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ABSTRACT 

INVERTEBRATE PHENOLOGY AND PREY SELECTION OF THREE 

SYMPATRIC SPECIES OF SALMONIDS;  

IMPLICATIONS FOR INDIVIDUAL FISH GROWTH  

 
FEBUARY 2008 

 
JEFFREY V. OJALA, B.S., FRAMINGHAM STATE COLLEGE 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Dr. Keith H. Nislow 

 
  Growth plays an important roll in the survival of individual salmonid fish.  

Diet inevitably plays a significant role in the determination of salmonid growth, with 

these diets consisting primarily of aquatic macroinvertebrates, predominately insect taxa.  

Aquatic insects have a complex life history with most having a short, aerial adult period 

and an aquatic juvenile stage(s).  The periodicity of this juvenile stage (voltinicity) can 

take a few months to a few years, with the vast majority lasting a single year.  These 

numerous and overlapping phenologies therefore have a significant impact on the 

availability of prey that salmonid fish find profitable. 

 Variation in the availability and use of macroinvertebrate prey may be an 

important determinant of growth variation in stream salmonids. However, few studies 

possess the requisite information to make these links explicitly, particularly for more than 

one co-occurring species.  Drift and benthic invertebrate availability and selection were 

measured for three sympatric species of stream salmonids (Atlantic salmon, brook trout, 

and brown trout) in a long-term study site at West Brook, Whately MA through out 2003.   

 Benthic macroinvertebrates were found to have a strong seasonal cycle of size and 

abundance in West Brook.  Consistent with the numerical domination of univoltine 
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aquatic insects in this stream, relatively few large, individuals are present in the spring 

prior to the peak of adult emergence, with many small, individuals in the fall.  This 

phenology combined with abiotic factors (discharge, temperature) has significant effect 

on the availability of profitable salmonid prey.   

 Examining the role of prey selection revealed that salmonid fish were able to 

capitalize on this seasonal abundance.  Additionally, salmonid species were shown to 

change foraging tactics from drift feeding to the consumption of both benthic and 

terrestrial derived prey.  These results suggest that spring is a period of high prey 

abundance producing a common pattern of high consumption and growth for all three 

species.  Among-species differences in diet are most manifest during periods of resource 

scarcity.  These results indicate that seasonal dynamics in physical conditions and 

invertebrate phenology may combine to produce a critical period for individual growth in 

stream salmonids. 
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CHAPTER 1  

SEASONAL VARIATION IN ABUNDANCE, DIVERSITY, AND SIZE 

DISTRIBUTIONS OF MACROINVERTEBRATES 

 

Abstract 

Variation in the availability of macroinvertebrate prey may be an important determinant 

of growth variation in stream salmonids. I measured drift and benthic invertebrate 

availability for three sympatric species of stream salmonids (Atlantic salmon, brook trout, 

and brown trout) in a long-term study site at West Brook, Whately MA. Drift and benthic 

invertebrates were collected during sampling bouts spaced at three-month intervals within 

an eight day window for each bout, at three times of day.  Benthic macroinvertebrates 

were found to have a strong seasonal cycle of size and abundance in West Brook.  

Consistent with the numerical dominance of univoltine aquatic insects in this stream, 

relatively few, large, late-instar individuals are present in the spring prior to the peak of 

aquatic insect emergence, with many, small, early-instar individuals in the fall.  The 

propensity of benthic invertebrates to leave the benthos and enter the drift was effectively 

predicted by the Rader (Rader 1997) drift model, indicating that the habitat and behavior 

of invertebrates was critical in determining their availability to drift-feeding salmonids.  

Consistent with seasonal variation in the growth rates of all three salmonid species, drift 

biomass (biomass per time) was low in summer, in spite of high numerical invertebrate 

abundance, because invertebrates were small and stream discharge was low.  Conversely, 

during high salmonid-growth periods in the spring, drift biomass flux rates were 

significantly higher. These results indicate that seasonal dynamics in physical conditions 
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(flow, temperature) and invertebrate phenology may combine to produce a highly 

seasonal pattern of growth in stream salmonids.  

 

Introduction 

Reflecting the highly seasonal nature of north temperate stream environments, growth of 

stream-dwelling salmonid fishes differs greatly among seasons (Letcher et al. 2002).  

Low temperatures, low light levels, and consequent low invertebrate productivity 

generally result in low or negative growth during the north temperate winter (Metcalfe & 

Thorpe 1992).  However, there appears to be considerable variation with respect to when 

maximum growth rates occur, even when temperature is considered.  Frequent sampling 

of individually-marked fish with high capture rates has enabled estimation of unbiased 

growth rates of three sympatric salmonid species in the long-term study at West Brook, 

Massachusetts, USA (Carlson & Letcher 2003, Letcher & Gries 2003).  These studies 

clearly demonstrate that growth in all three species is highly concentrated in the spring, 

between April and June, with growth rates declining to near zero throughout the rest of 

the year.  Interestingly, these high growth rates occur when frequently high and 

occasionally turbid flows may increase foraging costs (Nislow et al. 1999, Sweka & 

Hartman 2001).  Although inter-annual variation exists, in individual fish growth rates, 

the underlying pattern has been consistent for close to a decade (Letcher personal 

communication).   

 

Seasonal variation in the availability of invertebrate prey may be an important 

determinant of salmonid growth variation in West Brook and other small coldwater 
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streams where aquatic insects are the major prey items (Allan 1981).  Growth of 

salmonid fish has been shown to correspond to the abundance of drifting invertebrate 

prey populations (Wilzbach et al. 1986, Erkinaro & Niemelä 1995).  As salmonids are 

opportunistic (feed on abundant prey), size selective (tend to feed on larger prey items) 

and visual foragers (Allan 1981), invertebrate phenology and diel periodicity can strongly 

influence availability to salmonids.   

 

The low annual survival rates as well as high fecundity and taxonomic diversity of 

aquatic insects has led to varied and overlapping seasonal phenologies that strongly 

influence patterns of size and abundance (Merritt & Cummins 1996).  Additionally, 

variation in species emergence times can change insect community density, biomass and 

diversity rapidly.  Further, the Allan paradox suggests that autochthonous production is 

insufficient to support apparent fish growth in most streams (Waters 1988).  Without 

accounting for seasonal variation and aquatic and terrestrial derived resources, the 

influence of prey on salmonid growth opportunity may be underestimated.   

 

Invertebrates also vary in their availability to salmonids via differences in their 

propensity to enter the water column via drift.  Drift feeding is the dominant mode of 

foraging for most stream salmonids (Allan 1981, Rader 1997).  Drift propensity varies by 

taxa, density, and environmental conditions, therefore seasonal variation should strongly 

influence drift availability.  To account for these influences, Rader (1997) developed a 

model to predict taxon-specific drift propensity.  The model takes into consideration; 

propensity to intentionally drift, likelihood of being accidentally dislodged by the current, 
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drift distance, adult drift, benthic exposure, and body size to arrive at a base score which 

is then modified by an abundance factor.  Taxa with high scores are predicted to be found 

frequently in the drift and, as a consequence, to be strongly represented in salmonids 

diets.  Propensity to drift would then be an appropriate proxy for the likelihood of a prey 

type to be encountered and potentially consumed during visual foraging.  Field testing of 

this model has been conducted in Colorado, by Rader, and California by Esteban and 

Marchetti (2004).  Esteban and Marchetti found drift propensity scores to be correlated 

with stomach contents but not to drift densities.  Variations in regional invertebrate 

dynamics and stream bed geomorphology could have an impact on the applicability of 

the drift propensity model.  To date no test of the drift propensity model has been 

conducted in the northeastern US or over multiple seasons.  In addition to the behavioral, 

morphological, and life-history factors that influence propensity to drift, it has been long 

established that many invertebrates drift more frequently at night (Brittain & Eikeland 

1988), with the largest (and potentially most attractive to salmonid predators) having the 

most pronounced diel patterns. There is little known about how diel variation in drift 

differs among seasons.  However, given this uncertainty, it is essential to effectively 

characterize and encompass diel variation in any study of seasonal variation.   

 

This study quantified seasonal and diel variation of instream macroinvertebrate 

assemblages with respect to taxonomic composition, size structure and biomass.  Further, 

it measured seasonal and diel variation in invertebrate flux (numerically and in biomass) 

for the drifting fraction of the population.  Comparisons were made between variation 

found in these populations to the seasonal variation in individual fish growth rates.  
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Finally, it evaluated the ability of the Rader drift propensity model to predict the drifting 

portion of the total insect population of West Brook. 

 

Methods 

Study Site 

West Brook is a 6.3 km long, third order stream in the middle Connecticut river basin 

located near the town of Whately, Massachusetts, USA (42°25’, 72°40’).  This stream is 

described in Letcher & Gries (2003) and has an average gradient of 2% and an annual 

median discharge of 0.7 m3/s.  The study section is located approximately 3 km 

downstream of a drinking water reservoir, making the numerous small tributaries below 

the dam the primary source for summer flows.  Flow regime is typical of New England 

streams, with high spring flows, low summer flows (which are exacerbated by the 

presence of a water supply dam upstream of the study area), rising and more variable 

flow in the fall, followed by low flow with variable ice cover in the winter.  Summer 

temperatures are moderated by groundwater influence and shading, rarely exceeding a 

daily average of 18˚ C.  The brook consists predominantly of long stretches of riffle and 

glide interspersed with short pools.  The long-term study site at West Brook (the data 

source for season-specific salmonid growth rates) consists of a 1 km study section and 

associated 1-2nd order tributary streams.  In order to avoid impact on the long-term study, 

the invertebrate sampling was conducted in a 520 m section of stream approximately 1.75 

km downstream of the long-term site.  These study sections were broken into four 100 m 

sample sites with an approximately 40 m buffer between each sampled section.  The sites 

were generally similar in physical characteristics except in one area where a dirt road 
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runs the length of the river right bank, occasionally leaving only a few meters between it 

and the stream.  Consequently, there are large open canopy patches and periodic inputs of 

fine sediment and road salt in that area.  These open patches are in the bounds of the 

study site but are found within the 40 m buffer section and not the sampled stream 

segments. 

 

Three species of salmonids, Atlantic salmon (Salmo salar), brook trout (Salvelinus 

fontinalis) and brown trout (Salmo trutta) co-occur in West Brook and make up over 95% 

of the fish in the stream with a few blacknose dace (Rhinichthys atratulus) encountered in 

both the long term and diet study sites.  Slimy sculpin (Cottus cognatus) and American 

eel (Anguilla rostrata) are present but infrequent in either site.  Resident brown trout and 

brook trout are maintained by natural reproduction.  Anadromous Atlantic salmon, 

originally native to the Connecticut river basin, were extirpated in the 1850’s due to the 

installation of large scale hydro-electric dams (Gephard & McMenemy 2004).  At West 

Brook, each spring, Atlantic salmon fry (~ 26 mm fork length) are stocked into the 

stream.  Stocks are from regional hatcheries and are added at a density of approximately 

50/100 m2.  Atlantic salmon smolts leave the system, on average, after two years in the 

stream with no naturally occurring breeding population (Letcher et al. 2002).  Three 

species of aquatic salamanders are also present but are not common.   

 

Invertebrate phenology & diel periodicity 

Collections of stream invertebrates were taken in five sampling efforts over an average of 

five days (range 2 - 8 days) from April to December of 2003 (Table 1.1).  For each date, 
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one 100 m section was sampled at each time period; sun up, mid-day, sun down and 

midnight.  A ~ 40 m buffer between sections was created where no sampling activity 

occurred.  Due to low water temperatures (< 1° C) in December, only two separate mid-

day samples were conducted for this sampling. 

 

At each sampling section a 500 µm mesh drift net was deployed for 20 minutes in a 

representative riffle habitat at the top of the sampled stream section.  In order to 

determine the water volume sampled, measurements were conducted at the net opening 

for water depth by hand ruler, and water velocity measured with a Swoffer 2100-14 flow 

meter (Swoffer Instruments Inc. Seattle WA 98188).  At the same time, a sample of the 

benthic invertebrate fauna was collected slightly downstream from the drift net.  The 

sample was collected with a Surber sampler (0.3 m2 frame size, mesh size 500 µm) by 

hand washing all of the cobble within the sample frame and stirring fine substrate, also by 

hand, for two minutes.  Invertebrate samples were placed in storage containers with 

stream water and kept cool until returning to the lab.  Upon return to the lab 

(approximately 0.5 hr trip) field samples were frozen in a -5° C freezer, allowing for the 

preservation of the samples without altering tissue structure or size (Benke et al. 1999).  

Aquatic invertebrates were identified, to family, under a dissecting microscope as 

described by Peckarsky et al. (1990); terrestrial-derived prey were identified to family as 

described in the bug guide network (Bartlett 2002) Individuals were measured for total 

body length (excluding cerci) to the nearest tenth of a millimeter by one of two 

comparable methods.  Depending on equipment availability, some animals were 

measured by ocular micrometer, while others were digitally imaged by microscopy and 
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measured with the use of Image Tool (UTHSCSA v 3.0, 2002), image analysis software.  

Invertebrate dry mass was calculated using length-weight regressions from Benke et al. 

(1999) and Sabo et al. (2002).  Individuals from a given sample were transferred into 

vials of the same family and preserved with 70% EtOH.  Unless otherwise stated, insects 

identified in this study were in their juvenile (larval or nymphal) stage. 

 

Hypotheses and statistical analyses  

H1: Abundance, size and diversity of benthic and drift invertebrates will be greatest when 

salmonid growth rates are highest 

 

To test this hypothesis an analysis of variance (ANOVA) was conducted, with Tukey’s 

test for unequal n for post-hoc comparisons of significant results.  In order to meet the 

assumptions of normality, variables were log-transformed, except for sample diversity 

where an arc-sin transformation was used. 

 

Individual fish growth is measured by calculating the difference in size at capture less its 

size at the previous capture.  This study used growth data from the long term population 

study at West Brook providing measures of growth over the course of a year at 

approximately two month intervals.  As a result the invertebrate response variables were 

compared among monthly samples (April, June, September, and December) and also 

between early season (the high fish growth interval, April and June combined) and late 

season (the low fish growth interval, September and December combined).  Invertebrate 

assemblage attributes were expressed in several different ways.   Numerical density is the 
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number of individuals per unit area (m2) for benthic invertebrates, or per unit volume 

(m3) for drift.  Individual size is an important attribute, as trout are generally size-

selective in their foraging (Allan 1981).  In this study it was expressed as mean individual 

length (mm), across invertebrate taxa for a given sampling bout.  Biomass density (mg 

m3-1 drift, mg m2-1 benthic) integrates numerical density and individual size.  Invertebrate 

drift flux was calculated in two ways, biomass flux (mg hr-1) and numerical flux (# hr-1), 

which can be more relevant than drift density as a measure of drift prey availability to 

salmonids.   Invertebrate diversity was calculated using the Shannon - Wiener index (H): 

 H= -∑ pi log pi 

where pi is the proportion of any given taxon (Hauer & Lamberti 1996).  Richness (S) as 

the taxa count and evenness of the invertebrate community (E) was assessed with the 

Tramer (1969) method: 

E = H / log S 

 

H2: Abundance, size and diversity of benthic and drift invertebrates will be greatest at 

night when aquatic insect drift has been shown to be most frequent. 

 

To test this hypothesis, an analysis of co-variance (ANCOVA) was used, combing the 

methodology and metrics described above with the addition of time of day as a co-

variant.  In instances where no seasonal variation was detected, sample month was 

removed creating a more parsimonious ANOVA model.  A bootstrap resampling was 

performed for these analyses (SYSTAT 11) as only one sample was collected at each 

time of day. 
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H3: Rader drift propensity model will accurately predict drift assemblages at West Brook 

 

To examine the role of drift propensity in salmonid diets, the Rader (1997) drift 

propensity model was used to test whether the propensity of invertebrate taxa to enter the 

drift is an important determinant of salmonid diet choice in West Brook.  If this model 

was unable to accurately predict the portion of the benthic community likely to be found 

in the drift, its ability to predict salmonid diets would be less likely.  Drift propensity is 

the likelihood that a given taxon will be found in the water column as opposed to the 

benthos.  This likelihood is based on morphological and behavioral traits of a given taxon 

that influence the probability of entrainment in the stream flow.  Propensity base scores 

for a large range of taxa are given in Rader (1997).  In some instances the model calls for 

identification to genus: as this study only identified drifting invertebrates to family, an 

average for the entire family was used.  This approach was justified as variation among 

genera, within families is minimal.  Final drift propensity scores are derived from base 

scores that are multiplied by an abundance factor.  The abundance factor was calculated 

from the collected benthic data and gives weight to those taxa commonly encountered; 

this ranking was based on monthly densities.  Rare taxa were those found with ten or 

fewer individuals.  In order for a taxon to be considered abundant, it had to fit two 

criteria: 1) the taxon is present in all samples for the given month. 2) The number of 

individuals belonging to that taxa were greater then the mean number of individuals in all 

taxa of that month.  Taxa with counts greater than ten but not meeting the abundant 

criteria were classified as common.  In evaluating the effectiveness of the Rader model 
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for West Brook, a Spearman’s rank correlation analysis was used.  This analysis 

correlated invertebrate abundance in drift samples with the drift propensity score.  

Significantly positive rank correlations indicate that the model is an effective predictor of 

invertebrate drift.  

 

Results 

Invertebrate abundance, size and diversity  

Benthic 

Benthic macroinvertebrates demonstrated among sample month variation in both density 

(F = 31.85, df = 3, 3, P = 0.009) and size (F = 108.941, df = 3, 1968, P < 0.001).  The 

pattern revealed fewer (mean 185.0 m-2) larger (mean 5.2 mm) late-instar individuals in 

April and many (2011.7 m-2, Tukey’s P = 0.008) smaller (3.4 mm, Tukey’s P < 0.001) 

individuals in August, with intermediate values in June, returning to few (383.3 m-2) 

larger (7.7 mm) individuals in December (Fig. 1.1).  Sample biomass was relatively 

uniform at around 215 mg m-2 (SE 57.9) (F = 5.0, df = 3, 3, P = 0.108), except in August 

when the large number of early instar individuals greatly increased biomass to 1018.9 mg 

m-2 (SE 325.8).  Invertebrate diversity was higher during the June and August samples 

than at other times of the year (F = 44.538, df = 3, 3, P = 0.005, Tukey’s P ≤ 0.048, Fig. 

1.2).  Numerically the population was dominated by chironomid midges (Diptera: 

Chironomidae) and typically one or two families of mayflies (Ephemeroptera) through 

out the year.  Otherwise all taxa present were found in low numbers regardless of time of 

year (Table A-1). 
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Drift 

Drift numerical density (number m-3) and numerical flux (number hr-1) showed no 

statistically significant among sample month variation (F = 0.807, df = 3, 10, P = 0.518 

and F = 1.00, df = 3, 10, P = 0.432 respectively), with an average of 8 m-3 (SE 1.8) and 

534 hr-1 (SE 2.0).  Similarly, drift biomass density (mg m-3) was not statistically 

significant among sample months (F = 2.65, df = 3, 10, P = 0.448).  The overall drift 

biomass density trend demonstrated that small incremental declines, from the April 

maxima, are continuous through the year (Fig. 1.3); with a mean biomass of 4.4 mg.  

Drift diversity was not statistically significant among sample months (F = 1.27, df = 3, 

10, P = 0.332) with a mean Shannon-Wiener index of 26.5 (Fig. 1.2).  In contrast, length 

of drifting prey varied significantly across sample months (F = 25.42, df = 3, 2354, P < 

0.001), being highest in April and December (mean 4.2 mm, SE 0.2 Tukey’s P  = 0.912) 

declining in June (mean 3.6 mm, SE 0.1) with the lowest values in August (mean 3.1 

mm, SE 0.1, Tukey’s P < 0.001).  As a consequence, biomass flux (mg hr-1) 

demonstrated significant seasonal variation when early sample periods were compared to 

late ones (F = 9.44, df = 1, 12, P = 0.010, Fig. 1.4).  The mean biomass flux rate in the 

early season (April and June) was 480.0 mg hr-1 (SE 1.6) and 75% lower in the late 

season (August and December, mean 120.0 mg hr-1, SE 0.6).  

 

Diel variation 

No statically significant diel variation was found for any sample month for benthic 

samples.  Drift densities and flux rates did not differ among sample months.  Some 

significant diel variation in invertebrate size was observed, but differences were not 
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consistent across sample months.  In April size was highest in mid-day samples (mean 

5.8 mm, SE 0.28) with all other times of day equal to one another (Tukey’s P ≥ 0.695).  

In June mean length was highest in mid-day samples (mean 4.2 mm, SE 0.24), lower but 

equal in morning and midnight samples and lowest in evening samples (mean 2.78 mm, 

SE, 0.06, Tukey’s P ≤ 0.030).  Mean invertebrate size in August was highest at midnight 

(mean 4.2 mm, SE 0.26) with other sample periods shown to be the same (Tukey’s P ≥ 

0.853).  In December size was larger in the morning sample than at mid-day (F = 20.30, 

df = 1, 153, P < 0.001, Fig. 1.5). 

 

Drift propensity 

The Rader drift propensity model was an effective predictor of drift density in every 

month but December (Table 1.2).  Excluding December, the Spearman’s rank correlation 

mean ρ was 0.566 (range 0.564 – 0.567 P < 0.001).  During the December sample the 

correlation between drift density and drift score was very low (ρ = 0.155) and not 

statistically significant (P = 0.5).  Only four taxa were inconsistent with the model. Two 

of these (capniid stoneflies and glossosomatid caddis) were found in only a single drift 

sample.  Elmid beetles and ephemerellid mayflies which were found more frequently, 

were consistently assigned a higher drift propensity rank then warranted by drift 

abundance. 

 

Discussion 

The results of this research show that distinct seasonal trends in macroinvertebrate 

abundance and diversity exist at West Brook.  This pattern is consistent with expected 
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patterns of a system dominated by univoltine insects as described by Merritt & Cummins 

(1996) with few, large individuals present in the spring prior to adult emergence, 

contrasting many small recently hatched, early instar individuals during the summer, 

returning to fewer larger individuals, as cohorts thin, through the winter and following 

spring.  The spike in biomass is likely due to these numerous recently hatched 

individuals.  The rapid decrease in biomass, due to departure of large mature individuals, 

is consistent with other studies as described by Merritt & Cummins (1996) (life history- 

pp 41-73) and references therein.  Greater diversity during the June sample is possibly 

driven by hyporheic species nearing the substrate surface in preparation for emergence 

(Merritt & Cummins 1996).   

 

As the benthic macroinvertebrate community is considered the source of the drift 

assemblage, seasonal patterns found in the benthic population were expected to be found 

in the drifting.  There were no significant differences in drift density among sample 

months in West Brook, and no differences in numerical flux rate.  However, there were 

significant differences in both the mean size of drifting invertebrates, and in biomass flux 

rates, that were largely concordant with the general pattern of salmonid growth.  These 

findings are consistent with Allan et al. (1987) who found that drift rate (analogous to 

drift flux) is best predicted by discharge while density remains independent of discharge.  

These results suggest that the high rate of salmonid growth (Carlson & Letcher 2003, 

Letcher & Gries 2003) may be driven by the combination of influx of large prey size and 

high encounter rates associated with high spring flows.  By contrast, during low-growth 
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periods, prey are frequently below salmonid detection limits, and low stream discharge 

reduces encounter rate.   

 

Diel variation, other than individual length, in the drifting invertebrate population was not 

detected.  This is in contrast to common results as summarized in Brittain & Eikeland 

(1988).  Additional sampling across the range of the lunar cycle may be required to 

determine the true nature of diel variation of drifting insects at West Brook.  Changes in 

individual length show that available prey are largest during the crepuscular periods in 

the early season when salmonid foraging is greatest (Allan 1981).  An increase in size of 

prey during August evening samples is consistent with Allan (1984) and may also 

contribute to the nocturnal habits of Atlantic salmon found by Gries et al. (1997) and 

Johnston & Bergeron (2004).   

 

The Rader (1997) drift propensity model was effective in predicting drift assemblages in 

all but the December sample.  This suggests that it has the potential to predict the diets of 

drift foraging salmonids.  Its inability to predict December drift assemblages is not 

unexpected as temperatures near freezing would significantly alter insect physiology and 

behavior (Merritt & Cummins 1996).  The efficacy of this model could, potentially, be 

increased by the application of its reproductive components during the time of year when 

a given taxa is actively engaged in the reproductive life stage.  Further an additional 

component that used stream discharge as a modifier similar to that of abundance may 

increase the ability of this model to predict taxa with intermediate base drift scores.  
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Predictive power of ephemerilld mayfly drift might improve with greater taxonomic 

resolution (Rader 1997). 

 

The macroinvertebrate population at West Brook demonstrated trends that are indicative 

of univoltine dominated systems for the benthic community; however, the drift 

assemblages showed little of the anticipated variation.  Although biomass flux is elevated 

in the spring, decreased capture success at higher current velocities could diminish the 

capacity of salmonid fish to detect and capture prey (Hill & Grossman 1993, Nislow et 

al. 1999).  Collectively these elements suggested that invertebrate phenology, coupled 

with abiotic factors, may affect fish growth, but without accounting for prey selection, no 

direct link can be established. 
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Table 1.1. Summary of macroinvertebrate samples conducted at West Brook.  Standard 
errors are listed in parentheses. 
 
Median 
Sample 

Date 

Mean 
Discharge 

(cm*s-1) 

Benthic 
Biomass 

(mg) 

Benthic 
Density 

(n) 

Drift 
Biomass 
(mg*m-3) 

Drift Flux 
Biomass 
(mg*min-1) 

Drift 
Density 
(n* m-3) 

Drift Flux 
Numerical 
(n*min-1) 

26- April 
2003 

0.805 165.1 
(93.82) 

185.0 
(58.33) 

6.0 
(2.96) 

7.9 
(1.69) 

7.1 
(3.37) 

8.8 
(2.90) 

19-June 
2003 

0.197 226.2 
(11.949) 

898.3 
(121.67) 

5.3 
(1.65) 

8.1 
(3.10) 

11.4 
(4.52) 

15.1 
(5.60) 

25-Aug 
2003 

0.030 1018.9 
(286.88) 

2011.6 
(201.67) 

3.4 
(1.19) 

2.2 
(0.87) 

9.4 
(3.74) 

7.2 
(4.32) 

19-Dec 
2003 

0.338 349.1 383.3 0.7 
(0.01) 

1.45 
(0.35) 

1.8 
(0.30) 

3.9 
(1.5) 

 

 

Table 1.2. Spearman’s rank correlation coefficients and probability estimates for drift 
samples and drift propensity score for each sample month for West Brook. 
 

 April June August December 
Sample Type rho P rho P rho P rho P 

Drift 0.567 0.001 0.564 0.001 0.566 0.001 0.155 0.500 
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Figure 1.1. Monthly variation in benthic macroinvertebrate density and mean individual length collected at West Brook.  Columns 
indicate density and the solid line indicates length.  Asterisks indicate significant difference in length from the preceding month.  
Dashed line indicates non significant difference in density from the preceding month by Tukey's post hoc testing.  Error bars are 
standard errors.   
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Figure 1.2. Monthly variation in macroinvertebrate Shannon – Wiener diversity index for both the benthic and drift communities from 
West Brook.  Dashed line indicates non-statistically significant differences in benthic diversity by Tukey’s post hoc testing.  Error bars 
are standard error.  
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Figure 1.3. Monthly variation in drift biomass density in West Brook.  Error bars are standard errors.  
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Figure 1.4. Monthly variation in drift flux by biomass (bars) and the mean individual length (line) of drifting macroinvertebrates from 
West Brook.  Error bars are standard errors.  
 
 

2
4
 

 



 

25 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

April June August December

Sample Month

B
io

m
a

s
s

 F
lu

x
 (

m
g

*h
 -1
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
e

a
n

 L
e

n
g

th
 (

m
m

)

 
 

2
5
 

 



 

26 

 
 
 
 
 
Figure 1.5.  Variation in the mean individual length of drifting macroinvertebrates broken down into diel sample events from West 
Brook.  Morning samples are labeled ‘AM’, mid-day samples ‘MID_D’ evening samples ‘PM’ and midnight samples ‘MID_N’.  Error 
bars are standard errors.  
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CHAPTER 2 

 SEASONAL VARIATION IN THE DIETS OF SYMPATRIC BROOK TROUT, 

BROWN TROUT, AND ATLANTIC SALMON IN RELATION TO PREY 

AVAILABILITY 

 

Abstract 

Variation in the selection of macroinvertebrate prey may be an important determinant of 

growth variation in stream salmonids. However, few studies possess the requisite detailed 

information (multiple recaptures of marked individual fish, frequent samples of 

invertebrate prey availability and use) to make these links explicitly. We tested the 

relationship between macroinvertebrate use and seasonal variation in the growth rates of 

three sympatric species of stream salmonids (Atlantic salmon, brook trout, and brown 

trout) in a long-term study site at West Brook, Whately MA.  Drift and benthic 

invertebrate samples and fish stomach contents were collected at three month intervals, 

within an eight day window, and for three time periods at each interval.  I found that 

positive selection of prey taxa was limited to few (typically one) taxa for any given 

month.  Dietary overlap among salmonid species and gut fullness of all three species was 

greatest during high salmonid-growth sample periods.  During high-growth periods, drift 

propensity was a strong predictor of the importance of invertebrate taxa in the diets of all 

three salmonid species.  In contrast, during the summer, as the availability of aquatic-

insect derived drift was reduced, all three species underwent diet shifts.  Brook trout and 

brown trout used a higher proportion of terrestrially-derived prey, while Atlantic salmon 

diets contained a high proportion of benthic invertebrates which were rarely found in the 
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drift, suggesting that they were feeding directly on the benthos.  These results suggest 

that spring is a period of high prey resource abundance (invertebrate drift) producing a 

common pattern of high consumption and growth for all three species.  Among-species 

differences in diet, likely reflecting differences in habitat and behavior were most 

manifest during periods of resource scarcity. 

 

Introduction 

Reflecting the highly seasonal nature of north temperate stream environments, growth of 

stream-dwelling salmonid fishes differs greatly among seasons (Letcher et al. 2002).  

There is general consensus that low temperatures, low light levels, and consequent low 

invertebrate productivity result in low or negative growth during the north temperate 

winter (Metcalfe & Thorpe 1992).  However, there appears to be considerable variation 

with respect to the time when maximum growth rates occur, even when temperature is 

considered.  Complicating this issue, most studies use apparent growth (change in mean 

individual size) as a proxy for real growth (changes in individual size over time), with 

consequent biases associated with size-selective mortality (Juanes et al. 2000).  Studies 

that measure individual growth of a large unbiased sample of a population are rare, 

despite their ability to increase understanding of the causes and consequences of 

salmonid growth variation.  Further, most studies focus on single populations, with 

detailed studies of co-occurring species conspicuously lacking.  Without accounting for 

species interactions, single population growth models may underestimate the role of prey 

during periods of low availability (Hurlbert 1978). 
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Frequent sampling of individually-marked fish with high capture rates has enabled 

estimation of unbiased growth rates of three sympatric salmonid species in the long-term 

study at West Brook, Massachusetts, USA (Letcher & Gries 2003, Carlson et al. 2004).  

The study has clearly demonstrated that growth in all three species is highly concentrated 

in the spring, between April and June, with growth rates declining to near zero through 

the rest of the year.  Interestingly, these high growth rates occur when frequently high 

and occasionally turbid flows may increase foraging costs (Nislow et al. 1999, Sweka & 

Hartman 2001).  Although some inter-annual variation exists, the underlying pattern has 

been consistent for close to a decade (Letcher personal communication).   

 

Aquatic insects are the major prey items in north temperate streams (Allan 1981), and 

drift feeding is the dominant mode of foraging for most stream salmonids (Allan 1981, 

Rader 1997).  The propensity for aquatic insects to drift varies by taxa, density, and 

environmental conditions; therefore seasonal variation should strongly influence drift 

availability.  To account for these influences, Rader (1997) developed a model which 

predicts taxon-specific drift propensity.  The model takes into consideration propensity to 

intentionally drift, likelihood of being accidentally dislodged by the current, drift 

distance, adult drift, benthic exposure, and body size to arrive at a base score which is 

then modified by an abundance factor.  Taxa with high scores are predicted to be found 

frequently in the drift, and as a consequence, to be strongly represented in salmonid diets.  

Propensity to drift would then be an appropriate proxy for the likelihood of a prey type to 

be encountered and potentially consumed.  Field testing of this model has been conducted 

in Colorado, by Rader, and in California by Esteban and Marchetti (2004).  In California 
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drift propensity scores were correlated with stomach contents but not with drift densities 

(Esteban & Marchetti 2004).  While the Rader model has the potential to be widely 

applicable, variations in regional invertebrate dynamics, hydroclimatology and stream 

geomorphology require region specific tests.  To date no test of the drift propensity 

model had been conducted in the northeastern United States or in multiple seasons in any 

region.   

 

Previous studies examining the interactions between salmonid prey choice, consumption 

and growth have yielded a range of results.  Cada et al. (1987) found that during the 

summer, invertebrate drift rates were low and trout switch primarily to terrestrially-

derived prey.  Further, they suggest that this leads to a period of limited growth during 

summer for rainbow trout in southern Appalachian streams.  Sotiropoulos et al. (2006) 

found similar trends for brook trout in some New England streams where they were the 

only salmonid species present.  Kreivi et al. (1999) found that brown trout rations in 

Finnish streams were highest in June and August and declined through the rest of the 

year.  Additionally they found an effect for time of day where brown trout fed at 

crepuscular periods, when invertebrate availability was highest.  Without the use of mark 

recapture, the above studies are limited to the use of apparent growth, when considering 

the impact of diets on the respective fish populations.  Cunjak (1992), using tattoo 

marking that indicated the initial location of an individual fish, was able to narrow 

growth estimates by excluding the effect of immigrants.  Atlantic salmon parr showed 

maximum fullness in June, with a decrease through the rest of the year.  It was not 

possible, however, to distinguish losses from survival or emigration potentially biasing 
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late season results.  Grader & Letcher (2006) studied juvenile Atlantic salmon in West 

Brook and found a direct correlation between seasonal drift availability, gut fullness and 

individual salmon growth.  These studies provide an excellent framework in which to 

correlate fish diets to individual growth but did not consider resource competition among 

salmonid species.  

 

In this study, the goal is to determine the relationship between salmonid prey selection 

and salmonid growth in West Brook, by linking seasonal variation in prey choice and 

prey consumption with observed growth patterns for the co-occurring species. 

To achieve this goal the following objectives were investigated:  1) Evaluate seasonal 

variation in salmonid diets and gut fullness. 2) Test the ability of the Rader drift 

propensity model to predict prey importance in this system. 

 

Methods 

Study site  

West Brook is a 6.3 km long, third order stream in the middle Connecticut river basin 

located near the town of Whately, Massachusetts, USA (42°25’, 72°40’).  This stream is 

described in Letcher & Gries (2003) and has an average gradient of 2% and an annual 

median discharge of 0.7 m3/s.  The study section is located approximately 3 km 

downstream of a drinking water reservoir, making the numerous small tributaries below 

the dam the primary source for summer flows.  Flow regime is typical of New England 

streams, with high spring flows, low summer flows (which are exacerbated by the 

presence of a water supply dam upstream of the study area), rising and more variable 
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flow in the fall, followed by low flow with variable ice cover in the winter.  Summer 

temperatures are moderated by groundwater influence and shading, rarely exceeding a 

daily average of 18˚ C.  The brook consists predominantly of long stretches of riffle and 

glide interspersed with short pools.  The long-term study site at West Brook (the data 

source for season-specific salmonid growth rates) consists of a 1 km study section and 

associated 1-2nd order tributary streams.  In order to avoid conflicts with the long-term 

study, the diet sampling was conducted in a 520 m section of stream approximately 1.75 

km downstream of the long-term sites.  For this study, sections were broken into four 100 

m sample sites with an approximately 40 m buffer between each sampled section.  The 

sites are generally similar in physical characteristics, except where a dirt road runs the 

length of the river right bank, occasionally leaving only a few meters between it and the 

stream.  This results in large open canopy patches and periodic inputs of fine sediment 

and road salt.  These open patches are in the bounds of the study site but are found within 

the 40 m buffer section and not the sampled stream segments. 

 

Three species of salmonids, Atlantic salmon (Salmo salar), brook trout (Salvelinus 

fontinalis) and brown trout (Salmo trutta) co-occur in West Brook and make up over 95% 

of the fish in the stream.  A few blacknose dace (Rhinichthys atratulus) were encountered 

in both the long term and diet study sites.  Slimy sculpin (Cottus cognatus) and American 

eel (Anguilla rostrata) are present but infrequent in either site.  Resident brown trout and 

brook trout are maintained by natural reproduction.  Anadromous Atlantic salmon, 

originally native to the Connecticut river basin, were extirpated in the 1850’s due to the 

installation of large scale hydro-electric dams (Gephard & McMenemy 2004).  At West 



 

34 

Brook, each spring, Atlantic salmon fry (~ 26 mm fork length) are stocked into the 

stream.  Stocks are from regional hatcheries and are added at a density of approximately 

50/100 m2.  Atlantic salmon smolts leave the system, on average, after two years in the 

stream with no naturally occurring breeding population (Letcher et al. 2002).  Three 

species of aquatic salamanders are present but are not common.  Macroinvertebrate 

communities are dominated by aquatic insects, representing all aquatic orders, with 

crayfish and freshwater mollusks rarely encountered (see chapter 1). 

 

Field collection  

Collections of stream invertebrates and salmonid gut contents were taken in five 

sampling efforts, lasting an average of five days (range 2 - 8 days), from April to 

December 2003 (Table 2.1).  For each date one 100 m section was sampled at each time 

period; sun up, mid-day, sun down and midnight.  A ~ 40 m buffer between sections was 

created where no sampling activity occurred.  Due to low water temperatures (< 1° C) in 

December only two separate mid-day samples were conducted for this sampling. 

 

After completion of invertebrate sampling, the section was electro-fished with a backpack 

electroshocker for a single pass in a downstream to upstream direction.  All overyearling 

(≥80 mm fork length) salmonids were retained in buckets of stream water and held in live 

cages submerged in the stream.  If a single pass did not collect a minimum of 30 

individuals, a second pass was conducted until 30 were obtained.  Shock effort, sample 

start time and duration, and water temperature were recorded.  Total stream discharge 

data collected 2 km above this study site were provided from USGS-BRD collaborators.  
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Fish were taken from in-stream pens to a stream-side work station, where they were 

anaesthetized in a solution of clove oil and stream water (0.04 ml L-1) (Cho & Heath 

2000), identified to species, weighed to the nearest tenth of a gram, and measured for fork 

length to the nearest millimeter.  Fish were then gastricly lavaged by methods described 

by Sotiropoulos et al. (2006).  Guts contents were retained in zipper style bags with a fish 

data tag and kept on ice until returned to the lab.  Fish were then placed back into live 

wells, allowed to recover until they were actively swimming, and then returned 

throughout the study section.   

 

Laboratory procedures 

Upon return to the lab (approximately 0.5 hr trip) field samples were frozen in a -5° C 

freezer, allowing for the preservation of the samples without altering tissue structure or 

size (Benke et al. 1999).  Aquatic invertebrates were identified, to family, under a 

dissecting microscope as described by Peckarsky et al. (1990); terrestrial-derived prey 

were identified to family as described in the bug guide network (Bartlett 2002).  Dietary 

items that were unidentifiable due to an advanced state of digestion were excluded from 

the sample.  Individuals were then measured for total body length (excluding cerci) to the 

nearest tenth of a millimeter by one of three comparable methods.  Depending on 

equipment availability, some animals were measured by ocular micrometer, while others 

were digitally imaged by microscopy and measured with the use of image analysis 

software.  One lab set up included the Image Pro application (Media Cybernetics Inc v 

4.5, 2002) while the other used Image Tool (UTHSCSA v 3.0, 2002).  Invertebrate dry 

mass was then calculated using length-weight regressions from Benke et al. (1999) and 
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Sabo et al. (2002).  Individuals from the given fish were then transferred into vials of the 

same family and preserved with 70% EtOH.  Unless otherwise noted, the identified insect 

taxa were in immature (larval or nymphal) form.   

 

Hypotheses and statistical analyses  

H1: Gut fullness and prey consumption will be greatest during high growth intervals 

 

To test the hypothesis that gut fullness and consumption rates differed significantly 

across months, analysis of variance (ANOVA) was used.  The contribution of diet to 

seasonal growth variation was examined by comparing the changes in dietary metrics, of 

each salmonid species to known patterns in seasonal fish growth.  Variation was assessed 

monthly, with the months of April and June considered to be part of the high growth 

period and August and December the low growth period (Carlson & Letcher 2003, 

Letcher & Gries 2003).  In order to account for the expected increase in prey size and 

stomach volume with increasing fish size consumption metrics were divided by the wet 

weight of fish.   

 

Response variables include abundance (number gut-1 gram (of fish)-2), gut mass (mg gut-1 

gram (of fish)-2), individual prey size and diet diversity.  Diet diversity was calculated 

using the Shannon - Wiener index (H): 

 H= -∑ pi log pi 
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where pi is the proportion of any given taxon (Hauer & Lamberti 1996).  Richness (S) is 

the taxa count, and evenness of the diet (E) was assessed with the Tramer method 

(Tramer 1969):   

E = H / log S 

Consumption rates were also calculated in both number (number per gram (of fish)-1  per 

hour-2) and biomass (mg per gram (of fish)-1 per hour-2).  Consumption rate was 

calculated given the number of prey and the mass found in guts and the rate of gastric 

evacuation.  Gastric evacuation rates were estimated through the use of two temperature 

dependent equations.  Because salmonid diets consist of a mix of relatively soft-bodied 

(chironomids and some caddisflies) and harder-bodied (mayflies, stoneflies) prey, the 

calculation temperature-specific gastric evacuation rates are estimated by calculating the 

mean value between the MacNeil et al. (2001) amphipod model (appropriate for hard-

bodied prey) and the Windell et al. (1976) oligochaete model (appropriate for soft-bodied 

prey) for the water temperature recorded at each sample.  The calculated gastric 

evacuation rate was then applied to all fish caught at that water temperature, regardless of 

species. 

 

Among-species differences in diet was assessed with Schoener’s overlap index: 

 Pjk = [Σ(minimum pij, pik)] 100 

Where Pjk is the overlap, expressed as a percent, between species j and k and pij, pik = the 

proportion of resource i to the total resources used by species j and k.  Values greater than 

0.6, on the 1 point scale, were considered significant (Hurlbert 1978). 
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H2: Invertebrate taxa and size differ in their relative importance in fish diets. 

H3: Fish select certain invertebrate taxa and size classes disproportionately to their 

abundance in benthic and drift samples.   

 

Understanding the importance of specific types and sizes of prey is key to understanding 

the contribution of prey phenology to salmonid growth.  To assess if fish select prey 

items on the basis of abundance, size or drift propensity, three approaches were used.   

 

1) To test the hypothesis that prey size differed significantly across months, an analysis 

of co-variance (ANCOVA) was used.  The contribution of prey size to seasonal growth 

variation was examined by comparing the changes in mean prey item size of each 

salmonid species by month (April, June, August, December), to known patterns (chapter 

1) in variation of available prey.  In tests where the covariate of fish size was not show to 

be statistically significant the more parsimonious ANOVA tests were conducted. 

 

2) Cortés (1997) presented a modification of the index of relative importance (IRI) for 

dietary data.  His modification was to make the IRI relative to itself so that it would be 

based on a percentage of the total index (%IRI).  This allows for the direct comparison of 

one index to another.  Cortes suggested that comparisons between elasmobranch species 

could then be made for items of dietary importance.  Although the use of compound 

indices have been debated, Liao et al. (2001) found that the %IRI provided an optimal 

approach to diet analysis.  This index was then used to test prey selectivity and is 

described by Cortés (1997): 
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 IRI = (%N + %W) %O  and 

%IRI = 100*IRI / Σ IRI  

Where the index for a given taxa is: %N – the percent number, %W – percent weight, and 

%O - percent occurrence of a given taxa found in fish guts.  Use of this hybrid index, 

compared to its constituent parts, assures that no one metric over represents its 

importance.  If a given taxa is highly abundant but very small, a percent number alone 

may over-represent its actual importance to fish diet.   

 

3) Taxa that had a %IRI value of 10 or greater were then included for the calculation of 

the second index, Chesson’s alpha.  Chesson’s alpha (Chesson 1978) is defined as: 

 α = (ri/pi) / Σ(ri/pi)  

Were ri – the number of a given category i consumed and pi – is the number of category i 

available.  Values of alpha over the value of 1/k (k = total number of categories) indicate 

taxa consumed more often than would be expected by encounter rates alone.  Alpha 

values were calculated for both the drift and the benthos to insure coverage of both prey 

sources.  As a number of taxa can be present in either location, the drift propensity score 

was used to separate these groups (see below).   

 

H4: Drift propensity increases the relative importance of invertebrates in fish diets. 

 

To examine the role of drift propensity and salmonid diets, the Rader (1997) drift 

propensity model was used to test whether the propensity of invertebrate taxa to enter the 

drift is an important determinant of salmonid diet choice in West Brook.  Drift propensity 
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is the likelihood that a given taxon will be found in the water column as opposed to the 

benthos.  This likelihood is based on morphological and behavioral traits of a given taxon 

to, intentionally or unintentionally, become actively entrained in the stream flow.  

Propensity base scores for a large range of taxa are given in Rader (1997).  In some 

instances the model calls for genera identification.  As this study only identified drifting 

invertebrates to family, an average for the entire family was used.  Final drift propensity 

scores are derived from base scores that are multiplied by an abundance factor.  The 

abundance factor was calculated from the collected benthic data and gives weight to 

those taxa commonly encountered; this ranking was based on monthly densities.  Rare 

taxa were those found with ten or fewer individuals.  In order for a taxon to be considered 

abundant it had to fit two criteria: 1) The taxon was present in all samples for the given 

month. 2) The number of individuals belonging to that taxon were greater than the mean 

number of individuals in all taxa of that month.  A taxon with counts greater then ten but 

not meeting the abundant criteria was classified as common.  In evaluating the 

effectiveness of the Rader model for West Brook, a Spearman’s rank correlation analysis 

was used.  This analysis correlates invertebrate abundance in drift and gut samples with 

the drift propensity score.  Significantly positive rank correlations indicate that 

invertebrates with a higher propensity to drift are more selected as prey items.  
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Results 

Gut fullness and prey consumption  

Gut biomass and consumption rate by biomass  

Sample month was found to be a factor in gut biomass (mg gut-1 gram (of fish)-2) 

variation in Atlantic salmon (F = 7.996, df = 3, 119, P < 0.001, Fig. 2.1).  Gut mass was 

highest in April (mean 1.9 mg g-1, SE 0.22) with steady declines to August (mean 0.21 

mg g-1, SE 0.07).  December rebounded slightly to levels similar to June (mean 1.0 mg g-

1, Tukey’s P = 0.987).  No variation in gut biomass was detected in brook trout (F 

=0.954, df = 3, 55, P = 0.421) with an annual mean of 2.14 mg g-1 (SE 0.396).  Brown 

trout also showed no statistically significant variation in gut biomass (F = 1.557, df = 3, 

194, P = 0.201) with an annual mean of 2.52 mg g-1  (SE 0.784).  Although April rates 

were ~3 mg g-1 higher, this was not a statistically significant result. 

  

Sample month was found to be a factor in rate by biomass (mg g-1 hr-2) variation of 

Atlantic salmon (F = 13.520, df = 3, 119, P < 0.001, Fig. 2.2).  Here consumption rate 

was highest in early sample periods (April and June, mean 4.40 mg g-1 hr-2, SE 0.399) 

and 75.9% lower in later periods (August and December, mean 1.06 mg g-1 hr-2, SE 

0.323).  Brown trout also demonstrated rate by biomass variation among sample months 

(F = 2.894, df = 3, 193, P = 0.036).  In this instance the rate was highest in April (mean 

7.27 mg g-1 hr-2, SE 1.034), lower and equal in June and August (mean 4.15 mg g-1 hr-2, 

SE 0.903) and lowest in December (mean 0.85 mg g-1 hr-2, SE 0.435).  Brook trout did 

not show any statistically significant variation in consumption rate by biomass (F = 

1.008, df = 3, 55, P = 0.396) with an annual mean of 8.06 mg g-1 hr-2 (SE 1.882).   
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Gut density and numeric consumption rate  

Gut density (number gut-1 gram (of fish)-2) exhibits among sample variation in all 

salmonid species (P ≤ 0.013, see table 2.2 and Fig. 2.3).  Atlantic salmon exhibit a pattern 

where density is highest in the early season (mean 0.88 # g-1, SE 0.107) and 71.5% lower 

in the late season (mean 0.25 # g-1, SE 0.040, Tukey’s P ≤ 0.055).  In brook trout, gut 

density is highest in April with a mean of 1.07 # g-1 (SE 0.220) lower, but not statistically 

significant, in June (mean 0.45 # g-1, SE 0.12, Tukey’s P = 0.094) with August and 

December equal to June (Tukey’s P ≥ 0.837) but lower then April (Tukey’s P ≤ 0.033).  

Brown trout show a pattern where density is highest in April (mean 0.98 # g-1, SE 0.086) 

lowering incrementally to an August minimum (mean 0.19 # g-1, SE 0.082) with rates in 

December covering a range equal to all other sample periods (Tukey’s P ≥ 0.205). 

 

Consumption rate by number (number gram (of fish)-1 hour-2) showed monthly variation 

among Atlantic salmon (F = 6.739, df = 3, 119, P < 0.001, Fig. 2.4).  Here the pattern 

showed that consumption rate is high in the early season (mean 3.02 # g-1 hr-2, SE 0.400) 

compared to late (mean 1.03 # g-1 hr-2, SE 0.214).  Brown trout consumption rate by 

number also demonstrated monthly variation (F = 4.097, df = 3, 193, P = 0.008).  Here 

the pattern showed the rate highest in April (mean 2.63 # g-1 hr-2, SE 0.231) incrementally 

declining to the December minimum (mean 0.28 # g-1 hr-2, SE 0.088).  Tukey’s post hoc 

comparisons show that April is larger then August and December with all other times 

having shown no statistically significant differences for brown trout.  Brook trout 

demonstrated no monthly variation in consumption rate by number (F = 1.435, df = 3, 55, 

P = 0.243).   
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Empty stomachs (guts devoid of prey) were encountered during every sample event.  The 

percentage of fish with empty guts varied seasonally within and among salmonid species 

(Table 2.3).  Of all fish lavaged, 9.0% were found without gut contents.  A Chi2 test 

showed that emptiness is unequal between the high growth (April & June) and low 

growth (August & December) interval (P < 0.001).  For all species emptiness was lowest 

in April (mean 3.4%, range 0 – 8.8 per species) and highest in August (mean 26.3%, 

range 17.4 – 32.4). 

 

Diet diversity  

All measures of diet diversity showed monthly variation in Atlantic salmon (P ≤ 0.001, 

see table 2.4).  For all metrics the pattern was the same as that of diversity, which showed 

high diversity in the early season (mean 3.70, SE 0.443) and low late diversity (mean 

1.37, SE 0.241, Fig. 2.5).  Brook trout also exhibited this variation (P ≤ 0.008) and 

pattern with mean early season high of 3.90 (SE 0.611) and late season low of 1.26 (SE 

0.361).  Brown trout exhibited monthly variation in diversity metrics (P < 0.001) but 

showed a slightly different pattern.  Here diversity was maximized in the early season 

(mean 3.67, SE 0.315), minimized in August (mean 0.75, SE 0.161) while rebounding 

slightly in December (mean 2.15, SE 0.638).   

 

Dietary overlap  

Dietary overlap varied seasonally with overlap among all three species highest in April 

(range 0.63 – 0.78, Table 2.10).  In June overlap ranged from 0.35 – 0.63 with the overlap 

of Atlantic salmon and brown trout shown to be significant (> 0.60).  Overlap was never 
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found to be significant in August (range 0.29 – 0.51).  December overlap ranged from 

0.42 – 0.59, showing highest rates of overlap between Atlantic salmon and brown trout.  

 

Prey selection 

Size   

Invertebrates found in salmonid guts were larger on average than invertebrates in drift 

and benthic samples (P ≤ 0.001, Fig. 2.6).  Prey length (Fig 2.7) varied monthly for 

Atlantic salmon (F = 27.851, df = 3, 1474, P < 0.001).  Prey were largest in April (mean 

6.4 mm, SE 0.131) with length similar in June and August (mean 4.5 mm, SE 0.175) with 

December samples showing a large variance making it similar to both April and August 

(Tukey’s P ≤ 0.168).  Prey length varied seasonally for brown trout (F = 20.016, df = 3, 

2127, P < 0.001) with prey length largest in December (mean 9.1 mm, SE 1.535), lowest 

in June (mean 5.9 mm, SE 0.127) with intermediate and similar values in April and 

August (Tukey’s P = 0.836).  Brook trout did not show any significant variation in prey 

item size (F = 1.985, df = 3, 521, P = 0.115).  Prey size was dependent on fish fork length 

for brook trout (P = 0.036) and brown trout (P < 0.001) but not for Atlantic salmon (P = 

0.700). 

 

Index of relative importance  

Using a %IRI value of 10 as a threshold value, many prey categories contributed little to 

salmonid diets (Table A-3).  Vertebrate prey items were excluded from this analysis as 

their large mass overrepresented them in the calculations for %IRI for biomass.  No taxon 

was found to be of dietary importance throughout the duration of the study among or 
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within fish species.  Taxa that ranked high were often the same among salmonids for a 

given sample period (Table 2.5) and were therefore used in the calculations of Chesson’s 

alpha for that month.  In April, all species showed ephemerellid mayflies to be of high 

importance (>23 %IRI).  Heptageniid mayflies were also important in April to Atlantic 

salmon (38.1 %IRI) and brown trout (17.5 %IRI) but not for brook trout.  In June, 

emergent mayflies were important to all species (>18 %IRI), while baetid mayflies were 

important to Atlantic salmon (60.1 %IRI) and brown trout (26.3 %IRI) only.  

Helicopsychid caddisflies were shown to be important to all salmonids in August (>10.8 

%IRI).  Terrestrial derived prey was also important to brook (65.4 %IRI) and brown trout 

(45.2 %IRI) at that time of year.  In December, chironomid flies were important to all 

species (>10.7 %IRI).  Also in December ephemerellid mayflies were shown to be 

important to Atlantic salmon (48.2 %IRI) and brown trout (38.6 %IRI), while 

glossosomatid caddisflies were shown to be important to Atlantic salmon (13.1 %IRI) 

and brook trout (17.4 %IRI).   

 

Prey selection by Chesson’s alpha  

Prey taxa were most often consumed in proportion to, or slightly less than, their 

availability (i.e. abundance in drift and invertebrate samples).  Positive selection was 

consistent across fish species and often limited to a single taxon at a given sample period; 

glossosomatid caddisflies in December, helicopsychid caddisflies in August, emergent 

mayflies in June.  In April, Atlantic salmon and brown trout showed positive selection for 

heptageniid mayflies, while brook trout selected siphlonurid mayflies (Fig. 2.8 a-d).  In 

December, neutral selection was shown for hydropsychid caddis by all fish species and 



 

46 

for brachycentrid caddis in brook trout.  Fish showed negative selection for all other taxa 

included in these analyses. 

 

Non- drift associated prey   

Using the Rader (1997) drift propensity model as a guide, post hoc, a list was developed 

containing taxa that were not prone to drift and therefore were most likely to be 

encountered by fish only in the benthos (Table 2.6).  Taxa with a base drift propensity 

score of 41 or less were considered for the list.  This value classified stone cased caddis 

with the benthic group while free living caddis were excluded.  Several taxa meet this 

criteria due to missing values in categories where characteristics were undefined by 

Rader (1997).  In order to properly classify these taxa the collected drift and benthic 

sample data were used.  A ratio of the number of a given taxon found in the drift to the 

benthos was calculated and those taxa with values less then one were considered benthic.   

 

These benthic-associated prey often made up a significant portion of salmonid diets.  To 

calculate the contribution of benthic prey to salmonid diets, the abundances of all taxa 

meeting the benthic-associated criteria were added together.  The %IRI of this group was 

then tallied for among-sample comparisons.  Gut samples in April and June showed low 

numbers of benthic-associated prey with a mean composite %IRI of 8.3 (range 0.9 – 

17.5).  In August, the mean rose substantially to %IRI 33.5 (range 22.2 – 44.2), with 

levels remaining high in December (Table 2.7). 
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A special category of non-drift associated prey involved consumption of vertebrates, 

including aquatic salamanders and non-salmonid fish.  Consumption of highly mobile 

vertebrate prey was rare. Vertebrate prey were observed in the guts of seven individual 

fish (Table 2.8), encompassing four discrete prey species.  Six instances were found in 

the largest brown trout (> 179 mm in fork length), three in April, one in August and two 

in December, accounting for 17.6% of brown trout in this size class.  An Atlantic salmon 

consumed a slimy sculpin in December, the only instance of vertebrate consumption for 

this species. 

 

Drift propensity  

Drift propensity score correlations were always lowest in December for all groups (mean 

ρ = 0.200, range 0.144 – 0.358, Table 2.9).  Atlantic salmon gut densities were well 

correlated with drift scores (P < 0.05) throughout the year ranging from an April high (ρ 

= 0.528) to a December low (ρ = 0.344) (mean ρ = 0.587).  Brook trout diets were also 

favorably predicted by drift score (P < 0.02, mean ρ = 0.464).  Brown trout guts were 

accurately predicted for April and June (mean ρ = 0.471) but not for August (Table 2.9). 

 

Discussion 

Results of the diet analysis show that peak fullness for the three salmonid species is at or 

near maximum in the early season (April & June), corresponding to the peak in fish 

growth found by Letcher & Gries (2003) and Carlson & Letcher (Carlson & Letcher 

2003).  Diet diversity also showed this pattern for the trout species with no seasonal 

variation detected for Atlantic salmon.  These seasonal patterns were also found (Cunjak 



 

48 

1992, Nislow et al. 1999, Grader & Letcher 2006) for Atlantic salmon; brown trout, 

(Allan 1981); (Jobling & Baardvik 1994) and for brook trout.  In studies from northern 

Europe, the seasonal patterns in fullness differ from those found here, but correspond to 

periods of increased growth rates in those systems (Kelly-Quinn & Bracken 1990).   

 

Drift propensity was an accurate predictor of salmonid diets except in the month of 

December.  Given water temperatures are at or near the freezing point, it would be 

unrealistic to expect this model to accurately predict diets for this sample.  The other 

notable exception was for brown trout in the month of August.  As brown trout diets were 

accurately predicted in other samples and the model was effective for other species in this 

month, it seems unlikely that this failure is a defect in the model.  This study shows that 

the Rader (1997) model can be effectively used in the region.   

 

Prey items selected by salmonid fish consistently showed that the mean item length 

selected was larger than that of the available invertebrate community.  Seasonal changes 

in selected prey size were proportional to seasonal changes in the mean size of available 

prey.  In Atlantic salmon prey size was independent of fish size, as was found by Keeley 

& Grant (1997), in a New Brunswick stream.  Given that month to month variance in 

prey length of salmonids was small (< 2.0 mm), fish size, and size-related gape 

limitation, was unlikely to be a factor. 

 

Important and selected prey taxa were markedly similar among salmonid fish in each 

sample month.  In April, salmonid fish prey selectivity tended to be highest for mayflies 
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by %IRI.  The high importance of the ephemerellid family was largely driven by its great 

abundance (both in number & biomass) in the drift (chapter 1).  Mayfly families that 

were low in drift abundance showed two different patterns.  The first showed that taxa 

with low intentional drift scores (likely poor swimmers (Rader 1997)) were positively 

selected.  Conversely, fish showed negative selection for the family Baetidae, a taxon of 

strong swimmers that were frequently found in diets.  In June, positive selection was 

limited to emergent mayflies.  During the emergence process most mayfly taxa drift 

through the water column with little ability to change trajectories (Rader 1997).  Baetid 

mayflies were the most abundant taxon in June drift samples; this abundance is reflected 

in their high level of relative dietary importance.  Dietary overlap among salmonid 

species is at its greatest levels during these two sample periods. 

 

Prey selection in August, when prey were in short supply, changed in different ways for 

each salmonid species.  Atlantic salmon show positive selection for epibenthic prey 

during the August sample with the %IRI showing the importance of both epibenthic and 

drift prey.  This is consistent with (Gries et al. 1997, Nislow et al. 1998, Amundsen et al. 

1999) and may be indicative of, the benthic oriented holding station of Atlantic salmon 

(Höjesjö et al. 2005) or the change to nocturnal activity.  Metcalfe et al. (1999) suggest 

that this change in activity patterns may decrease drift-feeding efficiency for these sight-

based predators.  In contrast, Brook trout show that both drifting and terrestrially derived 

prey are of high importance.  Both (Sotiropoulos et al. 2006) and (Allan 1981) found the 

same pattern in the reliance on terrestrial derived prey in other brook trout populations.  

Finally, it appeared that brown trout abandon drift foraging, as the drift propensity model 
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fails to predict August diets, in favor of both benthic and terrestrial derived prey.  As the 

drift propensity model was shown to be effective for other salmonids at this time of year 

and for brown trout at other times of year, it is unlikely that this result is from a failure of 

the model.  Important prey cover both terrestrial and benthic prey with positive selection 

limited to helicopsychid caddis.  These results are consistent with Bridcut (2000) for 

terrestrial prey and Kreivi et al. (1999) for benthic prey.  Prey selection in December 

shows that benthic foraging continues for all species, but this may be due to the 

movement of fish to over-winter habitat close to the substrate surface (Huusko et al. 

2007). 

 

These diet shifts are not without consequence as the percentage of guts that were found 

empty increased significantly in the fall.  The increase in emptiness in later time periods 

has been found previously for all three salmonid species ((Kreivi et al. 1999) brown 

trout; (Sotiropoulos et al. 2006) brook trout; (Simpson et al. 1996) Atlantic salmon).  

Further, even if fish are able to successfully capture epibenthic prey, this foraging mode 

may be more energetically costly (Fausch K.D. et al. 1997).  Anecdotal evidence also 

suggests that certain epibenthic prey, particularly stone cased caddis larvae often pass 

through a fish undigested.  

 

These results demonstrate a potentially strong link between invertebrate dynamics and 

seasonal variation in individual fish growth.  During seasons when availability  of 

appropriate (large) drifting prey was high all three species adopted a common drift 

foraging strategy, which yielded high consumption rates and a low percentage of fish 
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with empty stomachs. The results also show that a diet switch, to less profitable and 

harder to capture prey, occurs in the low growth periods of August and December.  In 

contrast, during the low growth period, empty stomachs were common, consumption 

rates were low, and differences among species were marked. These results underscore the 

importance of assessing prey dynamics, fish foraging strategies and interspecific 

interactions over entire seasonal cycles, and under different levels of resource 

availability. Further investigation using multiple systems and the use of gut contents from 

individually marked fish would aid in the understanding of the role of diet selection on 

salmonid growth. 
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Table 2.1. Summary of fish captured for the diel samples collected from West Brook. 

Median 
Sample 

Date 

Time 
of Day 

Mean Water 
Temperature 

(deg C) 

Fish Species Mean 
Length 
(mm) 

Mean 
Weight 

(g) 

Number of 
Fish 
(n) 

21-Apr-03 Day 8.5 Atlantic salmon 99 12.2 15 
   Brook trout 91 8.5 7 
   Brown trout 106 16.2 39 

30-Apr-03 Night 9.3 Atlantic salmon 91 9.8 22 
   Brook trout 107 19.9 9 
   Brown trout 100 13.5 43 

18-Jun-03 Day 15.0 Atlantic salmon 128 28.9 20 
   Brook trout 126 25.7 6 
   Brown trout 145 44.6 34 

20-Jun-03 Night 15.0 Atlantic salmon 126 25.6 21 
   Brook trout 228 69.9 9 
   Brown trout 149 46.6 31 

25-Aug-03 Day 15.5 Atlantic salmon 142 33.2 16 
   Brook trout 128 27.2 10 
   Brown trout 171 66.6 34 

26-Aug-03 Night 18.0 Atlantic salmon 126 25.6 29 
   Brook trout 109 18.3 18 
   Brown trout 152 44.3 19 

19-Dec-03 Day 0.6 Atlantic salmon 120 18.1 18 
   Brook trout 118 19.9 7 
   Brown trout 117 19.9 16 

 

 

Table 2.2. ANOVA summary statistics for the three salmonid species at West Brook. 

 

Species F - ratio P - value df 

Atlantic salmon 6.769 >0.001 3, 132 

Brook trout 3.200 0.019 4, 60 

Brown trout 8.387 >0.001 4, 211 
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Table 2.3. Summary of stomach emptiness for each salmonid species at each sample 
month from West Brook.  Percentage is reported for each species at the listed sample 
month.  Emptiness is defined as stomach without prey. 
 
 Atlantic salmon Brook trout Brown trout Mean 

April 8.8% None 1.2% 3.0% 

June 2.5% 15.4% 1.6% 3.3% 

August 32.4% 17.4% 29.3% 21.4% 

December 12.5% None 23.1% 12.2% 

Mean 13.7% 10.2% 8.5% Global 9.4% 
 

 

 

Table 2.4. ANOVA summary statistics for the mean annual diet diversity metrics of the 

three species of salmonid fish at West Brook.  Shown are the P-values, F ratio and the 

degrees of freedom from 1-way ANOVA. 

 

 Atlantic salmon Brook trout Brown trout 
 F P F P F P 

Diversity 13.473 0.000 3.738 0.026 9.859 0.000 
Evenness 17.145 0.000 4.866 0.010 12.547 0.000 
Richness 10.786 0.000 3.655 0.028 12.129 0.000 

df 3,57  3,22  3,105  
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Table 2.5. Percent index of relative importance of significant dietary taxa (value > 10) of 

the salmonid species from West Brook.  These calculations  are based on Cortes (1996) 

and do not include vertebrate prey items.  Items marked with an asterisk (*) are shown 

for comparative purposes only and are not considered a significant portion of the diet. 

 

 %IRI 
Month Taxon Atlantic salmon Brook trout Brown trout 

April Ephemerellidae 43.01 23.49 50.21 
 Heptageniidae 38.13 8.11* 17.50 
 Siphlonuridae 5.36* 25.47 12.55 

June Baetidae 60.06 7.27* 26.25 
 Emergent 18.83 81.78 50.97 

August Helicopsychidae 10.74 15.94 24.77 
 Rhyacophilidae 11.46 0.00* 16.47 
 Terrestrial 3.37* 65.41 45.21 

December Chironomidae 12.51 10.70 20.34 
 Ephemerellidae 48.17 6.75* 38.56 
 Brachycentridae 0.00* 17.93 0.00* 
 Glossosomatidae 13.14 17.43 5.11* 
 

Table 2.6. Taxa, found in West Brook, associated exclusively with the benthos.  

Order Family 

Coleoptera Elmidae 
 Psephenidae 
Diptera Chironomidae 
 Ceratopogonidae 
 Empididae 
 Tabanidae 
 Tipulidae 
Megaloptera Corydalidae 
 Sialidae 
Plecoptera Leuctridae 
 Peltoperlidae 
 Taeniopterygidae 
Trichoptera Glossosomatidae 
 Helicopsychidae 
 Hydropsychidae 
 Limnephilidae 
 Philopotamidae 
 Polycentropodidae 
 Psychomyiidae 
Class- 
Class- 

Bivalva 
Gastropoda 
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Table 2.7. Percent index of relative importance of benthic prey for the three salmonid fish 

species from West Brook.  These calculations are based on Cortes (1996) and are 

cumulative totals of taxa associated strictly with the benthos as listed in table 2.6. 

 

Month Fish Species 
Benthic 
%IRI 

April Atlantic salmon 7.4 
  Brook trout 17.5 
  Brown trout 9.8 

June Atlantic salmon 7.3 
  Brook trout 0.9 
  Brown trout 6.9 

August Atlantic salmon 44.2 
  Brook trout 22.2 
  Brown trout 34.0 

December Atlantic salmon 33.3 
  Brook trout 43.5 
  Brown trout 41.4 

 

 

 

Table 2.8. Incidence of vertebrate consumption by salmonid fish from West Brook.  Size 

is shown for each prey item, this measurement varies by prey type.  Fish, including black 

nose dace and slimy sculpin are measured as fork length.  Salamanders are measured 

from snout tip to the last tail vertebra.  The month of the occurrence, the consumer 

species and fork length are listed. 

 

Month Fish species 
Fork 
Length 

Prey type Size 

April Brown trout 147 Blacknose dace 11.2 
 Brown trout 162 Dusky salamander 67.3 
 Brown trout 194 Two lined salamander 70.1 

August Brown trout 190 Black nose dace 27.3 

December Brown trout 142 Two lined salamander 24.8 
 Atlantic salmon 155 Slimy sculpin 30.0 
 Brown trout 178 Two lined salamander 56.2 
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Table 2.9. Monthly Spearman’s rank correlation coefficients and probability estimates 

between drift propensity score and diets of the three salmonid fish species from West 

Brook.  Values marked by dagger (†) indicate non-statistically significant result. 

 

 April June August December 
Sample Type rho P rho P rho P rho P 

Atlantic salmon 0.528 0.001 0.408 0.010 0.482 0.002 0.344† 0.050 
Brook trout 0.438 0.005 0.483 0.002 0.578 0.001 0.358 0.020 
Brown trout 0.509 0.001 0.433 0.005 0.230† 0.200 0.144† 0.500 

 

 

Table 2.10. Monthly measure of diet overlap between salmonid species (ATS – Atlantic 

salmon, BKT – brook trout, BNT- brown trout).  Overlap was calculated using 

Schoener’s formula (1970).  Values marked by and asterisk (*) indicate significant 

overlap (values >0.60). 

 

Month 
ATS - 
BKT 

ATS - 
BNT 

BKT - 
BNT 

April *0.63 *0.78 *0.73 
June 0.35 *0.63 0.55 
August 0.36 0.29 0.51 
December 0.50 0.59 0.42 
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Figure 2.1. Monthly variation in gut biomass of the three salmonid fish species from West Brook.  Legend indicates Atlantic salmon 

(ATS), brook trout (BKT) and brown trout (BNT).  Dashed line indicates non-statistically significant differences in Atlantic salmon 

gut biomass by Tukey’s post hoc testing.  Error bars are standard errors.  
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Figure 2.2. Monthly variation in consumption rate by biomass of the three salmonid fish species from West Brook.  Legend indicates 

Atlantic salmon (ATS), brook trout (BKT) and brown trout (BNT).  Dashed line indicates non-statistically significant differences in 

Atlantic salmon consumption rate by biomass by Tukey’s post hoc testing.  Error bars are standard errors.  
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Figure 2.3. Monthly variation in gut density of the three salmonid fish species from West Brook.  Legend indicates Atlantic salmon 

(ATS), brook trout (BKT) and brown trout (BNT).  Dashed line indicates non-statistically significant differences in Atlantic salmon 

gut biomass by Tukey’s post hoc testing; solid line- brook trout, dotted line- brown trout.  Error bars are standard errors.  
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Figure 2.4. Monthly variation in consumption rate by number of the three salmonid fish species from West Brook.  Legend indicates 

Atlantic salmon (ATS), brook trout (BKT) and brown trout (BNT).  Dashed line indicates non-statistically significant differences in 

Atlantic salmon gut biomass by Tukey’s post hoc testing; solid line- brown trout.  Error bars are standard errors.  
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Figure 2.5. Monthly variation in the Shannon-Wiener index of diet diversity for the three salmonid fish species from West Brook.  

Legend indicates Atlantic salmon (ATS), brook trout (BKT) and brown trout (BNT).  Error bars are standard errors.  
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Figure 2.6. Monthly variation in mean item size for salmonid guts and drift samples from West Brook.  Error bars are standard errors. 
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Figure 2.7. Monthly variation in prey item length of Atlantic salmon and brook trout from West Brook.  Legend indicates Atlantic 

salmon (ATS), brook trout (BKT) and brown trout (BNT).  Dashed line indicates non-statistically significant differences in Atlantic 

salmon gut biomass by Tukey’s post hoc testing; solid line- brown trout.  Error bars are standard errors.  
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Figure 2.8a. April Chesson’s alpha values for taxa with a percent index of relative importance greater then 10 for the three salmonid 
fish species from West Brook.  Legend indicates fish species; Atlantic salmon (ATS), brook trout (BKT) and brown trout (BNT).  The 
dotted line indicates the value of 1/k, values over this line are considered positively selected for. 
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Figure 2.8b. June Chesson’s alpha values for taxa with a percent index of relative importance greater then 10 for the three salmonid 
fish species from West Brook.  Legend indicates fish species; Atlantic salmon (ATS), brook trout (BKT) and brown trout (BNT).  The 
dotted line indicates the value of 1/k, values over this line are considered positively selected for. 
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Figure 2.8c. August Chesson’s alpha values for taxa with a percent index of relative importance greater then 10 for the three salmonid 
fish species from West Brook.  Legend indicates fish species; Atlantic salmon (ATS), brook trout (BKT) and brown trout (BNT).  The 
dotted line indicates the value of 1/k, values over this line are considered positively selected for. 
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Figure 2.8d. December Chesson’s alpha values for taxa with a percent index of relative importance greater then 10 for the three 
salmonid fish species from West Brook.  Legend indicates fish species; Atlantic salmon (ATS), brook trout (BKT) and brown trout 
(BNT).  The dotted line indicates the value of 1/k, values over this line are considered positively selected for. 
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Figure 2.9. Conceptual model of the seasonal diet switch exhibited by the three species of salmonid fish from West Brook. 
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Appendix A 
Invertebrate Population Data 

 
Table A-1.  Mean density (#) and biomass (mg) of the drift and benthic samples for West Brook.  Three 
diel drift samples are given per cubic meter (m-3), with the benthic sample per square meter (m-2).  Totals 
are a mean value for benthic and morning drift samples, while the two other drift samples are single sample 
totals.  Blank spaces indicate that no individuals of that taxa where captured. 

 
April 2003 Day Night Midnight Benthic 

Taxa Density Biomass Density Biomass Density Biomass Density Biomass 

Coleoptera         

Elmidae 0.17 0.10 0.02 0.01 0.21 0.08 2.70 1.22 

Others         

Diptera          

Chironomidae 1.38 0.17   1.13 0.10 9.60 0.95 

Simuliidae 0.30 0.12 0.02 0.00 0.10 0.00   

Tipulidae 0.05 0.04   0.03 0.01 3.00 0.70 

Others 0.60 0.64 0.03 0.00 2.13 0.76 2.70 0.64 

Ephemeroptera         

Baetidae 0.02 0.03 0.02 0.00 0.52 0.08 0.60 0.37 

Ephemerellidae 0.40 0.69 0.08 0.02 0.24 0.06 2.40 5.41 

Heptageniidae 0.04 0.04   0.07 0.06 2.40 1.70 

Leptophlebiidae 0.02 0.01   0.07 0.01   

Siphlonuridae 0.04 0.04   0.10 0.09 0.30 0.18 

subimago         

Others         

Plecoptera         

Capniidae 0.49 2.41       

Chloroperlidae 0.04 0.06       

Perlodidae        0.90 2.50 

Taeniopterygidae 0.02 0.09       

Others 0.16 0.19 0.03 0.00   0.30 0.00 

Trichoptera          

Glossosomatidae          

Helicopsychidae          

Hydropsychidae 0.04 0.10     0.30 0.01 

Lepidostomatidae 0.06 0.13 0.02 0.00     

Leptoceridae 0.06 0.03 0.02 0.01 0.03 0.00   

Limnephilidae   0.02 0.47 0.03 1.19 0.60 7.84 

Philopotamidae          

Psychomyiidae 0.02 0.01       

Rhyacophilidae 0.02 0.01 0.02 0.00 0.03 0.03 2.70 8.04 

Others 0.34 0.90       

Terrestrial Derived 1.18 0.29 0.02 0.00 0.48 0.12 4.50 0.02 

Insect - Others          

Non-Insect 
Invertebrates       0.30 0.15 

           

Mean Total 9.25 10.24 1.70 3.29 15.10 7.58 55.50 49.54 
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Table A-1 (cont.) 
 

June 2003 Day Night Midnight Benthic 

Taxa Density Biomass Density Biomass Density Biomass Density Biomass 

Coleoptera          

Elmidae 0.23 0.14 0.26 0.05 0.39 0.27 30.90 12.36 

Others 0.13 0.23   0.04 0.95 0.60 0.28 

          

Diptera          

Chironomidae 0.63 0.11 0.26 0.02 1.48 0.40 30.60 2.44 

Simuliidae 0.10 0.02 0.04 0.00 0.39 0.25 0.30 0.07 

Tipulidae 0.05 0.05 0.04 0.02 0.04 0.01 5.70 4.03 

Others 1.28 0.28 0.21 0.09   4.80 1.53 

          

Ephemeroptera         

Baetidae 2.50 0.29 8.59 0.64 20.03 3.17 23.70 1.21 

Ephemerellidae 0.28 0.24 0.13 0.10 0.23 0.35 8.70 8.97 

Heptageniidae   0.04 0.01 0.08 0.26   

Leptophlebiidae 0.09 0.04   0.08 0.06 1.20 0.51 

Siphlonuridae 0.21 0.16 0.21 0.02 0.27 0.19   

subimago 0.33 2.11       

Others 0.18 0.92   0.62 1.26 0.30 0.63 

          

Plecoptera         

Capniidae          

Chloroperlidae 0.02 0.01 0.04 0.00 0.08 0.02 1.20 0.10 

Perlodidae 0.02 0.10     10.20 2.04 

Taeniopterygidae          

Others 0.09 0.07 0.04 0.00 0.08 0.05 6.00 0.13 

           

Trichoptera          

Glossosomatidae 0.07 0.02 0.13 0.01 0.12 0.02 7.80 1.03 

Helicopsychidae       0.90 0.20 

Hydropsychidae       0.30 1.42 

Lepidostomatidae       0.30 0.02 

Leptoceridae 0.09 0.01       

Limnephilidae 0.02 3.83     1.50 0.02 

Philopotamidae 0.13 0.11 0.04 0.01 0.04 0.03 0.90 0.41 

Psychomyiidae       0.90 0.41 

Rhyacophilidae      0.08 0.03 1.20 0.91 

Others      0.04 0.01 7.20 0.92 

           

Terrestrial Derived 0.27 0.91 0.09 0.07 0.27 0.48 14.10 0.47 

           

Insect - Others 0.09 0.26   0.12 0.45 1.20 0.31 

          

Non-Insect 
Invertebrates 0.04 0.00     1.20 0.31 

           

Mean Total 8.48 10.12 11.80 1.21 31.45 10.95 269.52 67.87 
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Table A-1 (cont.) 
 

August 2003 Day Night Midnight Benthic 

Taxa Density Biomass Density Biomass Density Biomass Density Biomass 

Coleoptera          

Elmidae 0.20 0.07     28.80 34.54 

Others 0.08 0.03     3.90 6.84 

          

Diptera          

Chironomidae 4.12 0.16 13.36 5.18 0.78 0.44 72.00 6.35 

Simuliidae 1.02 0.12   0.33 0.29 0.30 0.01 

Tipulidae 0.04 0.36     5.70 3.14 

Others 0.69 0.30     8.70 1.51 

           

Ephemeroptera         

Baetidae 0.21 0.02 0.49 0.30 1.99 0.79 8.40 0.52 

Ephemerellidae 0.60 0.03 0.33 0.02 0.11 0.01 76.50 3.23 

Heptageniidae 0.20 0.00     4.80 0.29 

Leptophlebiidae 0.10 0.00   0.22 0.03 20.70 0.78 

Siphlonuridae     0.11 0.01 1.50 0.53 

subimago         

Others 0.07 0.02   0.11 0.12   

          

Plecoptera         

Capniidae        0.90 0.17 

Chloroperlidae        7.20 1.56 

Perlodidae 0.18 0.11   0.11 0.08 2.40 0.71 

Taeniopterygidae          

Others 0.31 0.07 0.16 0.00 0.22 0.61 12.90 1.66 

           

Trichoptera          

Glossosomatidae 0.24 0.03 0.16 0.07   6.30 23.50 

Helicopsychidae     0.11 0.00 12.30 0.87 

Hydropsychidae 0.67 0.39 0.16 0.01 0.22 0.01 39.00 17.19 

Lepidostomatidae         

Leptoceridae       0.90 0.09 

Limnephilidae 0.04 0.00     0.90 22.44 

Philopotamidae    0.16 0.02 0.11 0.09 2.10 1.03 

Psychomyiidae       0.60 0.18 

Rhyacophilidae 0.39 0.10 0.16 0.01   12.90 11.64 

Others 0.04 0.40     11.10 11.07 

           

Terrestrial Derived 0.20 1.07 0.65 0.75 0.22 0.12 3.30 0.02 

           

Insect - Others 0.08 0.04     2.10 3.48 

          

Non-Insect 
Invertebrates        15.60 19.71 

           

Mean Total 10.95 2.81 4.80 1.96 2.10 1.17 603.55 305.71 
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Table A-1 (cont.) 
 

December 2003 Day  Benthic 

Taxa Density Biomass  Density Biomass 

Coleoptera      

Elmidae 0.06 0.07    

Others 0.02 0.07    

       

Diptera       

Chironomidae 0.49 0.16  5.70 4.47 

Simuliidae 0.31 0.04  2.40 0.78 

Tipulidae     0.90 3.58 

Others 0.12 0.16  1.80 1.06 

        

Ephemeroptera      

Baetidae 0.16 0.02  1.80 0.51 

Ephemerellidae 0.14 0.04  5.70 11.39 

Heptageniidae 0.05 0.01  2.10 4.24 

Leptophlebiidae 0.06 0.02  0.90 0.94 

Siphlonuridae    0.30 0.09 

subimago      

Others      

       

Plecoptera      

Capniidae 0.05 0.01  0.30 0.36 

Chloroperlidae 0.03 0.02  0.90 0.55 

Perlodidae       

Taeniopterygidae 0.04 0.01  1.50 0.70 

Others 0.03 0.00  0.60 0.14 

        

Trichoptera       

Glossosomatidae       

Helicopsychidae     0.30 0.02 

Hydropsychidae      

Lepidostomatidae 0.04 0.04    

Leptoceridae      

Limnephilidae      

Philopotamidae     0.60 0.84 

Psychomyiidae       

Rhyacophilidae    0.60 0.78 

Others     0.30 0.95 

        

Terrestrial Derived 0.36 0.16  7.80 0.03 

       

Insect - Others       

       

Non-Insect 
Invertebrates 0.04 0.00    

        

Mean Total 3.88 1.44  543.05 391.78 
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Appendix B 
Salmonid Prey Composition Data 

 
Table B-1.  Percent composition by weight, number, frequency of occurrence and index 
of relative importance of Atlantic salmon gut contents from West Brook.  Values are 
based on mean prey consumed of each species therefore percentages may equal more 
then 100. 
 

 April 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae 0.62 0.17 1.61 0.07 

Other     

Diptera     

Chironomidae 7.39 1.92 8.81 3.49 

Simuliidae 1.91 2.68 3.64 0.71 

Tipulidae     

Other 0.62 0.09 1.61 0.06 

Ephemeroptera     

Baetidae 7.63 6.67 8.64 5.04 

Ephemerellidae 33.26 20.07 19.60 37.26 

Heptageniidae 27.98 14.33 24.24 36.41 

Leptophlebiidae 0.62 0.02 1.61 0.05 

Siphlonuridae 6.80 8.35 9.35 5.56 

subimago     

Other 1.23 0.69 3.23 0.32 

Plecoptera     

Capniidae 1.32 0.53 2.06 0.15 

Chloroperlidae 1.12 0.61 2.06 0.14 

Perlodidae 1.74 4.54 4.48 1.90 

Taeniopterygidae 5.75 4.89 6.08 4.77 

Other 6.17 4.10 11.29 2.52 

Trichoptera     

Glossosomatidae 0.62 1.00 1.61 0.13 

Helicopsychidae 1.01 22.86 2.50 1.91 

Hydropsychidae 1.13 34.25 2.59 4.41 

Lepidostomatidae     

Leptoceridae     

Limnephilidae     

Philopotamidae     

Psychomyiidae 0.62 1.72 1.61 0.19 

Rhyacophilidae 1.74 4.93 2.86 0.71 

Other 0.00 0.00 0.00 0.00 

Terrestrial Derived 1.63 1.13 4.11 0.22 

Insect - Others 0.62 1.75 1.61 0.20 

Non-Insect 
Invertebrates     
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Table B-1 (cont.) 
 

 June 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae 0.87 0.11 2.73 0.13 

Other     

Diptera     

Chironomidae 1.07 0.44 3.49 0.28 

Simuliidae 1.00 0.19 2.73 0.15 

Tipulidae 1.44 0.73 4.84 0.66 

Other 1.51 0.76 5.76 0.26 

Ephemeroptera     

Baetidae 40.79 5.04 17.57 38.60 

Ephemerellidae 3.28 1.96 7.51 2.21 

Heptageniidae 5.75 11.24 9.62 8.57 

Leptophlebiidae 1.06 0.36 2.73 0.18 

Siphlonuridae 5.75 1.41 5.12 1.91 

subimago 23.34 34.11 10.79 30.53 

Other 2.50 8.49 3.89 3.25 

Plecoptera     

Capniidae 0.26 0.39 1.61 0.07 

Chloroperlidae 0.74 1.26 1.87 0.20 

Perlodidae 0.26 1.17 1.61 0.15 

Taeniopterygidae 1.47 5.57 3.85 0.97 

Other 0.13 10.48 0.81 0.54 

Trichoptera     

Glossosomatidae 2.68 1.40 4.96 1.18 

Helicopsychidae 1.11 0.28 3.34 0.22 

Hydropsychidae 1.61 5.42 4.55 1.99 

Lepidostomatidae     

Leptoceridae     

Limnephilidae 1.45 4.04 3.94 0.89 

Philopotamidae 0.39 0.20 1.61 0.06 

Psychomyiidae 0.39 4.11 2.42 0.69 

Rhyacophilidae 3.90 18.35 8.70 12.82 

Other 3.47 5.35 8.54 1.31 

Terrestrial Derived 4.27 16.47 6.28 3.28 

Insect - Others 0.13 0.44 0.81 0.03 

Non-Insect 
Invertebrates 2.47 1.09 3.54 0.46 
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Table B-1 (cont.) 
 

 August 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae 1.90 0.08 4.76 0.64 

Other     

Diptera     

Chironomidae 7.93 4.81 9.13 7.51 

Simuliidae 9.78 2.33 4.56 3.32 

Tipulidae     

Other 4.35 1.94 5.56 1.76 

Ephemeroptera     

Baetidae 19.76 3.42 17.06 24.74 

Ephemerellidae 13.74 0.96 7.14 6.80 

Heptageniidae 3.81 0.32 7.14 1.98 

Leptophlebiidae     

Siphlonuridae 5.37 3.81 4.17 2.80 

subimago 4.35 54.90 5.56 16.62 

Other 4.58 2.15 5.82 2.25 

Plecoptera     

Capniidae     

Chloroperlidae     

Perlodidae     

Taeniopterygidae 4.35 2.81 5.56 2.01 

Other 13.52 4.06 21.83 8.05 

Trichoptera     

Glossosomatidae 2.86 33.44 4.76 11.63 

Helicopsychidae 9.74 11.01 9.39 12.50 

Hydropsychidae 5.78 4.45 7.14 4.39 

Lepidostomatidae 2.17 0.21 3.57 0.49 

Leptoceridae 10.48 0.03 4.76 3.36 

Limnephilidae     

Philopotamidae     

Psychomyiidae 0.95 0.12 2.38 0.17 

Rhyacophilidae 9.65 21.68 9.52 25.08 

Other 0.95 0.12 2.38 0.17 

Terrestrial Derived 9.01 12.63 7.41 4.49 

Insect - Others 4.35 13.12 5.56 4.90 

Non-Insect 
Invertebrates 9.51 19.10 13.14 7.54 
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Table B-1 (cont.) 
 

 December 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae     

Other     

Diptera     

Chironomidae 14.86 0.40 11.36 14.41 

Simuliidae     

Tipulidae     

Other     

Ephemeroptera     

Baetidae 2.70 0.03 4.55 1.03 

Ephemerellidae 20.27 2.58 18.18 34.52 

Heptageniidae 6.76 0.13 11.36 6.50 

Leptophlebiidae 6.76 0.86 6.82 4.32 

Siphlonuridae 4.05 0.43 4.55 1.69 

subimago     

Other 4.05 0.21 4.55 1.61 

Plecoptera     

Capniidae 8.11 0.29 4.55 3.17 

Chloroperlidae 2.70 0.12 4.55 1.07 

Perlodidae     

Taeniopterygidae     

Other 4.05 0.26 6.82 0.81 

Trichoptera     

Glossosomatidae 9.46 1.58 9.09 8.33 

Helicopsychidae     

Hydropsychidae 1.35 0.90 2.27 0.43 

Lepidostomatidae     

Leptoceridae     

Limnephilidae 9.46 0.56 4.55 3.78 

Philopotamidae     

Psychomyiidae     

Rhyacophilidae     

Other 4.05 2.17 4.55 1.17 

Terrestrial Derived     

Insect - Others     

Non-Insect 
Invertebrates     
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Table B-2.  Percent composition by weight, number, frequency of occurrence and index 
of relative importance of Brook trout gut contents from West Brook.  Values are based on 
mean prey consumed of each species therefore percentages may equal more then 100. 
 

 April 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae     

Other     

Diptera     

Chironomidae 9.72 2.79 7.98 6.94 

Simuliidae 5.88 1.29 3.85 2.37 

Tipulidae 2.17 14.30 6.25 6.44 

Other 3.63 3.73 7.18 1.59 

Ephemeroptera     

Baetidae 3.48 14.01 5.26 5.63 

Ephemerellidae 22.18 3.33 9.89 15.55 

Heptageniidae 9.93 13.64 12.92 15.76 

Leptophlebiidae 3.87 7.62 6.87 4.45 

Siphlonuridae 12.83 6.90 12.12 15.00 

subimago     

Other 13.73 1.01 7.69 9.74 

Plecoptera     

Capniidae 3.21 3.14 4.48 2.04 

Chloroperlidae 3.33 0.82 3.33 0.67 

Perlodidae 1.96 2.55 3.85 1.49 

Taeniopterygidae 12.40 5.15 8.89 13.11 

Other 9.66 8.84 18.97 12.73 

Trichoptera     

Glossosomatidae 2.17 1.96 6.25 1.62 

Helicopsychidae 13.04 3.95 6.25 6.65 

Hydropsychidae 3.33 4.61 6.67 2.55 

Lepidostomatidae     

Leptoceridae     

Limnephilidae     

Philopotamidae 1.96 0.45 3.85 0.80 

Psychomyiidae 1.67 1.49 3.33 0.51 

Rhyacophilidae 2.17 50.11 6.25 20.45 

Other 5.59 3.37 11.03 2.66 

Terrestrial Derived 7.99 21.10 9.52 9.87 

Insect - Others     

Non-Insect 
Invertebrates     
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Table B-2 (cont.) 
 

 June 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae 0.61 0.36 2.86 0.14 

Other 5.82 4.26 9.05 2.43 

Diptera     

Chironomidae 1.29 0.13 3.81 0.20 

Simuliidae 0.61 0.03 2.86 0.09 

Tipulidae 1.96 0.31 4.76 0.31 

Other 0.61 0.28 2.86 0.13 

Ephemeroptera     

Baetidae 10.80 0.30 22.86 7.09 

Ephemerellidae 4.27 0.91 8.57 2.23 

Heptageniidae 3.66 3.28 8.57 2.98 

Leptophlebiidae     

Siphlonuridae 1.22 0.04 2.86 0.18 

subimago 68.05 70.42 22.86 78.82 

Other 7.08 4.84 5.24 3.25 

Plecoptera     

Capniidae     

Chloroperlidae 1.96 1.26 4.76 0.45 

Perlodidae     

Taeniopterygidae     

Other     

Trichoptera     

Glossosomatidae 0.61 0.05 2.86 0.09 

Helicopsychidae 1.22 0.82 5.71 0.59 

Hydropsychidae 1.96 2.70 4.76 0.65 

Lepidostomatidae 1.83 0.15 2.86 0.28 

Leptoceridae 0.61 0.03 2.86 0.09 

Limnephilidae 3.92 0.15 9.52 1.13 

Philopotamidae 1.96 16.10 4.76 2.50 

Psychomyiidae     

Rhyacophilidae     

Other 0.61 7.50 2.86 1.16 

Terrestrial Derived 3.09 12.48 20.32 6.02 

Insect - Others     

Non-Insect 
Invertebrates     
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Table B-2 (cont.) 
 

 August 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae 2.00 2.16 3.13 1.24 

Other     

Diptera     

Chironomidae 3.78 11.52 6.76 5.18 

Simuliidae 5.35 8.73 8.71 4.48 

Tipulidae     

Other 7.00 3.48 13.13 3.63 

Ephemeroptera     

Baetidae 5.17 0.51 6.70 2.48 

Ephemerellidae 4.00 4.80 6.25 5.25 

Heptageniidae 4.00 0.17 6.25 2.48 

Leptophlebiidae 6.00 0.09 6.25 3.63 

Siphlonuridae     

subimago 5.00 25.92 10.00 11.08 

Other 8.35 17.10 11.83 11.61 

Plecoptera     

Capniidae 4.35 0.37 7.14 0.85 

Chloroperlidae     

Perlodidae     

Taeniopterygidae     

Other 10.35 63.55 16.52 21.52 

Trichoptera     

Glossosomatidae     

Helicopsychidae 39.00 3.04 16.25 35.08 

Hydropsychidae 7.50 2.60 9.69 6.43 

Lepidostomatidae     

Leptoceridae     

Limnephilidae     

Philopotamidae     

Psychomyiidae 5.00 3.09 10.00 2.90 

Rhyacophilidae     

Other 21.35 25.71 20.27 11.48 

Terrestrial Derived 28.62 24.20 25.03 33.32 

Insect - Others 4.00 0.42 3.13 1.32 

Non-Insect 
Invertebrates 4.00 2.21 6.25 1.85 
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Table B-2 (cont.) 
 

 December 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae     

Other     

Diptera     

Chironomidae 10.00 0.64 11.76 9.33 

Simuliidae     

Tipulidae     

Other     

Ephemeroptera     

Baetidae     

Ephemerellidae 5.00 9.13 5.88 6.19 

Heptageniidae 10.00 0.47 5.88 4.59 

Leptophlebiidae 5.00 1.87 5.88 3.01 

Siphlonuridae 5.00 12.78 5.88 7.80 

subimago     

Other     

Plecoptera     

Capniidae     

Chloroperlidae 5.00 0.86 5.88 2.57 

Perlodidae 5.00 8.98 5.88 6.13 

Taeniopterygidae     

Other 15.00 7.93 11.76 10.05 

Trichoptera     

Glossosomatidae 15.00 2.45 11.76 15.30 

Helicopsychidae     

Hydropsychidae 5.00 14.84 5.88 8.70 

Lepidostomatidae     

Leptoceridae     

Limnephilidae     

Philopotamidae     

Psychomyiidae     

Rhyacophilidae     

Other 15.00 40.02 17.65 24.12 

Terrestrial Derived 5.00 0.02 5.88 2.20 

Insect - Others     

Non-Insect 
Invertebrates     
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Table B-3.  Percent composition by weight, number, frequency of occurrence and index 
of relative importance of Brown trout gut contents from West Brook.  Values are based 
on mean prey consumed of each species therefore percentages may equal more then 100. 
 

 April 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae 0.27 7.02 0.67 0.41 

Other 0.25 1.46 0.57 0.09 

Diptera     

Chironomidae 5.53 0.20 8.09 3.29 

Simuliidae 1.70 0.41 2.67 0.45 

Tipulidae 0.29 2.25 0.77 0.14 

Other 2.28 14.50 1.91 0.94 

Ephemeroptera     

Baetidae 5.72 0.72 8.46 3.64 

Ephemerellidae 30.52 13.26 14.92 42.68 

Heptageniidae 13.82 5.61 12.58 16.06 

Leptophlebiidae 1.61 0.69 3.42 0.80 

Siphlonuridae 12.08 9.47 11.04 15.77 

subimago 3.24 2.34 2.31 0.95 

Other 3.26 1.82 4.33 1.31 

Plecoptera     

Capniidae 3.81 3.76 3.60 1.89 

Chloroperlidae 1.69 4.73 3.14 1.65 

Perlodidae 1.51 3.25 2.09 0.95 

Taeniopterygidae 5.14 2.77 4.04 5.65 

Other 3.84 2.66 8.11 0.72 

Trichoptera     

Glossosomatidae 2.54 1.14 2.52 0.63 

Helicopsychidae 1.05 8.49 1.52 1.02 

Hydropsychidae 0.76 9.26 1.52 1.13 

Lepidostomatidae 0.77 3.76 0.95 0.33 

Leptoceridae 0.25 0.12 0.57 0.02 

Limnephilidae 0.99 0.58 0.57 0.08 

Philopotamidae 1.26 1.54 1.49 0.20 

Psychomyiidae 0.63 0.01 1.49 0.05 

Rhyacophilidae 0.86 0.27 2.08 0.16 

Other 3.29 7.83 6.44 0.91 

Terrestrial Derived 1.59 0.25 2.96 0.22 

Insect - Others     

Non-Insect 
Invertebrates 1.44 11.59 2.23 0.82 
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Table B-3 (cont.) 
 

 June 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae 1.07 2.99 3.23 1.22 

Other 1.34 1.49 3.29 0.63 

Diptera     

Chironomidae 1.73 0.39 4.63 0.78 

Simuliidae 0.50 0.04 1.73 0.06 

Tipulidae 1.22 0.34 2.70 0.22 

Other 3.64 1.21 9.26 0.46 

Ephemeroptera     

Baetidae 20.08 2.04 11.07 16.67 

Ephemerellidae 3.45 1.46 6.02 1.44 

Heptageniidae 4.04 7.61 6.27 5.03 

Leptophlebiidae     

Siphlonuridae 6.05 1.66 6.80 2.92 

subimago 28.19 30.86 18.68 43.64 

Other 17.08 19.83 10.06 11.58 

Plecoptera     

Capniidae     

Chloroperlidae 0.66 1.23 2.06 0.29 

Perlodidae 0.58 1.75 2.06 0.39 

Taeniopterygidae     

Other 0.66 0.11 2.15 0.07 

Trichoptera     

Glossosomatidae 5.98 6.54 5.72 8.77 

Helicopsychidae 2.74 0.82 3.29 0.53 

Hydropsychidae 0.17 0.21 0.66 0.02 

Lepidostomatidae     

Leptoceridae 0.49 0.01 1.49 0.05 

Limnephilidae 3.52 16.69 2.63 3.59 

Philopotamidae 0.66 0.31 2.15 0.16 

Psychomyiidae 0.17 0.40 0.66 0.03 

Rhyacophilidae 2.39 11.46 5.71 6.47 

Other 2.56 1.86 5.86 0.36 

Terrestrial Derived 2.64 14.64 5.62 3.88 

Insect - Others 1.16 0.83 4.12 0.20 

Non-Insect 
Invertebrates 2.23 3.70 8.26 0.62 
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Table B-3 (cont.) 
 

 August 2003 

Taxa %Number %Weight %Occurrence %IRI 

Coleoptera     

Elmidae 1.18 98.81 5.26 18.25 

Other     

Diptera     

Chironomidae 4.02 0.15 9.43 1.88 

Simuliidae 0.75 0.02 2.08 0.10 

Tipulidae     

Other 3.01 0.22 6.25 0.42 

Ephemeroptera     

Baetidae 5.38 0.05 6.60 1.80 

Ephemerellidae 1.18 0.01 5.26 0.22 

Heptageniidae     

Leptophlebiidae     

Siphlonuridae 1.18 0.15 5.26 0.24 

subimago     

Other 12.26 21.16 10.76 11.59 

Plecoptera     

Capniidae 0.75 0.14 2.08 0.12 

Chloroperlidae     

Perlodidae     

Taeniopterygidae     

Other 3.01 0.26 4.17 0.84 

Trichoptera     

Glossosomatidae 4.51 4.15 4.17 2.23 

Helicopsychidae 41.50 0.02 16.28 37.10 

Hydropsychidae 0.75 0.01 2.08 0.10 

Lepidostomatidae     

Leptoceridae     

Limnephilidae 2.26 0.17 2.08 0.31 

Philopotamidae     

Psychomyiidae     

Rhyacophilidae 22.77 13.76 5.76 14.00 

Other 13.76 13.73 18.40 10.34 

Terrestrial Derived 21.84 28.20 31.23 37.95 

Insect - Others 3.10 2.31 12.61 1.34 

Non-Insect 
Invertebrates 12.26 14.20 17.36 8.74 
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Table B-3 (cont.) 
 

 December 2003  

Taxa %Number %Weight %Occurrence %IRI  

Coleoptera      

Elmidae  1.45 0.05 2.27 0.300789 

Other      

Diptera      

Chironomidae 9.33 14.49 0.40 13.64 17.88534 

Simuliidae  1.45 0.07 2.27 0.304256 

Tipulidae  1.45 0.36 2.27 0.362301 

Other  2.90 0.24 2.27 0.629 

Ephemeroptera      

Baetidae  2.90 0.03 4.55 1.171012 

Ephemerellidae 6.19 11.59 2.65 13.64 17.10553 

Heptageniidae 4.59     

Leptophlebiidae 3.01 2.90 0.31 4.55 1.282326 

Siphlonuridae 7.80     

subimago      

Other  10.14 1.28 9.09 9.146639 

Plecoptera      

Capniidae  5.80 0.12 2.27 1.184007 

Chloroperlidae 2.57     

Perlodidae 6.13     

Taeniopterygidae  2.90 0.39 4.55 1.315372 

Other 10.05 7.25 0.22 9.09 3.892178 

Trichoptera      

Glossosomatidae 15.30 8.70 0.44 4.55 3.654837 

Helicopsychidae      

Hydropsychidae 8.70 1.45 2.26 2.27 0.74317 

Lepidostomatidae      

Leptoceridae      

Limnephilidae  1.45 0.21 2.27 0.331673 

Philopotamidae      

Psychomyiidae      

Rhyacophilidae      

Other 24.12 17.39 12.52 11.36 6.978144 

Terrestrial Derived 2.20 2.90 0.00 4.55 1.160574 

Insect - Others      

Non-Insect 
Invertebrates      
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