
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

January 2007

Logic Simulation Using Graphics Processors
Atchuthan S. Perinkulam
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Perinkulam, Atchuthan S., "Logic Simulation Using Graphics Processors" (2007). Masters Theses 1911 - February 2014. 59.
Retrieved from https://scholarworks.umass.edu/theses/59

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13598974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/59?utm_source=scholarworks.umass.edu%2Ftheses%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

LOGIC SIMULATION USING GRAPHICS PROCESSORS

A Thesis Presented

by

ATCHUTHAN S. PERINKULAM

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

September 2007

Master of Science in Electrical and Computer Engineering

LOGIC SIMULATION USING GRAPHICS PROCESSORS

A Thesis Presented

by

ATCHUTHAN S. PERINKULAM

Approved as to style and content by:

__

Sandip Kundu, Chair

__

Wayne P. Burleson, Member

__

Ramgopal Mettu, Member

C.V.Hollot, Department Head

 Department of Electrical and Computer Engineering

 iii

ACKNOWLEDGMENTS

 I would like to thank my advisor, Sandip Kundu, for his thoughtful and patient

guidance, motivation and support. I would also like to extend my gratitude to the

members of my committee, Wayne P. Burleson and Ramgopal Mettu, for their helpful

comments and suggestions on all stages of this thesis.

 I would like to thank Ian Buck and his team at Stanford University whose

material I have used, excerpted and referenced in this thesis. The members of the

GPGPU (General Purpose Computation using Graphics Hardware) forums, particularly

Mike Houston and the Brook GPU community at Stanford University deserve

appreciation. The forums were an invaluable source of information and helped clear

many concepts. The GPU Gems 2 book was an extremely useful reference.

 A special thank you to all those, whose support and friendship helped me to stay

focused on this project and provided me with constant encouragement. Thanks are also

due to my family for their support, love and affection.

 iv

ABSTRACT

LOGIC SIMULATION USING GRAPHICS PROCESSORS

SEPTEMBER 1, 2007

ATCHUTHAN S. PERINKULAM,

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sandip Kundu.

Logic Simulation is widely used to verify the logical correctness of hardware

designs. In this work, we present the implementation of a generic graphics processor

based logic simulator and compare it with the corresponding CPU (desktop) based

implementation. The motivation for this study arises from the increasing computational

power of graphics processors (GPUs). Graphics hardware performance is roughly

doubling every six months, and they are outpacing CPUs in raw computational power.

GPUs are becoming increasingly programmable and their prices are falling steeply.

Most desktops now come built-in with programmable graphics processors. The highly

parallel nature of graphics computations enables GPUs to use additional transistors for

computation, achieving higher arithmetic intensity with the same transistor count.

Applications such as Ray Tracing, Fluid Modeling, Radiology imaging etc have shown

speed-ups on graphics processors. This led us to investigate the use of GPUs to run

concurrent algorithms for logic simulation. We present the implementation and analyze

performance bottlenecks and finally draw conclusions as to whether the GPU can be

used for speeding up the logic simulation algorithm.

 v

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS...iii

ABSTRACT... iv

LIST OF TABLES..vii

LIST OF FIGURES ...viii

CHAPTER

1. INTRODUCTION .. 1

Logic Simulation... 1

Types of logic simulation.. 2

CPU based Logic Simulation.. 2

Graphics Processors (GPUs)... 3

GPU based logic simulation.. 4

Why use the GPU for computation? ... 5

Keys to High Performance Computing... 8

Focus ... 9

2. GPU ARCHITECTURE AND PROGRAMMING MODEL..................................... 10

Rasterization Process .. 12

GPU Programming Model .. 14

Structure of a GPU program ... 14

GPU Programming languages... 16

ARB low-level assembly language... 16

C for graphics (Cg) ... 16

High Level Shader Language (HLSL).. 17

Open GL Shading language .. 17

Production quality shading languages .. 17

Brook for GPUs .. 18

GPU Programming Difficulties .. 18

Selection of programming language ... 19

3. BROOK GPU PROGRAMMING LANGUAGE DETAILS 20

BrookGPU System Architecture... 20

 vi

Brook Stream Programming Model.. 21

Features of the Brook language .. 22

Streams.. 22

Kernels .. 23

Reductions... 24

Additional language features .. 25

4. CPU-GPU DATAPATHS, MAPPING METHODOLOGY AND CONSTRAINTS.27

CPU-GPU Datapaths .. 27

Mapping Methodology.. 28

Brook Constraints ... 29

5. VARIOUS APPROACHES STUDIED.. 30

The simple approach: One kernel per gate ... 30

Using Combinational Fan-Out Free Cones (CFOFs)... 31

Bubble propagation method.. 32

Threshold gate mapping algorithm ... 32

Usage of Multidimensional streams.. 33

Final computational approach... 33

6. SIMULATIONS AND RESULTS ... 35

Preparation for simulation... 35

Measuring program execution time .. 36

Measuring transfer delay between the GPU and the CPU.................................. 36

Simulation Results .. 38

ISCAS85 Benchmarks- Logic Simulation Results 39

ISCAS89 Benchmarks- Logic Simulation Results 41

PICOJAVA Benchmarks- Logic Simulation Results 44

BEAST Benchmarks- Logic Simulation Results.................................... 46

7. OBSERVATION, ANALYSIS AND CONCLUSIONS.. 47

Observations ... 47

Analysis... 48

Conclusions... 49

Future Work .. 50

BIBLIOGRAPHY... 51

 vii

LIST OF TABLES

Table Page

1. Simulation results- ISCAS85 benchmarks – NAND4 mapping. 39

2. Simulation results- ISCAS85 benchmarks – NAND5 mapping 39

3. Simulation results- ISCAS85 benchmarks – NOR4 mapping 40

4. Simulation results- ISCAS85 benchmarks – NOR5 mapping 40

5. Simulation results- ISCAS89 benchmarks – NAND4 mapping. 41

6. Simulation results- ISCAS89 benchmarks – NAND5 mapping. 42

7. Simulation results- ISCAS89 benchmarks – NOR4 mapping. 43

8. Simulation results- ISCAS89 benchmarks – NOR5 mapping. 44

9. Simulation results- PICOJAVA benchmarks – NAND4 mapping. 44

10. Simulation results- PICOJAVA benchmarks – NAND5 mapping. 45

11. Simulation results- PICOJAVA benchmarks – NOR4 mapping. 45

12. Simulation results- PICOJAVA benchmarks – NOR5 mapping. 45

13. Simulation results- BEAST benchmarks – AND4 mapping............................... 46

14. Simulation results- BEAST benchmarks – AND5 mapping............................... 46

 viii

LIST OF FIGURES

Figure Page

1. CPU vs GPU Floating point performance comparison... 6

2. Changes in Key GPU properties over time... 7

3. Rapidly Changing GPU Capabilities .. 7

4. The modern graphics pipeline with programmable vertex and fragment

processors.. 10

5. Visualizing the graphics pipeline.. 11

6. The Rasterization process ... 12

7. Block diagram of NVIDIA GeForce 6 series architecture.................................. 13

8. BrookGPU System Architecture... 21

9. Computer System Architecture... 27

 1

CHAPTER 1

INTRODUCTION

Today’s electronic systems are incredibly complex and hence very expensive.

Any design defect would lead to not only huge monetary losses, but also significantly

reduce the competitive advantage of the company designing and building the system.

Also, as the complexity of the system increases, the design process is broken down into

separate modules that are designed and verified, built and re-tested to rule out

manufacturing defects and then integrated to form the complete system. The “Correct-

by-construction” methodology is frequently used in the design process.

Logic Simulation

Logic Simulation is defined as the use of a computer program to simulate the

operation of a digital circuit. It is used for verifying the logical correctness of hardware

designs. Improving the performance and speed of logic simulators has many benefits,

such as decreasing overall production time and speeding up debugging and processing

schedules. More test cases can be run in shorter time and the associated benefits are

enormous. This work focuses on logic simulation using graphics processors. The

motivation for this study is the increasing programming power and affordability of

graphics processors. Many applications such as Radiology imaging, Fluid modeling etc

have shown speed-ups when mapped to graphics processors and we wanted to study if a

similar speed-up could be achieved in the case of logic simulation (GPGPU). In this

work, we have developed, implemented and tested a logic simulation algorithm that is

generic and can be applied to any combinational or sequential circuit and any

 2

programmable graphics processor, that supports high level programming languages

such as those described in this material. Results are presented for four sets of publicly

available standard benchmarks namely the ISCAS85, ISCAS89, PICOJAVA and the

BEAST benchmarks.

Types of logic simulation

There are 2 primary types of logic simulation, 1) compiled code logic simulation

and 2) event driven logic simulation. A very brief overview is presented here. A highly

detailed description of the various methods is presented in (Meister, 1993). The current

work focuses on compiled code logic simulation. Event driven simulation tries to

eliminate the “execution time wastage” of compiled code logic simulation, by using

time-stamping. To exploit parallelism using MIMD (Multiple Instruction – Multiple

Data) machines, various data access and distribution methods were developed such as

full replication with distributed data, partitioning, remote data access from a central

repository etc. Very fast and expensive hardware accelerators and Emulators such as the

Quickturn System M3000 series are also available. While many techniques have been

developed to speed-up logic simulation, the problem of finding a generic optimal logic

simulation algorithm remains NP-complete.

CPU based Logic Simulation

Currently, logic simulators are run on CPUs. In this work, we focus on a desktop

GPU based logic simulator. The logic simulation programs/algorithms designed for the

CPU are usually serial in nature, leading to large simulation run-times for large circuits.

Typically, such an algorithm would proceed by first levelizing the circuit and then

 3

computing the output of one node at a time, until all individual node output values are

obtained. However, many algorithms such as audio and signal processing, ray tracing,

radiology imaging etc. have been successfully mapped onto the Graphics Processing

Units (GPUs) with higher performance benefits(GPGPU), leading us to the study of

logic simulation on GPUs.

Graphics Processors (GPUs)

The interaction between humans and computers has evolved a long way from

teleprinters to using the monitor, or the visual display unit. Graphics processors or

GPUs perform the translation of binary data into pixels (picture elements) that are

displayed on the screen. A pixel is one of the tiny dots that make up the entire image.

The steps required to display an image on the screen are:

1) Creating a wire frame out of straight lines

2) Rasterizing the image ie filling in the remaining pixels

3) Adding lighting, texture and color

4) Performing a refresh about 60 times a second.

This process is very intensive, and earlier, CPUs performed all the required

computations. Highly specialized processors called Graphics Processing Units were

later developed to perform these functions effectively, so that they could take over the

display functionality from the CPU. With the advancement of technology, we see that

nowadays, computers and workstations are generally shipped with sophisticated

graphics cards and gaming technology, three dimensional effects and processing power

that was virtually impossible a few decades ago.

 4

GPU based logic simulation

An emerging trend is the usage of commodity graphics processing units (GPUs)

for general purpose graphics applications. In 1965, Gordon Moore from Intel observed

that the number of transistors that could be economically fabricated on a single

transistor die was doubling every year and that this trend was likely to continue in the

future.

Following this trend, graphics processors (and silicon chips in general) started

becoming increasingly programmable, powerful and capable co-processors. Also, their

prices have become affordable. With this increasing functionality, programmers started

using GPUs for general purpose applications such as Ray Tracing, Fluid modeling,

Radiology imaging etc. This created a new area of research and development, known as

GPGPU, “General Purpose Computation using Graphics Processing Units” (GPGPU)

A recent survey on general purpose computation on graphics architecture by

John D. Owens et al. states that, “In general, the computational capabilities of GPUs

have compounded at an average yearly rate of 1.7× (pixels/second) to 2.3× (vertices/

second). This rate of growth outpaces the oft-quoted Moore’s Law as applied to

traditional microprocessors; compared to a yearly rate of roughly 1.4× for CPU

performance. Put another way, graphics hardware performance is roughly doubling

every six months. The highly parallel nature of graphics computations enables GPUs to

use additional transistors for computation, achieving higher arithmetic intensity with the

same transistor count.” As an example, the NVIDIA GeForce 3 series had 57 million

transistors, while the NVIDIA GeForce 7800GTX has about 300 million transistors.

 5

A closer look at logic simulation reveals that the algorithm can be modified and

implemented on parallel architectures. This leads us to investigate the use of GPUs to

run concurrent algorithms for logic simulation.

Why use the GPU for computation?

As stated earlier, GPUs are becoming increasingly affordable and

programmable. “Economics and the rise of video games as mass-market entertainment

have driven down prices to the point where you can now buy a graphics processor

capable of several hundred billion floating-point operations per second for just a few

hundred dollars.”, as observed by Simon Green of NVIDIA Corporation. However, one

must not assume that all problems will map well and result in a performance speed-up

when implemented on the GPU. The GPU is a special processor and was not originally

designed for performing general purpose computations. Every time data is transferred

from the CPU to the GPU and back, there are associated delays.

For a fruitful implementation, the number of computations performed on the

GPU must be much higher than the data transfer rate. This is called as “high arithmetic

intensity”. The advantage of formulating an efficient algorithm for logic simulation on

the GPU is that it removes the need for an additional hardware/software emulator and

comes with no added price.

 6

Figure 1: CPU vs GPU Floating point performance comparison (Courtesy I. Buck)

Figure 1 shows that the, “programmable floating point performance of GPUs

(measured on the multiply-add instruction as 2 floating operations per MAD) has

increased dramatically over the last four years when compared to CPUs.” (Owens et al,

2007).

2002 2003 2004 2005

Year

0

50

100

150
G
F
L
O
P
S

Dual-core

NVIDIA [NV 30 NV35 NV40 G70]
ATI [R300 R360 R420]
Intel Pentium 4

(Single-core except where marked)

 7

Figure 2: Changes in Key GPU properties over time

(Courtesy, Ian Buck, Stanford University, Ch 29, GPU Gems 2, NVIDIA Corporation).

Figure 3: Rapidly Changing GPU Capabilities

(Courtesy Ian Buck, Stanford University)

2004 2014

1

10

100

1,000

10,000

 35 GB/s

40 ns

10

5

158W

222 M

475 MHz 322 GB/s

198 W

23 ns

1890 MHz

2237 M

4228
Transistors

Clock Speed

Capability (x 1012)

Memory Bandwidth

Memory Latency

Power / Chip

5

 10

 15

 20

 25
 30

 35

 40

0

10

20

40

40

50

60

Dec 02 Mar 03 Jun 03 Oct 03 Jan 04 Apr 04

GeForce FX 5900

(Jun 2003)

GeForce FX 6800

(Jan 2004)

GeForce FX 5800

(Dec 2002)

 Date

B
A
N
D
W
I
D
T
H
(GB/S)

P

R

O

C

P

O

W

E

R

(GFlops)

 8

The number of observed floating-point operations per second on the GeForce FX 5800,

5950, and the GeForce 6800 has been growing at a rapid pace, while off-chip memory

bandwidth has been increasing much more slowly.

Keys to High Performance Computing

This section provides a summary of various techniques used for high

performance computing as discussed in Ch. 29, GPU Gems 2. As discussed earlier,

technology advancements result in enormous computation power in the form of

transistors. We can make optimum use of these resources by providing efficient

communication techniques and by allowing them to operate in parallel. The usage of

transistors is broadly divided into three categories, the control, the data-path and the

storage. For maximum efficiency, we must maximize the performance of those

transistors in the data-path devoted to performing computations.

CPUs have more transistors devoted to control hardware as they have more

complex control requirements (such as branch prediction and out of order execution) as

compared to GPUs, leaving only a small fraction devoted to computation. Also, as

CPUs are general purpose processors, they do not have the specialized hardware found

in GPUs. CPUs are dedicated to minimizing latency (by using several layers of caches),

GPUs try to maximize throughput. This makes CPUs inefficient for processing data that

is accessed only once, as is the case, in parallel algorithms. The GPU has a huge

performance advantage in this regard.

 9

Focus

The objective of this work is to study the implementation of a generic GPU

based logic simulator and compare it with the corresponding CPU (desktop) based

implementation. Results are presented for four sets of publicly available standard

benchmarks namely the ISCAS85, ISCAS89, PICOJAVA and the BEAST benchmarks.

The benchmarks span a wide array of circuits ranging from sequential to combinational,

structurally sparse to dense and hence, form a reasonably good study set for analysis.

The effects of technology mapping and circuit restructuring are studied and analyzed in

detail. A comprehensive test suite is built for comparing the benchmarks, on different

platforms. The methods presented in this study are benchmark independent and can be

used for any kind of circuit as mentioned earlier. Also, any kind of programmable

graphics processor may be used. The results will vary and are subject to the graphics

card and platform performance constraints.

 10

CHAPTER 2

GPU ARCHITECTURE AND PROGRAMMING MODEL

This chapter summarizes the evolution of the GPU and describes its current

architecture and trends. Today’s entire commodity GPUs structure their graphics

computation in the organization shown below, called the graphics pipeline. The

graphics pipeline is designed so that the throughput is maximized. High computation

rates are achieved by incorporating parallelism.

Figure 4: The modern graphics pipeline with programmable vertex and fragment

processors.

 (Picture adapted from “A Survey of General Purpose Computation on Graphics

Hardware”, by Owens et al, 2007).

 11

Figure 5: Visualizing the graphics pipeline

(Courtesy, “The Cg Tutorial”, NVIDIA Corporation- Figure 1.6).

. The above two figures demonstrate the architecture of the graphics pipeline and

the functionality of its various components. All geometric primitives pass through each

stage namely vertex operations, primitive assembly, rasterization, fragment operations

and composition into final image. A vertex is a data structure for a point in a mesh,

containing position, normal, texture coordinates etc. A fragment refers to a tentative

pixel (picture element) or a sub-pixel, of a rasterized image.

 GPUs have evolved from the earlier generation fixed function processors, where

the vertex and fragment processors did specialized tasks such as vertex transformations,

lighting calculations (vertex processor) and color determination (fragment processor), to

programmable vertex and fragment processors. These new processors can now execute

vertex and fragment programs, called as shaders that are written by the user. The

process of writing to a memory address is termed as a scatter operation, while that of

reading from a memory address is a gather operation. Typically, fragment processors

have the capability to fetch data from textures i.e. gather operations, but not scatter

operations. Vertex processors are capable of scatter operations and have limited gather

capability.

 12

Rasterization Process

Given a set of rays and a primitive, rasterization is defined as the process of efficiently

computing the set of rays that hit the primitive.

Figure 6: The Rasterization process

(Courtesy Slusallek et al, SIGGRAPH 2005)

The process is described below:

� The input to the rasterizer is a stream of vertices that define the scene.

� The stream of transformed vertices is assembled into a stream of triangles, each

triangle keeping the attributes of its three vertices. This operation is called as

clipping.

� Each triangle from this stream then passes through a rasterizer that generates a

stream of fragments, which are discrete portions of the triangle surface that

correspond with the pixels of the rendered image. Fragment attributes are

derived from the triangle vertex attributes. This stream of fragments may pass

through a number of stages performing a number of visibility tests (stencil,

depth, alpha and scissor) that will remove non-visible fragments and then the

stream of fragments will pass through a second computation stage.

 13

Having discussed the various stages in the pipeline and the rasterization process,

let us look at the architecture of the GeForce 6 series of graphics processors from

NVIDIA corporation.

Figure 7: Block diagram of NVIDIA GeForce 6 series architecture

 (Excerpted from Chapter 30, GPU Gems 2, NVIDIA Corporation 2005)

A detailed explanation of the various stages of this processor can be found in the

technical specifications, available in the NVIDIA web site, or in the book GPU Gems 2.

This figure helps us to understand the parallelism that is built into the processor at the

architectural / hardware level, as opposed to a general purpose central processing unit.

Since the vertex and fragment processors are programmable, it is also understandable

that applications that will show performance improvements over their CPU counterparts

 14

will be typically data-parallel. Also, we can visualize the GPU architecture as a set of

SIMD machines working in unison.

GPU Programming Model

GPUs are a compelling solution for applications that require high arithmetic

rates and data bandwidths. GPUs achieve this high performance through data

parallelism, which requires a programming model distinct from the traditional CPU

sequential programming model. This programming model is defined as the “Stream

Programming Model”.

Because typical scenes have more fragments than vertices, in modern GPUs the

programmable stage with the highest arithmetic rates is the fragment stage. A typical

GPGPU program uses the fragment processor as the computation engine in the GPU.

Structure of a GPU program

The structure of a typical GPU program is explained by Mark Harris as follows:

1. First, the programmer determines the data-parallel portions of his application. The

application must be segmented into independent parallel sections. Each of these sections

can be considered a kernel and is implemented as a fragment program. The input and

output of each kernel program is one or more data arrays, which are stored (sometimes

only transiently) in textures in GPU memory. In stream processing terms, the data in the

textures comprise streams, and a kernel is invoked in parallel on each stream element.

2. To invoke a kernel, the range of the computation (or the size of the output stream)

must be specified. The programmer does this by passing vertices to the GPU. A typical

 15

GPGPU invocation is a quadrilateral (quad) oriented parallel to the image plane, sized

to cover a rectangular region of pixels matching the desired size of the output array.

Note that GPUs excel at processing data in two-dimensional arrays, but are limited

when processing one-dimensional arrays.

3. The rasterizer generates a fragment for every pixel location in the quad, producing

thousands to millions of fragments.

4. Each of the generated fragments is then processed by the active kernel fragment

program. Note that every fragment is processed by the same fragment program. The

fragment program can read from arbitrary global memory locations (with texture reads)

but can only write to memory locations corresponding to the location of the fragment in

the frame buffer (as determined by the rasterizer). The domain of the computation is

specified for each input texture (stream) by specifying texture coordinates at each of the

input vertices, which are then interpolated at each generated fragment. Texture

coordinates can be specified independently for each input texture, and can also be

computed on the fly in the fragment program, allowing arbitrary memory addressing.

5. The output of the fragment program is a value (or vector of values) per fragment.

This output may be the final result of the application, or it may be stored as a texture

and then used in additional computations. Complex applications may require several or

even dozens of passes (“multipass”) through the pipeline. (Harris, 2005)

 16

Having understood the structure of a typical GPU program, we will discuss

some of the GPU programming languages being used currently.

GPU Programming languages

 Just as there are many CPU programming languages such as Basic, C, C++, Java

etc, there is a wide array of GPU programming languages such as Cg, HLSL etc. A

shader is a program that is executed on the graphics processing unit. Shaders are of two

types, vertex shaders and pixel or fragment shaders. A brief summary of each language

is presented below:

ARB low-level assembly language

The OpenGL Architecture Review Board established ARB (GPU assembly language) in

2002 as a standard low-level instruction set for programmable graphics processors.

High-level OpenGL shading languages compile to ARB for loading and execution.

Unlike high-level shading languages, ARB assembly does not support flow control or

branching. However, it continues to be used for portability to a variety of GPUs.

C for graphics (Cg)

 As a result of technical advancements in graphics cards, some areas of 3D

graphics programming have become quite complex. To simplify the process, new

features were added to graphics cards, including the ability to modify their rendering

pipelines using vertex and pixel shaders.

In the beginning, vertex and pixel shaders were programmed at a very low level

with only the assembly language of the graphics processing unit. Although using the

 17

assembly language gave the programmer complete control over code and flexibility, it

was fairly hard to use. A portable, higher level language for programming the GPU was

needed, so Cg was created to overcome these problems and make shader development

easier. Cg programs are merely vertex and pixel shaders, and they need supporting

programs that handle the rest of the rendering process, Cg can be used with two APIs,

OpenGL or DirectX, each has its own set of Cg functions to communicate with the Cg

program, like setting the current Cg shader, passing parameters, and such tasks.

High Level Shader Language (HLSL)

 The High Level Shader Language or High Level Shading Language (HLSL) is a

proprietary shading language developed by Microsoft for use with the Microsoft

Direct3D API. It is analogous to the GLSL shading language used with the OpenGL

standard. It is very similar to the NVIDIA Cg shading language mentioned above.

Open GL Shading language

GLSL - OpenGL Shading Language also known as GLslang, is a high level

shading language based on the C programming language. It was created by the OpenGL

ARB to give developers more direct control of the graphics pipeline without having to

use assembly language or hardware-specific languages.

Production quality shading languages

Many other shading languages such as Renderman Shading Language, Houdini

VEX shading language and Gelato Shading language have been developed for

 18

production-quality rendering. A more detailed discussion of these languages is beyond

the scope of this thesis.

Brook for GPUs

Brook is a high level GPU programming language developed at Stanford University,

and facilitates the usage of graphics processors for General purpose computational

applications. The rest of this thesis work is based on Brook and it will be discussed in

the following chapters

GPU Programming Difficulties

Originally, GPUs could only be programmed using assembly languages. Programming a

GPU is harder than programming a CPU. Buck et al (GPU Stream Computing) provide

a detailed explanation of the difficulties in programming a GPU. Higher level shader

languages such as Microsoft’s HLSL, NVIDIA’s Cg and OpenGL’s GLslang require

that the programmer have extensive knowledge of the underlying graphics hardware

and the modern APIs. Also, the algorithms must be mapped to graphics primitives such

as textures and triangles, and hence there is little abstraction provided. The stream

programming model captures computational locality not present in the SIMD or vector

models through the use of streams and kernels. Stream, kernel and memory

management etc. must be performed by the programmer and hence require a good

operational background in graphics. They conclude that “code written today to perform

computation on GPUs is developed in a highly graphics-centric environment, posing

difficulties for those attempting to map other applications onto graphics hardware”.

 19

Selection of programming language

We conducted a preliminary analysis of various graphics programming

languages such as NVIDIA’s Cg (C for graphics), Microsoft’s HLSL (High level

shading language), OpenGL (OpenGL shading language) and Brook for GPUs. Brook

was selected for its ease of implementation and abstractness. It makes general purpose

programming on graphics processors much easier and provides a good level of

abstraction. This is obtained by introducing an intermediate layer, runtime (BRT) and a

compiler (BRCC). The details are provided on the Brook web page at Stanford

University (BrookGPU). We can think and code in terms of modules (the typical top-

down or bottom-up approach) rather than in terms of shading. Brook provides a new

perspective to general purpose programming on graphics processors.

 20

CHAPTER 3

BROOK GPU PROGRAMMING LANGUAGE DETAILS
*

Brook is an extension of standard ANSI C and is designed to incorporate the

ideas of data parallel computing and arithmetic intensity into a familiar and efficient

language. Brook extends C to include simple data-parallel constructs, enabling the use

of the GPU as a streaming coprocessor. It presents a compiler and runtime system that

abstracts and virtualizes many aspects of graphics hardware. Brook abstracts the GPU

as a streaming coprocessor. The general computational model, referred to as streaming,

provides two main benefits over traditional conventional languages:

• Data Parallelism: Allows the programmer to specify how to perform the same

operations in parallel on different data.

• Arithmetic Intensity: Encourages programmers to specify operations on data

which minimize global communication and maximize localized computation.

BrookGPU System Architecture

The BrookGPU compilation and runtime architecture consists of a two

components. BRCC is the BrookGPU compiler is a source to source meta-compiler

which translates Brook source files (.br) into .cpp files. The compiler converts Brook

primitives into legal C++ syntax with the help of the BRT, the Brook Run Time library.

*
Some material in this chapter is excerpted from the Brook GPU website at Stanford

University (BrookGPU) and (GPU Stream Computing). It provides the background for

this thesis work.

 21

The BRT is an architecture independent software layer which implements the

backend support of the Brook primitives for particular hardware. The BRT is a class

library which presents a generic interface for the compiler to use. The implementation

of the class methods are customized for the hardware supported by the system. The

backend implementation is chosen at runtime based on the hardware available on the

system or at request of the user. The back-ends include: DirectX9, OpenGL ARB,

NVIDIA NV3x, and C++ reference

Figure 8: BrookGPU System Architecture

Brook Stream Programming Model

Brook was a developed as a language for streaming processors such as

Stanford's Merrimac streaming supercomputer, the Imagine processor etc. It has been

adapted to the capabilities of graphics hardware. The design goals of the language

include:

 22

1) Data Parallelism and Arithmetic Intensity: By providing native support for

streams, Brook allows programmers to express the data parallelism that exists in their

applications. Arithmetic intensity is improved by performing computations in kernels.

2) Portability and Performance: In addition to GPUs, the Brook language maps to a

variety of streaming architectures. Therefore the language is free of any explicit

graphics constructs. Brook implementations have been created for both NVIDIA and

ATI hardware, using DirectX and OpenGL, as well as a CPU reference implementation.

Despite the need to maintain portability, Brook programs execute efficiently on the

underlying hardware.

In comparison with existing high-level languages used for GPU programming,

Brook provides the following abstractions:

1) Memory is managed via streams: named, typed, and “shaped" data objects consisting

of collections of records.

2) Data-parallel operations executed on the GPU are specified as calls to parallel

functions called kernels.

3) Many-to-one reductions on stream elements are performed in parallel by reduction

functions.

Features of the Brook language

Important features of the Brook language are discussed in the following sections.

Streams

A stream is a collection of data which can be operated on in parallel. Streams are

declared with angle-bracket syntax similar to arrays, i.e. float s<10,5> which denotes a

2-dimensional stream of floats. Each stream is made up of elements. In this example, s

 23

is a stream consisting of 50 elements of type float. The shape of the stream refers to its

dimensionality. In this example, s is a stream of shape 10 by 5. Streams are similar to C

arrays, however, access to stream data is restricted to kernels (described below) and the

streamRead and streamWrite operators, that transfer data between memory and streams.

Streams may contain elements of type float, Cg vector types such as float2, float3, and

float4, and structures composed of these native types

Kernels

Brook kernels are special functions, specified by the kernel keyword, which operate on

streams. Calling a kernel on a stream performs an implicit loop over the elements of the

stream, invoking the body of the kernel for each element. An example kernel is shown

below.

kernel void saxpy (float a, float4 x<>, float4 y<>, out float4 result<>)

{

result = a*x + y;

}

Kernels accept several types of arguments:

1) Input streams that contain read-only data for kernel processing.

2) Output streams, specified by the “out” keyword, that store the result of the kernel

computation. Brook imposes no limit to the number of output streams a kernel may

have.

3) Gather streams, specified by the C array syntax (array []): Gather streams permit

arbitrary indexing to retrieve stream elements. In a kernel, elements are fetched, or

 24

“gathered", via the array index operator, i.e. array [i]. Like regular input streams, gather

streams are read-only.

4) All non-stream arguments are read-only constants.

If a kernel is called with input and output streams of differing shape, Brook implicitly

resizes each input stream to match the shape of the output. This is done by either

repeating (123 to 111222333) or striding (123456789 to 13579) elements in each

dimension. Certain restrictions are placed on kernels to allow data-parallel execution.

Memory access is limited to reads from gather streams, similar to a texture fetch.

Operations that may introduce side-effects between stream elements, such as writing

static or global variables, are not allowed in kernels. Streams are allowed to be both

input and output arguments to the same kernel (in-place computation) provided they are

not also used as gather streams in the kernel.

 The use of kernels differentiates stream programming from vector programming.

Kernels perform arbitrary function evaluation whereas vector operators consist of

simple math operations. Vector operations always require temporaries to be read and

written to a large vector register file. In contrast, kernels capture additional locality by

storing temporaries in local register storage. By reducing bandwidth to main memory,

arithmetic intensity is increased since only the final result of the kernel computation is

written back to memory.

Reductions

While kernels provide a mechanism for applying a function to a set of data,

reductions provide a data-parallel method for calculating a single value from a set of

 25

records. Examples of reduction operations include arithmetic sum, computing a

maximum, and matrix product. In order to perform the reduction in parallel, we require

the reduction operation to be associative. This allows the system to evaluate the

reduction in whichever order is best suited for the underlying architecture.

Reductions accept a single input stream and produce as output either a smaller

stream of the same type, or a single element value. Outputs for reductions are specifed

with the “reduce” keyword. Both reading and writing to the reduce parameter are

allowed when computing the reduction of the two values. If the output argument to a

reduction is a single element, it will receive the reduced value of all of the input

stream's elements. If the argument is a stream, the shape of the input and output streams

is used to determine how many neighboring elements of the input are reduced to

produce each element of the output.

Additional language features

1) The “indexof” operator may be called on an input or output stream inside a kernel to

obtain the position of the current element within the stream

2) Iterator streams are streams containing pre-initialized sequential values specified by

the user. Iterators are useful for generating streams of sequences of numbers.

3) The Brook language specification also provides a collection of high-level stream

operators useful for manipulating and reorganizing stream data, such as grouping

elements into new streams and extracting sub-regions of streams and explicit operators

to stride, repeat, and wrap streams. These operators can be implemented on the GPU

 26

through the use of iterator streams and gather operations. Their use is important on

streaming platforms which do not support gather operations inside kernels.

4) The Brook language provides parallel indirect read-modify-write operators called

ScatterOp and GatherOp which are useful for building and manipulating data structures

contained within streams. However, due to GPU hardware limitations, these operations

are currently performed on the CPU.

 27

CHAPTER 4

CPU-GPU DATAPATHS, MAPPING METHODOLOGY AND CONSTRAINTS

CPU-GPU Datapaths

The overall system architecture of a computer is shown below.

Figure 9: Computer System Architecture

(Courtesy, Ch 30, GPU Gems 2, Fig 30-2)

The South Bridge is connected to the slower components and peripherals such as

the printer, the keyboard, the serial port, hard disk etc. The South Bridge connects to the

CPU via the North Bridge. The North Bridge is connected to the high speed devices

such as the System DRAM, the GPU, Gigabit Ethernet etc. as shown above. Thus, the

primary channel of communication between the GPU and the CPU is the North Bridge.

The CPU sends information regarding the images to be displayed on the monitor to the

GPU. This information is then processed by the GPU and the final image is rendered on

the display unit.

 28

 When we map a computational problem from the CPU onto the GPU, the

bottleneck becomes the bus that connects the two processors. Data transfer from the

CPU to the GPU and back is a very expensive process in terms of time. Hence it is

essential that the amount of computations that are transferred to the GPU justify the

investment in the mapping process and result in performance benefits. In other words,

we need high arithmetic intensity, and must re-arrange data so that the parallelism is

exploited to the maximum extent.

Mapping Methodology

Logic simulation in CPUs is an inherently sequential process with the output of

only one gate being evaluated at every instant of time. If we could evaluate the outputs

of multiple gates at the same time, then there would be significant speed improvements

in the entire logic simulation process. This would require the following:

1) The underlying hardware should support parallel processing. GPUs are well

suited for parallel processing, are effective stream co-processors and hence can

crunch large amounts of data at higher speeds than CPUs (as discussed in the

introduction).

2) A high level language that allows a sufficient degree of abstractness to provide

an interface for general purpose programming on the graphics processor. This is

provided by Brook.

3) An effective system to process and organize circuit information such that the

multiple computations are made possible concurrently. This work is discussed in

the following chapters.

 29

We have to note that there are delays when data is passed from the CPU onto the

graphics card and back. The amount of computation on the GPU should be high enough

to compensate for this delay and further show a speed improvement

Brook Constraints

Though Brook offers a high level of abstraction, there are quite a few

restrictions. The usage of pointers is heavily restricted. Static storage classes are

disallowed. Recursion is disallowed, and precise exceptions are not supported. There is

no support for the integer data type or variable length streams. Also we have

experienced some problems while using multiple nested loops such as for, while etc.

Hence the code has to be written in such a way that we obey these restrictions and use

alternate methods to get the same result. The final speed will be affected by these

constraints. A major factor that we must also consider is the underlying hardware, the

graphics card. Hence, this study would compare the CPU and GPU implementations for

the logic simulation process.

 30

CHAPTER 5

VARIOUS APPROACHES STUDIED

Many methods were studied for optimizing the logic simulation process on the

GPU as a stream computational process. The CPU is used for user interaction, and

intermediate data re-arrangement. Though each of these approaches would have worked

in terms of results, some approaches were extremely inefficient in terms of overall

processing time. We discuss each approach below and analyze its drawbacks, leading us

to the final implementation algorithm.

The simple approach: One kernel per gate

 The simplest approach is to map each gate of the circuit into a kernel of the

graphics processor. As defined earlier, kernel functions are user specified functions

which are executed over the set of input streams to produce elements onto the set of

output streams. A stream is a collection of objects to be processed. This approach was

very slow as it achieved very little arithmetic intensity (ratio of arithmetic computations

to the data transferred over the CPU-GPU bus) and does not use any parallelism.

As bitwise logical operations are not supported by the GPU, the kernel functions

are implemented using the conditional Boolean operators that are supported by Brook

(Brook Language Specifications). The inputs and outputs are represented in terms of

floating point numbers.

 31

A typical example for a 2 input nand gate would be as follows:

kernel void nand_2ip(float ip1<>, float ip2<>, out float op<>)

{

 if((ip1 == 0.0)||(ip2 == 0.0)) //any inputs = logic 0

 {

 op = 1.0;

 }

 else

 if((ip1 == 2.0)||(ip2 == 2.0)) //any input = don't care

 {

 op = 2.0;

 }

 else op = 1.0; //all inputs are logic 1

}

In the above example, logic 0 is represented by the number 0.0, logic 1 is

represented by the number 1.0, and logic X is represented by the number 2.0. ip1 and

ip2 are the input streams and op<> is the output stream.

Using Combinational Fan-Out Free Cones (CFOFs)

To improve on the above approach, we partitioned the circuit into

Combinational Fan-Out Free Cones called as super gates, and tried to obtain arithmetic

equations for the output of each cone in terms of its input nodes. The reason for trying

to map the output of these gates as a function of their inputs using arithmetic equations

is that GPUs are much faster when solving equations than when performing logical

operations. Each super-gate has one or more inputs and by definition is either an output

gate or a multiple fan-out gate. The equations were obtained using regression and curve

fitting techniques and were found to be sub-optimal. This was because the presence of

XOR gates made these functions non-monotonic and hence irregular to be fitted

accurately into curves.

 32

Bubble propagation method

As a result, we used the bubble-propagation approach to make these functions

monotonic. The bubble-propagation approach starts at the output of the super-gate and

propagates NOT gates (inverters) all the way back to its inputs in a step-wise manner.

Equations could now be written for the output of each super-gate in terms of its inputs

using back-propagation. This would however be serial in nature, and yet again

inefficient.

Threshold gate mapping algorithm

We then analyzed if representing each super-gate as a threshold gate would

work. A similar work has been done by Zhang et al, in 2005. They have also developed

a threshold logic synthesis tool called TELS for this purpose. Firstly, the functions are

assured to be unate, because of the bubble propagation approach used earlier. Hence the

necessary condition for threshold functions is satisfied. However, not all unate functions

are threshold functions and hence further resolution of these super-gates into threshold

functions becomes necessary. This requires Integer Linear Programming (ILP) methods

and hence access to ILP tools. The TELS tool runs over 4000 lines of code and requires

other ILP tools. Also we would need tools for electronic design automation (EDA)

scripting, such as the Simplified Wrapper and Interface Generator (SWIG) (Chen,

2007). This would lead to lots of CPU system calls and lower the overall execution

speed.

 33

Usage of Multidimensional streams

One approach is to format the entire circuit as a multidimensional stream, send

this stream and the individual gate values as an array and do the processing completely

inside the graphics processor. This would require reading and writing information into

and from the GPU only once, thus reducing the transit time. This may have been faster,

but current GPUs do not support the scatter and gather operations that are necessary to

perform this. The scatter and gather operations are emulated on the CPU, and hence

very slow.

Final computational approach

From the above experiments, the following methodology is proposed:

1) If the circuit is sequential, convert it into a combinational circuit This is done by

converting all the inputs of the flip-flops to primary output gates and converting

all outputs of the flip flops to primary input gates

2) Perform technology mapping on the circuit to obtain a unified representation of

the circuit. By unified representation, we mean that the entire circuit is mapped

into either NAND, NOR or Multiplexer (universal) gates. This is useful for

performing SIMD like streaming computations on the data. In this study, we

have compared the effects of technology mapping into these universal gates.

3) Balance, and levelize the circuit.

4) Arrange the circuit information into arrays such that input gate information can

be sent in parallel as streams. This forms the crucial and most important step.

 34

5) For each level, perform a computation for all the gates in that level, in parallel,

using kernel functions for each gate.

6) Arithmetic intensity is achieved using kernel reduction functions and parallelism

is obtained using the streams.

7) Measure simulation execution time (exclude file read-write access time) over a

large number of simulations, providing random inputs and take the average

execution time.

8) Perform a comparison between CPU and GPU execution time and report results.

9) Repeat the study for various technology mapped circuits, benchmarks and

platforms and analyze the results.

 35

CHAPTER 6

SIMULATIONS AND RESULTS

Preparation for simulation

Before simulation, any sequential circuits are converted to combinational

circuits, technology mapped into the target technology and converted into a final

numeric representation of the gates in which all nodes are assigned unique numbers.

The conversion of sequential circuits into combinational circuits and the final

representation of the circuits in the form of gates were done using Perl scripts. The

technology mapping process was done using ABC, a sequential synthesis and

verification tool developed by Alan Mishchenko at the University of California,

Berkeley. The final circuit representation, in which each node/gate is given a unique

number, facilitates the development of a standard system, in which the circuit can be

directly read into arrays and later converted into streams to be used for graphics

processing. The benchmarks used in this study are a set of standard benchmarks,

namely the ISCAS85, ISCAS89, PICOJAVA and the BEAST benchmarks. Henceforth,

I will refer to a 4 input NAND gate as NAND4, a 5 input AND gate as AND5 and so

on. Mapping was done into NAND4, NAND5, NOR4, NOR5, AND4 and AND5

technologies (with the inverter gate always present). The Beast benchmarks were best

suited to AND gate technology mapping i.e., resulting in the least number of total gates.

Thus the entire pre-simulation process required the use of a wide variety of tools such

as ABC, Synopsys Design Tools, and the Perl Scripting Language.

 36

Measuring program execution time

A very important aspect of this work is the precise measurement of program

execution time. By execution time, we mean the process time and not the actual wall

clock time, since during any interval of time, there are several multiple processes being

executed. If we do not measure the execution time correctly, the entire evaluation

process falls apart. Many time measurement approaches are available such as the stop-

watch method, the UNIX date command, the UNIX time command, prof and grof

profiling mechanisms, the clock() function, software analyzers, logic analyzers etc

(Stewart,2006). The most accurate measurements among these are found to be obtained

from calls to the clock () function and measuring program access cycle counters using

register level operations, that are explained in Chapter 19 of the book, Computer

Systems: A Programmer’s Perspective by Randal E. Bryant and David R. O’ Hallaron. I

have used these precise counter based measurements to obtain the execution time of my

programs. Furthermore, I used the suggestions from the Computer Science Course

CS455, Lecture 21 by Jon Squire at the University of Maryland, Baltimore County

while performing my simulations.

Measuring transfer delay between the GPU and the CPU

To measure the transfer delay/time due to passing data back and forth between the CPU

and the GPU per level, I did the following steps:

• I first measured the time taken to run the logic simulation algorithm with logic

kernels, using the GPU as the co-processor.

 37

• Then, I replaced the Nand kernels using buffer logic kernels and repeated the

simulation time measurements for the same set of benchmarks.

• Since the buffer logic is a simple assignment operation, the execution time on

the GPU can be taken as zero (approximation), and the measured time is the

time lost in transferring data back and forth the CPU and the GPU.

• The resulting difference between the above two simulations will be the GPU-

only execution time.

• The GPU only execution time is then compared with the CPU execution time.

• We can also obtain the transfer time per level.

• One important point is that though we can obtain the approximate GPU

execution time, comparing only this with the CPU execution time would be

unfair as we have to look at the data-delay overhead as well. We must compare

the overall time (using the GPU as a co-processor, including the data transfer

time) with the CPU only time, and make our final judgment.

• However, comparing the GPU-only execution time gives us an idea as to how

well logical operations map onto the GPU (which has no native support for bit-

wise logical operations).

• The transfer overhead per level was found to be about 275us in both the

systems (configuration given below) under study.

 38

Simulation Results

The simulations were performed for the following two systems:

VLSITEST3: Dell Precision 370

System configuration:

CPU: Intel Pentium4 processor, 3.00 GHz Dual Core, 512 MB RAM

GPU: NVIDIA Quadro NVS 280 PCI-E, 64 MB RAM, 250 MHz.

VLSITEST4: Dell Dimension 9200

System configuration:

CPU: Intel Pentium4 processor, 1.86 GHz Dual Core, 1 GB RAM.

GPU: NVIDIA GeForce 8800 GTX, 768 MB RAM, 575 Mhz

The following tables are the results obtained from the simulations conducted on the

above 2 platforms. We first present all the results in tabular format. After all the results

are presented, a comprehensive analysis of these results is provided. A few notes on

reading the tables:

1) The cells marked with *** represent those circuits for which the GPU

simulations failed, due to insufficient memory.

2) CPU4 represents the logic simulation time using the CPU of VLSITEST4.

3) CPU3 represents the logic simulation time using the CPU of system

VLSITEST3.

4) Similarly, C+GPU4 and C+GPU3 represent the simulation time using the GPUs

of systems VLSITEST4 and VLSITEST3 respectively as co-processors.

 39

5) I have used black color to indicate CPU runtimes and red color to indicate

C+GPU runtimes. This is to avoid any confusion, as in the case of some

benchmarks, they are of different orders of magnitude.

6) %G-IMP represents the percentage improvement obtained when using the

higher end GPU as co-processor (VLSITEST4 system) over VLSITEST3’s GPU

as co-processor.

ISCAS85 Benchmarks- Logic Simulation Results

Table 1: Simulation results- ISCAS85 benchmarks – NAND4 mapping.
 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

c17 6 3 1.56 1.31 0.89 1.24 28.23

c432 201 22 17.1 16.59 6.68 8.81 24.18

c499 434 17 27.78 27.7 5.02 6.83 26.50

c880 340 15 30.91 27.58 4.56 5.99 23.87

c1355 434 17 28.43 27.36 5.03 6.78 25.81

c1908 472 27 29.6 26.12 8.2 10.74 23.65

c2670 649 16 88.95 76.48 4.77 6.39 25.35

c3540 977 30 56.49 48.09 9.13 11.95 23.60

c5315 1583 34 105.22 104.88 10.09 13.69 26.30

c6288 2560 91 120.35 102.27 27.64 ***

c7552 2152 29 151.17 141.24 8.88 11.77 24.55

Table 2: Simulation results- ISCAS85 benchmarks – NAND5 mapping
 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

c17 6 3 1.59 1.28 0.91 1.22 25.41

c432 201 22 17.84 13.88 6.69 8.82 24.15

c499 434 17 28.65 27.97 5.02 6.77 25.85

c880 326 15 27.62 27.57 4.58 5.97 23.28

c1355 434 17 27.54 26.11 5.02 6.83 26.50

c1908 463 27 30.32 29.04 8.2 10.75 23.72

c2670 633 15 84.9 74.84 4.47 6.11 26.84

c3540 973 30 57.99 48.44 9.14 12.09 24.40

c5315 1574 33 108.63 104.86 9.81 13.16 25.46

c6288 2555 90 100.99 95.89 26.98 ***

c7552 2104 28 152.59 112.01 8.35 11.25 25.78

*** Nomem

 40

Table 3: Simulation results- ISCAS85 benchmarks – NOR4 mapping
 MICROSECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

c17 13 5 1.84 1.58 1.52 1.98 23.23

c432 233 27 18.94 17.44 7.97 10.81 26.27

c499 535 22 31.5 30.44 6.5 8.84 26.47

c880 400 23 31.91 28.85 6.97 9.24 24.57

c1355 535 22 32.24 30.21 6.52 8.73 25.32

c1908 522 33 30.99 23.28 10.02 13.25 24.38

c2670 871 22 97.26 74.65 6.53 8.9 26.63

c3540 1087 39 57.69 44.39 11.84 15.53 23.76

c5315 1721 37 110.95 90.39 10.98 14.75 25.56

c6288 2744 104 112.77 105.63 27.85 ***

c7552 2402 30 153.96 144.02 9.16 12.11 24.36

*** Nomem

Table 4: Simulation results- ISCAS85 benchmarks – NOR5 mapping
 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

c17 13 5 1.86 1.57 1.52 2 24.00

c432 219 23 18.09 14.61 6.78 9.16 25.98

c499 549 23 32.21 26.3 6.95 9.22 24.62

c880 394 21 31.72 24.82 6.22 8.45 26.39

c1355 549 23 32.66 26.53 7 9.25 24.32

c1908 502 33 30.23 22.8 9.77 13.14 25.65

c2670 852 23 93.57 59.39 7.03 9.39 25.13

c3540 1054 37 52.11 46.53 10.95 14.94 26.71

c5315 1694 37 114.92 109.66 11.3 15 24.67

c6288 2731 103 128.35 117.02 27.79 ***

c7552 2323 30 148.35 147.36 9.16 12.17 24.73

*** Nomem

IMPORTANT NOTE: Please note that the GPU and CPU simulations are orders of

magnitude different in this set of benchmarks and hence the GPU simulation time has

been highlighted in red. We observe that the GPU Simulations are much slower than

their CPU counterpart.

 41

ISCAS89 Benchmarks- Logic Simulation Results

Table 5: Simulation results- ISCAS89 benchmarks – NAND4 mapping.

 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

c27 16 6 2.53 2.18 1.78 2.41 26.14

c208 75 8 9.56 9.18 2.73 3.64 25.00

c298 109 9 9.96 9.15 2.67 3.63 26.45

c344 123 13 11.72 11.37 3.84 5.22 26.44

c349 125 13 11.52 10.13 3.83 5.17 25.92

c382 135 9 12.14 10.72 2.74 3.58 23.46

c420 157 13 15.62 15.41 3.84 5.16 25.58

c444 169 9 13.4 12.08 2.75 3.59 23.40

c510 214 9 16.01 13.65 2.67 3.58 25.42

c526 197 9 15.95 15.45 2.75 3.59 23.40

c641 163 15 20.97 18.48 4.44 6 26.00

c713 171 15 21.15 20.91 4.55 6 24.17

c820 305 11 21.57 16.98 3.27 4.38 25.34

c838 309 23 28.67 28.87 6.99 9.27 24.60

c953 352 10 27.67 24.61 2.99 3.99 25.06

c1423 594 38 50.58 46.89 11.55 15.14 23.71

c1488 611 13 35.33 24.88 3.95 5.25 24.76

c9234 1993 26 158.81 146.77 7.75 10.59 26.82

c13207 3184 27 319.32 300.62 8.42 11.14 24.42

c15850 3803 36 329.1 310.45 10.94 14.74 25.78

c35932 12123 13 923.71 873.45 4.55 ***

c38417 11144 21 913.14 791.46 6.54 ***

c38584 12435 23 933.31 827.79 7.03 ***

*** Nomem

 42

Table 6: Simulation results- ISCAS89 benchmarks – NAND5 mapping.

 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

c27 16 6 2.54 2.27 1.78 2.39 25.52

c208 65 7 7.59 6.99 2.13 2.81 24.20

c298 104 7 8.48 8.23 2.08 2.8 25.71

c344 123 13 11.33 10.14 3.95 5.22 24.33

c349 125 13 11.87 10.94 3.84 5.16 25.58

c382 129 8 11.94 11.87 2.44 3.22 24.22

c420 139 10 15 14.54 2.97 3.99 25.56

c444 165 9 13.57 13.47 2.73 3.63 24.79

c510 200 7 17.24 16.05 2.06 2.81 26.69

c526 180 7 15.68 15.04 2.13 2.78 23.38

c641 156 15 20.83 19.65 4.45 6.03 26.20

c713 163 15 20.51 20.34 4.58 5.98 23.41

c820 277 11 20.16 18.84 3.25 4.39 25.97

c838 273 18 28.5 24.79 5.48 7.22 24.10

c953 312 8 27.89 27.5 2.39 3.2 25.31

c1423 590 37 46.88 41.51 11.25 14.88 24.40

c1488 603 13 24.56 24.49 3.88 5.25 26.10

c9234 1949 25 156.1 134.74 7.66 10.11 24.23

c13207 3135 26 307.33 306.57 7.95 10.72 25.84

c15850 3717 33 325.88 303.33 10.34 13.45 23.12

c35932 12123 13 924.24 919.22 4.52 ***

c38417 11056 21 926.7 897.47 6.51 ***

c38584 12205 22 949.66 823.84 6.97 ***

*** Nomem

 43

Table 7: Simulation results- ISCAS89 benchmarks – NOR4 mapping.

 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

c27 10 5 2.27 2.06 1.52 2.02 24.75

c208 98 12 10.57 8.13 3.53 4.82 26.76

c298 94 8 9.19 8.22 2.44 3.22 24.22

c344 135 14 12.57 11.31 4.14 5.63 26.47

c349 137 14 12.65 12.16 4.16 5.61 25.85

c382 124 9 12.26 11.03 2.73 3.59 23.96

c420 188 18 16.82 16.36 5.33 7.13 25.25

c444 160 9 13.63 13.14 2.74 3.63 24.52

c510 246 12 18.72 17.87 3.56 4.78 25.52

c526 186 9 15.88 15.03 2.73 3.59 23.96

c641 221 18 23.38 22.41 5.33 7.13 25.25

c713 222 18 23.25 21.64 5.48 7.17 23.57

c820 309 12 20.01 16.38 3.56 4.83 26.29

c838 362 28 30.97 27.75 8.48 11.14 23.88

c953 415 14 30.01 25.24 4.16 5.58 25.45

c1423 516 40 46.19 38.05 11.26 ***

c1488 634 14 30.7 29.8 4.17 5.64 26.06

c9234 2140 32 150.57 134.68 9.77 12.92 24.38

c13207 3612 33 325.16 299.16 9.98 13.41 25.58

c15850 4216 47 347.64 318.71 *** ***

c35932 10708 12 915.12 876.51 4.47 ***

c38417 9816 25 861.96 833.55 6.67 ***

c38584 13922 29 1029.24 990.92 7.64 ***

*** Nomem

 44

Table 8: Simulation results- ISCAS89 benchmarks – NOR5 mapping.

 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

c27 10 5 2.32 2.08 1.53 2.02 24.26

c208 88 10 8.69 8.51 3.03 3.97 23.68

c298 91 7 8.96 8.62 2.06 2.78 25.90

c344 135 14 12.05 11.73 4.25 5.55 23.42

c349 137 14 11.32 10.7 4.14 5.56 25.54

c382 118 8 12.03 11.16 2.44 3.19 23.51

c420 174 14 15.71 14.41 4.16 5.63 26.11

c444 149 9 12.78 11.11 2.75 3.64 24.45

c510 230 12 18.66 17.23 3.56 4.83 26.29

c526 180 9 15.52 12.97 2.45 3.58 31.56

c641 211 18 22.91 22.16 5.33 7.17 25.66

c713 212 18 22.14 20.09 5.45 7.22 24.52

c820 278 12 16.42 15.11 3.55 4.8 26.04

c838 340 20 30.23 30.32 6.08 7.97 23.71

c953 374 12 29.27 25.8 3.55 4.8 26.04

c1423 518 40 45.63 46.87 11.16 ***

c1488 628 14 34.6 30.83 4.14 5.64 26.60

c9234 2114 32 161.44 160.24 9.78 12.98 24.65

c13207 3571 32 339.59 327.75 9.67 13 25.62

c15850 4143 42 343.11 304.28 *** ***

c35932 10708 12 868.66 838.16 4.43 ***

c38417 9668 25 819.97 806.56 6.59 ***

c38584 13698 29 1062.37 976.52 7.59 ***

*** Nomem

PICOJAVA Benchmarks- Logic Simulation Results

Table 9: Simulation results- PICOJAVA benchmarks – NAND4 mapping.

MICRO-
SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3
%G-
IMP

dcu_comb 3250 17 319.91 316.88 5.2 6.98 25.50

ifu_comb 5345 27 262.45 255.08 8.46 11.16 24.19

rcu_comb 10186 29 612.87 541.03 9.93 13 23.62

ex_comb 15573 34 1056.97 907.51 11.26 ***

iu_comb 41475 39 2283.57 2237.98 *** ***

trap_comb 408 13 44.43 37.11 3.82 5.23 26.96

hold_logic_comb 59 7 6.44 5.47 2.05 2.78 26.26

pipe_comb 1042 9 107.31 95.15 2.75 3.7 25.68

ucode_comb 8151 30 524.46 447.05 9.54 12.52 23.80

*** Nomem

 45

Table 10: Simulation results- PICOJAVA benchmarks – NAND5 mapping.

 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

dcu_comb 3214 17 314.73 230.11 5.17 7 26.14

ifu_comb 4703 24 240.97 183.14 7.48 9.95 24.82

rcu_comb 9918 26 569.71 498.93 9.22 11.7 21.20

ex_comb 15160 32 998.27 945.28 10.58 ***

iu_comb 39980 39 2403 2308.5 *** ***

trap_comb 363 13 42.45 36.77 3.95 5.2 24.04

hold_logic 51 6 6.13 5.81 1.78 2.38 25.21

pipe_comb 1027 9 107.24 93.43 2.78 3.64 23.63

ucode_comb 7570 26 504.41 431.56 8.13 11.02 26.23

Table 11: Simulation results- PICOJAVA benchmarks – NOR4 mapping.

 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3
%G-
IMP

dcu_comb 3945 22 336.22 311.94 6.97 9.14 23.74

ifu_comb 6087 37 294.51 280.2 11.89 15.38 22.69

rcu_comb 11014 40 627.33 621.52 12.38 ***

ex_comb 17331 43 1154.62 1021.16 *** ***

iu_comb 44285 51 2669.87 2008.61 *** ***

trap_comb 413 19 45.24 34.38 5.78 7.64 24.35

hold_logic_comb 66 7 6.87 5.58 2.13 2.81 24.20

pipe_comb 1303 15 117.22 96.04 4.5 6.06 25.74

ucode_comb 9308 43 546.34 509.67 13.61 17.87 23.84

Table 12: Simulation results- PICOJAVA benchmarks – NOR5 mapping.

 MICRO-SECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3
%G-
IMP

dcu_comb 3891 19 327.62 306.86 6.03 7.81 22.79

ifu_comb 5526 34 283.87 251.03 10.45 13.94 25.04

rcu_comb 10705 34 615.56 595.55 11.06 14.59 24.19

ex_comb 16609 38 1158.86 968.84 12.85 ***

iu_comb 42678 49 2631.88 1905.26 *** ***

trap_comb 377 15 43.78 37.17 4.45 5.95 25.21

hold_logic_comb 62 7 6.82 5.45 2.12 2.8 24.29

pipe_comb 1293 15 117.23 103.74 4.49 6.02 25.42

ucode_comb 8540 35 514.45 510.28 11.11 14.61 23.96

 46

BEAST Benchmarks – Logic Simulation Results

Table 13: Simulation results- BEAST benchmarks – AND4 mapping.

 MILLISECONDS MILLI-SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

beast10k 8663 11 1.2 0.82 4.19 6.23 32.74

beast12k 12308 13 1.57 1.1 4.68 7.59 38.34

beast14k 13915 14 1.62 1.4 5.39 8.23 34.51

beast16k 14944 11 1.67 1.55 4.69 7.04 33.38

beast18k 16558 11 2.13 1.82 4.32 ***

beast20k 19485 12 2.16 1.76 5.44 ***

Table 14: Simulation results- BEAST benchmarks – AND5 mapping.

 MILLI SECONDS MILLI SECONDS

Circuit Nodes Levels CPU4 CPU3 C+GPU4 C+GPU3 %G-IMP

beast10k 7940 10 1.21 0.84 3.95 5.69 30.58

beast12k 11701 12 1.5 1.25 4.48 7.22 37.95

beast14k 13160 12 1.51 1.4 5 7.31 31.60

beast16k 13778 9 1.63 1.35 3.84 5.94 35.35

beast18k 15237 10 2.08 1.63 4.13 6.52 36.66

beast20k 18291 11 2.1 1.6 4.21 ***

NOTE: In tables 13 and 14, we observe that simulation runtime using GPU as co-

processor is the same order as the CPU runtime. The BEAST benchmarks in general

perform better on the CPU as compared to the other benchmarks, due to higher

structural density of the circuit. However, GPU simulations are still slower than CPU

simulations.

 47

CHAPTER 7

OBSERVATION, ANALYSIS AND CONCLUSIONS

Observations

In all the simulation results, we observe that:

1. The GPU simulations are slower than the CPU simulations.

2. CPU simulations are faster on VLSITEST3 which has a faster CPU than

VLSITEST4.

3. CPU simulation time is heavily influenced by the number of nodes in

the circuit, while GPU simulation time is influenced by the distribution

of the circuit i.e the number of levels and the number of nodes per level.

4. GPU simulations on VLSITEST4 are faster than VLSITEST3 (20% to

40%), as it has a much faster processor and higher on card memory.

5. Larger circuits are simulated on VLSITEST4, though they resulted in

GPU memory failures on VLSITEST3.

6. Another clear outcome of the simulations is that the denser benchmarks,

with fewer nodes and more levels such as the BEAST benchmarks

perform relatively better when compared to the sparser circuits with

lower node to level ratio.

7. Among all the benchmarks in this study, the best results were obtained

for the BEAST benchmarks.

8. Sparser benchmarks such as ISCAS85 and ISCAS89 suffer heavily on

GPU execution speed, when compared to their CPU counterparts.

 48

9. Thus, we see that small and sparse circuits with fewer nodes per level

are much better off being simulated on the CPU and larger and dense

benchmarks might be suited to GPU processing.

Analysis

 Based on the above observations, we come up with the following analysis and

try to understand why logic simulation is slower on the GPU as compared to the CPU.

Firstly, data dependency exists between the layers, since the inputs to the kernels/gates

of any stage (except the primary inputs) are dependant on the outputs of the previous

stage. Since the write position of a processed fragment is determined in advance by the

vertex-parameters and cannot be changed within the fragment program, fragment

processors are incapable of performing memory scatter. This led us to move data back

and forth between the CPU and the GPU for every level and the resulting data transfer

overhead offset any performance gains obtained from GPU processing. The lack of

support for bitwise logical operations necessitates the use of larger kernels and floating

point numbers, reducing program speed. We also need to use if-else statements in the

GPU kernels, and they result in GPU-stall cycles. The nature of the circuit is important,

as a widely uneven circuit may outrun the maximum stream size and lead to memory

issues, leading to runtime crashes. This is why, some circuits such as the NOR4 mapped

version of c15850 (ISCAS89 benchmarks) failed to execute on the GPU. The memory

on a graphics card determines the maximum size of the circuits that can be simulated on

it. Representing logic in terms of floating point numbers results in wastage of memory.

Larger memories facilitate larger circuit simulations. Circuits such as c38584 that do

 49

not run on a lower memory chip ran on a higher memory chip. Memory is not the only

influencing factor though. If scatter operations could be conducted on the GPU rather

than being emulated on the CPU, there would be performance enhancements. Though

we see improvements in GPU simulation results as we move to larger circuits, we have

also seen that large circuits lead to errors due to insufficient GPU memory and hence

we cannot claim that GPU simulations of very large circuits will perform better than

their CPU counterparts. Thus, the resulting computational intensity on GPUs is

insufficient and as it does not compensate for the data transfer overhead, we see that

CPUs outperform the GPUs on compiled code logic simulation.

Conclusions

 In this work, we have implemented and compared generic logic simulation

algorithms on GPUs and desktops (CPUs). We evaluated the performance for four

standard sets of benchmarks, namely ISCAS85, ISCAS89, PICOJAVA and BEAST.

We mapped these benchmarks using various technology libraries such as NAND4,

NAND5, NOR4, NOR5, AND4 and AND5 (with inverters) and studied the effects of

technology mapping on simulation results. Simulations were performed for two

different platforms and graphics cards. We described various approaches for mapping

the logic simulation algorithm on the GPU and analyzed the performance bottlenecks.

We finally concluded that the resulting computational intensity on GPUs is insufficient

and as it does not compensate for the data transfer overhead, we see that CPUs

outperform the GPUs on compiled code logic simulation.

 50

Future Work

We tried mapping to all the universal gates to observe the effects of technology

mapping. When I tried using the MUX based target library, the number of gates and

levels inflated by at least a factor of 2. I also tried using the Synopsys design compiler

for this purpose and used the “infer_mux” compiler derivative. Another approach I tried

was to write my own library, using the Synopsys library compiler. Both the ABC tool

and the Synopsys design compiler require that the target library specification contain at

least an inverter and an AND2 or NAND2 gate. Upon technology mapping to the MUX

target library, I observed that most gates were mapped to these two default gates and

very few MUX2 gates were instantiated. This led to the increase in the overall number

of nodes and levels. Though MUX4 and MUX8 gates were present in the target library,

no instantiations of these gates were found. Thus, the MUX based technology mapping

was not used in these simulations.

Future work in this area would be identifying problems in the Computer Aided

Design area that are better suited to implementation on the Graphics processor. One

such example suggested by my advisor, Prof Kundu was Aerial imaging simulation. We

could also work on recently developed languages such as CUDA (Compute Unified

Device Architecture) produced by NVIDIA, which supports more fine-grained control

over GPU operations.

 51

BIBLIOGRAPHY

"BrookGPU." Computer Graphics At Stanford University. 24 Apr. 2007.

<http://graphics.stanford.edu/projects/brookgpu/>.

"Brook Language Specifications." Stanford U,. 24 Aug. 2007

<http://merrimac.stanford.edu/brook/brookspec-v0.2.pdf>.

Bryant, Randal E., and David R. O' Hallaron, eds. "Measuring Program Execution

Time." Computer Systems: a Programmer's Perspective. Prentice Hall, 2003.

632-649.

“GPU Stream Computing”. Buck, Ian, Tim Foley, Daniel Horn, Jeremy Sugerman,

Kavyon Fatahalion, Mike Houston, and Pat Hanrahan. "Brook for GPUs:

Stream Computing on Graphics Hardware." ACM Transactions on Graphics 23

(2004): 777-786.

"Cg Developer Zone." NVIDIA. 22 Aug. 2007

<http://developer.nvidia.com/page/cg_main.html>.

Chen, Pinhong, D. A. Kirkpatrick, and K. Keutzer. "Scripting for EDA Tools: a Case

Study." International Symposium on Quality Electronic Design (2001): 87-93.

24 Aug. 2007

<http://ieeexplore.ieee.org/iel5/7308/19762/00915211.pdf?arnumber=915211>.

"DirectX 10." Microsoft Games for Windows. 24 Aug. 2007

<http://www.microsoft.com/windows/directx/default.mspx>.

“GPGPU”. General-Purpose Computation Using Graphics Hardware. 22 Aug. 2007

<http://www.gpgpu.org/>.

Hansen, M., H. Yalcin, and J. P. Hayes. "Unveiling the ISCAS-85 Benchmarks: a Case

Study in Reverse Engineering." IEEE Design and Test 3rd ser. 16 (1999): 72-

80.

Harris, Mark. GPU Gems. 2nd ed. Addison Wesley, 2005. 493-508.

Harris, Mark. "Mapping Computational Concepts to GPUs." GPU Gems 2. Ed. Matt

Pharr. Addison Wesley, 2005. 493-508.

"High Level Shader Language." Wikipedia. 25 Aug. 2007

<http://en.wikipedia.org/wiki/High_Level_Shader_Language>.

"HLSL." Microsoft Developer Network. 24 Aug. 2007 <http://msdn2.microsoft.com/en-

us/library/bb509561.aspx>.

 52

"ISCAS Benchmark Circuits." Technical University of Liberec. 22 Aug. 2007

<http://www.fm.vslib.cz/~kes/asic/iscas/>.

Jha, Niraj, comp. CAD Projects At Princeton University. Princeton University. 24 Aug.

2007 <http://www.princeton.edu/~cad/projects.html>.

Meister, G. A survey on parallel logic simulation. Technical report, Department of

Computer Science, University of Saarland, 1993.

<http://citeseer.ist.psu.edu/article/meister93survey.html>

"OpenGL." Wikipedia. 25 Aug. 2007 <http://en.wikipedia.org/wiki/Open_GL>.

Owens, John D., David Leubke, Naga Govindaraju, Mark Harris, Jens Kruger, Aaron E.

Lefohn, and Tim Purcell. A Survey of General-Purpose Computation on

Graphics Hardware. Computer Graphics Forum, 2007.

Slusallek, Philip. Introduction to Real Time Ray Tracing. SIGGRAPH, 2005.

Squire, Jon. "Lecture 21, Benchmarks, Time and Size." CMSC 455 Selected Lecture

Notes. UMBC. 25 Aug. 2007

<http://www.csee.umbc.edu/~squire/cs455_lect.html#L21>.

Stewart, David B. Measuring Execution Time and Real Time Performance. Embedded

Systems Conference, Sept. 2006.

Wilson, Tracy V., and Jeff Tyson. "How Graphics Cards Work." How Stuff Works. 22

Aug. 2007 <http://computer.howstuffworks.com/graphics-card.htm>.

“TELS.” Zhang, R., P. Gupta, L. Zhong, and N. K. Jha. "Threshold Network Synthesis

and Optimization and Its Application to Nanotechnologies." IEEE Transactions

on Computer-Aided Design 1st ser. 24 (2005): 107-118.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	January 2007

	Logic Simulation Using Graphics Processors
	Atchuthan S. Perinkulam

	Logic Simulation Using Graphics Processors

