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LONG-TIME VALIDITY OF THE GAINLESS HOMOGENEOUS
BOLTZMANN EQUATION

KARSTEN MATTHIES AND FLORIAN THEIL

Abstract. This paper introduces a new method to show the validity of a continuum
description for the deterministic dynamics of many interacting particles. Here the many
particle evolution is analyzed for a hard sphere flow with the addition that after a collision
the collided particles are removed from the system. We consider initial conditions, which
are Poisson distributed according a spatially homogeneous velocity density f0(v) that has
finite mass and variance (kinetic energy) and does not concentrate mass on lines. As-
suming finite energy and no concentration properties on f0, the homogeneous Boltzmann
equation without gain term is derived for arbitrary long times in the Boltzmann-Grad
scaling. A key element is a novel description of the many particle flow by a hierarchy
of trees which encode the possible collisions. The occurring trees are shown to have
favorable properties with a high probability, allowing to restrict the analysis to a finite
number of interacting particles, enabling us to extract a single-body distribution. A
counter-example is given for a concentrated initial density f0 even to short-term validity.

The derivation of the continuum models of mathematical physics from atomistic descrip-
tions is a longstanding and fundamental problem, see problem six in [Hil00]. This ar-
ticle is the first of a series of papers ([MT07a], [MT07b], [MT07c]) where we propose
and develop a new method that allows us to derive and justify effective continuum
limits as scaling limits of large interacting particle systems. In particular we can con-
front a fundamental challenge in statistical mechanics: The emergence of irreversible
macroscopic behavior generated by deterministic reversible Hamiltonian micro-evolution.
For earlier work, which was mostly restricted to short times or linear equations, see
[Gal70, Lan75, Spo78, BBS83, Spo91, CIP94] and references therein.
We consider the effective Hamiltonian evolution of n hard balls (u(i, t), v(i, t)) ∈ T

d×R
d,

i ∈ {1 . . . n} for d = 2, 3 with diameter a. We are mostly interested in the effective
evolution generated by the kinetic limit where n tends to infinity, the initial values (u(i, t =
0), v(i, t = 0)) are iid random variables with law f0 ∈ PM(Td×R

d) where T
d denotes the

d-dimensional unit-torus. The diameter a of the particles is linked to n by the Boltzmann-
Grad relation

(1) lim
n→∞

nad−1 = 1.

If the particles interact with each other via a hard-core potential it is expected that for
every open set Ω ⊂ T

d × R
d at every time t the number of particles in Ω divided by

the total number of particles converges to
∫

Ω
dft(u, v). The time-dependent probability

measure f solves the nonlinear Boltzmann equation

(2) ∂tf + v · ∂uf = Q+[f, f ] +Q−[f, f ],

where Q+ is the gain-term, Q− is the loss term and Q = Q+ +Q− is the collision operator.
The collision kernels correspond to a situation of completely independent particles with
density f(u, v, t), which collide at position u with a probability depending on the velocities
v and v′ of the colliding particles. The colliding particles change their velocities from v
and v′ to v∗ and v′∗, so there is a loss in the density at (u, v) and (u, v′) and a gain at
(u, v∗) and (u, v′∗).
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The analysis of (2) is nontrivial and culminated in the celebrated paper by Lions and
DiPerna ([DL90]) where existence of renormalized solutions is rigorously established for
the first time. The mathematical challenges are a result of the subtle interplay between
the transport term v ·∂uf and the nonlinear gain-term Q+[f, f ]. If either of the two terms
is not present the analysis of the Boltzmann equation simplifies considerably.
In this paper we will drop both terms and consider the conceptually simplest situation
where the motion of each particle moves with constant velocity until it interacts with
another particle. After the collision the collided particles are removed from the system.
The transport term can be dropped by considering spatially homogenous initial data.
Two of the remaining three scenarios will be treated in [MT07a] and [MT07b]. The
analysis of the case where both the transport-term and the gain-term are present requires
the development of new compactness results for this type of many-body system.
First we will derive the mean-field theory for a single particle which consists of a ho-
mogeneous Boltzmann equation without gain-term. We prove rigorously that the weak-
* limit of the empirical densities indeed satisfies the mean-field theory, provided that
f0 ∈M+(Rd) has finite total mass and kinetic energy

(3)

∫

Rd

(1 + |v|)2 df0(v) = Kini <∞

and does not concentrate mass on single velocity directions, i.e.

(4)

∫

ρ(v,ν)

df0(v
′) = 0 for all v ∈ R

d, ν ∈ Sd−1,

where ρ(v, ν) = v+R ν is a line. The proof constitutes the core of this article as it is based
on new ideas that have not appeared in the literature yet. Instead of extracting the single-
body density directly from the complicated n-body evolution we insert an intermediate
layer: trees which encode the collision history of the individual particles. Our trees solve
in the case of hard-ball dynamics in the Boltzmann-Grad limit many difficulties that
haunted previous attempts to answer the question how to extract single-body densities
from many-body evolution:

(1) It is not difficult to construct the limiting distribution P of the trees which is
obtained by ignoring correlations caused by rare events such as recollisions.

(2) We can extract the single-body density ft from the distribution of the trees in
a relatively simple way. This amounts to distinguishing between the observed
degrees of freedom (odof) and the background noise which drives the evolution of
the odof.

(3) The convergence of the empirical distribution P̂ to the limiting distribution P can
be derived on a set of good trees G. The formula for P is so simple that it is not
hard to construct a reasonably sharp upper bound P (Gc) = o(1) as a tends to
0. The combination of these two facts constitutes a rigorous justification of the
mean-field theory.

In particular the last point is of crucial importance if one attempts to extract the laws of
thermodynamics from deterministic systems with random initial conditions.
For this reason we will first study the tree-equivalent of the Boltzmann-equation: the
limiting distribution of trees which is obtained by ignoring correlations. We will show how
time plays the role of a parameter which resembles temperature in equilibrium statistical
mechanics (equation (20)). Furthermore, the extraction of the single-body distribution
will reveal the conceptual link between the Boltzmann equation and the distribution of
the trees (Proposition 13).
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The hard part of the analysis consists in step (3) where we have to bound the probability
of bad trees (Proposition 17).
In Section 3 we will discuss an example which shows that assumption (4) cannot be
dropped without losing the approximation property of the Boltzmann equation. We
demonstrate that for arbitrarily short but finite times the weak-* limit of the empirical
density is not consistent with the mean-field theory. In the last section, we collect some
proofs, which are not immediately needed in the understanding and the development
of the concepts of this article. An appendix with a list of frequently used notation is
included.

1. Main result

For spatially homogeneous initial data the mean-field theory leads to Boltzmann equations
without transport and gain term

(5) ḟ = Q−[f, f ], ft=0 = f0,

where Q−[f, f ](v) = −
∫

Rd df(v′) κd|v − v′| f(v) is the loss term with κd the volume of
d− 1 dimensional unit-ball, in particular κ2 = 2, κ3 = π.
We prove a somewhat weaker statement than the one stated in the introduction. The
number of particles n is a random number, the law of n is a Poisson-distribution with
intensity N = a1−d. This assumption entails that nad−1 is a sequence of random numbers
such that lima→0 na

d−1 = 1 almost surely if a assumes only a countable set of values
which converges to 0 quickly enough. On the other hand, if the number of particles is
determined uniquely by a it is expected that the same result holds but the additional
knowledge introduces correlations which are not dealt with in this work.
On the atomistic level we consider n particles with initial values (u0(i), v0(i)) ∈ T

d × R
d,

i = 1 . . . n, which evolve by Newtonian dynamics

u(a)(i, t = 0) = u0(i), v
(a)(i, t = 0) = v0(i),

u̇(a)(i, t) = v(a)(i, t), v̇(a)(i, t) = 0.(6)

For each t ∈ [0,∞), i ∈ {1 . . . n} there exists a unique scattering state β
(a)
i (t) ∈ {0, 1}

which satisfies the implicit relation

β(a)(i, t) =

{

1 if dist(zi, zi′ , s) ≥ aβ(a)(i′, s) for all s ∈ [0, t), i′ 6= i,

0 else
(7)

with a modified distance function to ignore initial intersections

(8) dist((u, v), (u′, v′), s) = |u− u′ + s(v − v′)| + aχ[0,a](|u− u′|).

Definition 1 (Poisson point processes). Let Ω be a measure space. The random variable
z ∈ ∪∞

n=0Ω
n forms a Poisson point process with density µ ∈M+(Ω) if

Prob(z ∈ Ωn) = e−µ(Ω)µ(Ω)n

n!
, law(zi) = µ/µ(Ω),

and z1, . . . , zn are independent. The law of the Poisson point process is denoted by Probppp.

Theorem 2. (Justification of the gainless Boltzmann equation) Let f0 ∈ PM+(Rd), d ≥ 2
be a momentum density that satisfies (3, 4) and let for each N > 0 the random variable
(u0, v0) ∈ ∪∞

n=0(T
d × R

d)n be a Poisson point process with intensity N(1Td ⊗ f0). Let n
particles with initial values (u0(i), v0(i)) ∈ T

d×R
d, i = 1 . . . n evolve by (6). If N depends

on a such that
Nad−1 = 1,
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then for each t ∈ [0,∞), ε > 0, measurable A ⊂ T
d × R

d

lim
a→0

Probppp

(∣
∣
∣
∣

1

N
#
{
i ∈ {1 . . . n} | (u(a)(i, t), v(a)(i, t)) ∈ A and β(a)(i, t) = 1

}
(9)

−

∫

A

du dft(v)

∣
∣
∣
∣
> ε

)

= 0,

where f : [0,∞) →M+(Rd) is the unique solution of (5).

The assumption that
∫

Rd df0(v) = 1 is not necessary. We make it because it simplifies the
notation in the proof which can be found at the end of Section 2.
Stronger results can be obtained, if the rate at which a tends to 0 is controlled.

Corollary 3. Under the same assumptions as above there exists a subsequence of diam-
eters ak such that limk→∞ ak = 0 and

(10)
1

Nk

n∑

i=1

β
(ak)
i (t)δ(· − (u(ak)(i, t), v(ak)(i, t)))

∗
⇀ ft

weak-* in M(Td × R
d) as k → ∞.

It is not hard to obtain more explicit subsequences such as ak = k−p e.g. for p > 1 if
additional regularity assumptions for f0 are made. The proof of Corollary 3 is given after
the proof of the theorem.
Assumption (4) does not exclude the possibility that f0 is concentrated on lower dimen-
sional subsets, for example the uniform distribution on the sphere Sd−1 is admissible, i.e.
f0 satisfies

(11)

∫

ϕ(v) df0(v) :=
1

Hd−1(Sd−1)

∫

Sd−1

ϕ(v) dHd−1(v),

for all testfunctions ϕ ∈ Cc(T
d × R

d), where Hd is the d-dimensional Hausdorff-measure.
The approach due to Lanford [Lan75] which uses the BBGKY-hierarchy to derive this
equation from the Hamiltonian evolution relies heavily on analytic properties in time and
high regularity of f .
As a motivation for our analysis, we give an example why the previous is restricted to
short times, even for the gainless case. Let us assume that f0 is given by (11). Solutions f
of (5) which satisfy ft=0 = f0 can be written as ft = ρ(t)f0, where ρ satisfies the ordinary
differential equation

(12) ρ̇ = −γρ2, ρ(t = 0) = 1.

The collision rate γ(v) =
∫
κd|v − v′| df0(v

′) is constant for v ∈ Sd−1, the support of f0,
since f0 is invariant under rotations.
The solution of system (12) is given by

(13) ρ(t) =
1

1 + γt
.

As the geometric series
∑∞

k=0(−γt)
k diverges if γ|t| > 1 formula (13) shows that writing

f as a power series in t is restricted to small times. Although the solution is a perfectly
smooth and bounded function for t ∈ [0,∞) the approach is haunted by the singularity
at t = − 1

γ
. In this particular example, an alternative could be restarting the procedure

at small positive time using suitable a-priori estimates.
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Never the less such an approach is not extendable to other cases. For this reason we
develop a different method to study the coarse-grained many-body dynamics. Further-
more, we will analyze effects due to concentration by a Taylor expansion in time of ft in
Section 3

2. Proof of Theorem 2

2.1. The hierarchy of evolutions. Instead of expanding ρ into a power-series in t and
matching coefficients in a first step, we replace the initial value problem (5) by an infinite
system using general initial distribution without concentrations

(14) ḟk = Q−[fk−1, fk], ft=0,k = f0.

Since Q− is quadratic, for fixed k the integro-differential equation (14) is in fact linear and
non-autonomous. We can therefore work with the mathematically much more convenient
mild formulation. The differential equation completely decouples in v and the equation
for each v is a scalar linear nonautonomous ODE, which can be directly integrated to

(15) ft,k = exp(−
∫ t

0
L[fs,k−1] ds)f0,

where L[f ](v) = κd
∫

df(v′) |v − v′|. We observe that dft,k(v) is absolutely continuous
with respect to df0(v) due to the decoupling in v.

Lemma 4. Let f0 ∈M(1+|v|)2 then fk converges in C0
ρ([0,∞),M1+|v|) to f for some ρ > 0

and f ∈ C1([0,∞),M1+|v|) is the unique solution of (5).

By M1+|v| and M(1+|v|)2 we mean the set of Radon measures with first and second moment,
Cρ denotes the continuous functions which grow not faster than eρt. The proof of Lemma 4
together with a precise definition of the function spaces can be found in Section 4.
Now we have to translate this idea into the context of deterministic many-body dynamics.
To limit the complexity of the notation we will from now on assume that everything except
the constants depends on a without displaying the dependency. For every realization of
the n-body evolution the random variable β(i, t) ∈ {0, 1}, which encodes the scattering
state of particle i ∈ {1 . . . n} at time t ∈ [0,∞) satisfies the implicit relation (7). The
computation of β can be simplified by introducing a hierarchy of artificial evolutions
indexed by k ∈ N. We assume that the initial values of the particles at all levels are
identical. The particles at level k = 1 are simply transported and do not interact with
anything. The particles at level k > 1 interact only with the particles at level k − 1, but
not with each other. For each k ∈ N and i ∈ {1 . . . n} the scattering state βk(i, t) ∈ {0, 1}
is defined in the following way

βk(i, t) =

{

1 if dist(zi, zi′, s) ≥ aβk−1(i
′, s) for all s ∈ [0, t), i′ 6= i,

0 else,
(16)

β1(i) ≡ 1,(17)

with dist as in (8).

Remark 5. While the determination of the collision-state β(i, t) is a complicated problem,
the state βk(i, t) emerges via a very simple calculation from βk−1(·, t).

Lemma 6. For all realizations of the processes of the initial conditions (u0, v0) ∈ ∪∞
n=0(T

d×
R
d)n both βk(i, t) and β(i, t) are well defined and

(18) lim
k→∞

βk(i, t) = β(i, t)

pointwise in i and uniformly in t.

Proof. See section 4. �

5



B
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C

A

Figure 1. Initial positions and velocities of four particles. The bullets
indicate the positions where the particles are potentially scattered. The
shown configuration is not very likely and consequentially the collision trees
are quite complex. Note that not every subset of intersection points of
the arrows is a set of potential scattering position. For example, it is not
possible to add another bullet at the intersection point of the arrows A and
B as it is not possible to assign to each of the six intersections a scattering
time which is compatible with the order of the bullets on each ray.

2.2. The concept of trees. The translation of the n-body evolution into scattering
states β is greatly facilitated by the concept of trees. In the collision tree with root (u, v)
we will collect information of collisions and potential collisions up to time t for a particle
with initial data u, v.
As an example assume that n = 4 and consider the scenario in fig. 1 where the letters
A,B,C,D are the labels of the four particles, the empty circles are the initial positions and
the arrows are the initial velocities. Consequentially the arrow-tips indicate the positions
of the particles at time t = 1. To determine whether a certain particle has been scattered
before time t = 1 it suffices to analyze the associated collision tree which is constructed
as follows: The particle of interest is the root with initial data (u, v). The particles which
are potentially scattered by the root are added as leaves, i.e. a particle with initial data
(u′, v′) is added, if |u+sv−(u′+sv′)| ≤ a for some s ∈ [0, t]. This procedure is recursively
applied to every leaf but we consider only potential scattering events which are upstream,
i.e. before the event which is responsible for adding the leaf. The four collision trees
associated to the scenario in fig. 1 are shown in fig. 2. The extraction of the collision
trees amounts to a significant reduction of the complexity of the problem. In general, the
number of potential scattering events (bullets) is proportional to N but thanks to the
Boltzmann-Grad-scaling (1) the number of nodes in the individual trees is a Poissonian
random number with an intensity which is asymptotically independent of N and grows
exponentially with t, see Lemma 12.
We convert now the example into a general concept.

Definition 7. Let N = {1, 2, . . .}. The height of a node (or multi-index) l ∈ N
i is defined

by |l| := i, the child node of l ∈ N
i is l̄ = (l1, . . . , li−1). Let F = ∪∞

i=1N
i be the set of

multi-indices. We say that m ⊂ F is a tree skeleton with α roots (m ∈ T α), if

(1) #m <∞,
(2) m ∩ N = {1, . . . , α},
(3) l̄ ∈ m for all l ∈ m \ N,
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Figure 2. Collision trees of the four particles with initial positions and
collision structure given in fig. 1. At time t = 1 particles C and D have
been scattered, particles A and B have not. Note that the labels of the
particles which generate the potential scattering events are only included in
the picture in order to illustrate the translation of fig. 1 into collision trees.
The scattering state of the particle at the root is completely determined by
the tree structure, the labels of the tree nodes are irrelevant. For example,
the tree of particle B does not contain enough information to decide whether
particle A is scattered.

(4) l − 1 ∈ m for all l ∈ m such that l 6= (∗, . . . , ∗, 1),

where l − 1 = l − (0, . . . , 0, 1). We say that a tree m has at most height k (m ∈ T α
k ) if

m ∩ N
k+1 = ∅.

Let Y = {(u, v, s, ν) ∈ T
d×R

d× [0,∞)×Sd−1} be the space of initial values and collision
parameters. The set of collision trees is given by

T α(Y ) =

{

(m,φ)

∣
∣
∣
∣
m ∈ T α, φ : m→ Y with the property sl ∈ [sl−1, sl̄]

and νl = 1
a
(ul̄ − ul + sl(vl̄ − vl)) for all l ∈ m \ N

}

,

where s(∗,...∗,0) = 0. For each skeleton m ∈ T α we define the set

(19) E(m) = {(m̃, φ) ∈ T α(Y ) | m̃ = m},

which contains all trees with skeleton m.

For example, {(1), (1, 1), (1, 2), (1, 3), (1, 1, 1), (1, 1, 2)} ∈ T3, but {(1), (2, 1)} is not a tree
skeleton. The assumption sl ∈ [sl−1, sl̄] implies that for all nontrivial permutations π ∈
S#m \ Id (Sn is the set of permutations of n symbols) and all trees Φ = (m,φ) ∈ T 1(Y )
the permuted tree Φπ = (m,φπ) with φπl = φπ(l) is not a tree in the sense of Definition 7.
The values νl for l ∈ {1, . . . , α} have no relevance. To circumvent this problem we fix a
point ν∗ ∈ (Sd−1)α, define

T α∗(Y ) = {Φ ∈ T α(Y ) | νl = ν∗l ∀l ∈ m ∩ N}.

and will in future denote T α∗(Y ) by T α(Y ).
It is clear from the definition that for each tree m ∈ T there exists a function r : m →
N ∪ {0} which counts the number of direct successors, i.e.

rl = #{l′ ∈ m | l̄′ = l}.
7



We will observe the particles 1, . . . , α in the sense that we are interested in evaluating the
probability measure on T α(Y ) which is the joint distribution of the trees generated by α
root-particles. In our entire analysis α will be a small natural number, independent of N
or a.

Remark 8. Graph theoretical description of collisions in a hard-sphere gas can lead to
many different graphs, which are not necessarily trees. The advantage of our definition
is that this graph will always be a tree. Particles might appear several times in a tree, as
in fig. 2. This will not destroy the tree structure, as these are due to different collision
events. Multiple collisions, which are well-defined in our setting, can lead to identical
branches within the tree, but the definition T will discriminate between these and the
graph of collisions is still a tree. The only slight abuse of graph-theoretical language is
that elements in T α with α > 1 are still called trees and not “forests”.

The scattering state β : m→ {0, 1} is determined uniquely by the skeleton, i.e. the labels
of the particles are immaterial, but the actual computation is not completely trivial. The
most important aspect of the computation of β is that the scattering information flows
from the leaves to the root, i.e. the scattering state of a node is completely determined
by the state of the nodes above, the nodes below are irrelevant.
We will construct now two families of probability measures Pt,k, P̂t,k ∈ PM(T α(Y )). The

empirical distribution P̂t,k is induced by the many-body dynamics and will be constructed
recursively in Section 2.4. The mean-field distribution Pt,k is given by an explicit formula

(20). The link between Pt,k and P̂t,k is provided by the set of good trees G(a) ⊂ T α(Y )

(Definition 15) which has the properties that restriction of P̂t,k on G(a)∩T α(Y ) converges
to Pt,k and Pt,k(G(a)) goes to 1 as a tends to 0 (Proposition 17).
This is the crucial step which eventually yields the justification of the mean-field theory.
In other words, the main task consists in analyzing the mean-field measure Pt,k, the

empirical distribution P̂t,k enters only when we prove that Pt,k is consistent with P̂t,k.

2.3. The mean-field distribution Pt,k. We construct now the mean-field distribution
of trees Pt,k ∈ PM(T α(Y )). Let Ω ⊂ T α(Y ) and t ∈ [0,∞). The mean field probability
that the observed tree is in Ω is given by

Pt,k(Ω) =
∑

m∈T α
k

∫

Ω∩E(m)

e−
P

j<k Γj(Φ) dλm(φ)(20)

where

Γj(Φ) =
∑

l∈m,|l|=j

γl(Φ),

γl(Φ) =

∫ sl

0

L[f0](vl) ds′ = sl L[f0](vl) ≥ 0 is the collision rate of particle l,

λm(φ) =
α∏

i=1

[µ(zi) ⊗ δ(si − t)] ⊗
∏

l∈m\N

[
((vl − vl̄) · νl)+ χ[sl−1,sl̄]

(sl) df0(vl) dνl dsl
]
,(21)

µ(u, v) =1Td(u) ⊗ f0(v).

Remark 9. (1) Note that the positions ul are completely determined by (ul, vl)l∈m∩N

and (vl, sl, νl)l∈m\N. Since we have assumed that (νl)l∈m∩N is fixed, the value of
Pt,k(Ω) is well-defined.

(2) It is noteworthy that the measures Pt,k depend on time only via the parameter t.
In other words, time plays the role of a parameter which propagates through the
tree and qualifies the local branching structure.
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(3) For some event Ω ⊂ Tk(Y ) the probability Pt,k′(Ω) is independent of k′ if k′ > k.
Equivalently, Pt,k1(Ω ∩ E(m)) = Pt,k2(Ω ∩ E(m)), if the height of m is strictly
smaller than min{k1, k2}.

We can simplify the measure Pt,k by integrating over the collision parameters νl ∈ Sd−1,

l ∈ m. Let Ŷ = R
d × [0,∞) be the reduced set of collision data. For every Ω ⊂ T α(Ŷ )

we find that when still denoting the collision data as φ

P̄t,k(Ω) =
∑

m∈T α
k

∫

Ω∩E(m)

dλ̄m(φ) e−
P

j<k Γj(Φ)(22)

with

λ̄m(φ) =

α∏

i=1

[f0(vi) ⊗ δ(si − t)] ⊗
∏

l∈m\N

[
κk |vl − vl̄|χ[sl−1,sl̄]

(sl) df0(vl) dsl
]
.

The measures Pt,k have the remarkable property that the expectation of certain random
variables can be computed efficiently.

Definition 10. A random variable x : T 1 → R is said to be recursive if there exists a
family of functions hb : R

b → R, b ∈ N, which are invariant under permutations of the b
components in R

b, such that for all m ∈ T the equation

x(m) = hr1(x(m
(1)), . . . , x(m(r1)))

holds, where

m(j) = {(1, l3, . . . , l|l|) | l ∈ m such that l2 = j} ∈ T

is the j-th subtree of m.

In the same way one can define vector values recursive random variables x : T α → R
α.

Examples of recursive random variables which are relevant for our purposes are

x#(m) = #m (number of nodes),

xβ(m) = β1(m) (scattering state of the root).

It is easy to see that if m ∈ T 1

x#(m) = 1 +

r1∑

j=1

x#(mj),

xβ(m) =

r1∏

j=1

(1 − xβ(mj)) with the convention
0∏

j=1

(1 − xβ(mj)) = 1,

hence the functions hb are given by

h#
b (x1, . . . , xb) = 1 +

b∑

j=1

xj,

hβb (x1, . . . , xb) =

b∏

j=1

(1 − xj)

which are clearly invariant under permutations of x1, . . . , xb. Similar expressions are also
valid for m ∈ T α with α > 1. The expectation of recursive random variables with respect
to the probability measure Pt,k can be computed with a simple recurrence relation.
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Lemma 11. Let α = 1 and x be a recursive random variable with recurrence functions
hb. Then

∫

dP̄t,k(Φ) x(m)

(23)

=

∫

df0(v) e
−Γ1

∞∑

r=0

∫ t

0

ds1

∫

dP̄s1,k−1(Φ1) κd|v − v1|

∫ t

s1

ds2

∫

dP̄s2,k−1(Φ2) κd|v − v2|

. . .

∫ t

sr−1

dsr

∫

dP̄sr ,k−1(Φr) κd|v − vr| hr(x(m1), . . . , x(mr))

=

∫

df0(v) e
−Γ1

∞∑

r=0

1

r!

∫ t

0

ds1

∫

dP̄s1,k−1(Φ1) κd|v − v1|

∫ t

0

ds2

∫

dP̄s2,k−1(Φ2) κd|v − v2|

. . .

∫ t

0

dsr

∫

dP̄sr ,k−1(Φr) κd|v − vr| hr(x(m1), . . . , x(mr))

where Γ1 = κd
∫

df0(v
′) |v − v′|.

An analogous formula holds if α > 1.

Proof. For each Φ ∈ T (Ŷ ) we define nonnegative Radon measures λ̄l ∈ M+(Rd × [0,∞))
by

(24) λ̄l(v, s) = f0(v) |vl̄ − v|χ[sl−1,sl̄]
(s).

With this notation we find the following formula for the measure λ̄m.

λ̄m(φ) = f0(v1)
∏

l∈m\N

λ̄l(φl).

Let now m ∈ T 1. The definition of Pt,k yields

∫

E(m)

dP̄t,k(m) x(m) =

∫

E(m)

e−
P

j<k Γj(Φ) df0(v1)

r1∏

i=1




dλ̄1i(φ1i)

∏

l∈m\(N∪N2)
l2=i

dλ̄l(φl)




 x(m).

We use now the assumption that x is recursive and find
∫

E(m)

dP̄t,k(m) x(m)

=

∫

df0(v) e
−Γ1

b∏

i=1





∫

E(mi)

e−
P

j<k Γ
(i)
j (Φ)

∏

l∈mj\N

dλ̄l(φl)



 h(x(m(1)), . . . , x(m(j))),

where Γ
(i)
j (Φ) =

∑

l∈m,|l|=j,l2=i

γl(φ). A simple rearrangement yields that

∑

m∈T

∫

E(m)

dP̄t,k(Φ) x(m) =

∫

df0(v) e
−Γ1

∞∑

r=0

∫ t

0

ds1

∫

dP̄s1,k−1(Φ1) κd|v − v1|

. . .

∫ t

sr−1

dsr

∫

dP̄sr ,k−1(Φr) κd|v − vr| hr(x(m1), . . . , x(mr)) .
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This demonstrates the first part of (23), to show the second part we observe that

{(s1, . . . , sr) ∈ [0, t]r | sj 6= si for i 6= j}

=
⋃

π∈Sr

{(s1, . . . , sr) ∈ [0, t]r | sπ(1) < sπ(2) < . . . < sπ(r)},

where Sr denotes the symmetric group on r elements, such that the union is disjoint. As
the set, where sj = si for some i 6= j is of measure zero with respect to Lebesgue measure
ds1 . . .dsr, we obtain

∫

[0,t]r
g(s1, . . . , sr) ds1 . . .dsr =

∑

π∈Sr

∫

0≤sπ(1)<sπ(2)<...<sπ(r)≤t

g(s1, . . . , sr) ds1 . . .dsr

for any g ∈ L1([0, t]r). Now we define

g(s1, . . . , sr) =

∫

dP̄s1,k−1(Φ1) κd|v − v1| . . .

∫

dP̄sr ,k−1(Φr) κd|v − vr| h(x(m1), . . . x(mr)).

We now observe, that

P̄s1,k−1(Φ1) κd|v − v1| . . . P̄sr ,k−1(Φr) κd|v − vr|(25)

=P̄sπ(1),k−1(Φπ(1)) κd|v − vπ(1)| . . . P̄sπ(r),k−1(Φπ(r)) κd|v − vπ(r)|

for all permutations π ∈ Sr. Next using (25) and the invariance h under permutations,
we obtain

∫

0≤s1<s2<...<sr≤t

∫

dP̄s1,k−1(Φ1) κd|v − v1|

. . .

∫

dP̄sr,k−1(Φr) κd|v − vr|h(x(m1), . . . x(mr)) ds1 . . .dsr

=

∫

0≤sπ(1)<sπ(2)<...<sπ(r)≤t

∫

dP̄sπ(1),k−1(Φπ(1)) κd|v − vπ(1)|

. . .

∫

dP̄sπ(r),k−1(Φπ(r)) κd|v − vr|h(x(mπ(1)), . . . x(mπ(r))) ds1 . . .dsr.

As there are r! different permutations in Sr we finally obtain
∫

0≤s1<s2<...<sr≤t

∫

dP̄s1,k−1(Φ1) κd|v − v1|

. . .

∫

dP̄sr ,k−1(Φr) κd|v − vr| h(x(m1), . . . x(mr)) ds1 . . .dsr

=
1

r!

∫

[0,t]r

∫

dP̄s1,k−1(Φ1) κd|v − v1|

. . .

∫

dP̄sr ,k−1(Φr) κd|v − vr| h(x(m1), . . . x(mr)) ds1 . . .dsr.

Summing over r and m completes the proof of (23). �

As an application of Lemma 11 we obtain an explicit bound on the expected number of
nodes in trees.

Lemma 12. For a tree m ∈ T α the number of non-root nodes is given by R(m) =
∑

r∈m rl = #m− α. The expected value of R satisfies the estimate uniformly in k

(26) E(R) ≤ Kini

α∑

l=1

exp(κdKiniti),
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with Kini =
∫

Rd df0(v) (1 + |v|)2 as in (3).

Proof. We will only give a proof of (26) in the case α = 1, the general case follows by
linearity of the expectation. Let Ft,k(v) = E(R | v1 = v) be the conditional expectation
of R if we know that velocity of the root is v and that the tree is in T 1

k . Clearly E(R) ≤
supk∈N

∫

Rd df0(v)Ft,k(v). The self-similarity relation (23) implies with x(m) = R(m) and
hr(R(m1), . . . , R(mr)) = r +

∑r
i=1R(mi) and γ1 = L[f0](v1)t = κdt

∫

Rd df0(v
′) |v1 − v′|

that

Ft,k(v)

=e−γ1
∞∑

r=1

1
r!

∫ t

0

ds1

∫

dP̄s1,k−1(m1) κd|v − v1|

. . .

∫ t

0

dsr

∫

dP̄sr,k−1(mr) κd|v − vr|

(

r +

r∑

i=1

R(mi)

)

=e−γ1
∞∑

r=1

(

r
(−γ1)

r

r!
+
γr−1

1

r!

r∑

i=1

∫ t

0

dsi κd

∫

Rd

df0(v
(i)
1 ) |v − v

(i)
1 |Fsi,k−1(v

(i)
1 )

)

=γ1 +

∫ t

0

ds κd

∫

Rd

df0(v
′) |v1 − v′|Fs,k−1(v

′),

where we used the product structure of the integrals. We define now the norm ‖F‖1 :=

supv∈Rd
F (v)
1+|v|

and the integral operator Af0 by

(Af0F )(v) = κd

∫

Rd

df0(v
′) |v − v′|F (v′),

so that

(27) Ft,k = tγ +

∫ t

0

dsAfFs,k−1.

We find the estimates

‖Af0F‖1 ≤ sup
v

κd‖F‖1

1 + |v|

∫

Rd

df0(v
′) |v − v′| (1 + |v′|) ≤ K‖F‖1,

and

‖γ‖1 = sup
v

κd

∫

Rd

df0(v
′) |v−v′|

1+|v|
≤ κd

∫

Rd

df0(v
′) (1 + |v′|) ≤ κdKini.

Furthermore Ft,k(v) is monotone in k, as Pt,k assigns the probability of trees of height
greater than k + 1 to trees of height k, reducing the number of expected nodes. Hence
equation (27) implies that

‖Ft,k‖1 ≤ κdK

(

t +

∫ t

0

ds ‖Fs,k‖1

)

.

Gronwall’s inequality together with the previous estimate implies that

‖Ft,k‖1 ≤ eκdKinit,

where we used that F0 ≡ 0. Since

Ek(R) =

∫

Rd

f0(v)Ft,k(v) ≤ ‖Ft‖1

∫

Rd

df0(v) (1 + |v|) ≤ KeκdKinit

this implies (26) for α = 1 and the proof of the lemma is finished. �
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We now turn our attention to the determination of the scattering state of the particle at
the root of the tree. For a tree m ∈ T α the scattering state β : m → {0, 1} is defined
recursively by βl =

∏

l′∈m,l̄′=l(1 − βl′). This definition rephrases the original definition of

the scattering state in (16), adapting it to the tree structure. It is more convenient in our
analysis than the ad-hoc definition, which required already some work to show existence,
see Lemma 6.
We define the single-particle density gt,k(·) ∈M+(Rd) via

∫

A

dgt,k(v) = Pt,k(β1 = 1 and v1 ∈ A),

for all open A ⊂ R
d. The density gt,k is closely related to the root marginal of Pt,k

and provides the link between the Boltzmann equation (5) and the mean-field theory
distribution of the trees Pt,k. Due to the simplicity of the distribution Pt,k it is possible
to characterize the root-marginal of Pt,k explicitly.

Proposition 13. Let α ∈ N, σ : T α
1 → {0, 1}, A ⊂ R

d, t ∈ [0,∞) and k ∈ N∪{0}. Then
the equation

Pt,k+1 (vl ∈ A and βl = σl for all l ∈ {1 . . . α})

=

α∏

l=1

∫

A

dv [(1 − σl) (df0(v) − dft,k(v)) + σl dft,k(v)](28)

holds, where ft,k is the solution of system (15).

This formula shows that in particular gt,k = ft,k−1.

Proof. The proposition is proven using induction over k, the case k = 0 is just the defini-
tion.
In the induction step it is demonstrated that Pt,k+1 satisfies formula (28) if Pt,k does. Since
the collision parameters ν are irrelevant we can integrate them out and work with the
simplified version (22) of the measure Pt,k instead of (20). We define the set of scattering
states that are compatible with σ,

A(σ) =






(m, σ′)

∣
∣
∣
∣
∣
∣

m ∈ T α
2 , σ

′ : m→ {0, 1} such that
∏

l′∈m,l̄′=l

(1 − σ′
l′) = σl ∀l






,(29)

with the standard convention
∏0

j=1 aj = 1 for empty products. The induction assumption

and equation (23) implies that

Pt,k+1(vl ∈ A and βl = σl for all l = 1, . . . , α)

=
∑

(m,σ′)∈A(σ)

∫

v∈A

∏

l∈m∩N

(

e−γl

rl!
df0(vl)

∏

l′∈m

l̄′=l

[

(1 − σ′
l′)

∫ sl

0

ds

∫

v′∈Rd

κd|vl − v′| (df0(v
′) − dfs,k−1(v

′))

+ σ′
l′

∫ sl

0

ds

∫

v′∈Rd

dfs,k−1(v
′) κd|vl − v′|

])

=

∫

v∈A

∑

(m,σ′)∈A(σ)

α∏

l=1

[df0(vl) Ik(σ
′, v, l)]
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where

Ik(σ
′, v, l)

= e−γl

rl!

∏

l′∈m,l̄′=l

[

(1 − σ′
l′)

∫ tl

0

ds

∫

v′∈Rd

κd|vl − v′|(df0(v
′) − dfs,k−1(v

′))

+ σ′
l′

∫ tl

0

ds

∫

v′∈Rd

dfs,k−1(v
′) κd|vl − v′|

]

= e−γl

rl!

∏

l′∈m,l̄′=l

[

(1 − σ′
l′)

(

γl −

∫ tl

0

ds L[fs,k−1](vl)

)

+ σ′
l′

∫ tl

0

ds L[fs,k−1](vl)

]

.

Note that A(σ) =
∏α

l=1 A(σl) if we identify single trees with α roots and α trees with
single roots. The algebraic identity

∑

i∈IJ

∏

j∈J a(ij, j) =
∏

j∈J

∑

i∈I a(i, j), where I and

J are finite sets and a : I × J → R is a function, implies that
∑

σ′∈A(σ)

α∏

l=1

Ik(σ
′, v, l) =

α∏

l=1

∑

σ′∈A(σl)

Ik(σ
′, v, 1). This yields that

Pt,k+1(vl ∈ A and βl = σl ∀l = 1 . . . α) =

α∏

l=1

∫

v∈A

df0(v) [(1 − σl)Jk(0, v) + σlJk(1, v)],

(30)

with Jk(σ, v) =
∑

σ′∈A(σ) Ik(σ
′, v, 1). Since by definition A(1) = {(1), (1, (0)), (1, (0, 0)) . . .},

this shows that

Jk(1, v) =
∞∑

j=0

e−γ

j!

(

γ −

∫ s

0

ds′ L[fs′,k−1](v)

)j

= e−
R s

0 ds′ L[fs′,k−1](v),(31)

with γ = sL[f0](v). Clearly
∫

A
df0(v) Jk(0, v) +

∫

A
df0(v) Jk(1, v) =

∫

A
df0(v) and there-

fore

∫

v∈A

df0(v) Jk(0, v) =

∫

v∈A

df0(v) (1 − Jk(1, v)) =

∫

v∈A

df0(v)
(

1 − e−
R s

0
ds′ L[fs′,k−1]

)

.

(32)

Plugging the formulas (31) and (32) into equation (30) yields that

Pt,k+1(vl ∈ A and βl = σ ∀l = 1, . . . , α)

=

α∏

l=1

∫

v∈A

[

(1 − σl) df0(v)
(

1 − e−
R tl
0 dsL[fs,k−1]

)

+ σl df0(v) e
−

R tl
0 dsL[fs,k−1]

]

(15)
=

α∏

l=1

∫

v∈A

[(1 − σl) (df0(v) − dftl,k(v)) + σl dftl,k(v)]

and formula (28) has been established. �

2.4. The empirical distribution P̂t,k. We return now to the hierarchy of many body
evolutions described in Section 2.1. The initial values of the particles form a random set
ω ⊂ T

d×R
d and it is assumed that the law of ω is the Poisson point process with density

Nµ, where µ = 1Td ⊗ f0 ∈ PM(Td × R
d). Hence, the size n = #ω is Poissonian random

variable with intensity N . As explained in Section 2.2, the family of probability measures
P̂t,k ∈ PM(T (Y )) is the empirical distribution of the tree Φ which is generated by the
many-body evolution and has a randomly chosen (tagged) particle as its root. This tree
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is only well defined if n > 0, i.e. ω is non-empty. For this reason we define Pt,k(Ω) as the
conditional probability that the tree is contained in the set Ω, given that n = #ω > 0.
A particularly simple method of sampling from this conditional distribution consists in
drawing a realization of ω according to the unconditioned Poisson point process, and an
independent random variable z ∈ T

d × R
d with law µ(z) = 1Td(u) ⊗ f0(v) which is the

initial value of the tagged particle. It can be checked without difficulty that the joint
distribution of ω and z is the previously defined conditional distribution.
The trees generated by this procedure are denoted by Φ(t, k) = (m(t, k), φ) ∈ Tk(Y ),
where m(t, k) ∈ Tk is the skeleton and φ : m(t, k) → Y specifies the initial values, the

collision times and the impact parameters. The measures P̂t,k are the image measure of
Probppp induced by the many-particle flows so that for each Ω ⊂ T (Y ) we obtain

(33) P̂t,k(Ω) := Probppp((m(t, k), φ) ∈ Ω).

The tree measures P̂k are derived from Probppp, but Probppp cannot be derived from P̂t,k.
By construction, for fixed ω the skeleton m is monotonously increasing in t and k, and
for fixed l ∈ m the data φl does not depend on t or k. This is equivalent to saying that
the j-marginal of P̂t,k (trees of hight j ≤ k) is given by P̂t,j, i.e.

P̂t,k
((
m(t, k) ∩ (∪ji=1N

i), (φl)|l|≤j
)
∈ Ω

)
= P̂t,j((m(t, j), (φl)|l|≤j) ∈ Ω)(34)

for all Ω ⊂ Tj(Y ), k ≥ j.

We will use formula (34) to construct an alternative characterization of P̂t,k which reflects
the iterative process that underlies the definition of m(t, k). Using this alternative char-

acterization one can easily establish total-variation bounds for Pt,k − P̂t,k. Since the time

t is arbitrary but fixed we will often write P̂k instead of P̂t,k.

Let (m′, φ′) ∈ Tk−1(Y ) and let P̂k( · | (m
′, φ′)) ∈ PM(Tk(Y )) be the conditional distribu-

tion of P̂k in the sense that

P̂k(Ω | (m′, φ′)) := P̂k

(

(m(k), φ) ∈ Ω | m ∩ N
j = m′ ∩ N

j for all j ∈ {1 . . . k − 1}

and φl = φ′
l for all l ∈ m such that |l| < k

)

.

Formula (34), which characterizes the j-marginals of P̂t,k, yields the following recurrence

relation for P̂k:

(35) P̂k(Ω) =

∫

Tk−1(Y )

dP̂k−1(Φ
′) P̂k(Ω |Φ′).

Repeating this step k − 1 times we obtain the following iterative representation of P̂k:

P̂k(Ω) =

∫

T1(Y )

dP1(Φ1)

∫

T2(Y )

dP̂2(Φ2 |Φ1) . . .

∫

Tk−1(Y )

dP̂k−1(Φk−1 |Φk−2) P̂k(Ω |Φk−1),

(36)

where

(37) P1(z1 . . . zα) =

α∏

l=1

µ(zl) ∈ PM
(
(Td × R

d)α
)

is the distribution of α initial values.
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2.5. Convergence of P̂k to Pk. Having constructed an iterative characterization of P̂k
we will now show that it is very similar to the mean field measure Pk in a precise way.
The key is to identify the mechanisms by which the two probability distributions fail to
be equal. In this part of the paper we will work with the phase-space representation of
the trees: zl = (ul, vl) ∈ T

d × R
d.

Remark 14. There are only two reasons why P̂k fails to coincide with Pk in the limit
a→ 0:

(1) The cylinders which are covered by the paths of the particles might contain self-
intersections due to the periodic boundary conditions: v − v ′ ∈ R(t, a) with

(38) R(t, a) =
{
v ∈ R

d | min{|s v − ξ| | s ∈ [0, t], ξ ∈ Z
d \ {0}} ≤ a

}
.

(2) Nodes might have more than one child, i.e. the map z : m → T
d × R

d might be
not injective.

The set R(t, a), which can easily seen to be nonempty, is relevant due to periodic boundary
conditions, which will lead to self-intersections of the cylinders. This happens, if v − vj
is sufficiently close to a velocity v∗, where the components of v∗1, . . . , v

∗
d are rationally

dependent, i.e. η · v∗ ∈ Z with η ∈ Z
d, but only if |η| ≤ t. The effect is not present in a

setting where (u, v) ∈ R
d × R

d.
The second effect is caused by the notorious recollisions. These dependencies disappear
as the diameter a tends to zero.
We stipulate now a strict order of the set of nodes m:

l < l′ if either |l| < |l′| or (|l| = |l′| and l̄ < l̄′) or (l̄ = l̄′ and l|l| < l′|l|)(39)

This order is induced by the link between the collision time and the indices l ∈ m in
Definition 7.
Motivated by Remark 14 we define the set of “good” trees.

Definition 15. For each a0 > 0 the set of “good” trees G(a0) ⊂ T (Y ) consists of those
trees (m,φ) ∈ T (Y ) with the property that for all 0 < a ≤ a0 and all l ∈ m

vl − vl̄ ∈ R
d \R(t, a) (all parent-child-pairs are non-resonant),(40)

zl 6∈ ∪ l′<l
l′ 6=l̄

Cl′ (no node has more than one child),(41)

where we associate to each node l ∈ m the set of colliding initial values

Cl =

{

z′ ∈ T
d × R

d

∣
∣
∣
∣

min
s′∈[0,sl]

|dist(zl, z
′, s′)| ≤ a

}

,

and dist as in (8) ignores overlap in the initial data.

Note that G(a0) ⊂ T (Y ) is a family of sets which decreases with a0. An elementary
calculation yields that for all v′ ∈ R

d \ (vl +R(t))

(42) N Hd−1
(
Cl ∩ (Td × {v′})

)
= κd|vl − v′|sl.

The significance of G(a0) is given by the following results

lim
a0→0

inf
k
Pk(G(a0)) = 1,(43)

lim
a→0

sup
k

∣
∣
∣P̂k(Ω) − Pk(Ω)

∣
∣
∣ = 0 for all Ω ⊂ G(a0) if a0 is fixed,(44)

which are proven in Proposition 17. For the proof we need a more explicit characterization
of the distributions P̂k(· |Φk−1) and P̂k(·)
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As an intermediate step we recall a formula which yields the probability of certain complex
events with respect to Poisson-point processes. Let A ⊂ ∪∞

n=0(T
d × R

d)n be a symmetric
set, i.e. z ∈ A ∩ (Td × R

d)n if and only if (zπ(1), . . . , zπ(n)) ∈ A ∩ (Td × R
d)n for all

permutations π ∈ Sn, where Sn is the symmetric group. We use the convention that
(Td × R

d)0 is a single point. For each realization ω ⊂ T
d × R

d of the point process we
chose an arbitrary enumeration of the elements of ω such that ω = {z1, . . . , zn}. We say
that ω ∈ A if (z1, . . . , zn) ∈ A; the choice of the enumeration is irrelevant since A is
symmetric. It can be checked that if ω is a realization of the Poisson-point process with
intensity µ ∈M+(Td × R

d), then

(45) Probppp(ω ∈ A) = e−µ(Td×Rd)
∞∑

n=0

1

n!

∫

A∩(Td×Rd)n

dµ(z1) . . .dµ(zn),

where the value of integral for n = 0 is 1 if (Td×R
d)0 ⊂ A and 0 else. By the definition of

Poisson-point processes each set C ⊂ T
d × R

d defines a projection denoted by C ∩ ω. We
recall the following fundamental independence-principle of Poisson-point processes which
asserts that even if we have obtained a certain amount of information over a realization ω
of a Poisson-point process it is still possible to use a suitably modified version of formula
(45).

Lemma 16. Let the random set ω ⊂ T
d×R

d be distributed according to a Poisson point-
process with density µ, C̄, C ⊂ T

d × R
d and A ⊂ ∪∞

r=0(C \ C̄)r be symmetric. Then we
obtain the following formula for the conditional probability of the event A:

Probppp

(
ω ∩ C ∈ A

∣
∣ ω ∩ C̄ = ∅

)
= exp

(
−µ(C \ C̄)

)
∞∑

r=0

1

r!

∫

A∩Cr

dµr(z),(46)

where µr = µ⊗ . . .⊗ µ
︸ ︷︷ ︸

r terms

Proof. See section 4. �

To apply Lemma 16 we have to work with the phase space representation of trees. Owing
to the decomposition Ω = ∪̇m∈T E(m)∩Ω we can assume that Ω ⊂ E(m) for some m ∈ T .
Due to this simplification we can drop the sum in equation (46) since only one term is
nontrivial.
Note that for a general tree Φ = (m,φ) ∈ T (Y ) the number of nodes #m can be bigger
than the number of particles involved in the collisions, i.e. it is possible that the map
z : m → T

d × R
d is not injective and zl = zl′ for some pair l, l′ ∈ m, l 6= l′. This

scenario corresponds to a bad tree where one node has two child nodes. For this reason
we restrict our attention to sets Ω which are subsets of G(a). The excluded set has nonzero
probability, however we will show that the probability of T (Y ) \ G(a) tends with a to 0.
By construction for all trees in Ω the map l 7→ zl is injective.
The order defined by (39) induces a representation of the events Ω ⊂ T (Y ) in phase-space
coordinates:

A(Ω) ⊂ (Td × R
d)#m.

In the same spirit one obtains a one-to-one correspondence between the the initial values
of particles associated with the tree-nodes at height k and subsets of (Td × R

d)#m∩Nk

:

Zk = (zl)|l|=k ∈ (Td × R
d)#m∩Nk

.

We will also need the conditional events

Ak(Ω,Φ) =
{

Zk ∈ (Td × R
d)#m∩N

k

| (Zk,Φ) ∈ Ω
}

,

17



where Φ ∈ Tk−1(Y ) and (Zk,Φ) ∈ Tk(Y ) is the tree obtained by attaching the leaves Zk
to the topmost nodes of Φ.
Recall that the density of the Poisson-point process which generates the initial positions
of the particles is given by Nµ where

∫

dµ(z)ϕ(z) =

∫

Rd

df0(v)

∫

Td

duϕ(u, v)

for every testfunction ϕ ∈ Cc(T
d × R

d).
Before applying Lemma 16 we have to specify the sets C and C̄. Fix a0 > 0 and let
Φ ∈ T (Y ) ∩ G(a0). We are interested in the distribution of those trees which coincide
with Φ up to level k. Clearly, the initial positions of the particles at height k + 1 are
contained in the set

Ck(Φ) :=
⋃

l∈mk∩Nk

Cl(φ) ⊂ T
d × R

d,

with Φ = (m,φ). In order to apply formula (46) we have to identify the conditioning of
the distribution ω ∩ Ck(Φ). Define the collection of cylinders

C̄k(Φ) :=
⋃

|l|<k

Cl(φ) ⊂ T
d × R

d

which contains those initial values that would affect the lower nodes. By construction the
information on the point process ω that we have accumulated so far is given by ω∩C̄k(Φ) =
{zl | |l| ≤ k}. Furthermore, since Φ ∈ G(a0) we have that ω ∩ Ck(Φ) ∩ C̄k(Φ) = ∅. This
implies that for each Ω ⊂ T (Y ) ∩ G(a0) and Φ ∈ Tk(Y ) ∩ G(a0) that

P̂k+1(Ω |Φ) = Probppp(Ck(Φ) ∩ ω ∈ sym(Ak(Ω,Φ)) | Ck(Φ) ∩ C̄k(Φ) ∩ ω = ∅).

where sym(A) is the symmetrization of the set A, i.e. (z1, . . . , zn) ∈ sym(A) if there
exists a permutation π ∈ Sn such that (zπ(1), . . . , zπ(n)) ∈ A; in particular A ⊂ sym(A).
This is the crucial step where the complicated dependency on the past of the many-body
evolution is reduced to a simple conditional expectation of the Poisson point process.
Since A(Ω,Φ) ∩ C̄k(Φ) × . . .× C̄k(Φ)

︸ ︷︷ ︸

r terms

= ∅ for each r we can use formula (46) and deduce

that

Pk+1(Ω |Φ) = e−Γ̂k(Φ) 1

r!

∫

sym(Ak+1(Ω,Φ))

dµr(Zk+1)

where

(47) Γ̂k(Φ) = µ(Ĉk(Φ))

and Ĉ(k) = Ck(Φ) \ C̄k(Φ). Recall the convention that the value of the integral over
(Td × R

d)0 is 1.
Since each permutation of the labels l ∈ m destroys the tree structure we obtain that if
zπ ∈ A and z ∈ A, then necessarily π is the identity transformation, i.e. zπ = z. This
implies that if we replace in the above formula sym(A) by the non-symmetric set A we
have to drop the term 1

r!
.

Pk+1(Ω |Φ) = e−Γ̂k(Φ)

∫

Ak+1(Ω,Φ)

dµr(Zk+1).(48)
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Plugging the expression (48) for the conditional expectation P̂k+1(· |Φ) into equation (36)
yields that

P̂k(Ω) =

∫

(Td×Rd)α

dP1(φ1(Z1)) e
−Γ̂1(Φ1(Z1))

∫

(Td×Rd)r2

µr2(Φ2(Z2))

. . . e−Γ̂k−1(Φk−1(Z1...Zk−1))

∫

Ak(Ω,Φk−1(Z1...Zk−1))

dµrk(Zk)

=
∑

m∈Tk

∫

A(Ω)

dµ#m(z) e−
P

j<k Γ̂j(Φ(z)).(49)

The intermediate step in the computation above relies on the additional assumption that
m ∈ Tk\Tk−1. In general we have to be more careful concerning the domains of integration,
but the the final formula is unaffected.
We return now to the collision representation of the trees. This means that the variables
(zl)l∈m are replaced by (u1, v1) × (sl, νl, vl)l∈m\N if α = 1 and analogously if α > 1. The
determinant of the derivative of this transformation is given by

detDΦz(Φ) =
∏

l∈m\N

(
ad−1[νl · (vl − vl̄)]+.

)

Thus changing coordinates in the integrals we obtain that for each m ∈ T
∫

A(Ω)

e−
P

j<k Γ̂j(Φ(z)) dµ#m(z)

=

∫

Ω

dP1(z1 . . . zα) e
−

P

j<k Γ̂j(Φ)
∏

l∈m\N

(
N df0(vl) dνl dsl χ[0,sl̄]

(sl) a
d−1 [(vl − vl̄) · νl]+

)

(1)
=

∫

Ω

dP1(z1 . . . zα) e
−

P

j<k Γ̂j(Φ)
∏

l∈m\N

(
df0(vl) dνl dsl χ[0,sl̄]

(sl) [(vl − vl̄) · νl)]+
)

=

∫

Ω

dλm(φ) e−
P

j<k Γ̂j(Φ),

Thus we have shown that for all Ω ⊂ G(a)

(50) P̂k(Ω) =
∑

m∈Tk

∫

Ω∩E(m)

e−
P

j<k Γ̂j(Φ) dλm(φ).

and

(51) Pk(Ω) = P̂k(Ω) + ek(Ω),

where the error has the form

ek(Ω) =
∑

m∈Tk

∫

Ω∩E(m)

dλm(φ)
(

e−
P

j<k Γ̂j(Φ) − e−
P

j<k Γj(Φ)
)

.(52)

Since Γ̂j(Φ) ≤ Γj(Φ) the difference ek(·) is a non-negative measure.
Now we are in a good position to prove that equations (43) and (44) hold.

Proposition 17 (Similarity of P̂k and Pk). Let G(a) the set of good trees from Defini-
tion 15, and Ω ⊂ G(a0). Then equations (43) and (44) hold.
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Proof. For technical reasons we decouple the dependency of G and P̂k on the scaling
parameter a. We will construct a family of sets of trees Ĝ(a) ⊂ G(a) with the following
two properties

lim
a0→0

inf
k
Pk

(

Ĝ(a0)
)

= 1,(53)

lim
a0→0

lim
a→0

sup
k

∣
∣
∣P̂k

(

Ω ∩ Ĝ(a0)
)

− Pk

(

Ω ∩ Ĝ(a0)
)∣
∣
∣ = 0(54)

for all Ω ⊂ T (Y ). The idea is that the trees in the sets Ĝ(a0) have additional good

properties which are controlled by a0. It is quite clear that for our choice of Ĝ(a0) (see
(56)) equation (54) holds even for fixed a0 but without the limit the proof becomes more
complicated.
We show first that (53) and (54) imply (44): Since P̂k and Pk are probability measures
equation (53) implies that

(55) lim
a0→0

lim
a→0

sup
k

∣
∣
∣P̂k

(

T (Y ) \ Ĝ(a0)
)

− Pk

(

T (Y ) \ Ĝ(a0)
)∣
∣
∣ = 0.

Let now Ω ⊂ Ĝ(a0) for some a0 > 0 and fix ε > 0. Then

lim
a0→0

lim
a→0

sup
k

|P̂k(Ω) − Pk(Ω)| ≤ lim
a0→0

lim
a→0

sup
k

∣
∣
∣P̂k

(

Ω ∩ Ĝ(a0)
)

− Pk

(

Ω ∩ Ĝ(a0)
)∣
∣
∣

+ lim
a0→0

lim
a→0

sup
k

P̂k

(

Ω \ Ĝ(a0)
)

+ sup
k

Pk

(

Ω \ Ĝ(a0)
)

(54)
= lim

a0→0
lim
a→0

sup
k

P̂k

(

Ω \ Ĝ(a0)
)

+ lim
a0→0

sup
k

Pk

(

Ω \ Ĝ(a0)
)

(55)

≤ 2 lim
a0→0

sup
k

Pk

(

T (Y ) \ Ĝ(a0)
)

(53)
= 0.

Equation (43) follows directly from (53) since Ĝ(a) ⊂ G(a).
Let ε(a) and V (a) be monotone functions of a such that lima→0 ε(a) = 0 and lima→0 V (a) =
+∞. which will be determined later. We define the set

Ĝ(a0) =
⋂

a<a0

{

(m,φ) ∈ G(a)

∣
∣
∣
∣

min
l,l′∈m

l′ 6=l

|vl − vl̄| ≥ ε(a) and |v| ≤ V (a)(56)

and min
l∈m

min
l′<l,l′ 6=l̄

(

1 −
∣
∣
∣
vl−vl̄

|vl−vl̄|
· vl′−vl̄

|vl′−vl̄|

∣
∣
∣

)

≥ ε(a)

}

.

Due to the monontonicity of ε(a) and V (a) the set Ĝ(a) is increasing with a.
Before proving (53) and (54) we will first estimate the size of the set R(t, a) and demon-
strate that

(57) lim
a→0

∫

R(t,a)

(1 + |v|) df0(v) = 0.

For each ξ ∈ Z
d \ {0} we define the cone

M(ξ, a) =
{
v ∈ R

d | (v · ξ)2 ≥ (|ξ|2 − a2)|v|2
}
.

Let c(a) := sup{
∫

M(ξ,a)
df0(v) | ξ ∈ Z

d \ {0}} be an upper bound for the volume of this

cone. Assumption (4) implies that c(a) = o(1) as a → 0. For each v ∈ R(t, a) such that
|v| ≤ V there exists ξ(v) ∈ Z

d \ {0} such that |ξ(v)| ≤ V t + a and v ∈ M(ξ(v), a), i.e.
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each velocity v ∈ R(t, a) is an element of one of at most (2tV + 2a)d cones. Thus we
obtain, using (3),
∫

R(t,a)

(1 + |v′|) df0(v
′) ≤

∫

R(t,a)∩{|v′ |≤V }

(1 + |v′|) df0(v
′) +

∫

{|v′|>V }

(1 + |v′|) df0(v
′)

≤ (1 + V )(2tV + 2a)dc(a) +Kini/V,

with Kini =
∫

Rd df0(v) (1+ |v|)2. So choosing first V large the second term is small. Then
choose a so that the first term is small, which completes the proof of the equation (57).
Proof of equation (53).
First we show that we can restrict ourselves to bounded trees. By Lemma 12, the expected
value of the number of nodes #m in a tree m is bounded by Kini exp(κdKinit). As #m is
a positive function, this implies immediately the estimate

(58)
∑

#m−α>r

Pk(E(m)) < Kini

r
exp(κdKinit).

This estimate gives us control over the error which arises if we ignore all trees with more
than r nodes:

1 =
∑

m∈T

Pk(E(m)) =
∑

m∈T
#m−α≤r

Pk(E(m)) +
∑

m∈T
#m−α>r

Pk(E(m))

≤
∑

m∈T
#m−α≤r

Pk(E(m)) + Kini

r
eκdKinit.(59)

In particular, if r ≥ Kini

δ
eκdKinit + α, then

(60)
∑

m∈T
#m≤r

Pk(E(m)) ≥ 1 − δ.

Recall the ordering of the tree nodes l ∈ m given by (39) and that l̄ denotes the child-node
of l ∈ m \N. Define for each l ∈ m and each Φ ∈ T (Y ) ∩ E(m) the (possibly empty) sets

Gl(Φ, a) =
⋂

a<a0

{

(s, ν, v) ∈ [0, sl̄] × Sd−1 × R
d

∣
∣
∣
∣

∣
∣
∣
v−vl̄

|v−vl̄|
· vl′−vl̄

|vl′−vl̄|

∣
∣
∣ ≥ ε(a) for all l′ < l, l′ 6= l̄

and v − vl̄ 6∈ R(t, a) and (ul(s, ν, v), v) 6∈
⋃

l′<l,l′ 6=l̄

Cl′ and |vl − vl′| ≥ ε ∀l′ < l

}

,

Bl(Φ, a) =[0, sl̄] × Sd−1 × R
d \Gl(Φ, a),

Bl(a0, a) ={Φ ∈ T (Y ) ∩ E(m) | φl ∈ Bl(Φ, a) and φl′ ∈ Gl′(Φ, a0) ∀l′ < l}.

Note that B1(a0, a) = B1(Φ, a). The set Bl contains those trees which have node l as the
first bad node. It is easy to see that Gl(Φ, a) and Bl(Φ, a) are monontone in a and that

E(m) =
(

Ĝ(a) ∩ E(m)
)

∪̇l∈mBl(a, a), i.e. the set E(m) can be written as a disjoint union

of good trees and the sets Bl and we obtain that

Pk

(

Ĝ(a)
)

=
∑

m∈T

(

Pk(E(m)) −
∑

l∈m

Pk(Bl(a, a))

)

.

Another easy consequence is that

(61)
∑

l∈m

Pk(Bl(a, a)) ≤ Pk(E(m)).
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A simple computation shows that for any sequence a0 = a1 ≥ . . . ≥ al = a the estimate

Pk(Bl(a, a)) ≤
∑

l′≤l

Pk(Bl′(al′−1, al′)),

where l′ − 1 is the predecessor of l′, and thus

1 − Pk

(

Ĝ(a)
)

≤
∑

m∈T
#m≤r

∑

l∈m,l′≤l

Pk (Bl(al′−1, al′)) + δ

holds. This inequality is far from being optimal but it suffices for our purposes. We will
show that for fixed al′−1 each term in the sum can be made small by choosing al′ small

enough. This implies that lima→0 Pk

(

Ĝ(a)
)

= 0 since we can choose a11 first (or a2 if

α > 1) depending on a1 and so on until we reach al which serves as an upper bound for
a.
We define now the functions hml,a0,a : E(m) → [0,∞) by

hml,a0,a(φ) = e−Γ(Φ)χBl(a0,a)(φ),

where Γ(Φ) =
∑

|l|<k

∫
df0(v) |v−vl|. Clearly, for fixed l ∈ m, a0 > 0 the number hml,a0,a(Φ)

is nonnegative, monotonously decreasing in a and bounded from above by the function

gm : E(m) → [0,∞) : gm(φ) := e−
P

j<k Γj(Φ).

Note that gm ∈ L1(λm), since gm ≥ 0 and 1 = Pk(T (Y )) =
∑

m∈Tk

∫

E(m)
dλm(φ) gm(Φ).

Thus, it suffices to show that

(62) lim
a→0

λl (Bl(Φ, a)) := N

∫

Td

du

∫

Rd

dv χBl(Φ,a)∩Cl̄
(u, v)

for all Φ ∈ E(m) ∩ Bl(a0, a). In order to prove estimate (62) we split Bl(Φ, a) into five
sets, the first four are represented in collision coordinates, the last one is expressed in
phase-space coordinates.

Bl,1 =
{
(ν, τ, v) ∈ Sd−1 × [0, sl̄] × R

d | |v − vl′| ≤ ε for some l′ < l
}
,

Bl,2 =
{

(ν, τ, v) ∈ Sd−1 × [0, sl̄] × R
d
∣
∣
∣

∣
∣
∣
v−vl̄

|v−vl̄|
· vl′−vl̄

|vl′−vl̄|

∣
∣
∣ ≥ 1 − ε for some l′ < l

}

,

Bl,3 =
{
(ν, τ, v) ∈ Sd−1 × [0, sl̄] × R

d | v − vl̄ ∈ R(t, a)
}
,

Bl,4 =
{
(ν, τ, v) ∈ Sd−1 × [0, sl̄] × R

d | |v| > V (a)
}
,

Bl,5 =






(u, v) ∈

⋃

l′<l,l′ 6=l̄

Cl′
⋂

Cl̄

∣
∣
∣
∣
∣
∣

|v| ≤ V (a) and
∣
∣
∣
v−vl̄

|v−vl̄|
· vl′−vl̄

|vl′−vl̄|

∣
∣
∣ ≤ 1 − ε for all l′ < l






.

We will show now that lim
a→0

λl (Bl,j(Φ, a)) = 0 for each l ∈ m, j ∈ {1, . . . , 5} and Φ ∈

Bl(a0, a) if a0 > 0 is fixed.

j = 1:

λl(Bl,1) =
∑

l′<l
l′ 6=l̄

∫

|v−vl′ |≤ε

df0(v)

∫

Sd−1

dν

∫ sl̄

0

dτ [(v − vl̄) · ν]+

≤
∑

l′<l

∫

|v−vl′ |≤ε

df0(v) |v − vl̄|κdsl̄.

Thanks to (4) the last expression goes to 0 as ε tends to 0. Since a0 appears
nowhere the convergence is uniform in a0.
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j = 2: Let

Mε =
⋃

l′<l,l′ 6=l̄

{

v ∈ R
d
∣
∣
∣

∣
∣
∣
v−vl̄

|v−vl̄|
· vl′−vl̄

|vl′−vl̄|

∣
∣
∣ > 1 − ε

}

⊂ R
d.

As ε tends to 0 the set Mε converges to vl̄ + R
⋃

l′<l,l′ 6=l̄

(vl′ − vl̄). We obtain that

λl(Bl,2) =

∫

Mε

df0(v)

∫ sl̄

0

dτ

∫

Sd−1

dν [ν · (v − vl̄)]+ ≤ r

∫

Mε

df0(v) |v − vl̄|κdsl̄.

Dominated convergence and assumption (4) imply that

(63) lim
a→0

∫

Mε(a)

df0(v) (1 + |v|)κdsl̄ = 0,

hence the last expression goes to 0 as ε tends to 0. The convergence is uniform in
a0.

j = 3:

λl(Bl,3) =N

∫

vl̄+R(t)

df0(v)

∫ sl̄

0

dτ

∫

Sd−1

dν [ν · (v − vl̄)]+

≤

∫

vl+R(t)

df0(v) |v − vl̄|κdsl̄ =

∫

R(t)

df0(v) |v|κdsl̄

By equation (57) the last expression converges uniformly in a0 to 0 as a tends to
0.

j = 4:

λl(Bl,4) =N

∫

|v|≥V (ε)

df0(v)

∫ sl̄

0

dτ

∫

Sd−1

dν [ν · (v − vl̄)]+

≤

∫

|v|≥V (ε)

df0(v) |v − vl|κdsl̄

By assumption (3) the last expression converges uniformly in a0 to 0 as ε tends to
0.

j = 5: This is the only case where estimates are not uniform and depend on the
constant ε(a0). We estimate λl(Bl,5) as follows:

λ (Bl,5) ≤
∑

l′<l
l′ 6=l̄

N

∫

Rd

df0(v)H
d
(
Cl̄(Φ) ∩ Cl′(Φ) ∩ (Td × {v})

)
.

To bound Hd
(
Cl̄(Φ) ∩ Cl′(Φ) ∩ (Td × {v})

)
we define the number c(a0, a, v

′) to
be the maximum volume contained within the intersection of two cylinders of
diameter a and axes v − v′ and v − v′′ if v, v′ and v′′ are constrained in a certain
geometrical way:

c(a0, a, v
′) = sup

{

ζ(u′, u′′, v, v′, v′′, a)

∣
∣
∣
∣
u′, u′′ ∈ T

d, v, v′′ ∈ R
d, |v′ − v′′| ≥ ε(a0)

and |v|, |v′′| ≤ V (a) and
∣
∣
∣
v−v′

|v−v′|
· v′′−v′

|v′′−v′|

∣
∣
∣ ≤ 1 − ε(a0)

}

,
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where

ζ(u, u′, v, v′, v′′, a) = Hd

({

u ∈ T
d

∣
∣
∣
∣

inf
s∈[0,t]

|u− u′ + s(v − v′)| ≤ a

and inf
s∈[0,t]

|u− u′′ + s(v − v′′)|} ≤ a

})

.

With this notation we obtain that

λ(Bl,5) ≤ #mN c(a0, a, vl̄).

The cylinders can intersect at most (V t+1)2 times. The volume of each intersection
is bounded from above by (2a)d−1` where ` is the maximal length of a line segment
which is parallel to v − v′ and is contained in the cylinder with axis parallel to
v′′ − v′. A simple geometric consideration yields that ` = 2a

| sinψ|
, where ψ is the

angle enclosed by the vectors v − v′ and v − v′. The law of sines implies that

sin(ψ) = |v′−v′′|
|v−v′|

sin(ψ0), where ψ0 is the angle enclosed by v−v′′ and v′−v′′. Since

cos(ψ0) ≤ 1 − ε and |v′ − v′′| ≥ ε we obtain that | sin(ψ)| ≥ 1
|v−v′ |

ε
3
2 and thus the

inequality

λl(Bl,5) ≤#mN 2d ad ε(a0)
− 3

2 2V (V t+ 1)2 = 2dr a ε(a0)
− 3

2 2V (V t+ 1)2.

The right hand side converges to 0 as a → 0 if a0 is kept fixed. The proof of
equation (53) is finished.

Proof of equation (54).

Fix a0 and let Ω ⊂ Ĝ(a0). Like in the first part of the proof we first split off the contribution
of the trees with many nodes. For each r > 0 one obtains that

lim
a→0

sup
k

∣
∣
∣P̂k(Ω) − Pk(Ω)

∣
∣
∣

≤ lim
a→0




sup

k

∑

m∈T
#m≤r

∣
∣
∣P̂k(Ω ∩ E(m)) − Pk(Ω ∩ E(m))

∣
∣
∣

+ sup
k

∑

m∈T
#m>r

P̂k

(

Ĝ(a) ∩ E(m)
)

+ sup
k

∑

m∈T
#m>r

Pk

(

Ĝ(a) ∩ E(m)
)






= lim
a→0

(I1 + I2 + I3).

We will show that lima→0 I1 = 0 and lim supa→0(I2+I3) = o(1) as δ tends to 0 (cf equation
(60)).
First we consider I1. Since there is only a finite number of tree skeletons with fewer than
r nodes it suffices to show that

lim
a→0

sup
k

∣
∣
∣P̂k(Ω ∩ E(m)) − Pk(Ω ∩ E(m))

∣
∣
∣ = 0

for each m ∈ T such that #m ≤ r. We have seen earlier (formula (51)) that Pk(Ω ∩

E(m)) = P̂k(Ω ∩ E(m)) + e(Ω ∩ E(m)) where

0 ≤ e(Ω ∩ E(m)) =

∫

Ω∩E(m)

dλm(φ)
(

e−
P

j<k Γ̂j(Φ) − e−
P

j<k Γj(Φ)
)

.
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Since Γj(Φ) ≥ Γ̂j(Φ) (cf the remark after (52)) one obtains

e(Ω ∩ E(m)) ≤

∫

Ĝ(a)∩E(m)

dλm(φ) e−
P

j<k Γj(Φ)
(

e
P

j<k(Γj(Φ)−Γ̂j (Φ)) − 1
)

.

We will demonstrate that there is a number K(a0, a) > 0 such that lima→0K(a0, a) = 0

and for all Φ ∈ E(m) ∩ Ĝ(a0) and all j ∈ N the estimate

(64) 0 ≤ Γj(Φ) − Γ̂j(Φ) ≤ K(a0, a)

holds. Since
∫

E(m)
dλm(φ) e−

P

j<k Γj(Φ) ≤ 1, this yields the bound

0 ≤P̂ (Ω ∩ E(m)) − P (Ω ∩ E(m)) ≤ K(a0, a)e
K(a0,a).(65)

Thus estimate (64) implies lima→0 I1 = 0. To prove (64) we recall that by definition
(equation (47))

Γ̂j(Φ) =N

∫

Rd

df0(v
′)Hd

(

Ĉj(Φ) ∩ (Td × {v′})
)

≥N
∑

|l|=j

∫

Rd

df0(v
′)Hd

(
Cl(Φ) ∩ (Td × {v′})

)
− e1

=N
∑

|l|=j

∫

Rd\(vl+R(t))

df0(v
′)Hd

(
Cl(Φ) ∩ (Td × {v′})

)
− e1 + e2

=
∑

|l|=j

∫

Rd\(vl+R(t))

df0(v) κd|vl − v| − e1 + e2 = Γj(Φ) − e1 + e2 + e3,

where the error terms are defined as follows

e1 = N

∫

Rd

df0(v
′)Hd

(
(Cj(Φ) \ C̄j(Φ)) ∩ (Td × {v′})

)
,

e2 = N
∑

|l|=j

∫

vl+R(t,a)

df0(v
′)Hd

(
Cl(Φ) ∩ (Td × {v′})

)
,

e3 =
∑

|l|=j

∫

R(t,a)

df0(v) κd|v|.

We set K(a0, a) = −e1 + e2 + e3 and recycle the estimates from the first part of the proof
in order to show that lima→0 ej = 0 for j = 1, 2, 3. For all v′ ∈ R

d one obtains that
NHd

(
Cl ∩ (Td × {v′})

)
≤ κd|vl − v′| irrespective whether v′ ∈ vl +R(t, a) or not. Hence,

e2 + e3 ≤ 2 κd r

∫

R(t)

|v| df0(v)

and equation (57) yields that lima→0(e2 + e3) = 0.
It remains to estimate e1. Using the considerations in the case j = 5 in the first part of
the proof we find that

e1 ≤ 2d r2 a ε(a0)
− 3

2 2V (V t+ 1)2,

and in particular lima→0 e1 = 0. Thus we have shown that lima→0K(a0, a) = 0 and thereby
lima→0 I1 = 0.
We finish the proof by showing that limδ→0 lima0→0 lima→0(I2 + I3) = 0. Equation (58)
yields

(66) I3 = sup
k

∑

m∈T
#m>r

Pk(Ω ∩ E(m)) ≤ Kini exp(κdKinit) δ.
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and in a similar way we obtain

lim
a0→0

lim
a→0

I2 = lim
a0→0

lim
a→0

sup
k

∑

m∈T
#m>r

P̂k (Ω ∩ E(m)) ≤ lim
a0→0

lim
a→0

sup
k

∑

m∈T
#m>r

P̂k

(

Ĝ(a0) ∩ E(m)
)

= lim
a0→0

lim
a→0

sup
k

P̂k(Ĝ(a0)) − lim
a0→0

lim
a→0

inf
k

∑

m∈T
#m≤r

P̂k

(

Ĝ(a0) ∩ E(m)
)

(53,65)
= 1 − inf

k

∑

m∈T
#m≤r

Pk

(

Ĝ(a0) ∩ E(m)
) (66)

≤ δ Kini exp(κdKinit).

Equation (53) yields that the last expression converges to 0 uniformly in a0 as δ tends to
0.
Thus we have demonstrated that (54) is satisfied and the proof of Proposition 17 is
complete. �

Proof of Theorem 2. We first demonstrate that the distribution of a single tagged particle
satisfies the Boltzmann equation. Let A ⊂ T

d × R
d and define Ω(A) ⊂ T 1(Y ) by

Ω(A) = {Φ ∈ T 1(Y ) | β1(m) = 1 and z1 ∈ A}.

With this notation we obtain that for every a0 > 0
∣
∣
∣
∣
lim
a→0

lim
k→∞

P̂t,k(Ω) −

∫

A

du dft(v)

∣
∣
∣
∣

Lemma 4
= lim

a→0
lim
k→∞

∣
∣
∣
∣
P̂t,k(Ω) −

∫

A

du dft,k−1(v)

∣
∣
∣
∣

Proposition 13
= lim

a→0
lim
k→∞

∣
∣
∣
∣
P̂t,k(Ω) − Pt,k(Ω)

∣
∣
∣
∣

= lim
a→0

lim
k→∞

∣
∣
∣
∣
P̂t,k(Ω ∩ G(a0)) − Pt,k(Ω ∩ G(a0)) − Pt,k(Ω \ G(a0)) + P̂t,k(Ω \ G(a0))

∣
∣
∣
∣

(44)

≤ lim
a→0

lim
k→∞

Pt,k(T (Y ) \ G(a0)) + lim
a→0

lim
k→∞

P̂t,k(T (Y ) \ G(a0))

Now using equation (44) again for Ω̃ := T (Y )∩G(a0) and that P̂t,k and Pt,k are probability

measures, we also obtain, that lima→0 P̂t,k(T (Y ) \ G(a0)) = Pt,k(T (Y ) \ G(a0)). Now
proceeding

≤2 lim
k→∞

Pt,k(T (Y ) \ G(a0)),

we send now a0 to 0, apply (43) and obtain that lima0→0 limk→∞ Pt,k(T (Y ) \ G(a0)) = 0,

hence lima→0 limk→∞ P̂t,k(Ω) =
∫

A
du dft(v).

Next we define the random variables

χi(t) =

{

1 if (u
(a)
i (t), v

(a)
i (t)) ∈ A and βi(t) = 1

0 else.

The previous consideration implies that lima→0〈χi(t)〉 =
∫

A
du dft(v). Define now the

random variable sN = 1
N

∑n

i=1 χi(t). The claim (9) follows if the variance VN = 〈(sN −
〈sN〉)

2〉 converges to 0 as a tends to zero. The standard manipulation yields that

VN ≤

∑n
i=1(χi(t) − 〈χi(t)〉)

2

N2
+

1

N2

∑

i6=j

〈(χi(t) − 〈χi(t)〉)(χj(t) − 〈χj(t)〉)〉.

If we apply the previous reasoning again in the case α = 2 we find that

lim
a→0

〈(χi(t) − 〈χi(t)〉)(χj(t) − 〈χj(t)〉)〉 = 0
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uniformly in i and j, and the proof of Theorem 2 is finished. �

Proof of Corollary 3. First we recall a well known principle in probability theory. Let
xn ∈ R be a sequence of independent random numbers such that E(xn) = 0 and let Vn be
the variance of xn. If

∑∞
n=1 Vn <∞, then almost surely limn→∞ xn = 0.

Indeed, for every ε,N > 0 Chebyshev’s inequality yields the estimate

Prob

(

sup
n≥N

|xn| ≤ ε

)

≥
∞∏

n=N

(
1 − Vn

ε2

)
≥ 1 −

1

ε2

∞∑

n=N

Vn.

Consequentially lima→0 Prob(supn≥N |xn| ≤ ε) = 1, i.e. for each realization and each
ε > 0 there exists almost surely a number N > 0 such that supn≥N |xn| ≤ ε.
Let sN be the sum that was defined in the proof of Theorem 2 and VN be the variance of
sN . Since lima→0 VN = 0 there exists a subsequence VNn

such that
∑∞

n=1 VNn
< ∞. We

apply now the previous consideration to the sequence xn = sNn
. �

3. The effect of concentrations

We illustrate now that the mean field theory does not capture the many-particle dynamics
if the initial distribution f0 exhibits strong concentrations. To simplify the long calcula-
tions at the end of the proof we assume that d = 2, but similar results are expected to
hold in the case d = 3.

Theorem 18. Let v ∈ R
2 be nonresonant (α · v 6∈ Z for all α ∈ Z

d) such that |v| = 1 and

set f0 = 1
2
(δ(· − v)+ δ(·+ v)). If Q̂(t) = lima→0 limk→∞ P̂t,k(β1 = 1) denotes the empirical

probability that a tagged particle does not collide, then

(67) lim
t→0

1

t3

(

Q̂(t) −

∫

R2

dft(v)

)

=
1

9
,

where ft = 1
1+t
f0 is the unique solution of the Boltzmann equation (5) which satisfies the

initial condition ft=0 = f0.

A numerical simulation (fig. 3) confirms the prediction (67).
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Proof. It can be assumed without loss of generality that the initial value of the tagged
particle is (0, v). We define the set

Mλ :=

{

u ∈ T
d

∣
∣
∣
∣

min
s∈[0,t]

|2tv − u| ≤ r

}

,

which is basically a cylinder with radius r and centerline given by the particle-trajectory
without collisions and contains the initial positions of those particles that might collide
with the tagged particle before time t. The parameter r is a function of λ such that
vol(Mλ) = 2atλ.
In this setting the collision rate γ is 1 and we find that the probability that the total

number of particles whose initial position is contained in Mλ equals k is given by e−λt (λt)
k

k!
.

Let pk(λ, t) be the probability that the particle does not collide before time t if there are
precisely k particles contained in Mλ and there are no particles outside. It is clear from
the definition that pk depends only weakly on t, we will not show the dependency on t in
future.
We use the fact that in this system the speed of propagation of information is finite to
find explicit approximations for Q̂ for short times.

Lemma 19. Let n ∈ N and λ = n + 1.

(68) lim
t→0

1

tn

∣
∣
∣
∣
∣
Q̂(t) − e−λt

n∑

k=0

(λt)k

k!
pk(λ)

∣
∣
∣
∣
∣
= 0.

Proof. Let ω = {u0(i), | i = 1 . . . n} be the set of initial positions and Pn = Prob(#(ω ∩
Mλ) > n) be the probability that Mλ contains more than n particles. Clearly

Pn = e−λt

(

eλt −
n∑

k=0

(λt)k

k!

)

≤ e−λttn+1 sup
s∈[0,t]

λn+1

(n+ 1)!
eλs =

λn+1

(n+ 1)!
tn+1,

where the inequality is due to Taylor’s theorem. �

We will only be interested in the case n = 3, i.e. λ = 4.
Let Q(t) := 1

1+t
be the particle density predicted by the mean-field theory. We are seeking

mean-field probabilities pmf
k (λ) ∈ [0, 1] such that

(69) Q(t) = e−λt
∞∑

k=0

(λt)k

k!
pmf
k (λ).

Replacing the exponential function in (69) by the power series one obtains that

(70)

∞∑

l,m=0

(−λt)l

l!

(λt)m

m!
pmf
m (λ) =

∞∑

k=0

(−t)k.

Ordering the left hand side by powers of t and equating coefficients yields the following
hierarchical set of equations for the probabilities pk

k∑

l=0

(−1)l

l!(k − l)!
pmf
k−l =

(

−
1

λ

)k

.

We can use the equations above to determine pmf
k recursively and obtain that

pmf
k = (−1)k

k!

λk
−

k∑

l=1

(−1)l
(
k

l

)

pmf
k−l.
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The recurrence relation can be solved explicitly and we obtain

(71) pmf
k =

k∑

l=0

k!

(k − l)!

(

−
1

λ

)l

.

Equation (68) and (69) implies that if pk does not agree with formula (71), then Q̂(t) 6=
Q(t) if t is sufficiently small.
If λ > (k + 1)d−1 the probability pk can be computed explicitly. The reason is that the
diameter of the cylinder is so large that the collision probability is not influenced by the
initial configuration outside Mλ.
We will show now that for all λ ≥ 4 the values of pk(λ), k = 0, 1, 2, 3 are given by p0 = 1,
p1 = 1 − 1

λ
, p2 = 1 − 2

λ
+ 2

λ2 , p3 = 1 − 3
λ

+ 6
λ2 −

6
λ3 + α2

λ3 with αd = 2
3
. This implies that

lim
t→0+

Q̂(t) − 1
1+t

t3
=
α2

6
=

1

9

and thus the claim.
Let k ∈ {0, 1, 2, 3} be the number of particles contained in set Mλ. For the sake of
simplicity we say that the particles with velocity v are white and the particles with
velocity −v are black. One obtains 2k different color distributions, each of those cases has
the same probability of occurring.
We are now in a position to compute an explicit formula for the values of pk(λ). We
have to consider several cases, depending on the direction and relative position of the
particles in the path of the tagged particle. Particles traveling in the same direction as
the tagged particle are denoted by w, particle in the other direction by b. The ordering
of the particles in the cylinder is given in the index.

Computation of p0.
It is clear that p0 = 1 since there is no obstacle in Mλ.

Computation of p1.
pw1 = 1,
pb1 = 1 − 2

λ
.

We obtain the overall probability p1 = 1
2
(pw1 + pb1) = 1 − 1

λ
.

Computation of p2.
pww2 = 1 (No collision possible),
pbb2 = (1 − 2

λ
)2 (Probability of avoiding two independent black particles),

pbw2 = 1− 2
λ

(Probability of avoiding one black particle, the position of the white particle
is irrelevant),
pwb2 = 1 − 2

λ
(1 − 2

λ
) (Probability of avoiding a black particle which might be removed by

a white particle before it comes to a collision.
Adding the probabilities yields that p2 = 1

4
(pww2 + pbb2 + pwb2 + pbw2 ) = 1 − 2

λ
+ 2

λ2 .

Computation of p3.
pwww3 = 1 (No collision possible),
pbbb3 = (1 − 2

λ
)3 (Probability of avoiding 3 independent black particles),

pbww3 = 1− 2
λ

(Probability of avoiding 1 black particle, the white particles are irrelevant),

pwbw3 = 1 − 2
λ
(1 − 2

λ
) (Probability of avoiding one black particle which might be removed

by one white particle. The second white particle is irrelevant).
pwwb3 = 1− 2

λ
(1− 2

λ
)2 (Probability of avoiding one black particle which might be removed

by two independent white particles).
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pbbw3 = (1 − 2
λ
)2 (Probability of avoiding 2 independent black particles, the white particle

is irrelevant)
pbwb3 = (1 − 2

λ
)(1 − 2

λ
(1 − 2

λ
)) (Probability of avoiding 2 independent black particles, the

second black particle might be removed by a white particle).
pwbb3 = 1 − 4

λ
+ 12

λ2 −
24
λ3 + 8α2

λ3

To demonstrate that the formula above indeed yields the correct value of pwbb3 we introduce
the coordinates perpendicular to v of the three particles ui ∈ R, i = 1, 2, 3 and consider
four mutually exclusive scenarios. In three scenarios the probability of being scattered can
be computed analogously to the preceding cases. As these computations are independent
of a, we let a = 1 for notational convenience.

Prob(|u2| ≥ 1 and |u3| ≥ 1) = (1 − 2
λ
)2,

Prob(|u2| ≥ 3 and |u3| ≤ 1 and |u1 − u3| ≤ 1) = (1 − 6
λ
) 4
λ2 ,

Prob(|u2| ≤ 1 and |u2 − u1| ≤ 1 and |u3| ≥ 1) = 4
λ2 (1 − 2

λ
),

To compute the probability of being scattered in the remaining case where |u2| ∈ [1, 3],
|u3| ≤ 1, |u1 − u3| ≤ 1 and |u1 − u2| ≥ 1 we have to do an explicit integration.

I2 =

∫ 1

−1

du3

∫ u3+1

u3−1

du1

∫ 3

1

du2 (1 − χ[−1,+1](u1 − u2))

+

∫ 1

−1

du3

∫ u3+1

u3−1

du1

∫ −1

−3

du2 (1 − χ[−1,+1](u1 − u2)).

The number I3 is defined by a similar formula. A simple but lengthy calculation yields
that I2 = 40

3
. The details of this calculation are irrelevant, but for the purpose of checking

that this number is indeed correct the detailed calculations are included below. We obtain
that

pbww3 = (1 − 6
λ
)(1 − 2

λ
) + (1 − 6

λ
) 4
λ2 + 4

λ2 (1 − 2
λ
) + 4

λ
(1 − 2

λ
) + I2

λ3 .

Altogether this yields

p3 =1
8
(pwww3 + pwwb3 + pwbw3 + pbww3 + pwbb3 + pbwb3 + pbbw3 + pbbb3 )

=1 − 3
λ

+ 6
λ2 −

6
λ3 + I2−8

8λ3 ,

and therefore α2 = I2−8
8

= 2
3
.
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We calculate now the value of I2.
I2 =

∫ 1

−1
du3

∫ 0

u3−1
du1

∫ 3

1
du2 (1 − χ[−1,1](u1 − u2))

︸ ︷︷ ︸

=1

+
∫ 1

−1
du3

∫ u3+1

0
du1

∫ 3

1
du2 (1 − χ[−1,1](u1 − u2))

+
∫ 1

−1
du3

∫ 0

u3−1
du1

∫ −1

−3
du2 (1 − χ[−1,1](u1 − u2))

+
∫ 1

−1
du3

∫ u3+1

0
du1

∫ −1

−3
du2 (1 − χ[−1,1](u1 − u2))

︸ ︷︷ ︸

=1

= 2

∫ 1

−1

du3 (1 − u3) + 2

∫ 1

−1

du3 (1 − u3)

︸ ︷︷ ︸

=8

+
∫ 1

−1
du3

∫ u3+1

0
du1

∫ 3

1
du2 (1 − χ[−1,1](u1 − u2))

+
∫ 1

−1
du3

∫ 0

u3−1
du1

∫ −1

−3
du2 (1 − χ[−1,1](u1 − u2))

= 8 +
∫ 1

−1
du3

∫ u3+1

0
du1

∫ 3

1
du2 +

∫ 1

−1
du3

∫ 0

u3−1
du1

∫ −1

−3
du2

︸ ︷︷ ︸

=8

−
∫ 1

−1
du3

∫ u3+1

0
du1

∫ 3

1
du2 χ[−1,1](u1 − u2) −

∫ 1

−1
du3

∫ 1−u3

0
du1

∫ 3

1
du2 χ[−1,1](u1 − u2)

= 16 −
∫ 1

−1
du3

∫ u3+1

0
du1

∫ 1+u1

1
du2 −

∫ 1

−1
du3

∫ 1−u3

0
du1

∫ 1+u1

1
du2

= 16 −
∫ 1

−1
du3

∫ u3+1

0
du1 u1 −

∫ 1

−1
du3

∫ 1−u3

0
u1

= 16 −
∫ 1

−1
du3

1
2
(u3 + 1)2 −

∫ 1

−1
du3

1
2
(u3 − 1)2

= 16 − 1
6
[(u3 + 1)3]u3=1

u3=−1 −
1
6
[(u3 − 1)3]u3=+1

u3=−1 = 16 − 8
3
.

�

4. Proofs of auxiliary results

This section contains the proofs of Lemmas 4, 6 and 16. These lemmas are not concerned
with multi-scale aspects.
We first explain the notation used in Lemma 4. Let w ∈ C(Rd), w ≥ 0 be a weight. For
a Radon-measure f we define

‖f‖w := sup
φ∈BC0(Rd),‖φ‖≤1

∫

|φ(v)w(v) df(v)|.

Then Mw = {f ∈ (BC0(Rd)))∗| ‖f0‖w < ∞} is a Banach space of measures with norm
‖.‖w. To control convergence we introduce weighted spaces in time forX-valued functions,
for some Banach space X

C0
ρ([0,∞), X) := {u ∈ C0([0,∞), X)| sup

t∈[0,∞)

(exp(−ρt)‖u(t)‖X <∞}) with norm

‖u‖ρ := sup
t∈[0,∞)

(exp(−ρt)‖u(t)‖X) .

Proof of Lemma 4. First, we note that ‖ft,k‖(1+|v|)2 is decreasing in t as 0 ≤ L[fs,k−1](v) <
∞. Next we estimate exp(−ρt)‖ft,k+1 − ft,k‖1+|v| for 0 ≤ t <∞, with ρ chosen later. Let
φ ∈ BC0(Rd) with ‖φ‖ ≤ 1, then consider

exp(−ρt)

∣
∣
∣
∣

∫

Rd

φ(v)(1 + |v|) (dft,k+1(v) − dft,k(v))

∣
∣
∣
∣

=

∫

Rd

φ(v)(1 + |v|) df0(v) exp(−ρt)

∣
∣
∣
∣
exp

(

−

∫ t

0

L[fs,k](v) ds

)

− exp

(

−

∫ t

0

L[fs,k−1](v) ds

)∣
∣
∣
∣

≤

∫

Rd

φ(v)(1 + |v|) df0(v) exp(−ρt)

∫ t

0

|L[fs,k](v) − L[fs,k−1](v)| ds).
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Because of the negativity of L, we obtain a Lipschitz constant of 1 for exp(·) and we have

≤

∫

Rd

φ(v)(1 + |v|) df0(v)κd

(

exp(−ρt)

∫ t

0

∫

Rd

|dfs,k(v
′) − dfs,k−1(v

′)| |v − v′|ds

)

≤

∫

Rd

φ(v)(1 + |v|) df0(v)κd

(∫ t

0

exp(−ρ(t− s))
[

exp(−ρs)‖fs,k − fs,k−1‖1+|v|

+ exp(−ρs)|v|‖fs,k − fs,k−1‖1

]

ds
)

≤ 2κd

∫

Rd

φ(v)(1 + |v|)2 df0(v) sup
0≤s<∞

(
exp(−ρs)‖fs,k − fs,k−1‖1+|v|

)
∫ t

0

exp(−ρ(t− s)) ds

≤ 2κd‖f0‖(1+|v|)2
1

ρ
(1 − exp(−ρt))‖ft,k(·) − ft,k−1(·)‖ρ.

Thus for ρ > 2κd‖f0‖(1+|v|)2 the sequence (fk)k∈N converges in C0
ρ([0,∞),M1+|v|) by Ba-

nach’s fixed point theorem and the limit solves ft = exp(−
∫ t

0
L[fs](v) ds)f0. Hence f

is differentiable and solves (5) for t ∈ [0,∞). Uniqueness of the solution of the integral
equation also follows by the Banach fixed point theorem. On the other hand all solutions
of (5) in C1([0, T ],M1+|v|) have to satisfy the integrated form too, showing uniqueness of
the solutions of (5). �

Proof of Lemma 6. We first show, that the implicit relation β(i, t) in Theorem 2 is well-
defined. For each particle it indicates whether it has undergone a collision: β(i, t) jumps
from 1 to 0 at the time of the collision. As the particles are removed after a collision, a
collision can only occur when

dist(zi, zi′ , s) = a for some i 6= i′.

This also takes multiple collisions into account, which lead to an undefined situation in
hard-sphere collision dynamics, but as particles are removed here after a collision, the
scattering state can be defined.
The distance dist(zi, zi′ , s) is a continuous piece-wise affine function in s, except possibly a
unique point, if there is an initial intersection, but then dist(zi, zi′ , s) > a near this jump.
There are only finitely many different pieces in a finite interval [0, t], because v(i)−v(i′) is
finite and only a finite number of coverings of the torus T

d can be visited in a finite time.
Hence for every particle i, there are at most n − 1 possible collision times, i.e. the first
time τ(i, i′) ≥ 0 at which dist(zi, zi′ , s) = a for each i′. The at most n(n − 1)/2 possible
times for collision of the particles i = 1, . . . , n can be well-ordered. So by inductively
checking at all possible collision times τ(i, i′), there exists a well-defined collision time for
each particle i, at which it collides with an unscattered particle (β(i, .) has a well-defined
jump); or the particle remains unscattered itself for [0,∞) (β(i) is constant), which shows
the existence of β(i, t).
To prove convergence of βk(i, t) to β(i, k) as k tends to ∞ we define I1 = {1 . . . n} and
τ0 = 0. For each j ≥ 1 let τj > τj−1 and Cj, Ij+1 ⊂ Ij be recursively defined by

min{dist(zi, zi′ , τj) | i 6= i′ ∈ Cj} = a for each i ∈ Cj

dist(zi, zi′ , s) > a for all i, i′ ∈ Ij, s ∈ [τj−1, τj),

Ij+1 = Ij \ Cj.

It can be checked that β(i, s) = 1 if there exists j ∈ N such that i ∈ Ij and s ∈ [0, τj].
For all other choices of i and s we have that β(i, s) = 0. Clearly β(i, ·) is constant within
the intervals (τj−1, τj]. We will show using induction that for each j ∈ {1, 2, . . .} and each
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k ≥ j

βk(i, s) = β(i, s) if s < τj or i ∈ I1 \ Ij.(72)

The claim is clear for j = 1. Assume now that the claim has been established up to j and
let k ≥ j + 1. We will show that

βk(i, s) = β(i, s) if s < τj+1 or i ∈ I1 \ Ij+1.(73)

By the induction assumption (73) holds for s ∈ [0, τj] or i ∈ I1 \ Ij and we can assume
from now that s > τj.
Case 1. Let i ∈ I1 \ Ij+1.
We have to show that

βk(i, s) = β(i, s) for all k ≥ j + 1.(74)

Since s > τj we have that β(i, s) = 0. By (72) equation (74) holds if i ∈ I1 \ Ij, hence
we can assume that i ∈ Cj. In this case there exists i′ ∈ Cj such that dist(zi, zi′ , τj) = a.
The induction assumption (72) implies that βk−1(i

′, τj−1) = 1 and consequentially

dist(zi, zi′ , τj) = aβk−1(i
′, τj),

this implies that βk(i, s) = 0.
Case 2: Let i ∈ Ij+1 and s ∈ (τj, τj+1). We have to show that

βk(i, s) = β(i, s) = 1 for all k ≥ j + 1.(75)

Case 2a. Let s′ ∈ (τj−1, τj) and i′ be such that βk−1(i
′, s′) = 1. The induction assumption

implies that βk−1(i
′, s′) = β(i′, s′) and therefore i′ ∈ Ij. Since i ∈ Ij+1 and i′ ∈ Ij it is not

possible that dist(zi, zi′ , τj) = a.
Case 2b. Let i′ be such that βk−1(i

′, s′) = 0. In this case we find that

dist(zi, zi′, s
′) ≥ aβk−1(i

′, s′) = 0.

Cases 2a and 2b together imply that βk(i, s) = 1.
Since the number of particles is finite there exists a number K such that τj = +∞ for all
j ≥ K, hence equation (18) is a consequence of (72).

�

Proof of Lemma 16. To simplify the notation we define Ĉ = C \ C̄. The assumption
A ⊂ ∪∞

r=0(C \ C̄)r implies

Probppp

(
C ∩ ω ∈ A | C̄ ∩ ω = ∅

)
= Probppp

(

Ĉ ∩ ω ∈ A | C̄ ∩ ω = ∅
)

.

After a simple rearrangement of the last expression above one obtains

Probppp

(
C ∩ ω ∈ A | C̄ ∩ ω = ∅

)

=Probppp

(

Ĉ ∩ ω ∈ A and C̄ ∩ ω = ∅
)

Prob−1
ppp

(
C̄ ∩ ω = ∅

)

=Probppp

(

Ĉ ∩ ω ∈ A
)

since the sets Ĉ and C̄ are disjoint. The last expression is an unconditional probability with
respect to the Poisson-point process which can be evaluated explicitly using Definition 1:

Probppp

(

Ĉ ∩ ω ∈ A
)

=

∞∑

r=0

Probppp

(

Ĉ ∩ ω ∈ A ∩ Cr
)

=

∞∑

r=0

e−µ(Ĉ) (µ(Ĉ))r

r!
× (µ(Ĉ))−r

∫

Ĉr

dµr(z)χA(z) = e−µ(Ĉ)

∞∑

r=0

1

r!

∫

A∩Cr

dµr(z).
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This proves formula (46). �

Appendix A. Notation

Symbol Meaning
a diameter of the balls
n number of particles
N a1−d intensity
(u, v) phase space variables in T

d × R
d

f0 initial distribution, element of PM(Rd)
Probppp probability of the Poisson-point process of the initial data of (6)
fk approximated solution of (2) as defined in (15)
Hd d-dimensional Hausdorff measure
M+(Td × R

d) non-negative measures on T
d × R

d

Mw(Rd) measures with weight function w
β(a)(i, t) scattering state (= 1 unscattered, = 0 scattered) of particle i at time t

β
(a)
k (i, t) scattering state when restricting to tree of height k

T ⊂ ∪∞
i=1N

i set of tree skeltons
m ∈ T tree (skeleton)
#m ∈ N ∪ {0} size of m
l ∈ m a node in a tree
l̄ the child of node l
|l| height of a node (= i if l ∈ N

i)
(ul, vl, sl, νl) ∈ T

d × R
d × [0,∞) × Sd−1 data on node l with ul, vl initial data

νl collision parameter and sl collision time
T (Y ) trees with collision data
E(m) ⊂ T (Y ) trees with skeleton m
Φ = (m,φ) ∈ T (Y ) tree (with collision data)
Pt,k mean field probability, defined in (20)
Pt,1 distribution of root, defined in (37)
dλ̄l simplified mean field distribution at node l, defined in (24)

P̂t,k empirical distribution, defined in (33)
R(t, a) ⊂ R

d resonant initial velocities
G(a) ⊂ T (Y ) good trees (Def. 15)

Ĝ(a0) ⊂ G(a0) good trees with additional desirable properties
γl collision rate of particle l (mean-field)
Γ(j) joint collision rate of particle of height j (mean-field), (21)

Γ̂(j) joint collision rate of particle of height j (empiric), (47)
Cl colliding initial values of particle at node l, defined in definition 15
C(k) :=

⋃

l∈m∩Nk Cl ⊂ T
d × R

d

C̄(k) :=
⋃

|l|<k Cl ⊂ T
d × R

d

Ĉ(k) := C(k) \ C̄(k)
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