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An Affine Symmetric Image Model
and its Applications

Heechan Parkviember, IEEE Graham MartinMember, IEEEand Abhir BhaleraoMember, IEEE

Abstract—Natural images contain considerable self-symmetric
redundancy. In this paper, an affine symmetric model is consi-
ered for image. It provides a flexible scheme to exploit geontigc
redundancy. A patch of texture in a region is rotated, scaled
and sheared to match other similar regions, revealing the $e
symmetry relation. The general scheme for image is derivedni
following three steps. A texture model is devised that ideiifies
structural patterns. Then, at a local level, the affine relaton is
estimated between two patches of textures, the objective ing
the structural patterns fit to each other. The methodology isthen
extended at a global level to exploit the self-symmetry of th
whole image. Further, a multi-resolution framework is utilised for
affine invariant texture segmentation, by which the self-ssnmetry
of the image is exploited across space and scale. In additiothe
affine symmetric image model poses an interesting approactot
address practical problems such as image compression.

Index Terms—image model, affine symmetry, segmentation

I. INTRODUCTION

An w_nage C"?m be defined in _d'_fferem V‘_’ays de_pend”_]g % 1. Example of local affine symmetries within a naturahge
the point of view. In human vision, an image is a visual

observation of a perspective view of the 3D physical space

projected onto a 2D plane, namely the retina of the ewhould have no immediate perceptual difference to a human

and can be regarded as a composite of projet#gtliresof observer. On the other hand a small change in structuraireext

surfaces of a scene. One can easily perceive the 3D space ha&asily noticed by human vision.

from the image using various cues such as brightness, form,

texture, and colour, but structural texture plays a majde ro

[1]. Texture is an ambiguous term but includes the tactié, fe

appearance or consistency of a surface, which results fnem t The texture is an important visual cue to our vision. For

physical surface properties such as roughness or vargatibn €xample, being able to spotjaguar by its blob patterns in a

reflectance differences such as the colour on a surface.  Split second even against a complex background. This ista hig
The definitions of texturefound in the literature [2], [3], level interpretation task in visual observation, which Vebu

[4] are broadly divided into two categoriestructural and t@ke a modern computer an enormous amount of time to per-
stochastic form. What are the visual processes that allow one to identif

a certain texture or to separate objects from the background
ing a texture cue? The answer to this question is stillgein
sought. In fact, very little is known about the process [$hrR
K2 biological perspective, the existence and role of the areur
é9&@ted in the primary visual cortex indicates that our frai
processes visual observation as a combination of diresition
bases localised in orientation and frequency [6], [7], [8],
:['9]. The constituent directional structure of texture eatt
stimulates corresponding neurons of orientation and &aqu

. Problem Formulation

« Structural Patterns that are attributed to the repetitiv
element or primitives arranged in a periodic manner
according to placement rules.

« Stochastic Random and aperiodic patterns that may
generated by a stochastic process as opposed to a d
ministic one.

Both classes of texture obviously cannot be undermined b
simplifying assumptions such as uniform intensities, the t

]Eormer clags of tde.Xtu:j con(tjams varle:jtlons of mtznsmm:cbg This is also supported by statistical research reportiad) ¢h
orm certain predictable an r_epeate patterns. A textu linear combination of directional bases forms textures [9]
second class lacks any predictable order. The random patter

can be replicated by a stochastic process [2] and the replica
B. Strategy

lin the context of image processing, texture is referred tahasvisual In this work. we attempt to represent image with structural
appearance of the surface o . .
2The texture could be further classified into more than twaigsobut the textures and their interactions by an affine transform. An

focus aspect of texture here is the structured-ness. overview from texture perception to the affine symmetric
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Fig. 2. Texture perception and self-similarity relatiofifie texton as a directional pattern descriptor and affinesfeaims enable the effective modelling of
structural texture.

image model is illustrated in Fig. 2. A discovery of the patclis localised in frequency, orientationd, and locationu be
to-patch dependency would segment the image into affittee most primitive unit in texture as the same type of funrctio
symmetric regions. An example of the affine symmetry in @s shown to exist in visual perception [12], [8], [6], [13]. A
natural image is illustrated in Fig. 1 where a patch of hathwi linear combination of such signals forms a micro structure o
a simple directional pattern can be transformed to match ttexture often referred to astaxton An analogous assumption
contour of the hat or shoulder. The idea appears simple, lginoted in [11], that

it raises non-trivial problems.
« How can the structured-ness of a texture patch be deter- texton= //ff.,ea texture= /T(textom),
mined and distinguished from non-structural patterns? e !
. How efficiently can an image be segmented into self- Textureis defined as a spatial distribution of affine trans-

similar regions? formed textons (obtained by transforf), superimposed on
a uniform lattice. It is the process of constructing texttirat
C. Motivation forms the focus of this work. Application of this model is

This is interesting not only psychologically, in the sense &0t limited to a class of image with homogeneous coritent
mimicking the highly abstract process of region identifimat PUt can be applied to natural images in which a number of
in the brain with a simple mathematical expression, but al$gxtons are needed to represent edges and various forms of
from the point of view of information theory as this show®rmitive patterns. _
potentials in reducing information redundancy and leada to The processl’ of transforming a texton to another form
compact representation. The aim of this work is to provideld @ geometrical sense is defined by an affine transform, a
framework for affine symmetry exploitation in natural image Map that connects two vector spaces. The standard affine
as illustrated in Fig. 2. transformation” in R? space is defined as

In the following, Section Il introduces the affine symmet- T[ T } { Age Ay } [ T } [ t, } )

ric image model and Section Il describes texture spectral y Ay Ay, y t,

modelling and affine invariance texture signature. Appia

of the affine symmetric image model to texture segmentati&nCO”SiStS of a Iin.ear transformatiot followed by a transla-
task is given in Section IV. Finally, conclusions are drawn ition ¢, where the linear transform may be composed of one or

Section V. several of the followingrotation, scaling shear A series of
affine transforms can be combined into a single expression.

Il. AFFINE SYMMETRIC IMAGE MODEL
. Sreferred to as ‘texture’ so far, a natural image is viewed adaas of
The model that we adopted is based on texton theory n@xture composites, each texture made of textons includmgpus forms of

[11] and directional pattern recognition. Let a patt¢ravhich  directional patterns.



Fig. 3. Directional structure in various forms (local windsize of16 x 16).

. . . Fig. 4. Comparative evaluation of the spectral filtering oapti | e.
The use of an affine transform to express the intefhe polar-gaussian spectrum model achieves the best najsgression

relationship of textons is attributed to the way that images while maintaining the structural integrity of the texturtof( to bottom :
perceived. Human vision takes visual data projected on tw@onstruction‘and s_pectral model, left to right:Noi_sympﬂn, Polar contour

. . .. . madel, Gaussian mixture model and Polar Gaussian model
retina and perspective vision creates the affine symmetry o
the image; texture is distorted with regards to position nvhe
projected. The greater the angular gap between the normalet S(f) be a normalised Fourier slice integration of
direction of the actual texture surface and the observetfse magnitudes, resulting in an adaptively shaped frequenc
viewing direction, the greater that distortion caused.dneyal, contour that allows modelling spectra of multiple direntib
this is not visibly obvious when the focal length is subs&int components without prior knowledge of the number of energy

but affine symmetry still exists in a region of same texture.clusters. 1
50) =~ [ Fetr0)ar @

IIl. AFFINE INVARIANT TEXTURE SIGNATURE o

Knowing what is present in an image patch is cruciaf’’ °" @ Cartesian grid,

to determining affine relation between patches. Directiona  S(9) = > |Fe(a,y)|6(z cos 6 + ysing),  (5)
information is an important component of both natural and r oy

synthetic images, to which human vision is sensitive. where ¢y is a normalising factor determined such that the

resulting contour includes more than a certain percentdge o
A. Spectral Texture Modelling the total energy along the Fourier slice. The contour regmss
Suppose there is a directional linear discontinuity or haif?® energy distribution of the dominant directional patter
monics along the lind = a or '_I'he contour can be used to gllstlngwsh the |mp0rtar_1t co-
efficient from others by converting the contour to a binary
xcos(f) + ysin(f) = ¢, (2) maskm(z,y) so that coefficients outside the shape are set to

then the polar representation of its Fourier transform (F.F)ero [16] (see Fig. 4).

will exhibit rapid decay as the distance from the origit . Yy [Fo(z, y)|o(m(z,y)) (©)
approacheso, except along the line at orientatiénwhere it appro . |Fo(z,y)] '

ill decay at the rate of /|r|, at best [14]. In short, the deca L . ,
. y /Irl [14] yThe analysis window size is confined i < N < 64

rate along the radial lines gives the significance of dicel hich th del I c b
information atf. A 2D Gaussian model is used to model thgvkIC t € contol_ur_ mo he capturesbp?tternhwe h Ié".re musth €
anisotropic shape of the magnitude spectrum [15], taken in normalising the contour before thresholding sa tha
the significant energy clusters are included inside the eshap

exp(—l(x—u)zfl(x—u)T), A3) by controlling the ratip of the energy covere(_j to the total
V(27)2|%] 2 energyr,ppror- Otherwise, important structure will be lost and

wherey is a covariance matrix, which determines the geéi_rtefacts created, for example the ghosting artefacts thoiee

metric shape of the Gaussian. The covariaride determined '€férred to as theGibbs phenomenordue to suppressing

by the strength of the directional contents using the inerf®® Many high frequency coefficients, as shown in Fig. 4.
tensor of the spectrum usiny - |f@)|2ch_ A Gaussian The binary decision for determining the significance of a

model on the energy distribution is assumed along Hak coefficient is ill-defined. An ordering of coefficients acdimg

radial slice 0 ~ =) of significant directiond, whose energy o S|gn|f|gance IS -d.eswable. )

dispersion (controlled by deviatios) can indicate the degree A squt|0n_tc_) mitigate th? G.'bbs. pheno_menon as well as to
of regularity of the texture pattern in orientatién provided Cconstruct efficiently a multi-directional window is to erogl -
that other distracting frequency components are remové‘d.Gauss'aln wmd_ow n a slice-wise manner. A 1D. _Gaussmn
Natural patterns in local windows are often multi-direntb window per _Fpuner slice, ce_ntre_d on the DC coefficient (due
as shown in Fig. 3, but a single directional feature assumptito the Hermitian symmetry) is given as

is limiting when modelling spectra of multi-directionalengy x? ) )

1
distributions. = e exp (_F

x

G(zlp,0) =

G(z)



where o denotes the deviation of the slice, which can be The discrete MFT, as described in [18], is derived by
computed simply as follows: sampling all three parameters at intervals, determineesl |
Levelrefers to the evaluation of the MFT at a single scale. The
discrete MFT consists of a number of levels, whose corre-
(8) sponding scales are the sample points of the scale variable.
For a given level and spatial sample point, the frequency
wherei is the index andV denotes the number of samples oBamples form the local spectrum corresponding to the region
the Fourier slice. The choice of using the Gaussian fundiion of the image that the spatial window is concentrated on. Let
the slice is due to the uncertainty principle, that is the €3&an f(u) be a discrete image of siz&" x 2M with M ¢ Z*,
function achieves optimal spread in space and frequendy. If pe level and the spatial sampling between adjacent levels
also smooth in both domains due to the modulation theoregiffers by a factor of2, then the total number of levels is
All the resulting 1D Gaussian windows are normalised sugiven by log, 2" (= M). The number of spatial samples
that G(0) = 1, and then the windows are modulated imt level I is given by 2V~ and the number of frequency
proportion tow(6) in Eq.(9). samples at level is given by2' when critically sampled and
S |Fo(,y)[8(z cos 0 + ysin 0)G(r) @) 2!+ when oversampled (Fig. 7). A window functiom(y) is
wo = S5 [Fc(a, y)[d(x cos 0+ ysin 0)Ga(r) used_ that h_as go_od joint localisation in space and freqqency
: ’ . ) o and is applied with &0% overlap across the image, which
The Gaussian window in the slice representation is condertgnaples artefact free synthesis of the spatial domain to the
to the Cartesian form using Eq.(10). spatial domain. An appropriate window function is the sqdar

x = rcos(d) y = rsin(f) (10) cosine:

. o . . w(y) = cos®[mp/2N] cos?[rq/2N], (12)

The model provides a multi-directional filter, which aIIow§Nh . T < <N

Al . ) - erey = (p,q)",0<p,g<N.
slice-wise treatment and, importantly, it can be obtainét-w
out any prior knowledge or nonlinear estimation technique, ] ] .
(cf. Gaussian mixture modelling). A comparative illustratiofe- Affine Invariant Signature
of spectral filtering using different spectral models iswsho  Spectral signatures such as the annular-ring and wedge
in Fig.4. The polar Gaussian model is shown to fit the energgmples have been used as features in various applications f
spectrum best. Preliminary results on denoising were ptede texture discrimination purposes but they are not invartant
by the authors in [16]. A similar concept of spectral modhgli geometric deformation. A affine invariant texture desdoipt

were reported recently in [17]. is presented.
The texture signature is based on a contour of the spectral
B. From Global to Local Analysis texture model in section IlI-A. The contour modél of the

Having introduced a local texture model for the recognitioWuIt"d'recmn"le spectrum Is given by points traversirigrey
of directional patterns, a useful step forward is to exptlog& the contour of the polar Gaussian,
global relationship of local blocks across scales to ovaeo C={(r0)|r=25())} (13)
the problem of a fixed window size. Locality can be introduced _ ) _
to the FT by windowing the image around the position Given a contour signatur€(z, y), its constituent boundary
of interest. When using an arbitrary window function thi@ixels are traversed to yield a parametric equation based on
transform is the Windowed Fourier Transform (WFT), whickhe affine length of a closed curve, as shown below. This is
generalises the more familiar Short Time Fourier Transforfi€ar under affine transformation and also yields the same
(STFT) for signal analysis. In [18], Wilson et al. introddce Parameters, independent of the initial representation.
multiresolution version of the STFT which generates an-over JPR S—
complete wavelet decomposition of the image using appropri /c Va)g(t) — ()i (t)dt, (14)
ately windowed Fourier bases functions. The MFT introduce
scale to the WFT by varying the size of the window accordi
to a scale parameter. With the windowing functigft), the
transform of a functiory € L2(R) at positionu, frequency¢
and scales is defined as follows:

—+oo

Mpwgs) =5 [ rwu

— 00

ﬁwere the number of dots indicates the order of the deriativ
aving encoded the boundary as a function of the parameter,
taking the Fourier transform of the boundary equation tesul
in [U,V]T , whereU andV are Fourier coefficients referring

to the z and y coordinates respectively. Since the Fourier
et gt (11) transform is a linear operator, the equation below holds,

[Ur, Vil = A[UR, VT, (15)

t-u,

The MFT contains redundancy as the whole frequency content
of the image is represented at each scale. The redundawtere([Uy, Vo]7 denotes the same coefficients from the affine
could be a drawback in compression applications but in tit@nsform of the reference block. By including another pair
image analysis domain it often acts as a correction term thudt coefficients and extending Eq.( 15) to2ax 2 matrix,

can be used to rectify a decision by cross-scale analysis. #lptaining the determinants reveals a linear factor. A simpl
appropriate sampling strategy such as the use of an imatjgsion of both sides by one side produces an absolute affine
pyramid can reduce the redundancy significantly. invariant feature. For more details, the reader is referred
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Fig. 5. Noise robustness test fpol ar cont our (from left to right : source, polar contour, Fourier destidp, polar contour at 15 dB and Fourier
description at 15 dB)

to [19].

Fig. 5 shows a simple noise robustness test of the pola

128 x 128 pixels. The first column shows two test textures,
to which white Gaussian noise is added to give a SNR[§
of 15dB. The sample is partitioned int64 x 64 blocks ’
with 50% overlap and the polar contour is extracted in
each block, resulting it x 4 contours. The middle column
shows the polar contour extracted from the original texture
and the last column shows the contour extracted from t
noisy textures in the first column. As shown, shapes of”
the extracted contours (red) and distribution of the Faurie ] ) ]
description coefficients are consistent regardless of tg'l% 6. Segmentation test of texturenposi t es: texture compositex| 2
- ; ) and classification result in pairs, white Gaussian noisadided to both
presence of noise. It should be noted that different shapeseture samplesi6dB in SNR)
polar contours and Fourier descriptions depend on theresxtu

IV. APPLICATION TO TEXTURE SEGMENTATION

Fig. 6 shows a simple classification experiment, where Segmentation has been studied for decades and utilised in
blocks ares4 x 64 pixels and50% overlapped. The compositedmany applications requiring the detection, recognitiord an
texture in the first row consists of three kinds of texturéneasurement of objects in images. The aim is to model an
whose number of significant directional features are difier image utilising affine symmetry, which in a local mannerhis t
to each other. The extracted contour signatures are showrfligfining of a geometric relationship between local blocid.[2
the middle column and their Fourier description is visualis Discovering the optimal groups that minimise the overall
in the scatter graph. It is important to bear in mind tha¥arping error is non-trivial, and known methods are compu-
the fundamental assumptions underlying the affine-inmaridationally intensive. The problem is approached by exingct
descriptors have been violated. The observed textures @aféne invariant features from the local blocks (not reqgri
strictly not affine transforms of some prototype. Had thisrbe affine computation). Considering that texture exhibititrgisg
true, the distributions of both scatter graphs would be cedu ‘directional pattern‘, the Fourier representation offarsideal
to single points. The second texture in the new row consfsts\ay to extract features as follows.
two classes of texture, a pair of which is a rotated version ofe The Fourier power spectrum is invariant to translation and
the other. Both textures have the same number of directional only the linear part of the affine transform needs analysis.
features but the statistical variation along the contour ise Fourier slice analysis allows the efficient extraction of
different. This can be visualised in the correspondingtecat both directional patterns and regularity of content.
graph, where the distribution of the features comprises@ li « The Fourier description of the polar signature is simple



Spatial sampling Frequency samples per block

Fig. 7. Multiresolution Fourier Transform built on the Laplan pyramid

level=2 level=1 level=0

and fuIIy affine invariant. Fig. 8. Polar contour pyramidl:ena.

B. Unsupervised Segmentation by Independent Component
A. Segmentation by Searching and Grouping Affine Symmeigalysis

Regions The main purpose of feature extraction is to map dif-

Let f; be a subblock from a uniformly partitioned imagé’erences in spatial structures, either stochastic or gaame
f and B be a pool of subblocks. The objective is to sorfto difference values in higher or lower dimensional featu
subblocks into a desired number of affine invariant groupd@ces, where one group of data points can be distinguished
This requires identification of the optimal prototypicafrom another in a semantic sense. Most segmentation methods

(centroid) block of each group that minimises the overd!low the same general strategy.

transformation error for all combinations of prototype A_n un_superwsed bIocI_< classification based on the n_umber
and other target blocks. The brute-force search leads Qpdirectional features using Independent Component /sisly
the discovery of the optimal prototype block as well aQ_CA) is atte_mpted. ICA Qnd its va_\rlants prowde representa
affine invariant segmentation (grouping), but it is cleasly tions that utilise a set pf linear bas_,ls functions [9], [18]hat
computationally arduous task given the number of possitféé @Pproaches have in common is that they try to reduce the
combinations. The computational burden can be halved [jjormation redundancy by capturing the statistical stce
assuming that'Fs, F; € B |T(fi, f;) — T(f;, f:)] = 0., in the images, beyond secqnd order |nf0rma_t|0r_1. ICA fmds a
where T(f;, ;) transforms f; to fit f;. Nonetheless, the linear non-orthogonal coordinate system (basis) in maditate

computational requirement becomes prohibitive as the dma?;ata{ determined by the higher-order statistics, whiched w
size increases, wit)(n?) for the affine transform where ocalised in frequency and orientation. This experiment is
is the number of local blocks. motivated by the assumption that ICA can allow structures

between blocks to be found, as well as how similar they are

ach other.

espite the fact that ICA identifies common directional

H’near structures, it is not obvious how to extract affine
e . . : .
variance between blocks with only the discovered basis

Some warping based methods exist, and they are recaptpoe§
here. Wilson and Li [21] performed texture segmentationgisi
affine symmetry. They used the warping error as one of t

distance metrics in a Multiresolution Markov random fiel nctions. However attention is directed towards the nemb
framework. The method requires relatively less computati Hnctions. However, lon 1s di W
Bf directional linear bases in each block captured by ICA,

than the exhaustive search as the affine transformations be- L ; . :
W?]ICh appears affine invariant according to the trials tHated

tween the current block and its neighbouring patches are_: : - .
computed. Later, Bhalerao and Wilson [22] developed Fig. 10. The number of bases with large co_efﬂments (agtiv
n a block seems dependent on the complexity of the texture,

algorithm based on the translation invariant property @& t L ; : 4 ey
g property Bon5|der|ng ICA bases are well-localised in orientationthw

Fourier magnitude spectrum. It reduces the computation é/f 0 fi 10 th Kin the | d of onl
using the Fourier magnitude spectrum as a single long featly o once tofigure 4, the crack in the 10g, composed of only

vector, and gains invariance by having an affine symmetr?@e basis at a specific orientation, is distinguished fraoneiot

group of vectors as the centroid, the members of Whiéﬁxtures while the jaguar’s blob texture is not capturedtas i

are derived from a single block by scale and OrientatiorﬁqwresaIarger analysis window. This makes sense as k bloc

changes. Smith [23] utilised a metric to measure the degre(}% unlikely to fit one to another if the number of directional

deformation from an affine matrix and the transitivity of the co f.eatures is different. The experiment is conducted a
matrix. Affine transforms between blocks and one prototy 8”OWS' ) ) ) . .
is computed, then using transitivity, blocks are classifedh 1) The image is decomposed using the Laplacian pyramid
that the overall deformation is minimised. This is based on2) A subbandlevel = 0) is tiled by 16 x 16 pixel blocks
an assumption that only a small amount of deformation exists  and the local blocks are fed into ICA. _
between the blocks in a self-similar group, which may not be 3) The different number of significant basis functions for
true in natural images. The latter two methods in particular ~ €ach block can be found as

k
:)ergtjcl);)elpglsj'man assistance to select an adequate number of argma%{% < C} 0< k< ks, (16)

i



where w; is the weight of the basis functioh;, ¢ each scale. The resultant featurgsat the next level are joined
is the percentage (set 8t9) of energy that a set of together with the quadtree parent as follows:

significant basis coefficients in the total energy of the o i
block occupies, and is a set of basis function indices Feature(i, j) = {p"(V)|0 <k <1}

sorted byw;/ || b; |- kmaz is the maximum number of  p*(Vi ;) = Viijor| (25 |6 » Vigk = Wi ¥ {vijx}, (18)
basis functions for a block.

4) The blocks are grouped based on the number of si Eere wkb?n%k} refer to a "]:’e(;ght and Ilevel _respelctivglr)]/.
nificant basis functions in each block. Blocks in each'® comoine eatures are fed into a clustering algorithm.

group should be compared for better classification ﬁxpectation Maximisation (EM) with a Gaussian mixture is
they are not affine invariant. This can prevent differerHSEd for clustering. Prior knowledge of the number of classe
texture blocks with the same number of directionaP required due to the nature of the algorithm. The EM

features from being in the same group. However, th ustering is chosen only for simplicity as the main focutois
experiment is to discover the effectivenes.s of the nljmb ?termine an effective affine invariant feature. A randorl fie

of directional features as an affine invariant feature. approach may be of interest if convergence of the number of

: i lasses is desired [21], [25].
5) In [24], for each group, a prototypical block is given b )L , ,
) In[24] group,ap yp! bl )P The MFT used here is implemented slightly differently from

argma%eK{ w_:}7 (17) that in [1_8]. The Ioca! block size_is adju_sted to chang_e the
2 size of window according tevelwhile keeping the resolution

v _ .. fixed. This is to use only a specific high frequency band, which

where e; is the eigenvalue of the second prinCipals assumed to include pure texture information. The applied

component of block:. settings are as follows:
This results in a block composed of strong directional bases_ The decomposition level ig

with high weights. This is to verify that the classificati@sult
does conform with the purely warping error-based classifi-
cation. Despite the brute-force search not being conducted is given in Fig. 8.
the quality of the reconstruction indicates a good fit betwee The local blocksize is set @'+ x 24+ wherel is level
prototype and other.blocks in _the class. In the case of the_ The number of angular segments, for Fourier slice
_undeumated Laplacian pyramlq, the t_’IOCk Sizé should be analysis is set to the width of the block. The polar contour
increased by a factor df for multiresolution analysis. _ is parameterised at a uniform angular intervalidth.
The ICA based method has a couple of problems. Firstly, | atfine invariant features include all the Fourier coeffi-
the computational burden of ICA is significant. Secondly, it cients except DC and two adjacent coefficients.
does not exploit inter-scale correlation, which is consde

. ) ; o wy in Eq.( 18) is set tal /2! wherel denotedevel
an important factor to tackle not only the fixed size of the Firstly. it is ob d that the si df h
local window but also to avoid any bias resulting from a T''StY, it'is observed that the signature extracted froe t

single scale. Nonetheless, performing ICA on the high IevEPuri,er transform is too jagged in severe levels of noigg. (e.
of the pyramid is difficult due to an insufficient number ode n SNR) dye to the scgttelred h|gh-frequ§n_cy coefficients,
observations (blocks), as the number of local blocks deelseaWh'Ch in turn disrupt the affine invariant description ansiuies

by a factor of4 as the level increases in a poor clustering. The scattered high-frequency coefiitsi

are removed using universal thresholding [26], Eq.( 19)

%

= 2. The high frequency
subband is extracted using the Laplacian bandpass filter-
ing and the MFT is computed. The MFT of each image

C. Cluster based Segmentation S v2log 2560 (19)
With regard to the window size for texture analysis, there 1.237=s 7

is a problem known as the class-boundary uncertairgyjf before the Fourier slice projection and a Gaussian smogthin
the analysis is confined to a small window, a better resatlutidilter is applied to the shape boundary. This, in fact, makes t
of segmentation is obtained but confidence of the textusbape-extraction robust to noise [16]. The polar contoua in
characteristics within the window is lost. On the other handmall block is still affected by noise, but it is alleviatesl the
a larger window allows a better analysis of texture but tasublock size increases.
in a coarse resolution of segmentation. A solution is to Secondly, many contour signatures from the bottom level
employ a multi-resolution approach. Texture informatidn af the MFT are elliptical, which makes affine invariant shape
the top level passes down to the lower level and is combinddscription useless. Starting with a window32f x 32 at the
recursively as it proceeds. The entire image is coverédttom level still produces an acceptable result. Howeiver,
initially by a single window. The window is divided intois found that using theirea of the contour at the bottom
four small uniform windows in accordance with a quadtrelevel feature produces a better result. This is because the
structure where the analysis information is passed on to thleape size increases with the strength and directionafity o
next level. The procedure iterates until all regions ardaumi  the feature and decreases as the directional pattern is less
or until the desired number of regions have been establishewnificant. It is probable that different textures with geme
size of polar contour fall into the same class, but it is thesmo

Having applied the MFT [18] to a source image, the affineseful information that is collected at the bottom leveleTh

invariant features are extracted from the Fourier spectatimdiscrimination gets better as the structural informatiamnt a



j aguar giraffe

Fig. 9. Block classification test on natural images

bigger window is reflected; passed on from the parent bloc,\' e
and combined together by Eq.( 18) E%W0k
Lastly, the block size ofl6 x 16 results in a coarse # ¥ fid s

segmentation map, the effective resolution of whicl3is 8 = 22 \8 #1
pixels per block considering th&0% overlap. It is assumed L1 = g ¥
that the class with the most complex texture based on Eq.( 2Jf) =# = Fj
(blocks) is the region of interest, o 2E L
$s =AR#

R(S) = W’ (20) ICA decomposition ICA reconstuction with limted number of basis functions

where CH is a convex hu_” function that retums results _Irf:ig. 10. ICA based block classification: a coarse reconstmidormed from
the form of a set of coordinates. A morphological operatiofijimited number of ICA bases and a different number of baseslifferent
is applied to the binary map of the assumed region of interéstcks

using a6 x 6 disc structuring element to obtain a smooth

contour of the segmentation boundary and remove possible

outliers. . R .
gi raf f e, andl ena as shown in Fig. 9. The segmentation

results are shown in pairs - the classification map with a
) ] red contour obtained by the morphological operation, and a
D. Experimental Evaluation segmented image obtained by clipping out the region inside t
Two preliminary experiments were presented earlier t@d contour. Three kinds of textures are assumed in all #te te
illustrate the effectiveness of the new feature. Fig. 5 shthe images (three component Gaussian mixture mogleljuar
contour signature extraction in the presence of noise. &igis segmented by blob, crack in the log and the rest. The blob
tests segmentation of simple composites of structuralitest and crack differ in the number of directional features and it
to which Gaussian noise is added to give a SNR fB. is well captured in the classificatiozebr a is segmented
With the successful test on the sample image test set, thestripe, grass and the remaining region. The stripe texgur
method is applied to four natural imagegaguar, zebra, diverse in scale but it is captured as a single regigm.af f e



The underlying concept has been applied to image classi-
fication by many researchers but few have applied the affine
symmetry model to segmentation by partitioning the image
into blocks. The complexity of the algorithms, however, has
been a major issue prohibiting practical implementatide
motivation has been to develop a computationally efficient
image texture classification algorithm while maintainirng t
texture discriminative power of previous approaches. The
simplicity and efficiency of the presented approach utifisi
an affine invariant shape description is demonstrated. t ma
be of interest where efficient texture segmentation is regui
Experimental evaluation indicates acceptable segmentas
sults for structural texture and the algorithm’s robustnes

: d by the airaffe ski q th __.noise. Further study utilising a random field segmentation
Is segmented by the girafte skin, grass and the remainipg e \york with other useful features may improve the algo-

region. The three regions are separated very well with only, ., “thereby determining the optimal number of segmented

few outliers.| ena is, ;egmer.ned by thg fur on the hat, t,h(?egions. Additionally, it can also be utilised for image com
edge and the remaining region. The first two textures dmﬁression.

largely by the number of directional features but blocks i
the fur region are of a single direction feature, with some o o
periodic and others of linear discontinuity or lines. Theotw” Application to Image Approximation
regions are well separated. The classification result otesfl ~ Considerable reported research has been directed towards
images has many outliers. Although this may be improved Isgproducing an image from a compact representation ussg st
the employment of a sophisticated algorithm, the resuleiy v tistical properties. Despite the wide variety and large plax-
promising considering the textures of the natural images aty of many data compression techniques, they are all based o
not exactly affine symmetric despite the fact that they logdke same simple principle. This requires a statistical atwar
very self-similar. terisation of the data to be compressed, with which a measure
of probability or frequency of occurrence is associatedsth
achieving compression. In contrast, very little progreas h
been made towards image compression from understanding
We have described an affine symmetric image mod@e image conten_t. The approach would allow compressioni as
that defines patch-to-patch affine relationships on an imagfg" asan ar_1alys_|s of the image content a_nd the Incorparatio
with a uniform lattice. Considering textures on every patc new functionality such as th‘?_'de”t'f'c"’?“o“ of an objeyt b.
it was realised that not all patches are appropriate fEﬁxture. Some re_sults of our initial e_xperlments are s_hawn ’
é:lg. 11 where a single texture patch is used to approximate th

the exploitation of affine symmetry with other patches, @' ~= A bined h with PCA is introduced
particularly patches from background areas with uniforr.‘ﬁmIre Image. A combined approac wit IS intro uce
detail in [27]. A better solution, however, would detenai

intensity. The first obstacle, therefore, was to developI . .
number of textures present in the image and use a

texture analyser so that a patch with structural texture c ) ) ;
be distinguished and treated differently from non-streedtu representative patch from each texture region to appraeima
the image region by region. This is ongoing research built on

textures. Two different approaches to estimate the distéimc ) ) .
: iYL segmentation algorithm and we are currently developing
efficient affine parameter entropy coder. Preliminaryltes

16x16

Fig. 11. Image approximation with a randomly chosen prqesy;j aguar ;
the approximation is shown as a synthesized highpass andoasteucted
image

V. SUMMARY AND DISCUSSIONS

and the other based on affine invariant features. The latf& .
provides a more practical solution in terms of computation}ﬁ'ere presented by the authors in [24].

efficiency. Affine invariance has received much attentiothwi
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