
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 

 

This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  

To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

Author(s):  Turgay Celik and  Tardi Tjahjadi 

Article Title: Image Resolution Enhancement Using Dual-Tree 
Complex Wavelet Transform 
Year of publication: 2010 

Link to published article:  
http://dx.doi.org/10.1109/LGRS.2010.2041324   
Publisher statement: © 2010 IEEE. Personal use of this material is 
permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works.” 
Citation: Celik, T. and Tjahjadi, T. (2010). Image Resolution 
Enhancement Using Dual-Tree Complex Wavelet Transform, 
Geoscience and Remote Sensing Letters, Vol. 7(3), pp. 554 - 557 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/1352835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


1

Image Resolution Enhancement Using Dual-tree

Complex Wavelet Transform
Turgay Celik and Tardi Tjahjadi

Abstract

In this letter, a complex wavelet-domain image resolution enhancement algorithm based on the estimation of wavelet
coefficients is proposed. The method uses forward and inverse dual-tree complex wavelet transform (DT-CWT) to construct
the high-resolution (HR) image from the given low-resolution (LR) image. The HR image is reconstructed from the LR image
together with a set of wavelet coefficients using the inversedual-tree complex wavelet transform (IDT-CWT). The set of wavelet
coefficients is estimated from the DT-CWT decomposition of the rough estimation of the HR image. Results are presented and
discussed on very high-resolution QuickBird data, throughcomparisons between state-of-the-art resolution enhancement methods.

Index Terms

Resolution enhancement, image interpolation, dual-tree complex wavelet transform, discrete wavelet transform, satellite image.

I. I NTRODUCTION

Image resolution enhancement is a usable preprocess for many satellite image processing applications, such as vehicle

recognition, bridge recognition, and building recognition to name a few. Image resolution enhancement techniques canbe

categorized into two major classes according to the domain they are applied in: 1) image-domain; and 2) transform-domain.

The techniques in image-domain use the statistical and geometric data directly extracted from the input image itself [1], [2],

while transform-domain techniques use transformations such as decimated discrete wavelet transform to achieve the image

resolution enhancement [3]–[6].

The decimated discrete wavelet transform (DWT) has been widely used for performing image resolution enhancement [3]–

[5]. A common assumption of DWT-based image resolution enhancement is that the low-resolution (LR) image is the low-pass

filtered subband of the wavelet-transformed high-resolution (HR) image. This type of approach requires the estimationof wavelet

coefficients in subbands containing high-pass spatial frequency information in order to estimate the HR image from the LR

image.

In order to estimate the high-pass spatial frequency information, many different approaches have been introduced. In [3], [4],

only the high-pass coefficients with significant magnitudesare estimated as the evolution of the wavelet coefficients among the

scales. The performance is mainly affected from the fact that the signs of estimated coefficients are copied directly from parent

coefficients without any attempt being made to estimate the actual signs. This is contradictory to the fact that there is very

little correlation between the signs of the parent coefficients and their descendants. As a result, the signs of the coefficients

estimated using extreme evolution techniques cannot be relied upon. Hidden Markov tree (HMT) based method in [5] models

the unknown wavelet coefficients as belonging to mixed Gaussian distributions which are symmetrical about the zero mean.

HMT models are used to determine the most probable state for the coefficients to be estimated. The performance also suffers

mainly from the sign changes between the scales.

The decimated DWT is not shift-invariant and, as a result, suppression of wavelet coefficients introduces artifacts into the

image which manifests as ringing in the neighbourhood of discontinuities [6]. In order to combat this drawback in DWT-based
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image resolution enhancement, cycle-spinning methodology was adopted in [6]. The perceptual and objective quality ofthe

resolution enhanced images by their method compare favourably with recent methods [3], [5] in the field.

Dual-tree complex wavelet transform (DT-CWT) is introduced to alleviate the drawbacks caused by the decimated DWT [7].

It is shift invariant and has improved directional resolution when compared with that of the decimated DWT. Such features

make it suitable for image resolution enhancement. In this letter, a complex wavelet-domain image resolution enhancement

algorithm based on the estimation of wavelet coefficients athigh resolution scales is proposed. The initial estimate ofthe

HR image is constructed by applying cycle-spinning methodology [6] in DT-CWT domain. It is then decomposed using the

one-level DT-CWT to create a set of high-pass coefficients atthe same spatial resolution of the LR image. The high-pass

coefficients together with the LR image are used to reconstruct the HR image using inverse DT-CWT.

The letter is organized as follows. Section II gives a brief review of the DT-CWT. Section III describes the proposed DT-

CWT domain satellite image resolution enhancement algorithm. Section IV provides some experimental results of the proposed

approach and comparisons with the approaches in [1], [2], [4], and [6]. Section V concludes the letter.

II. D UAL -TREE COMPLEX WAVELET TRANSFORM

The dual-tree complex wavelet transform is a combination oftwo real-valued decimated discrete wavelet transforms. The

ordinary decimated DWT is shift variant due to the decimation operation exploited in the transform. As a result, a small shift

in the input signal can result in a very different set of wavelet coefficients. For that, Kingsbury [7] introduced a new kind

of wavelet transform, called the dual-tree complex wavelettransform which exhibits shift invariant property and improves

directional resolution when compared with that of the decimated DWT.

The DT-CWT also yields perfect reconstruction by using two parallel decimated trees with real-valued coefficients generated

at each tree. The one-dimensional (1-D) DT-CWT decomposes the input signalf(x) by expressing it in terms of a complex

shifted and dilated mother waveletΨ(x) and scaling functionΦ(x), i.e.,

f(x) =
∑

l∈Z

sj0,lΦj0,l(x) +
∑

j≥j0

∑

l∈Z

cj,lΨj,l(x), (1)

whereZ is the set of natural numbers,j andl refer to the index of shifts and dilations respectively,sj0,l is the scaling coefficient

and cj,l is the complex wavelet coefficient withΦj0,l(x) = Φr
j0,l(x) +

√
−1Φi

j0,l(x) and Ψj,l(x) = Ψr
j,l(x) +

√
−1Ψi

j,l(x),

where the superscriptsr and i denote the real part and the imaginary part, respectively. In the 1-D DT-CWT case, the set

{Φr
j0,l, Φ

i
j0,l, Ψ

r
j0,l, Ψ

i
j0,l} forms a tight wavelet frame with double redundancy. The realand imaginary parts of the 1-D DT-

CWT are computed using separate filter banks with filtersh0 andh1 for the real part, andg0 andg1 for the imaginary part

[7].

Similar to the 1-D DT-CWT, the two-dimensional (2-D) DT-CWTdecomposes a 2-D imagef(x, y) through a series of

dilations and translations of a complex scaling function and six complex wavelet functionsΨθ
j,l, i.e.,

f(x, y) =
∑

l∈Z2

sj0,lΦj0,l(x, y) +
∑

θ∈Θ

∑

j≥j0

∑

l∈Z2

cθ
j,lΨ

θ
j,l(x, y). (2)

where θ ∈ Θ = {±15◦,±45◦,±75◦} provides the directionality of the complex wavelet function. In other words, the

decomposition off(x, y) by exploiting the DT-CWT produces one complex-valued low-pass subband and six complex-valued

high-pass subbands at each level of decomposition, where each high-pass subband corresponds to one unique directionθ.

III. PROPOSEDMETHOD

Let us consider the unknown2H × 2W HR imageXH and the knownH ×W LR imageXL . The aim of the enhancement

is to generate an estimate HR imageX̂H of the unknown HR imageXH using the known LR imageXL . Let us further assume

that the one-level DT-CWT decomposition of an2H × 2W imageX results in a matrix of DT-CWT(X) = [LPX HPX],

and inverse DT-CWT (IDT-CWT) of[LPX HPX] reconstructs the signalX perfectly, i.e., IDT-CWT([LPX HPX]) = X.

The LPX is a matrix of sizeH × W which is the complex-valued low-pass subband resulting from the one-level DT-CWT

decomposition of imageX, and HPX is a matrix of sizeH × W × 6 which is the collection of all six complex-valued

high-pass subbands resulting from the one-level DT-CWT decomposition of imageX.
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(a) (b) (c)

Fig. 1. Reference high-resolution test image and its low-resolution versions obtained by first low-pass filtering and then down-sampling by a sampling factor

in both spatial dimensions: (a) Input high-resolution reference image; (b) Low-resolution version of (a) with a sampling factor 2; and (c) Low-resolution

version of (a) with a sampling factor 4.

For a given LR imageXL, the proposed resolution enhancement method is made up of the following four main steps: 1)

generate the initial estimate (Y) of the HR image; 2) decompose theY using one-level DT-CWT to create low-pass and

high-pass matrix structure[LPY HPY]; 3) formulate a matrix structure[XL HPY] using [LPY HPY] and the input LR

imageXL ; and 4) generate of the HR image by employing the IDT-CWT on[XL HPY].

The first step employs the cycle-spinning algorithm [6] in DT-CWT domain to create an initial estimateY of the unknown

HR image.

The second step is the estimation of the high-pass coefficients for the input LR signalXL . The initial estimateY is

decomposed using the one-level DT-CWT to create one complex-valued low-pass subband and six complex-valued high-pass

subbands with the same spatial resolution as that ofXL , i.e., DT-CWT(Y) = [LPY HPY].

In the final step, the input LR image together with the complex-valued high-pass subbandsHPY extracted from the one-level

DT-CWT decomposition ofY are used to create the HR image by employing inverse DT-CWT, i.e.,

X̂H = IDT-CWT ([XL HPY]) . (3)

IV. EXPERIMENTAL RESULTS

In the experiments, the natural colour (R, G, andB), 60 centimeter (2 foot) high-resolution QuickBird satellite image data

is used. The QuickBird data was acquired over Wall Street andthe southern tip of Manhattan on April 24, 2009. A test

image of size256 × 512 pixel at the resolution of 60 cm are cropped from the raw imageas shown in Fig. 1 (a), and is

used as the reference image. In order to obtain a performancemetric in addition to visual assessment of the results using

different resolution enhancement methods, we take a256× 512 image,XH, filter it with 3× 3 averaging (low-pass) filter, and

down-sample it to obtain two available LR imagesX
(2)
L andX

(4)
L of sizes128 × 256 and64 × 128 pixels, respectively. The

available LR images are shown in Fig. 1 (b) and 1 (c). The superscripts 2 and 4 denote the down-sample factor. The resolution

enhancement methods are applied on LR imagesX
(2)
L andX

(4)
L to reconstruct an estimatêXH of the known HR imageXH.

The original HR imageXH and the reconstructed HR imagêXH are then compared qualitatively and quantitatively. In this

letter, images consisting of three spectral bands that correspond toR, G andB channels in natural colour image representation,

i.e., XH =
{

X
(R)
H ,X

(G)
H ,X

(B)
H

}

, XL =
{

X
(R)
L ,X

(G)
L ,X

(B)
L

}

, are used and resolution enhancement methods are applied to

each spectral band of LR imageXL independently to reconstruct an estimate of the reference image.

The quality of the resolution enhanced images is estimated using several metrics from the remote sensing community. Let

the reference HR imageXH and reconstructed HR imagêXH be of sizeH × W pixels and consist of three spectral bands,

i.e., R, G, andB. The following quantitative metrics are used to compareXH andX̂H:

1) Spectral Angle Mapper(SAM) [8]: the average change in angle of all spectral vectors, defined as

SAM =
1

HW

∑

x,y

arccos

( 〈v (x, y) , v̂ (x, y)〉
||v (x, y) ||2||v̂ (x, y) ||2

)

,

where (x, y) is spatial pixel coordinate, v (x, y) =
[

v(1) (x, y) , v(2) (x, y) , v(3) (x, y)
]

=
[

X
(R)
H (x, y) ,X

(G)
H (x, y) ,X

(B)
H (x, y)

]

denotes the spectral vector of the pixel(x, y) in the reference image, and

v̂ (x, y) =
[

v̂(1) (x, y) , v̂(2) (x, y) , v̂(3) (x, y)
]

=
[

X̂
(R)
H (x, y) , X̂

(G)
H (x, y) , X̂

(B)
H (x, y)

]

denotes the vector obtained after
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resolution enhancement. The SAM value measures the difference in spectral content between corresponding bands of the

reference and resolution enhanced images, and should be as close to 0 as possible.

2) Spectral Information Divergence(SID) [9]: derived from the concept of divergence arising ininformation theory and can

be used to measure spectral similarity. SID views each pixelspectrum as a random variable and then measures the discrepancy

of probabilistic behaviours between two spectra. SID is computed as

SID=
∑

x,y

N
∑

i=1

v(i)
n (x, y) log

(

v(i)
n (x, y) /v̂(i)

n (x, y)
)

+v̂(i)
n (x, y) log

(

v̂(i)
n (x, y) /v(i)

n (x, y)
)

,

where N is the number of spectral bands, i.e.,N = 3, v
(i)
n (x, y) = v(i) (x, y) /

∑N

j=1 v(j) (x, y), and v̂
(i)
n (x, y) =

v̂(i) (x, y) /
∑N

j=1 v̂(j) (x, y). The SID value should be as close to 0 as possible.

3) Quality Index Q4(Q4) [10]: obtained through the use of correlation coefficient between hypercomplex numbers that represent

spectral vectors. Q4 is made up of different components (factors) to take into account of the correlation: the mean of each

spectral band; the intra-band local variance; and the spectral angle. The highest value of Q4 is 1, which is obtained if and only

if the resolution enhanced image is equal to the reference image.

4) Root Mean Square Error(RMSE): the root mean square error between the reference image and the resolution enhanced

image, i.e.,

RMSE=

√

√

√

√

1

N

N
∑

i=1

∆
(

X
(i)
H , X̂

(i)
H

)2

,

where

∆
(

X
(i)
H , X̂

(i)
H

)

=

√

1

HW

∑

x,y

(

X
(i)
H (x, y) − X̂

(i)
H (x, y)

)2

.

The RMSE value should be as close to 0 as possible.

5) Relative Dimensionless Global Error(ERGAS) [11]: the normalized version of the root mean squareerror designed to

calculate the spectral distortion between the reference image and resolution enhanced image, i.e.,

ERGAS= 100
h

l

√

√

√

√

1

N

N
∑

i=1

∆
(

X
(i)
H , X̂

(i)
H

)2

/M2
i ,

whereh/l is the ratio between the pixel sizes of the reference HR imageand the LR image, andMi is the mean radiance of

ith spectral band in the reference image. The ERGAS should be as close to 0 as possible.

6) Correlation Coefficient(CC): the correlation between each band of the reference image and the resolution enhanced image,

i.e.,

CC =
1

N

N
∑

i=1

∑

x,y

(

v(i) (x, y) − v̄(i)
) (

v̂(i) (x, y) − ¯̂v(i)
)

√

∑

x,y

(

v(i) (x, y) − v̄(i)
)2 ∑

x,y

(

v̂(i) (x, y) − ¯̂v(i)
)2

,

wherev̄(i) and ¯̂v(i) are the mean values of the corresponding spectral band. The CC value should be as close to 1 as possible.

Experiments are conducted to compare the performance of theproposed approach with that of recently proposed methods in

[1], [2], [4], and [6]. We used the authors’ implementationsfor the methods in [1] and [2], and we implemented the methods

of [4], and [6].

In the first experiment, we test the performance of differentmethods on enhancing resolution of the input LR image by a

factor 2 in both spatial dimensions. For this, Fig. 1 (a) and Fig. 1 (b) are used as the reference HR image and the input LR

image, respectively. Different resolution enhancement methods are applied to Fig. 1 (b) to estimate the reference HR image as

shown Fig. 1 (a). Fig. 2 show sub-images cropped from the results of different resolution enhancement methods. The spectral

distortions on the enhanced images can be noticed. It can be observed that wavelet-domain methods achieve better visual

quality than that of the spatial-domain methods. To evaluate the spectral quality quantitatively, the aforementionedmetrics are
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. Results of spatial resolution enhancement with a factor of 2 in both spatial dimensions: (a) Reference HR image; (b) Input LR image; (c) Resolution

enhanced image using [1]; (d) Resolution enhanced image using [2]; (e) Resolution enhanced image using [4]; (f) Resolution enhanced image using [6]; and

(g) Resolution enhanced image using the proposed method.

TABLE I

SPECTRAL QUALITY METRICS FORFIG. 2 USING DIFFERENT RESOLUTION ENHANCEMENT METHODS.

CC ERGAS Q4 RMSE SAM SID

Reference values 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Method of [1] 0.9328 6.1660 0.5988 32.5969 1.5672 0.0139

Method of [2] 0.9347 6.0853 0.6081 32.1702 1.4752 0.0137

Method of [4] 0.9796 3.4987 0.8415 18.4968 0.9468 0.0115

Method of [6] 0.9668 4.4009 0.7689 23.2654 1.0250 0.0111

Proposed method 0.9814 3.3302 0.8702 17.6056 0.8437 0.0116

calculated for different methods, and the results are shownTable I. It is clear that, the values of the metrics get closerto the

optimal when using the proposed method.

In the second experiment, the resolution enhancement methods are applied twice to the LR input image as shown in Fig. 1

(c) to test their performances when the spatial resolution enhancement factor is 4 in both spatial dimensions. The subjective

results are shown in Fig. 3 and the corresponding quantitative results computed using the aforementioned metrics are shown

in Table II. The spectral deformations resulted from using the spatial-domain methods are apparent. Such deformationsare

reduced by employing the wavelet-domain methods. Furthermore, it is clear that the proposed resolution enhancement method

shows better performance than that of the other methods.

We compare the computation times required by each of the image resolution enhancement methods in generating the HR

image using the input LR image as shown in Fig. 1 (c) on a laptopwhich is operated by 32-bit Windows Vista with 2GHz

Intel(R) Core(TM)2 Duo CPU, and 2GB RAM. The methods presented in this paper are implemented in MATLABTM. It

takes 52, 39, 90, 4 and 10 seconds for the methods in [1], [2], [4], [6], and the proposed method, respectively, to produce

the resultant HR image. The method in [4] has the highest computational cost due to its multiscale data processing, whilethe

proposed method has a moderate computational cost.

V. CONCLUSION

A method for image resolution enhancement from a single low-resolution image using the dual-tree complex wavelet is

presented. The initial rough estimate of the high-resolution image is decomposed to estimate the complex-valued high-pass

wavelet coefficients for the input low-resolution image. Estimated complex wavelet coefficients are used together withthe

input low-resolution image to reconstruct the resultant high-resolution image by employing inverse dual-tree complex wavelet

transform.

Extensive tests and comparisons with the state-of-the-artmethods show the superiority of the method presented in thisletter.

The proposed resolution enhancement method retains both intensity and geometric features of the low-resolution image.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Results of spatial resolution enhancement with a factor of 4 in both spatial dimensions: (a) Reference HR image; (b) Input LR image; (c) Resolution

enhanced image using [1]; (d) Resolution enhanced image using [2]; (e) Resolution enhanced image using [4]; (f) Resolution enhanced image using [6]; and

(g) Resolution enhanced image using the proposed method.

TABLE II

SPECTRAL QUALITY METRICS FORFIG. 3 USING DIFFERENT RESOLUTION ENHANCEMENT METHODS.

CC ERGAS Q4 RMSE SAM SID

Reference values 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Method of [1] 0.9090 7.9112 0.4096 36.9070 1.9310 0.0125

Method of [2] 0.9085 7.8361 0.4126 37.0248 1.8312 0.0124

Method of [4] 0.9073 5.2569 0.3962 37.1817 1.8243 0.0125

Method of [6] 0.8965 6.2643 0.4024 39.4043 1.9426 0.0166

Proposed method 0.9389 4.7915 0.5615 30.8993 1.3558 0.0129
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