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There is a formal correspondence between the isotropic 3-wave kinetic equation and the rate equa-
tions for a non-linear fragmentation–aggregation process. We exploit this correspondence to study
analytically the time evolution of the wave frequency power spectrum. Specifically, we analyzed a
3-wave turbulence in which the wave interaction kernel is a constant. We consider both forced and
decaying turbulence. In the forced case, the scaling function diverges as x−3/2 as expected from
Kolmogorov–Zakharov theory. In the decaying case, the scaling function exhibits non-trivial, and
hitherto unexpected, divergence with both algebraic and logarithmic spectral exponents which we
calculate. This divergence leads to non-trivial decay laws for the total wave action and the number
of primary waves. All theoretical predictions are verified with high quality numerical simulations of
the 3-wave kinetic equation.

PACS numbers: 47.35.-i, 82.20.-w, 94.05.Lk

Wave turbulence is a theory of the statistical evolu-
tion of ensembles of weakly nonlinear dispersive waves.
It has been applied to capillary waves on fluid interfaces,
gravity waves on the ocean, acoustic turbulence and var-
ious special limits of plasma and geophysical turbulence.
(For a review of the theory see [1]; for a summary of
applications see [2].) The key feature is the fact that
weak nonlinearity permits the consistent derivation [3] of
a wave kinetic equation describing the time evolution of
the frequency power spectrum, Nω(t). When sources and
sinks of energy, widely separated in frequency, are added
to the wave kinetic equation, it can be shown to have
exact stationary solutions corresponding to a cascade of
energy through frequency space from the source to the
sink. The cascade solution is known as the Kolmogorov-
Zakharov (K-Z) spectrum; it describes an intrinsically
non-equilibrium state of the wave field. Everything is
known about the stationary K-Z spectra, their scaling
exponents, locality and stability. By contrast, very lit-
tle is known about the time-dependent solutions of the
wave kinetic equation. A basic scaling theory of the de-
velopment of the stationary state in the case of forced
wave turbulence was provided in [4] although numerical
investigations [5, 6] have suggested that there are unex-
plained dynamical scaling anomalies in many cases. Al-
most nothing is known about time-dependent solutions in
the case of decaying turbulence where an initial specrum
is allowed to decay in the absence of external forcing. In
this Letter we take the first steps to remedy this.

The subject of aggregation–fragmentation kinetics,
having its origins in theoretical chemistry has, at first
sight, rather little to do with waves or turbulence. This
field concerns itself with the statistical mechanics of en-
sembles of particles which aggregate or fragment upon
contact. The principal quantity of interest is the particle

size distribution, ni(t), denoting the density of clusters
of mass i at time t. It satisfies a kinetic equation, which,
in the case of pure aggregation, is the well-known Smolu-
chowski coagulation equation [7]. For a review of pure ag-
gregation processes see [8]. If clusters also break up, addi-
tional terms may be added to the Smoluchowski equation
to take this into account. See [9] for a review of fragmen-
tation. In aggregation–fragmentation kinetics, in strong
contrast with wave kinetics, almost all theoretical effort
has historically been focused on determining the time
evolution of ni(t) from the underlying kinetic equation.
As a result, a comprehensive scaling theory of the solu-
tions of the Smoluchowski equation has been constructed
(see [10] for a review). Although there is a conceptual
analogy [11] between energy transfer between scales in
turbulence and mass transfer between clusters in aggre-
gation, it is only recently that this analogy has been made
quantitatively useful. Concepts and techniques from tur-
bulence have proven useful in analysing certain aspects
of aggregation problems [12, 13, 14]. Furthermore, it
has been shown [15] that, in the case of isotropic wave
turbulence with quadratic nonlinearity, the wave kinetic
equation can be rewritten as a set of rate equations for a
aggregation-fragmentation process with an unusual non-
linear fragmentation mechanism. This correspondence
opens the door for the transfer of ideas and techniques
from aggregation–fragmentation kinetics to the context
of wave turbulence which will hopefully start to fill in the
gap in knowledge of time-dependent solutions of the wave
kinetic equations alluded to already. Furthermore, this
correspondence opens up a new set of problems within
aggregation–fragmentation kinetics. This Letter contains
some opening explorations in this direction.

It was shown in [15] that resonant interactions between
waves lead to forward transfer of energy between frequen-
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cies which looks like an aggregation process: (i) ⊕ (j) →
(i + j). Back-scatter of energy leads to a fragmen-
tation process (i) ⊕ (i + j) → (i) ⊕ (i) ⊕ (j). This
fragmentation mechanism is unusual. It is non-linear
while typically [9] the fragmentation mechanism is linear:
(i + j) → (i) ⊕ (j). Nonlinear collision-controlled frag-
mentation processes have been studied in the past (see
[16] and references therein). While they are somewhat
similar to the above rule, this model asserts that only
the larger particle breaks and it happens according to a
rather special rule. Our goal here is to apply ideas and
techniques developed in studies of aggregation and frag-
mentation to wave turbulence. We want to examine fun-
damental aspects and have, therefore, limited ourselves
to the simplest possible situation where the wave inter-
action kernels are constant. The dynamical problem is
already non-trivial at this level. The resulting kinetic
equation can be reduced (see [15] for details), in the dis-
crete case [18], to:

dNω

dt
= J δω 1 +

1

2

∑

ω1+ω2=ω

Nω1Nω2 − Nω

∑

ω1≥1

Nω1 (1)

− Nω

∑

ω1<ω

Nω1 + Nω

∑

ω1>ω

Nω1 +
∑

ω1≥1

Nω1Nω+ω1

where J is the energy injection rate and Nω is the fre-
quency space wave action. The total wave action is
N(t) =

∑

ω≥1 Nω(t). In the decay case (J = 0), it satis-
fies the equation (found by summing Eqs. (1))

dN

dt
= −

1

2

∑

ω≥1

N2
ω. (2)

The primary waves (monomers) evolve according to

dN1

dt
= −N2

1 +
∑

ω≥1

NωNω+1. (3)

We assume the scaling hypothesis: there exists a typical
scale, s(t), such that Nω(t) is asymtotically of the form

Nω(t) = saF (ω/s). (4)

Given this hypothesis, it follows from Eq. (1) that

ds

dt
= sa+2 (5)

while F (x) must satisfy a complicated integro-differential
equation. The scale s(t) is defined as a ratio of moments:

s(t) =
M2(t)

M1(t)
Mn(t) =

∫ ∞

0

wnNω(t) dω (6)

Often the scaling function, F (x), diverges at small x:

F (x) ∼ Ax−τ as x → 0. (7)

The exponent τ is the wave spectrum exponent or poly-
dispersity exponent. The shape of the frequency power
spectrum for large time is determined by the small x
behaviour of the scaling function, F (x). In aggregation
problems this divergence has been often encountered and
the τ has proven to be difficult to determine [10, 17]; in
some seemingly simple models the exponent τ remains
unknown. An important lesson from this work is that
one should be particularly careful when τ ≥ 1.

This is a finite capacity system so there is no dissi-
pative anomaly / gelation transition. Energy is there-
fore conserved for all time by the wave interactions. For
the forced case, the total energy then grows linearly in
time since we are injecting energy at a constant rate.
Thus M1 ∼ t (we take J = 1). The scaling hypothesis,
Eq. (4), then implies that a = − 3

2 and subsequently solv-
ing Eq. (5) suggests that s(t) ∼ r0 t2 for some constant,
r0. We then expect the scaling

Nω(t) ∼ s−3/2 F (ω/s) with s ∼ r0 t2. (8)

On the other hand, for the decaying turbulence energy
is conserved , M1(t) = 1. The scaling hypothesis then
implies that a = −2 and solving Eq. (5) gives s(t) ∼ s0 t
for some constant, s0. We then expect the scaling

Nω(t) ∼ s−2 F (ω/s) with s ∼ s0 t. (9)

These predictions for the growth rate of s(t), which are
based solely on the assumption of scaling and the ab-
sence of a dissipative anomaly, are verfied numerically in
Fig. 1. All numerics have been done using the algorithm
described in [15].
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FIG. 1: Time evolution of typical frequency, Eq. (6), for forced
and decaying turbulence. The dashed lines correspond to the
theoretical predictions provided by Eq. (8) and Eq. (9) re-
spectively

For forced turbulence, we expect that the frequency
spectrum should become stationary for large times. This



3

is an additional piece of information which allows us to fix
the spectral exponent. Requiring that Eq. (8) is indepen-
dent of t for small ω selects τ = 3/2. This corresponds
to the K-Z exponent for this model [15]. Furthermore,
the corresponding K-Z constant can be computed exactly
for this model [15] so that we we obtain asymptotic be-
haviour of the scaling function

F (x) ∼
x− 3

2

2
√

π − 4 ln 2
as x → 0. (10)

This prediction, and the scaling behaviour, Eq. (8) are
verified explicitly from the numerical data in Fig. 2.
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FIG. 2: Time evolution of wave spectrum in the forced case.
The main panel shows snapshots of Nω(t) at a succession of
times. The inset shows the same data collapsed according to
the scaling in Eq. (8). The collapsed data has been compen-

sated by x3/2 in accordance with Eq. (10) and shows a plateau
with the theoretically predicted amplitude.

Let us now turn to the decay case. Figure 3 presents
numerical simulations of the decay of a monochromatic
initial spectrum Nω(0) = δω 1 and verifies the scaling be-
haviour expected from Eq. (9). The essential difference
from the forced case is that we no longer have the addi-
tional constraint provided by stationarity which allowed
us to easily determine the spectral exponent τ . We must
return to the original kinetic equation.

Guided by our result for the forced cased, let us pre-

sume that the wave spectrum diverges as x → 0 in accor-
dance with Eq. (7). Substitution of Eq. (4) into Eq, (3)
and comparing requires us to choose: τ − 3 = 2τ − 4 and
A = 2−τ

1−
P

ω≥1
1

[ω(ω+1)]τ
. This seems to straightforwardly

determine the spectral exponent to be τ = 1 until we re-
alise that

∑

ω≥1
1

[ω(ω+1)] = 1 resulting in the divergence

of the amplitude, A, for this choice of τ . This surprising
result suggests that we consider the more general diver-
gence

F (x) ∼ x−1 [ln(1/x)]
ρ

as x → 0. (11)
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FIG. 3: Time evolution of wave spectrum in the decay case.
The main panel shows snapshots of Nω(t) at a succession of
times. The inset shows same data collapsed according to the
scaling in Eq. (9).

where we have introduced a logarithmic spectral expo-
nent, ρ, with which one may hope to cancel the diver-
gence we have just encountered. The tail of the wave
spectrum then has the form

Nω(t) =
A

s(t)

1

ω

[

ln

(

s(t)

ω

)]ρ

for ω ≪ s(t). (12)

Setting k = 1 in this formula gives the asymptotic form
of of n1(t). Substituting these formulae into Eq. (3)
one finds that the leading term on the left hand side
is of order s(t)−2 ln [s(t)]

ρ
and the leading order term

on the right hand side is of order s(t)−2 ln [s(t)]
2ρ−1

(not

s(t)−2 ln [s(t)]2ρ as one might naively expect owing to the
cancellation alluded to above). Thus we should choose
ρ = 1 for the logarithmic spectral exponent so that the
asymptotic form of the scaling function in the decay case
is:

F (x) ∼ x−1 ln(1/x) as x → 0. (13)

Fig. 4 shows the numerically obtained scaling function
rescaled according to this formula. The plateau at small
x provides strong numerical support for Eq. (13).

In principle, one should also obtain the amplitude at
this point but this turns out to be easier using Eq. (2)
for N(t) since certain sums which arise can by computed
exactly in that case. The total wave action is

N(t) = As(t)−1

s(t)
∑

ω=1

ω−1 ln

[

s(t)

ω

]

≈ As(t)−1

∫ s(t)

1

∫ s(t)

ω=1

ω−1 ln

[

s(t)

ω

]

dω

=
A

2

ln [s(t)]2

s(t)
.
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ical small x divergence, x−1 ln(1/x), expected from Eq. (13).

Substituting this into the left-hand side of Eq. (2), and
Eq. (12) into the right-hand side, and computing the
leading terms we find the balance

−
As0

2

ln [s(t)]2

s(t)2
= −

A2

2

ln [s(t)]2

s(t)2

∞
∑

ω=1

1

ω2
.

The sum gives π2/6 from which we conclude that A
s0

=
π2

6 . Recalling that s(t) ∼ s0 t this relation gives us the
following nontrivial asymptotic decay laws for the total
density and number of primary waves respectively:

N(t) ∼
3

π2

(ln t)2

t
(14)

N1(t) ∼
6

π2

ln t

t
. (15)

These predictions are validated numerically in Fig. 5.
To conclude, we have used the analogy between three–

wave turbulence and aggregation–fragmentation pro-
cesses to study analytically the decay kinetics of a simple
wave turbulence model. We found that the kinetics have
non-trivial scaling properties, even in this simple case,
which differ significantly from the corresponding aggre-
gation process. Our results suggest that decaying wave
turbulence should be studied in greater detail than it has
been to date.
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