenfunction of the finite dimensional operator B∗ corresponding
to eigenvalue µ2
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Figure 4.7. The eigenfunction of the finite dimensional operator B∗ corresponding
to eigenvalue µ3
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Plotting the eigenfunctions for the first three eigenvalues in Table (4.1) we have

Figure (4.5), Figure (4.6) and Figure (4.7). The respective plots clearly show that

the eigenfunctions are bounded and decay at boundaries. Also, Figure (4.5) and

Figure (4.7) indicate that the respective eigenfunctions are symmetric with respect

to vertical axis and Figure (4.6) is antisymmetric with respect to the vertical axis.

This symmetric/anti-symmetric property associated with the eigenfunctions is very

useful for the analysis procedures adopted in Chapter’s 5 and 6.

So far, exact solution to the disturbed equation is formulated using transforma-

tions. And various possibilities that arise for solution of the equations thus obtained

are postulated and solved for the eigenvalues and eigenfunctions respectively. Thus

a similar procedure as followed for the adjoint operator is used to account for the

eigenvalues and eigenfunctions of the forward operator in (4.13).

4.6 Eigen Spectrum for the Forward Operator

The eigenvalue problem (EVP) corresponding to (4.13) is given by

Bψ(y) = λψ(y) where ψ(y = ±c) = 0 and (4.33)

λ, ψ are the respective eigenvalues and eigenfunctions. Next we solve this EVP

exactly. Let,

r1(y) = 2 tanh(y) and r0(y) = 2sech2(y)− λ .

Using the transformation

ζ(y) = ψ(y)exp
∫

(r1(y)/2) dy = ψ(y)cosh(y) (4.34)
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(4.13) transforms into the following second order differential equation

ζ ′′(y) + s0(y)ζ(y) = 0 where ζ(±∞) = 0 and (4.35)

s0(y) = r0 − (r2
1/4)− (r′1/2) = 2sech2(y)− 1− λ.

Comparing (4.35) with (4.18), shows that (4.35) is same as (4.18) if λ is replaced

by µ. Hence, following the steps as before in §3.7 for the solution of intermediate

transformation we have:

when λ 6= 0,−1

ζ1(y) =
√

1 + λ sinh(y
√

1 + λ)− tanh(y) cosh(y
√

1 + λ) and

ζ2(y) =
1

2λ
√

1 + λ
[tanh(y) sinh(y

√
1 + λ)−

√
1 + λ cosh(y

√
1 + λ)]

When λ = 0, the two independent solutions of (4.35) are

ζ
(0)
1 (y) = −ysech(y)

2
− sinh(y)

2
and

ζ
(0)
2 (y) = −sech(y) .

When λ = −1, the solutions are

ζ
(−1)
1 (y) = − tanh(y) and ζ

(−1)
2 (y) = 1− y tanh(y) .

4.6.1 Eigen Functions of the Forward Operator B

Combining the above results, the general solution of (4.33) is

ψ(y) = c1ψ
(b)
1 (y) + c2ψ

(b)
2 (y) where (4.36)

ψ
(b)
1 (y) = sech(y)ζ

(b)
1 (y) and ψ

(b)
2 (y) = sech(y)ζ

(b)
2 (y) .

When λ 6= 0,−1 b is empty, when λ = 0 b = 0and when λ = −1 b = −1. The

eigenvalues, and values of c1 and c2 are determined from the boundary conditions
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(4.33). By considering the finite domain (c,-c) to be (-2,2) and substituting the

boundary conditions in (4.29)

Case (a) k=
√

1 + λ=1, Implementing the boundary condition with k=1 in

ψ(y) = a1(cosh(y))[(
√

1 + λ sinh(y
√

1 + λ)− tanh(y) cosh(y
√

1 + λ)] +

a2(cosh(y))[(
1

2µ
√

1 + λ
)[tanh(y) sinh(y

√
1 + λ)−

√
1 + λ cosh(y

√
1 + λ)]]

leads to the following set of coupled equations

ψ(+y) = a1[tanh(y) + sech2(y)] + a2[sech
2(y)] = 0 and

ψ(−y) = a1[− tanh(y) + sech2(y)] + a2[sech
2(y)] = 0 .

Solving the above two equations ⇒ a1 = 0 and a2 = 0. Hence k=
√

1 + λ=1 does not

provide non trivial solutions for the eigenfunction.

Case (b) k=0 Implementing the boundary condition with k=
√

1 + λ=0 in

ψ(y) = a1(cosh(y))[(
√

1 + λ sinh(y
√

1 + λ)− tanh(y) cosh(y
√

1 + λ)] +

a2(cosh(y))[(
1

2λ
√

1 + λ
)[tanh(y) sinh(y

√
1 + λ)−

√
1 + λ cosh(y

√
1 + λ)]]

gives the following coupled set of equations

ψ(+y) = a1[sech
2(y)(1− y tanh(y))] + a2[−sech(y) tanh(y)] = 0 and

ψ(−y) = a1[sech
2(y)(1− y tanh(y))] + a2[sech(y) tanh(y)] = 0 .

Solving the above two equations ⇒ a1 = 0and a2 = 0. Hence k=0 also does not

provide non trivial solutions for the eigenfunction.
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Case (c) k=
√

1 + λ 6= 1,−1, 0

ψ(y) = a1(cosh(y))[(
√

1 + λ sinh(y
√

1 + λ)− tanh(y) cosh(y
√

1 + λ)] +

a2(cosh(y))[(
1

2λ
√

1 + λ
[tanh(y) sinh(y

√
1 + λ)−

√
1 + λ cosh(y

√
1 + λ)]] (4.37)

Implementing the boundary conditions as before gives the following set of equations

ψ(−2) = a1ψ1(−2) + a2ψ2(−2) = 0 and

ψ(2) = a1ψ1(2) + a2ψ2(2) = 0 .

The Nontrivial solution of above equations exists if the determinant of the coefficient

matrix vanishes. This condition leads to the following characteristic equations:

(
√

1 + λ tanh(y
√

1 + λ)− tanh(y)) ∗ (
√

1 + λ coth(y
√

1 + λ)− tanh(y)) = 0

√
1 + λ tanh(y

√
1 + λ)− tanh(y) = 0 and (4.38)

√
1 + λ coth(y

√
1 + λ)− tanh(y) = 0 . (4.39)

(i) Considering the case that k has real roots:

Evaluating (4.38) we have k=0,±δ as the roots where for small values of y , δ → 0

Evaluating (4.39) we have k=1,−1, but from above analysis it is understood that

there is no nontrivial solution for these values of k, hence these does not represent

the solution.

(ii) Considering k having imaginary roots i.e. k=iz substituting in (4.38),(4.39)

leads to the following condition

z tan(zy) + tanh(y) = 0 , z coth(y)− tan(zy) = 0
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Table 4.2. Eigen Values of B in the finite domain case

Symbol Value

λ1 -0.16129
λ2 -2.53877
λ3 -5.60103
λ4 -9.91273
λ5 -22.24564
λ6 -30.26388

upon solving for k results in k = i1.24047 and k = i2.145 .... . ., as shown in Figure

(4.2) and Figure (4.3)

(iii) Considering k to be a complex number we have i.e.. k = p + iq, where p-

the real part and q-the complex part. Upon evaluating with the complex form of k

in (4.38),(4.39)

tanh(kL) =
1

k
tanh(L)

⇒ e(p+iq)L − e−(p+iq)L

e(p+iq)L + e−(p+iq)L
=

1

p+ iq
tanh(L)

⇒ (p+ iq)
(
ep cos(q) + iep sin(q)− e−p cos(q) + ie−p sin(q)

)
=

tanh(L)
(
ep cos(q) + iep sin(q) + e−p cos(q)− ie−p sin(q)

)

Individually separating and equating the Real and Imaginary parts of the above

equation and solving for p and q results in p→ 0 always ⇒ k = 0 + iq, i.e. it moves

to the purely complex regime as described above in (ii). This result clearly indicates

that there is no complex eigen value existing for the problem.
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Figure 4.8. Plot of the eigenvalues of the forward operator B
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Figure 4.9. The eigenfunction of the finite dimensional operator B corresponding
to the eigenvalue λ1
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Figure 4.10. The eigenfunction of the finite dimensional operator B corresponding
to the eigenvalue λ2
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Figure 4.11. The eigenfunction of the finite dimensional operator B corresponding
to the eigen value λ3
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4.7 Discussion

In this chapter we studied the spectral properties of the linearized Burgers equa-

tion on a finite spatial domain. An interesting observation is that the change of

domain size dramatically alters the spectrum of the operators, comparing with in-

finite domain results of previous chapter. It was found that both the forward and

adjoint operators have the same eigenvalues (all lie on open Left Half Plane (LHP)),

but different eigenfunctions. Since all the eigenvalues are in open LHP, both the

forward and adjoint operators are exponentially stable.
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CHAPTER 5

EXACT SOLUTIONS USING BI-ORTHOGONAL BASIS
FUNCTIONS

In this chapter, we will generate exact solution for the forward partial differential

equation using a Galerkin like method, using bi-orthogonal basis functions.

5.1 Orthogonality and Bi-orthogonality

Orthogonality for an inner product space V with basis elements xi is defined by

〈xi, xj〉 = δij





1 for i = j,

0 for i 6= j.
(5.1)

Note that without loss of generality we assumed that the basis elements are of unit

length (or orthonormal). If this is not so, one can always normalize them.

Bi-orthogonality is a property relating two different vector spaces and it’s respec-

tive basis elements. Mathematically it is stated as, for some given vector spaces X

and Y with basis elements xi and yi respectively, are said to be bi-orthogonal if

〈xi, yj〉 = δij





1 for i = j,

0 for i 6= j.
(5.2)

It can be shown that the eigenfunctions of the forward and adjoint operators form

a bi-orthogonal basis, i.e., 〈ψn, φm〉 = anδnm, where an is some constant. With some

abuse of notation, we assume that there is no summation over n in the above equation.
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Normalizing eigenfunction ψi using the L2 norm gives,

∫ c

−c
ψi(y)ψ̄i(y) dy = bi, ψn

i (y) = (1/
√
bi)ψi(y) where i = 1, 2, 3.

The normalized eigenfunctions are denoted by the superscript n. Some of ψi are

purely imaginary, for example φ3(y) eigen function corresponding the third eigen

value. Multiplying an eigenfunction by a constant does not change its properties, as

a result we take define ψi = ψi/I in these cases. Here I =
√−1.

Now we normalize φi such that the bi-orthogonal relation 〈ψn
n, φ

n
m〉 = δnm. Since

〈ψn
n, φm〉 = cnδnm, we get this by defining φn

i ≡ φn
i /ci.

From now on we assume that the eigenfunctions have been normalized and do not

explicitly show the superscript n.

5.2 Solution of the Linear Equations

Since the eigenvectors of B form a bi-orthogonal set with respect to the eigenvec-

tors of B∗, that is 〈ψn, φm〉 = δnm, we will utilize this property to solve the linear

equations exactly.

Consider the nondimensional operator equation

∂M(y, s)

∂s
= B ×M(y, s). (5.3)

Any solution can be represented as a superposition of the eigenfunctions as

M(y, s) ≈
i=N∑

i=1

pi(s)ψi(y). (5.4)

Here N can be ∞ or a finite number, if we are doing an approximation. Substituting

(5.4) in (5.3) gives

i=N∑

i=1

ṗiψi =

(
i=N∑

i=1

Bpiψi

)
=

i=N∑

i=1

piλiψi.
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Taking innerproduct with respect to φj to the above equation results in the following

equations

ṗ1 + 0 + 0 + . . . = p1λ1 + 0 + 0 + . . . ,

0 + ṗ2 + 0 + . . . = 0 + p2λ2 + 0 + . . . ,

0 + 0 + ṗ3 + . . . = 0 + 0 + p3λ3 + . . . ,

. . .

0 + 0 + . . .+ ˙pN = 0 + 0 + . . .+ pN .λN (5.5)

From (5.5) we get

p1(s) = eλ1sp10 , p2(s) = eλ2sp20 , p3(s) = eλ3sp30 , . . .

M(y, s) = eλ1sp10ψ1 + eλ2sp20ψ2 + eλ3sp30ψ3 + . . . ,

M0(x) = M10ψ1 +M20ψ2 +M30ψ3 + . . . ,

where 〈M0 , φ1〉 = p10 , 〈M0 , φ2〉 = p20 , 〈M0 , φ3〉 = p30 . . ..

Using the above results, we finally get the semigroup representation of disturbance

velocity as

M(y, s) = eλ1s〈M0(y), φ1〉ψ1 + eλ2s〈M0(y), phi2〉ψ2 + . . . =
N∑

i=1

eλit〈M0(y), φi〉ψi.

5.3 Numerical Simulations: Effect of the Number of Modes

and the Initial Conditions on the Transient Growth

We define the energy norm as

E(s) = ‖M(y, s)‖2
L2
dx =

1

2
〈M,M〉L2 =

∫ c

−c
M2 dy

= 〈p1ψ1 + p2ψ2 + · · · , p1ψ1 + p2ψ2 + · · ·〉
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=
∫ c

−c
(p1ψ1 + p2ψ2 + · · ·)2 dy.

In this section, we consider the effect of number of retained modes and the initial

conditions on the transient growth properties of the equations. To illustrate the ideas

we consider N = 2 and N = 3 cases.

Case 1: N=2

The two mode approximation gives

E(t) =
1

2
〈p1ψ1 + p2ψ2, p1ψ1 + p2ψ2〉

E(t) =
1

2

(
p2

1 + p2
2 + 2p1p2〈ψ1ψ2〉

)

E(t) =
1

2

(
e2λ1sp2

10
+ e2λ2sp2

20

)
.

Since ψ1 and ψ2 are symmetric and anti-symmetric functions, as shown before, their

inner product will be zero. Thus, leaving two terms which continuously decay expo-

nentially, since the eigenvalues are in open LHP. Hence for two retained modes there

can be no transient growth of the energy.

Case 2: N=3

The three mode approximation gives

E(t) =
1

2
〈p1ψ1 + p2ψ2 + p3ψ3, p1ψ1 + p2ψ2 + p3ψ3〉

E(t) =
1

2

∫
(p1ψ1 + p2ψ2 + p3ψ3)

2 dy

E(t) =
1

2


e2λ1sp2

10︸ ︷︷ ︸
a

+ e2λ2sp2
20︸ ︷︷ ︸

b

+ e2λ3sp2
30︸ ︷︷ ︸

c

+ 2a10a30〈ψ1, ψ3〉e(λ1+λ3)s

︸ ︷︷ ︸
d


 (5.6)

Since ψ1 and ψ3 are symmetric and ψ2 is anti-symmetric the inner product of ψ2 with

ψ1 and ψ3 is zero, leaving behind a coupling term (shown above as d). It is this term
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Figure 5.1. Plot of energy variation with time. Solid line represents N=2 modes
and dashed line represents N=3 modes. For a specific notation we observe that in
both the above cases energy decreases monotonically

that causes the transient growth. Since all the eigen values of the system are in the

open left half plane, each of the above term decays exponentially, however the sum

of these terms can grow transiently, if right initial conditions are available.

Next we show few illustrative simulations. Here 〈ψ1, ψ3〉 = β > 0.

Case A: Here we take p10 = 0.2, p20 = 0 and p30 = 0.1. The energy variation for

the two and three mode cases is shown in Figure (5.1) for the above initial conditions.

Note that for these initial conditions, both the two and three mode energies decay

monotonically and there is no transient growth.

Case B: Here we take p10 = 0.2, p20 = 0 and p30 = −0.1. Figure (5.2) shows the

energy variation for the two and three mode cases with the above initial conditions.

Note that for these initial conditions, the two mode case energy decays monotonically,

while the three mode energy first decays, then grows and finally decays.
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Figure 5.2. Plot of energy variation with time. Solid line represents N=2 modes
and dashed line represents N=3 modes. For a specific notation we observe that, while
the energy of 2 modes decreases monotonically, and that of three mode system grows
transiently

From the above results, we can see that for transient growth not only non-

normality, but also right number of modes and initial conditions play key roles. The

above simulations were performed in Mathematica [40].

5.4 Discussion

In this chapter we solved the linearized shock problem exactly using bi-orthogonal

basis functions and used it to study the energy growth and decay properties of the

solutions. It was observed that non-orthogonal superposition of potentially decaying

solutions can give rise to short term growth (see Figure (5.2). It was shown that

the linearized problem can exhibit large transient growths given the right initial con-

ditions. The source of this transient amplification of initial conditions lies in the

non-orthogonality of the eigenfunction basis. Further it was also observed that the

number of modes retained plays a significant role in predicting transient growth.
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CHAPTER 6

NON-LINEAR FINITE AMPLITUDE EFFECTS

In the previous chapter, we studied the dynamics neglecting the nonlinearity. In

this chapter, we study the finite amplitude effects, i.e., nonlinear effects for large

perturbations.

The nonlinear governing equations are given by

∂M(y, s)

∂s
+ BM +N (M) = 0, (6.1)

N (M) = M
∂M

∂y
. (6.2)

6.1 Projection of the Equations on to a Finite Dimensional

Space

In this section we project the above equations onto a finite dimensional subspace

spanned by the first N eigenfunctions, and this is written as

M(y, s) = p1(s)ψ1(y) + p2ψ2 + p3ψ3 + . . .+ pNψN . (6.3)

Substituting the above equations in (6.1) we get

i=N∑

i=1

ṗiψi =

(
i=N∑

i=1

Bpiψi

)
+Ni(M) =

i=N∑

i=1

piλiψi +Ni(M),

where

Ni(M) = 〈N (M), φi〉, (6.4)
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N (M) ≈
(

i=N∑

i=1

piψi

) (
i=N∑

i=1

piψ
′
i

)
. (6.5)

6.2 Three Mode Subspace

To compare with the results of previous chapter, we project the nonlinear equa-

tions on to a three dimensional space. The equations in this case are:

ṗ1 = p1λ1 +N1(M) N1(M) = 〈N (M), φ1〉, (6.6)

ṗ2 = p2λ2 +N2(M) N2(M) = 〈N (M), φ2〉, (6.7)

ṗ3 = p3λ3 +N3(M) N3(M) = 〈N (M), φ3〉, (6.8)

and

N (M) = (p1ψ1 + p2ψ2 + p3ψ3)
(
p1ψ

′
1 + p2ψ

′
2 + p3ψ3

′)
.

Substituting the above equation in (6.6), (6.7), (6.8) we get

N1(M) = p2
1 〈ψ1ψ

′
1, φ1〉︸ ︷︷ ︸

δ111

+p2
2 〈ψ2ψ

′
2, φ1〉︸ ︷︷ ︸

δ221

+p2
3 〈ψ3ψ

′
3, φ1〉︸ ︷︷ ︸

δ331

+

p1p2[〈ψ1ψ
′
2, φ1〉︸ ︷︷ ︸

δ121

+ 〈ψ2ψ
′
1, φ1〉︸ ︷︷ ︸

δ211

] + p1p3[〈ψ1ψ
′
3, φ1〉︸ ︷︷ ︸

δ131

+ 〈ψ3ψ
′
1, φ1〉︸ ︷︷ ︸

δ311

] +

p2p3[〈ψ3ψ
′
2, φ1〉︸ ︷︷ ︸

δ321

+ 〈ψ2ψ
′
3, φ1〉︸ ︷︷ ︸

δ231

].

Similarly it can be shown that

N2(M) = p2
1 〈ψ1ψ

′
1, φ2〉︸ ︷︷ ︸

γ112

+p2
2 〈ψ2ψ

′
2, φ2〉︸ ︷︷ ︸

γ222

+p2
3 〈ψ3ψ

′
3, φ2〉︸ ︷︷ ︸

γ332

+

p1p2[〈ψ1ψ
′
2, φ2〉︸ ︷︷ ︸

γ122

+ 〈ψ2ψ
′
1, φ2〉︸ ︷︷ ︸

γ212

] + p1p3[〈ψ1ψ
′
3, φ2〉︸ ︷︷ ︸

γ132

+ 〈ψ3ψ
′
1, φ2〉︸ ︷︷ ︸

γ321

] +

p2p3[〈ψ3ψ
′
2, φ2〉︸ ︷︷ ︸

γ322

+ 〈ψ2ψ
′
3, φ2〉︸ ︷︷ ︸

γ232

].
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Table 6.1. Numerically computed values of γijk

γ111 = 0 γ112 = 1.175 γ113 = 0

γ221 = 0 γ222 = 1.50765 γ223 = 0

γ331 = 0 γ332 = 3.478 γ333 = 0

γ121 = −0.171054 γ122 = 0 γ123 = −6.04825

γ331 = 0.479 γ232 = 0 γ233 = 4.497

γ131 = 0 γ132 = 3.04632 γ133 = 0

and N3(M) = p2
1 〈ψ1ψ

′
1, φ3〉︸ ︷︷ ︸

γ113

+p2
2 〈ψ2ψ

′
2, φ3〉︸ ︷︷ ︸

γ223

+p2
3 〈ψ3ψ

′
3, φ3〉︸ ︷︷ ︸

γ333

+

p1p2[〈ψ1ψ
′
2, φ3〉︸ ︷︷ ︸

γ123

+ 〈ψ2ψ
′
1, φ3〉︸ ︷︷ ︸

γ213

] + p1p3[〈ψ1ψ
′
3, φ3〉︸ ︷︷ ︸

γ133

+ 〈ψ3ψ
′
1, φ3〉︸ ︷︷ ︸

γ313

] +

p2p3[〈ψ3ψ
′
2, φ3〉︸ ︷︷ ︸

γ323

+ 〈ψ2ψ
′
3, φ3〉︸ ︷︷ ︸

γ233

].

The values of γijk are computed numerically and are tabulated in Table (6.1).
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Figure 6.1. Energy variation with time for linear and nonlinear governing equations.
The initial condition for the simulations are p10 = 2.6, p20 = 0, p30 = −1.3

6.3 Comparison of Linear and Nonlinear Energy Growth

In this section we compare the linear and nonlinear energy growth rates. The

above nonlinear equations are solved numerically using an adaptive Runge Kutta

method.

Figures (6.1) and (6.2) show the plot of energy variation, linear and nonlinear,

for two different initial conditions. It can be seen from these figures that the linear

and nonlinear results are almost same for small times. In Figure (6.2) the linear and

nonlinear results deviate only by a small amount for large times, and in Figure (6.1)

they deviate by a large amount. From the above results it can be seen that it is hard

to predict exactly when the difference between linear and nonlinear results will be

substantial. This is related to basin of attraction of the underlying fixed points and

it is hard to calculate these for partial differential equations. Obviously these results

have important implications for Direct Numerical Simulations (DNS) of turbulent

flows.
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Figure 6.2. Energy variation with time for linear and nonlinear governing equations.
The initial condition for the simulations are p10 = 1.0, p20 = 0, p30 = −0.5
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Figure 6.3. Variation of p1(t) coefficient in the linear and nonlinear simulations of
Figure (6.1)
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Figure 6.4. Variation of p2(t) coefficient in the linear and nonlinear simulations of
Figure (6.1). Notice that the IC for p2[t] is zero and hence remains at zero in the
linear case as the system is diagonal and decoupled.
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Figure 6.5. Variation of p3(t) coefficient in the linear and nonlinear simulations of
Figure (6.1)
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Figure 6.6. Variation of p1(t) coefficient in the linear and nonlinear simulations of
Figure (6.2)
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Figure 6.7. Variation of p2(t) coefficient in the linear and nonlinear simulations of
Figure (6.2). Notice that the IC for p2[t] is zero and hence remains at zero in the
linear case as the system is diagonal and decoupled.
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Figure 6.8. Variation of p3(t) coefficient in the linear and nonlinear simulations of
Figure (6.2)

Though the previous two figures plot the net energy as a function of time, it might

be helpful to plot individual energy of each mode and study the energy partitioning

between them. This might provide some insight into the reasons for disagreement

between linear and nonlinear results in some cases. Figures (6.3), (6.4) and (6.5) plot

the variation of p1(t), p2(t) and p3(t) corresponding to the case of large difference

between linear and nonlinear results. Similarly Figures (6.6), (6.7) and (6.8) plot

the variation of p1(t), p2(t) and p3(t) corresponding to the case of small difference

between linear and nonlinear results. Comparing these figures it can be seen that the

differences are primarily due to p1(t) and p2(t) terms at later times.

6.4 Velocity Evolution With Time and Space

In this section we plot the spatial variation of the velocity (mean plus pertur-

bation) in the physical domain at selected times. The parameters are taken to be

a = 0.2 , ν = 0.1 and IC implemented were same as in Figure (6.1).
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Figure 6.9. Plot showing the variation of velocity with respect to space for the linear
and non-linear cases of Figure (6.1) at time t=0. The base flow is also plotted for
reference in this and other figures next.
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Figure 6.10. Plot showing the variation of velocity with respect to space for the
linear and non-linear cases of Figure (6.1) at time t=1.
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Figure 6.11. Plot showing the variation of velocity with respect to space for the
linear and non-linear cases of Figure (6.1) at time t=20.
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Figure 6.12. Plot showing the variation of velocity with respect to space for the
linear and non-linear cases of Figure (6.1) at time t=40.
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Figures (6.9), (6.10), (6.11) and (6.12) show the snapshots at t = 0, 1, 20 and

40. Note that as time passes by all perturbations decay in both linear and nonlinear

simulations and hence indicating that the system might be globally nonlinearly stable.
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CHAPTER 7

CONCLUSION AND SUMMARY OF MAIN RESULTS

In this thesis we studied the effect of spatial domain size, number of modes, non-

hermitianness and non-normality on the stability and growth properties of a viscous,

shock flow problem, as a prototypical example for the Navier-Stokes equations.

It has been shown that the above problems are not only non-normal but also non-

hermitian, when the base flow has shear. The eigenvalue problems corresponding to

infinite spatial domain, finite spatial domain, forward and L2 adjoint problems are

solved exactly by converting the linear partial differential equations into nonlinear

Riccati equations. In the finite domain case, the full time dependent solutions are

obtained analytically using the bi-orthogonal basis functions.

In the infinite spatial domain case, the point spectrum of the forward operator

is shown to be unbounded and that of the adjoint operator to be empty. In the

unbounded case, the spectrum fills the entire area on one side of a parabola in the

complex plane and is connected. As the fluid viscosity decreases, the width of the

parabola increases and in the limit of zero viscosity covers almost the entire left half

plane. On the other hand, as the fluid viscosity increases, the width of the parabola

decreases and in the limit of infinite viscosity becomes the negative real axis, which

is the spectrum of the heat equation.

In the finite spatial domain case, the point spectrum lies in the open left half

plane for all the Reynolds numbers and hence asymptotically stable. The results

shown that perturbations grow substantially large for finite time before they decay

at large times. It is also found that retaining right number of modes is crucial for
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observing transient growth phenomena. Finally, the linear results are compared with

the nonlinear finite amplitude simulation results.

Some of the questions that require further investigation are:

1. Is the shock flow problem globally nonlinearly stable as the numerics seem to

indicate? Can this be proved analytically?

2. Calculating domain of attraction of the base state

3. Relevance of other stability notions

4. Studying periodic and unsteady base states stability of Burgers equation

5. Apply the above framework to instabilities and transition to turbulence prob-

lems of Navier-Stokes equations.

6. Use the above framework to design active feedback control laws for fluid flows.
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