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Abstract—During the Spring 2008 semester at Olin College,
we introduced the programming language occam-pi to under-
graduates as part of their first course in robotics. Students were
able to explore image processing and autonomous behavioral
control in a parallel programming language on a small mobile
robotics platform with just two weeks of tutorial instruction.
Our experiences to date suggest that the language and tools we
have developed allow the concise expression of complex robotic
control systems, and enable the integration of events from the
environment in a consistent and safe model for parallel control
that is directly expressed in software.

I. INTRODUCTION

As part of their first course in robotics we introduced Olin
students to the programming language occam-pi, a program-
ming language which directly implements a message-passing
model of concurrency. Using this language on the Surveyor
SRV-1 (a small mobile robotics platform), students explored
the basics of behavioral control, vision processing, and in-
terfacing with hardware. This was made possible through a
combination of features exposed by the programming language
occam-pi and the underlying virtual machine we have devel-
oped, the Transterpreter[1], [2].

occam-pi is a descendant of the programming language
occam, developed in the early 1980’s for the Transputer[3].
This small language is formally grounded in Hoare’s
Communicating Sequential Processes algebra, and provides
explicit constructs for specifying processes that the
programmer wishes to see run in parallel[4]. For example,
we might claim that a small robot must sense, think, and
act, and that data flows from the robots sensor inputs
to its “brain,” which then sends messages to its actuators.
This network of three parallel processes might be depicted as:

sense think actdata cmds

This image looks sequential. In occam-pi, the programmer
would explicitly indicate that these three processes are exe-
cuting in PARallel, and are connected by channels that carry
messages between them:

1 CHAN data, cmds:
2 PAR
3 sense(data!)
4 think(data?, cmds!)
5 act(cmds?)

In this short piece of code, we see several abstractions
provided by the occam-pi programming language. Line 1
declares two channels (think “virtual wires”) that will carry
information between the processes data and cmd. Line 2
declares a PAR block: everything indented underneath the PAR
will execute in parallel. Each of the instantiated processes
under the PAR (lines 3-5) hold one end of a channel. The
! indicates that the process holds the output, or sending end
of a channel, and the ? indicates that the process holds the
input, or receiving end of the channel. When writing occam-pi
programs, the intention is that there is a close correspondence
between the code and its associated network diagram.

The message-passing model of computation is naturally
captured in a language like occam-pi, which has explicit
support for parallelism. In languages like C, Java, and Python,
threads are the most common mechanism by which concur-
rency is introduced. As Edward Lee argues in The Problem
with Threads, introducing threads “throws away” determinism
and predictability in the execution of concurrent and parallel
programs[5]. This makes it very difficult for the programmer
to reason about the execution of their code. Likewise, Boehm
discusses in his 2004 paper Threads Cannot be Implemented
as a Library that relegating threads to libraries has serious
implications for correctness[6]. When your threads come from
a library, optimizing compilers can introduce errors in a multi-
threaded/multi-core regime simply because it is impossible for
the compiler to analyze the concurrency in your code. As will
be discussed in Section III, the occam-pi compiler can not
only reason about the correctness of our parallel algorithms,
it eliminates entire classes of hazard traditionally associated
with programs in this space.

Our rationale for introducing Olin students to occam-pi
stemmed from our desire to have students explore parallel
models for robotic control. Our primary goal was for them
to not only be exposed to behavioral models of robotic
control (e.g. subsumption architectures), but to express them
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in code without becoming lost in control variables and state
machines or semaphores and threads. In a two week laboratory,
students working in teams of two were able to explore the
beginnings of vision processing and subsumptive control. For
their final projects, some students went on to navigate mazes
and integrate new hardware into their robotics platforms. From
an educational perspective, we are confident these explorations
would not have been possible in the same timeframe had we
given our students a C compiler and a JTAG adapter.

In this paper, we will present the technology that made
these learning experiences possible. It is not intended as an
evaluation of the classroom environment; instead, we will use
our students’ learning experiences to motivate a reflection on
the programming language occam-pi and the architecture of
our bytecode virtual machine. We will begin by describing
the hardware used by our students and the architecture of our
virtual machine (Section II), followed by how this combination
enabled our students to explore parallel architectures for
robotic control (Section III). In Section IV, we close with
application areas and research directions that we wish to
explore further.

II. HARDWARE AND ARCHITECTURE

The students in the Spring 2008 instance of Robotics at Olin
College worked through a sequence of five laboratories over
the course of the semester, and chose one of these laboratories
for deeper, independent investigation as part of a final project.
The laboratory we focus on here was designed to expose them
to the rudiments of vision processing and the subsumption
architecture as articulated by Brooks[7].

A. The Surveyor SRV-1

For this laboratory, we made use of the Surveyor Corpora-
tion’s SRV-1 mobile robotics platform[8]. This small robot (5”
x 4” x 3”, Figure 1) has a 500MHz ADSP-BF537 Blackfin
processor, 32MB of RAM, 4MB of Flash, a 1280 x 1024
pixel camera, and an 802.11g/b radio. Students would write
and compile compile programs on their laptops and upload
bytecode over this wireless link. Once their programs were
executing, they could send and receive text as well as receive
images from the Surveyor using a plugin we developed for
JEdit, an open-source editor written in Java[9].

The Surveyor ships with an open-source firmware that
responds to single- and multi-byte commands sent over the
wireless link, allowing users to tele-operate their robot out-
of-the-box. In addition, the Surveyor supports the upload and
interpretation of a C-like language, and very recently added
a small Lisp interpreter. However, the firmware uses polling
for all of its hardware interactions—serial interaction with the
radio is, for example, handled through busy-waiting on the
RX/TX buffers. Given that we explicitly wanted to expose
our students to a clear model of concurrency, the C and Lisp
interpreters that ship with the Surveyor provided inadequate
starting points for our explorations.

Fig. 1. The Surveyor SRV-1

B. The Transterpreter Virtual Machine

The Transterpreter Virtual Machine (TVM) was developed
as a bytecode interpreter for the Extended Transputer Code, an
evolution of the bytecode originally executed by the INMOS
Transputer. Its small size allows it to execute compiled occam-
pi programs on 16-bit (or larger) platforms with as little as
16K of flash and 1K of RAM. The interesting features of our
virtual machine architecture are discussed in the context of
the Surveyor, but can be safely generalized to any embedded
system. The Transterpreter is free software licensed under the
LGPL[10].

The TVM is implemented as a fully re-entrant library that
allows us to run multiple virtual machine instances concur-
rently on single-core architectures, and in parallel in multi-core
contexts. For the Surveyor platform, this meant that we could
completely manage the hardware in one virtual machine and
execute user code in a second. Each virtual machine instance
has its own registers and run-queues, and can be scheduled
cooperatively or pre-emptively. The algorithm for scheduling
between the virtual machines is defined by the developer,
and the default round-robin algorithm provided is typically
sufficient.

C. A Concurrent Firmware in occam-pi

The majority of our firmware is written in occam-pi, with
only the minimal work carried out in C to bind the vir-
tual machine to the underlying hardware. On power-up, the
processor and peripherals are initialized in C, and then the
virtual machine begins interpreting the bytecode representing
the firmware. This firmware uses occam-pi channels to provide
an interface to the underlying hardware, enabling parallel-safe
access to the radio, motors, and other devices attached to the
Blackfin. After setting up the camera and other peripherals, the
firmware then waits for user bytecode to be transmitted over
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Fig. 2. The process network represented by a student’s code.

the radio link (Figure 3). When bytecode representing a user’s
program is received, a second virtual machine is initialized
in RAM, and the firmware hands several channel ends off to
the user’s application. The user’s program is then executed
alongside the firmware.

One of the distinguishing features of the occam-pi program-
ming language is that communication between parallel pro-
cesses1 happens over well-defined channels. These channels
provide unbuffered, point-to-point, synchronous communica-
tions between any two processes. Processes and channels come
to us directly from the Communicating Sequential Processes
algebra, and are the primary means of abstraction in the
occam-pi programming language.

III. SAFE PARALLELISM FOR THE BEGINNING ROBOTICIST

The students taking Robotics during the Spring 2008
semester may have had an introduction to Software Engineer-
ing in Python, and had probably written a small amount of
C. The students were pursuing courses of study that focused
on mechanical, biological, systems, and electrical engineering.
Put simply, the students enrolled in Robotics had varied
programming background, and had many diverse interests in
the subject of robotics.

The two-week laboratory based on the Surveyor was in-
tended to introduce students to the basics of vision processing
(to demonstrate some of the challenges), and to introduce
them to behavioral notions of robotic control in the form
of a two-layer subsumption architecture. As part of their
preparation for this lab, they had readings from both Embedded
Robotics by Bräunl as well as Brooks’s original technical
report on the subsumption architecture[11]. The latter was
particularly interesting, because the choice of occam-pi as an
implementation language allowed students to directly express
in code multi-process networks like those Brooks describes
and diagrams in his paper.

Although not subsumptive in nature, what follows is an
example derived from an exploration carried out by several
students in adding new sensors to the Surveyor. It will provide
a context for discussing how the features of our language

1Think “fibers” or “tiny lightweight threads”, not OS processes.

choice and architecture enable interesting explorations of
parallel control, even for the relatively novice programmer.

Figure 2 is a diagrammatic representation approximating
the work of one pair of students who wanted to extend their
robot’s capabilities mid-semester. To start, twhey wanted to
add an ultrasonic rangefinder; in the first instance, it would
act as a non-contact “bump” sensor. This exploration was par-
ticularly interesting for two reasons. First, while not a “model
solution,” it is an authentic representation of what students
were able to accomplish with the language after a very brief
period of instruction. And second, their solution is interesting
because they were able to program the underlying hardware
directly from occam-pi, without requiring any changes to the
interpreter or firmware.

A. Process Networks

When the students read Brooks’s AI memo, they were
presented with diagrams much like Figure 2 representing a
collection of processes executing in parallel. They were en-
couraged to use the same kind of visual notation to discuss and
design solutions with each-other. Each box in these network
diagrams represents an occam-pi process executing in parallel
with all the processes around it. The point-to-point, directional
channels in occam-pi are indicated by arrows.

In Figure 2, the process network shows that the students
created a heartbeat process to communicates with the
lasers on the robot, and it does not communicate with any of
the other processes in their program. The digital.read.H,
ultrasonic.distance, and ultrasonic.drive pro-
cesses communicate with each-other, and only the last process
actually communicates with the firmware. The last pair of
processes are used to communicate a TRUE, or high, value
to the pin that powered the ultrasonic rangefinder.

In a picture, we have the entire six-process parallel network
representing the student’s architecture for a mobile robot with
an ultrasonic “bump” sensor.

B. Incremental Development

The first process the students developed from Figure 2 was
the heartbeat process. It gave them an immediate, visual
indication as to whether their robot was running. Every half-
second, they would toggle the lasers on or off.

As they added their sensor, they were able to plug together
processes to hold a pin high, thus powering their sensor. Lastly,
they developed a small network of processes to take readings,
processes them, and then drive the motors appropriately.

C. Process Isolation

Every process in occam-pi is an isolated entity. It is this
feature of the language that allowed the students to develop
their process network incrementally. They could code with
the confidence that the process ultrasonic.drive would
not change the behavior of their heartbeat process, or any
other process in their network.

In occam-pi, it is impossible for one process to manipulate
the state or behavior of another process. The only way for
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Fig. 3. A dual-VM architecture; channels from the firmware to usercode-VM connected at runtime.

processes to interact with each-other is through their defined
channel interface. Any occam-pi program that successfully
compiles is guaranteed to be free of basic race hazards (e.g.
read-after-write, write-after-write, etc.). It is impossible for one
process to read or write directly to or from another processes’
internal state.

D. Channels, Synchronization, and Extension

Channels play three critical roles in a process network. First,
they carry data between communicating processes: this might
be boolean values and integers or structured records with many
elements. The act of communication synchronizes the two
processes, allowing the programmer to reason about where
these two processes are in relation to each-other. Lastly, they
provide natural points of extension within a program.

Our firmware relies heavily on the abstractive power of
channels. When waiting for user bytecode, the firmware in-
teracts directly with the serial port. Once user code as been
uploaded, the connection to the serial port is handed off,
allowing the user to send commands to the robot and receive
back text and images. From the user’s perspective, this is
a direct connection to the hardware; however, the firmware
actually intercepts all incoming communications, watching for
the character ‘!’. The “bang” is used as a kill switch; if the
user sends this character, the firmware virtual machine halts
the user virtual machine, frees its memory, and begins waiting
again for bytecode.

E. Interrupts as Channels

Interrupt handling can be disruptive to the design of em-
bedded firmwares, and forces the developer to think non-
deterministically about how their program will execute. In the
case of our virtual machine, we can lift these interrupts out of
C and into occam-pi in a manner that is consistent with the
semantics of the language. This allows us to take what was

unmanaged randomness in our code and turn it into a managed
part of our firmware’s architecture.

Students in Robotics used the console channel to send
and receive characters from their laptops all semester long. At
no point did they need to know that the UART was interrupt-
driven. When a character was ready on the input buffer, it was
placed at the end of a channel that existed half in C and half in
occam-pi. A flag was then set in the VM that the channel was
“ready,” and the next time through the scheduler, the associated
occam-pi process could handle the waiting character, just like
it would process data waiting on any other channel.

From the user’s point of view, this channel could be read
from like any other channel. When no data is ready, the
user’s process waits. When a character becomes ready, the
communications rendezvous completes, and the user’s code
proceeds normally. This is exactly what would happen with a
channel defined entirely between two occam-pi processes; this
is what we mean when we say that the interrupt is handled in
a manner that is consistent with the semantics of the language.

F. Sleep
Related to interrupt handling is the issue of powering down

the Blackfin to conserve power. The nature of the language
and run-time environment allow us to detect when nothing is
running, and to drop the processor into a low-power, or “idle”
mode. When an interrupt occurs (either a peripheral interrupt
or a timer interrupt for processes sleeping on the timer queue),
we wake back up and begin processing.

The benefit of this approach is that the occam-pi developer
does not need to be concerned with power management in
most cases, as it comes “for free” in the runtime. Any difficulty
related to sleeping the processor can be directly integrated
with the run-time environment in a manner that is consistent
(and safe) in light of arbitrary user code. However, the benefit
of this in terms of power savings is completely application
dependent.



G. The Compiler

The occam-pi compiler plays a critical role in all of these
language features. One example of how the compiler protects
the programmer is by looking for aliased variables or channels
between processes (to make sure no parallel writes to one
location take place). Another is that it checks to see that two
processes are not attempting to “send” down opposite ends of
a channel.

No compiler or interpreter for C, Java, or Python is able
to provide these kinds of checks as easily. As our goal
was to introduce students to parallel approaches to robotic
control, these languages were poor choices for teaching and
implementation.

H. Deadlock Detection

It is conceivably possible that the compiler could do dead-
lock prediction, but it is NP-hard[12]. At runtime, the problem
of deadlock detection in our virtual machine is of order O(1).
The virtual machine maintains a list of processes that are ready
to be executed; when there are no processes on the queue, there
are either no processes in the system, or the processes that exist
must be waiting on a channel communication. In either case,
no process can spontaneously migrate to the run-queue, and
we must be in a state of deadlock.

In practice, we must do some work. In particular, we must
exclude firmware processes from our check; this is easy,
because each VM has its own run-queue. Slightly trickier is
that we must check to see that none of the user’s processes
are waiting on a channel that is tied to a hardware interrupt.
For example, a user’s code may appear to be deadlocked, but
one of the processes are waiting on a communication from the
serial port, an interrupt-driven sensor, or some other peripheral.
The user’s VM will have a run-queue of length zero, but in
truth, it is simply waiting for a random, external event—at
which point, the network will “come alive” again.

While this sounds complex, it is very straight-forward in
practice. The result, from the student’s perspective, was that
they would sometimes have their programs exit with the error
“Deadlock!”, their VM would shut down, and the firmware
would begin waiting for a new program. In C, their code would
simply stop responding. In occam-pi, with bytecode running
on a pair of virtual machines, we can detect this run-time
error, report it to the developer, and they can then proceed to
reason through their process network to fix the problem. This
provided many excellent “teachable moments” in the Robotics
course—and the students were able to overcome the problems
in their code in minutes, not hours.

IV. CONCLUSION

During the Spring semester of 2008, we introduced two
dozen students to the notion that robotic control is an inher-
ently parallel problem. Through our choice of tools, we were
able to present a model of parallelism that was consistently
implemented in the language they were using to express
their designs. There are many models of parallelism beyond
synchronous message-passing. However, we believe there is

Fig. 4. The IPRE Fluke/Scribbler.

great value in our students experiencing one simple model of
parallelism in an engaging context.

To this end, we have three directions for future work and
exploration.

A. Distribution and Documentation

We believe our tools have pedagogic value. For this reason,
we have attempted to make them available on a variety of
robotic platforms that are available COTS for educational use.
The LEGO Mindstorms RCX is one of the first robotic plat-
forms in this space that we targeted. The IPRE Fluke/Scribbler
represents our most recent target for a fully supported port[13].

The Institute for Personal Robotics in Education (IPRE)
produces the Fluke, an LPC2106-based board that rides on top
of the commercial, off-the-shelf Scribbler platform (Figure 4).
The Fluke has a small camera, Bluetooth, 8Mb of flash,
RS232, SPI/I2C, three infra-red rangefinders, and three user-
accessible LEDs. Our port to the LPC2106 (designed by NXP
around the ARM7TDMI core) leverages a great deal of the
code developed for the Blackfin, as our runtime environment
is largely platform agnostic. As a result, developer time in
porting from one platform to another is minimized, and we
benefit from a robust, well-tested software stack.

With the current IPRE firmware, the Fluke runs in a
“tethered” mode, with commands being sent back-and-forth
from a Python program running on a laptop or desktop host. In
porting to the IPRE Fluke/Scribbler, we will be providing for
autonomy where the existing firmware does not. Furthermore,
we are creating another low-cost and widely available plat-
form for educators, students, and hobbyists to explore robotic
control in a concurrent regime. We are using this effort as an
opportunity to improve our internal documentation and update
the teaching materials we have developed to date.

B. Performance and Multi-core

The Transterpreter is a small, portable virtual machine for
executing occam-pi bytecode. We have done little to optimize



the performance of the runtime, but know that with enhanced
compiler support, we could compete with C in terms of
efficiency and execution speed[14].

Systems at all scales are concerned with efficiency of
execution and power consumption. Our explorations so far
have begun to demonstrate that a concurrency-aware runtime
is able to intelligently safely sleep a processor without user in-
tervention. Likewise, the language and virtual machine should
allow developers to take advantage of heterogeneous cores
(like on the Cell Broadband Engine[15]) or homogeneous
cores without requiring any additional effort on their part.
When a developer says PAR, it should be possible for them
to execute their program concurrently on a single processor
system, and for their code to execute in true parallel on a
multi-core system. Efficiently handling rich sensor data like
images and large LIDARs in a distributed context should feel
natural in a parallel, message passing language like occam-pi.

C. Usable Languages for Parallelism

Ultimately, we face a problem of culture. “But Ada already
does this!” “Why can’t you just use threads?” No-one wants
to use a new language (regardless of how and what it can
express), especially when they already know how to get things
to work with the tools they already have. And as long as the
majority of shipping systems are single-core solutions, it is
unlikely that tools like ours will gain serious traction outside
of education.

As we move to an increasingly multi-core future, it will be
critical to have tools that allow us to simply and safely express
both soft- and hard-real-time parallel solutions to common
problems. The design of these languages and their runtime
environments will require us to rethink traditional boundaries
between hardware, software, and language design. The focus
needs to be on the kinds of programmers who will be using
the language or tool, the kinds of programming tasks they will
engage in, and the resiliency and safety we desire in their final
product. A cultural change in the design and implementation
of languages, and a blurring of boundaries between disciplines
is needed to address these interesting and open problems in
software performance, safety, and reliability.
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