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Local Affine Image Matching and Synthesis based
on Structural Patterns

Heechan Park,Member, IEEE,Graham Martin,Member, IEEE
and Abhir Bhalerao,Member, IEEE

Abstract

A general purpose block-to-block affine transformation estimator is described. The estimator is based on
Fourier slice analysis and Fourier spectral alignment. It shows encouraging performance in terms of bothspeed
and accuracycompared to existing methods. The key elements of its success are attributed to the ability to: 1)
locate an arbitrary number of affine invariant points in the spectrum that latch onto significant structural features;
2) refine each estimated invariant point by taking the phase-gradient into account; and 3) directly compute all four
linear parameters of the affine transform from the spectral alignment. Experimental results using a wide range
of textures are presented. Potential applications includeaffine invariant image segmentation, registration, affine
symmetric image coding, and motion analysis.

Index Terms

affine estimation, structural texture

I. INTRODUCTION

An ability to efficiently estimate geometric transformations is desired in many vision related applications.
Determining the transformation parameters, which map pixels from one image to the corresponding pixels
in related images, enables the comparison of images obtained from different views or time frames. The
parameters could be utilised to correct misalignment [1], to determine properties such as motion, depth
or shape [2], [3], or as a distance feature between pairs of images in a classification task [4]. There are
various approaches to estimate the transform [5], [4], [6] however this paper seeks to explore a particular
texture analysis based technique, which is termed theaffine estimator.

A. Problem Formulation

Geometric deformation can be simplified by using knowledge of the imaging process to constrain the
class of transformation being estimated. The simplest example is to assume that the deformation is only
translational. This is an adequate assumption only when certain imaging conditions are maintained such
that the viewpoint is perpendicular to the object and the distance to the object is constant. A more flexible
approach is to assume that the images are related by a six parameter affine transformation, corresponding
to scaling, rotation, shear, and translation. The standardaffine transformation,T in R

2 space is defined as

T

[
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]

=

[

Axx Axy

Ayx Ayy

] [
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]

+

[

tx
ty

]

(1)

where A and t represent a linear part and a translational part of the transformation respectively. The
question is, given two similar images (deformed under affinetransformation), is it possible to accurately
and efficiently estimate the affine transform?
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Fig. 1. Block to Block Affine transformation

B. Strategy

A straightforward approach to determining the optimal affine parameters involves a brute-force search
of a six-dimensional space. It requires computation of the matrix multiplication using Eq.(1) and the
corresponding error,dij shown in Eq.(2) resulting from not only every translationalchange but also by
all possible linear deformations. The affine estimation is illustrated in Fig.1.

dij = |fj(u) − Tij(fi(u))| (2)

where fi(u) and fj(u) are the two blocks. A better approach is to regard the problemas a class of
parametric optimisations that utilises affine invariant features (or at least are based on the same principle)
to fine-tune the transformation parameters and minimise thewarping error with minimal computation.

Hsu and Wilson’s method [4] and its variants [7], [6] show merit. The method performs Fourier spectral
alignment; a direct affine estimation based on the equivariance of the Fourier spectrum (without search).
We develop the algorithm further by incorporating Fourier slice analysis and Fourier spectral alignment,
the key motivation being the ability to:

• Locate and determine an arbitrary number of affine invariantpoints in the Fourier spectrum that latch
on to significant structural features

• Directly compute all four linear parameters of the affine transform by spectral alignment, as opposed
to the limited estimation possible with other Fourier basedmethods that excludeshear.

• Refine the estimated invariant point, by taking the phase-gradient information into account, as opposed
to some methods that deal with only the strength of the directional pattern.

II. FOURIER BASED ESTIMATION METHODS: REVIEW

For the past few decades researchers have studied affine estimation for motion estimation and image
registration and various methods have been suggested. The Fourier transform is often adopted due to a
useful linear property. Given the Fourier transform (Fi) of the source block (fi), and a linear relation
(Aij) with the Fourier transform (Fj) of a target block (fj), a linear relation ((A−1

ij )T ) holds in the spatial
domain too. This is theaffine theorem.

Fj(u) = AijFi(u) (3)

=
1

|detA|
eiuT tij |F ((A−1

ij )T fi(u))|

In addition to the linearity property, the Fourier spectrumis a favourite domain in which to estimate
geometric transformations, since the Fourier transform decomposes the geometric transform,Tij into two
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parts: a linear part,Aij that affects only the power spectrum and a translation parttij , that is exhibited
as a phase gradient. This is shown in Eq.(5). Supposefi andfj satisfy

fj(x + △x, y + △y) = fi(x, y) (4)

The Fourier transform of Eq.(4) yields the following by theshift theorem

Fj(ωx, ωy) ej(ωx△x+ωy△y) = Fi(ωx, ωy) (5)

This allows separate estimation of the translational offset and the linear transform, which dramatically
reduces the search space. The overall process of Fourier based estimation is illustrated in Fig.2. The
translational offset ,tij is efficiently obtained using the well-known relation, deduced from Eq.(5), between
the correlation and the Fourier transform as below [8].

argmaxx,y

{

F−1

[

Fi(ωx, ωy) F ∗
j (ωx, ωy)

|Fi(ωx, ωy)||F ∗
j (ωx, ωy)|

]}

(6)

where f̃i represents an affine transformed version of a source block,fi, and∗ is the complex conjugate.
Provided that the blocks areprewhitened(the mean is removed), a contrast function can be introducedas
follows.

f̂j(u) = αijfi(Tij(u)) + βij (7)

α2
ij =

∑

f 2
i (u)/

∑

f 2
j (u) βij = E[fj(u)]

whereαij is a contrast coefficient andβij is the mean of the target block. Various methods of reducing
the amount of computation involved in estimating the lineartransform (shaded part of Fig. 2) have been
suggested. Three approaches that estimate the linear part of the geometric transformation are reviewed,
and their strengths and shortcomings are identified. Particular attention is given to the work of Hsu, Wilson
and Bhalerao [4], [6].

A. Fourier Mellin Estimation

This algorithm is designed for efficient estimation of scaleand rotation based on the phase-correlation
relation. An image rotation shifts the function|Fj(θ, r)| along the angular axis. A scaling of the image is
reduced to a scaling of the radial coordinate and a magnification of the intensity by a constant factorr2.
Scaling can be further reduced to a translation by using a logarithmic scale for the radial coordinate.

Fi(θ, λ) = fi(θ, log r)

Fj(θ, λ) = s−2fi(θ − θ0, log r − log s) (8)

In this polar-logarithmic representation, both rotation and scaling are reduced to translation.

Fj(v, w) = s−2e−j2π(v log s+wθ0)Fi(v, w) (9)

Rotation and scale can be efficiently estimated by the coordinate of the maximal value of Eq.(6). This
technique decouples image rotation, scaling, and translation, and is accurate and computationally efficient.
However, it excludes the estimation of shear [9], [5].
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Fig. 3. Single cluster model with centroid~u(θ) (left) and double cluster model with centroid pair~ui(θ1, θ2)

B. Angular Variance Analysis

The affine transform in Eq.(1) can be described as the alignment of a pair of 2D vectors to another pair.
Assuming the presence of double energy clusters in the Fourier spectra of respective blocks, as shown
in Fig.3, identifying representative centroids (affine invariant coordinates) of each cluster can disclose an
affine transformation relating the two blocks by simply solving a matrix equation. Hsu and Wilson [4]
introduced Angular Variance Analysis (AVA) to locate two representative centroids. This is conducted to
find the angles,θ1 andθ2, which minimise the sum of the variances,σ2(θ1, θ2).

σ2(θ1, θ2) =
1

Ehalf

∑

x∈Λ(θ1,θ2)

|x| · ||x− µ||2 (10)

whereΛ(θ1,θ2) denotes the coordinate set of the half plane subdivision defined by anglesθ1 and θ2. µ is
the representative centroid of the corresponding subdivision. Ehalf is the sum of the energy (magnitude)
of the half plane. The angular segmentsΛ and the corresponding centroidsµ are equivariantunder the
invertible transformation of Eq.(4), which makes the variance analysis legitimate. This process involves
computation of the centroid and variance for every pair of angular segments to findθ1 andθ2 that minimise
the variance sum. It requires considerable computation, but a fast algorithm using the partial summation
technique was developed by Kruger and Calway [10]. A linear part of the affine matrix is estimated by
simply aligning the centroids of the segments from both blocks, i.e. solving the following equation for
a matrix,Aij .

Aij · Mi = Mj (11)

whereMi is a 2 × 2 matrix that consists of a centroid pair,(µT
1 , µT

2 ) obtained from block,fi. Due to
the Hermitian symmetry of the spectra, it is necessary to examine all eight possible centroid alignment
combinations and choose the one with the maximum correlation using Eq.(6).

C. Gaussian Mixture / Levenberg Marquart Optimisation

Bhalerao and Wilson [11], [6] approached the estimation of the affine transformation using least square
optimisation, the Levenberg-Marquardt (LM) optimisationwith a Gaussian mixture model.

The Levenberg Marquart (LM) method [12] is a non-linear datafitting algorithm and has become the
standard of nonlinear least square routines. One can imagine this method as an extension of the simple
Newton method. An important feature of this method is that the Hessian matrix can indicate how far the
slope extends, whereas the Jacobian matrix can tell only thegradient. A factor,λ is introduced to control
the diagonal dominance of the Hessian matrix of second orderpartial derivatives of unknowns. Increasing
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or decreasing the factor allows the position to move back andforth on the surface of least-squares. In
other words, if the least-square error increases, it is possible to change direction by the increasing the
factor, decreasing it otherwise. This guarantees convergence unlike the Newton algorithm.

Bhalerao and Wilson’s algorithm proceeds as follows.
1) Estimate the Fourier power spectrum with a Gaussian mixture model using LM
2) Estimate the affine parameters using LM
A Gaussian Mixture Model (GM) [13] is a type of probability density model which combines an arbitrary

number of Gaussian models. Each constituent Gaussian modelis weighted by a factorωi. Employing a
Gaussian mixture model to represent the directional and symmetric distribution of the Fourier spectrum is
an admirable approach in that each constituent Gaussian model Gi can effectively represent a distinctive
directional energy cluster. To model the Fourier spectrum,a set of partial derivatives of the covariance
matrix of the Gaussian mixture model is needed.

∂Gi(u)

∂ωm

= Gi(u)/ωm

∂Gi(u)

∂Σ−1
m

= Gi(u)uuT/2 (12)

The LM then fine-tunes the covariance matrix of each Gaussianmodel such that the error between the
mixture model and the power spectrum is minimised.

Σu(Gi(u) − |Fi(u)|)2 (13)

In the same manner, the LM algorithm optimises the affine parameters so that the overall error shown in
Eq.(14) is minimised using partial derivatives of the parameters.

Σu(Aij(Gi(u)) − |Fj(u)|)2 (14)

∂Gi(A(u))

∂A
= −Gi(A(u))

M
∑

m

Σ−1
m AuuT (15)

D. Remarks

The Fourier-Mellin based method is an efficient and accurateestimation technique where the advantages
are maintained even in the presence of noise. The method has been deployed in many applications such
as image matching, recognition, and registration, and continues to gain widespread support in new areas.
The estimation, however, excludessheardeformation, which is essential in a viewpoint related taskthat
involves skewed images.

The advantage of Angular Variance Analysis is that the full affine transform is computed by simply
aligning the centroids. The segments defined in terms of variance help the centroids latch onto the
significant image structure. Nevertheless, the approach makes the implicit assumption that double distinct
energy clusters divide the half-plane. This may produce a less accurate result when more that two clusters
are present or when the distinctiveness of the energy clusters is less obvious. The reason is that the centroid
fails to latch onto the same structure in respective spectra. The approach may easily be extended to deal
with an arbitrary number of clusters by dividing the half-plane accordingly, but it still lacks the ability
to decide on the number of clusters. Calway [7] introduced a simple metric to determine the underlying
cluster model for the spectrum:σ2

θ1
+ σ2

θ2
/σ2

(θ1,θ2)
< tσ indicates which model in Fig.3 better represents the

spectrum. However it only works well with up to double clusters and more work is required to determine
the threshold,tσ in an adaptive manner.
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The least-square optimisation approach is simple and powerful, and easily overcomes the problems
identified in the previous method [4]. However, the computational requirement is significant. This is
mainly because the error shown in Eq.(14) needs to be updatedat every iteration in order to guide
the direction of the gradient of the least-squares. Secondly, the computation increases dramatically as
more Gaussian components are used. Modelling with an insufficient number of components hinders
accurate approximation, and therefore the accuracy of the estimation decreases. Thirdly, by the nature
of the nonlinear optimisation, the method cannot escape from local optima, as illustrated. The resulting
parameters vary depending on the initial guess, some of which lead to local optima. Having multiple initial
guesses attenuates the problem but the computational burden increases still further. A new approach that
partly combines the previous three methods is presented in the next section.

III. A C OMBINED GAUSSIAN M IXTURE / ANGULAR ANALYSIS APPROACH

A combined solution is suggested that acknowledges the efficiency of direct affine estimation and the
adaptiveness of the Gaussian mixture modelling strategy. The algorithm proceeds as follows:

1) The spectral data is modelled by a Gaussian mixture using Expectation Maximisation (EM).
2) The resulting model undergoes an angular analysis that discloses the direction and strength of an

arbitrary number of features
3) One (or two) components are selected as the representative Gaussian models to be aligned (corre-

sponding to the centroid in the AVA).
In [3], the EM was modified so that the analysis is also performed during the estimation iteration but it
was realised that this hinders fast convergence. The chosenrepresentative Gaussians are used in Eq.(11)
to estimate the affine transformation.

A. Gaussian Mixture Modelling

Expectation Maximisation (EM)[13] is an estimation algorithm driven by the probability of each data
point belonging to a class. EM is a favourite choice for statistical analysis due to its simplicity and fast
convergence rate. Estimation is performed by repeating twosteps, the E-step and the M-step. An example
with respect to the Gaussian mixture model follows. The E-step, computes expected classes for all data
points for a given class and is given by

P (ωi|xk, µt, Σt) =
p(xk|ωi, µi(t), Σi(t))ωi(t)

∑c

j=1 p(xk|ωj, µj(t), Σj(t))ωj(t)
(16)

where Σi, µi, wi, and t denotes a covariance matrix, centroid, weight of GaussianGi and iteration
respectively. In the M-step, the maximum likelihood is estimated given the new membership distribution
of the data

µi(t + 1) =

∑

k P (ωi|xk, µt, Σt)xk
∑

k P (ωi|xk, µt, Σt)

Σi(t + 1) =

∑

k P (ωi|xk, µt, Σt)(xk − µi(t + 1))(xk − µi(t + 1))T

∑

k P (ωi|xk, µt, Σt)

ωi(t + 1) =

∑

k P (ωi|xk, µt, Σt)

number of data points
(17)

Having an insufficient number of Gaussian components and/orincorrect initial guesses always results in
a local optima problem, to which EM is susceptible. To alleviate this, at least six Gaussian components
of the initial guess are distributed (0 to π) with a uniform angular interval.



8

Bin

Gaussian mixture Angular bins
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B. Selection of Representative Gaussian Model

In order to determine two significant Gaussian components, apolar bin grid is adopted for angular
analysis as shown in Fig.4. Each bin is defined and populated as follows.

Bi =

{Gj|
(2i−1)π

2k
+ θ(Gmax) < θ(Gj) ≤

(2i+1)π
2k

+ θ(Gmax)}
(18)

where(0 ≤ j ≤ l), (0 ≤ i ≤ k − 1) andθ(Gj) is the direction of the principal eigenvector of a Gaussian
component,Gj , and Gmax is a Gaussian component with the highest weight,ωmax. l is the number
of Gaussians in the mixture.k is set toimagesize × 3/8, which is found empirically. In each bin, a
Gaussian with the greatest weight is selected. Some bins maybe empty and some bins may contain
only Gaussians with a negligible weight, which are treated as empty. Counting the number of selected
Gaussian components (or non-empty bins) shows the number ofstrong directional features. If the number
of features is greater than that of the target block or if morethan two features are found, the one with the
smallest weight is discarded, and this is repeated until thenumbers match. Once the required number of
strong Gaussian components is determined, a coordinate,µ̂ of the representative slices is calculated for
alignment as follows, wherep is fixed for all (e.g.p = 0.5).

µ̂i =
√

−2σ2
i loge p · ~Gi (19)

where0 < p ≤ 1 andσ2
i and ~G are the variance (eigenvalue) and the eigenvector of a principal component

of a Gaussian,Gi respectively. The found coordinates,µ̂ are used for alignment using Eq.(11).

C. Discussion

The suggested approach benefits from the efficiency of the direct affine estimation and the adaptive
modelling of the Gaussian mixture, in particular it can reveal the number of significant directional features
and determine the two stronger features if more than two are found. In the case where the number of
features in the source and target patches does not match, existing methods result in a poor estimation.
The ability to determine the number of features allows us to force the estimation to be based on the
lower number of features. This can prevent an extreme shear transformation being wrongly estimated, see
Fig.5. The estimation process is still expensive and time consuming compared with AVA, because of the
iterative nature of the EM. In the next section, a deterministic approach that reduces the estimation time
while retaining the important attributes is presented.
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Fig. 5. Approximation experiment usingfingerprint: (from left to right))original image, reconstruction by two-component method
with Calway’s single / double cluster model, reconstruction by the modified EM for GMM

IV. FOURIER SLICE BASED AFFINE ESTIMATION

AVA has merits in direct estimation but it may work less effectively when the underlying cluster model
does not suit the spectrum. Optimisation based estimation approaches the problem by minimising the error
of a least-square parametric equation iteratively betweenthe spectrum and the mixture model (the more
components, the more accurate the modelling). The latter isa more robust solution than the cluster model,
however the computational requirement is prohibitive. An experimental algorithm is presented that, albeit
slow, combines the beneficial parts of the previous methods.A more efficient and accurate algorithm
based on Fourier slice analysis is then proposed.

An accelerated variant of the previous algorithm is suggested that uses a similar strategy to the
Gaussian mixture based angular analysis. The computational requirement is greatly reduced by substituting
a deterministic step for the EM. The iterative process of theEM is not desirable in some real-time
applications or for hardware implementation. An analysis,analogous to a Gaussian mixture, is performed
by considering an angular slice through the origin of the Fourier spectrum, theFourier slice. Using the
Fourier slice also allows us to utilise the slice-projection theorem, by which the phase gradient can be
taken into account, hence resulting in better estimation. The algorithm proceeds as follows.

1) Extract the polar contour signatureC using Eq.(20)

C = {(r, θ) | r = S(θ), 0 ≤ θ ≤ π} (20)

S(θ) =
∑

x

∑

y |FC(x, y)|δ(x cos θ + y sin θ)

2) Perform angular binning analysis to select a representative Fourier slice.
3) Perform spectral alignment with a refinement step of slice-wise phase correlation.

The polar contour signature of the energy distribution is illustrated in Fig.6.

A. Selection of Representative Slice

Angular analysis, similar to Fig.4 is performed to find the significant slices as illustrated in Fig.6, with
ω(θ) that corresponds to the weight,ω of the mixture model.

ω(θ) =
r(θ)

∑π

t=0 r(t)
(21)

The remaining process is identical to that of the previous methods using Eq.(11) except that the centroid,
µθ of the slice is determined with only half the slice, one end ofwhich is the origin, as below.

µθ = (E(Hθ) cos θ, E(Hθ) sin θ) (22)

Hθ = {S(r, θ)|0 ≤ r ≤ M/2}



10

Bin

Contour signature and binsAngular projection

Fig. 6. Fourier slice and angular bins

whereM denotes the size of Fourier slice.

B. Slice-wise Phase-correlation

As a refinement of estimation at the expense of a slight increase in computation, the phase correlation
can be taken into account in the estimation of the linear component. Eq.(21) resembles that of the Radon
transform. The Fourier slice that passes through the originindeed has a mathematical relation to the Radon
transform as below, theprojection slice theorem.

Rf(θ) = F̃ (θ) (23)

whereF̃ is the Fourier slice function andR is the Radon projection in the spatial domain. The theorem
states that a Fourier slice at angleθ, is the Fourier transform of the Radon projection at angleθ. As slices
of the Fourier spectrum of images are readily available, it is possible to simply apply phase correlation
using Eq.(6) to find a slice with the highestgoodness of fit(maximal correlation) in the target image and
rectify the representative slice. That is, to compute the correlation of the slices in the vicinity (±θǫ) of
the representative slice with the representative slice of the target blockfj, and then to choose a new slice
with the greatest correlation as the representative slice.Care should be taken when applying the phase
correlation. Either both slices are normalised using Eq.(8) so that the centroids of the slices latch onto the
same coordinate, or the correlation should be based on a logarithmic scale to cope with scale difference
using Eq.(9), where search for the maximum correlation is confined to a range corresponding from0.5
to 2 in terms of the scaling factor. This process improves the accuracy of the estimation (in particular for
shears) by comparing the spatial structure.

C. Implementation

There are a couple of issues to be addressed regarding implementation. The slice-wise phase correlation
operation requires several direct and inverse Fourier transforms. The discrete implementation must be done
with care to avoid artefacts due to sampling and truncation.In the case of the unavailability of the polar
Fourier spectrum, the Radon projection of an image in the same orientation followed by the Fourier
transform provides the required Fourier slice, by Eq.(23).It is helpful to window the images before
calculating the Fourier transforms. This effectively removes thecross signfrom the power spectrum that
is caused by the boundary wrapping of the source. Thecos2 window functionw(y) was used, as given
by Eq.(24).

w(y) = cos2[πp/2B]cos2[πq/2B] (24)
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Fig. 7. Brodatztexture samples

D3 D5 D15 D18 D23 D56 D65 D66
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Fig. 8. Brodatztexture samples for approximation test

Two issues arise in the logarithm resampling of the spectralmagnitude of the image to polar-log
coordinates. Care needs to be taken in selecting the starting point of the logarithmic resampling, due to
log 0 = ∞. The rotation angle and scaling factor can be estimated withan accuracy that depends on
the sampling accuracy, where sub-pixel precision generally results in a more accurate location of the
correlation maximum. The angular coordinate of the spectral magnitude is sampled uniformly and the
precision of the rotation angle is therefore uniform. However, the logarithmic distortion along the radial
coordinate results in a non-uniform precision in scale estimation. The scaling estimation error becomes
large as it increases or decreases away fromr = 1. Experimental evaluation showed that no significant
error is incurred in the range of0.5 ≤ r ≤ 2 with a half-pixel precision.

V. EXPERIMENTAL EVALUATION

To illustrate the effectiveness of the algorithms, resultsare presented for transformation estimation
involving different texture types as shown in Fig.7. The texture images are of size128 × 128 pixels and
are corrupted by additive, uncorrelated Gaussian noise to give a SNR of10dB. The images are pre-filtered
using a highpass filter with bandwidth proportional to the block size, in order to deal with pure texture
using the MFT [14]. The number of angular segments in the AVA is set to theimagesize of 128. The
texture images are bandpass filtered by taking the two lowestlevels (high frequency components) from
the Laplacian pyramid. The reason to remove low frequency components is to focus on the pure texture
information which generally resides in the high frequency band, and to remove the distracting energy in
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TABLE I
COMPARATIVE PSNRRESULTS OFrotation+scaleTRANSFORMATION (IN DB)

sample F-Mellin V-Analysis L-Optmiz M-Angular F-Slice
D3 24.53 24.35 24.52 24.43 24.57
D5 26.89 25.43 26.49 27.37 26.11
D15 27.33 25.35 25.64 27.33 26.50
D18 27.39 25.34 25.51 26.24 27.52
D23 26.12 23.34 25.24 27.45 25.30
D56 26.19 26.43 25.64 27.37 26.44
D65 26.03 25.75 25.75 26.17 26.42
D66 27.44 25.21 25.77 27.34 26.74
D67 27.59 25.04 25.26 27.56 26.64
D68 26.92 25.43 25.73 26.73 26.32
D74 27.44 24.92 25.71 27.23 26.67
D95 27.17 25.43 25.67 27.75 26.57
D97 26.51 24.88 25.73 26.21 26.73
D104 26.02 25.54 25.45 26.34 26.46
D110 26.49 24.70 25.13 26.75 26.23
D111 26.18 25.21 25.73 27.32 26.38
time(sec) 2 4 21 20 2

TABLE II
COMPARATIVE PSNRRESULTS OFrotation+scale+shearTRANSFORMATION (IN DB)

sample F-Mellin V-Analysis L-Optmiz M-Angular F-Slice
D3 22.27 24.80 24.52 24.15 25.12
D5 25.36 26.25 26.49 27.16 28.53
D15 23.29 26.22 26.65 27.34 26.75
D18 24.76 27.60 27.73 27.21 27.23
D23 22.10 24.12 25.22 27.45 23.50
D56 27.83 28.74 28.66 27.16 28.64
D65 27.72 27.41 27.84 27.17 28.01
D66 25.57 26.75 25.75 27.04 26.00
D67 25.26 25.13 25.75 26.56 27.34
D68 23.26 27.66 27.81 27.57 27.89
D74 22.21 25.98 27.84 27.31 26.88
D95 23.04 25.32 26.43 27.42 28.00
D97 24.12 25.53 25.67 27.21 28.04
D104 22.80 27.53 27.43 27.57 28.06
D110 23.30 27.27 27.75 27.89 28.90
D111 25.73 27.85 27.33 27.09 28.23
time 2 4 21 20 2

the Fourier spectrum for accurate estimation of the energy clusters.

The first investigation tests the accuracy of the estimated transform as well as the noise robustness. The
fidelity of the warping approximation is measured by the PSNRof the approximated texture,̂fj , which
is warped by the estimated transform. The intensity scalingestimation is ignored (α = 1) to avoid any
bias that may affect the affine estimation results. Table.I shows the comparative experimental results of
five algorithms; Fourier-Mellin (F-Mellin), Angular variance analysis (V-Analysis), Levenberg-Marquart
(L-Opimiz), Gaussian mixture / angular analysis (M-Angular), and Fourier slice (F-Slice). The true affine
transform is rotated byπ/3, followed by a scaling ofx : 1.2 and y : 1.0. It is noticeable that the AVA
provides a less effective estimation for multi-directional textures such as D5, D23, D67, D74, D97 and
D110. This confirms that using an adaptive model to better represent the data is an important factor.

The second evaluation tests the previous deformations whencombined with a shearing ofx : −0.3 and
y : 0.9. The results are shown in Table.II. It is observed that Fourier slice analysis provides better warping
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TABLE III
COMPARATIVE PSNRRESULTS OF TEXTUREapproximation(IN DB)

sample F-Mellin V-Analysis L-Optmiz M-Angular F-Slice
D3 20.24 19.51 22.15 23.11 24.34
D5 14.67 15.49 16.16 18.53 19.75
D15 19.11 20.65 20.34 21.75 21.11
D18 19.83 21.73 21.11 21.23 22.75
D23 19.47 19.22 19.45 19.50 19.12
D56 20.23 20.21 20.06 20.14 20.20
D65 26.62 26.84 26.17 26.71 26.41
D66 19.07 20.55 17.04 19.00 21.75
D67 17.93 17.75 16.56 16.34 18.13
D68 27.73 27.55 27.73 27.57 27.73
D74 17.43 19.84 19.31 19.88 19.98
D95 25.48 25.35 25.37 25.33 25.31
D97 13.98 15.67 17.11 18.04 20.53
D104 18.24 18.43 18.53 18.06 20.57
D110 20.91 19.17 18.75 20.89 21.90
D111 21.12 19.85 22.33 20.09 22.23
time 2 4 21 20 2

results for transformations involvingshear. This is attributed to the phase correlation in the linear part
estimation.

The final experiment tests the approximation of a texture patch to a similar but non-identical texture
patch, sampled from the same texture image but from different parts as shown in Fig.8. Intensity scaling
α is enabled in this evaluation. Table.III shows the results.The Fourier slice based estimation provides
generally better estimation with good computational efficiency.

Being self-similar, natural images contain considerable amounts of redundancy. Modelling by affine
symmetry the self-similarity that exists between subblocks offers a different viewpoint from which to
address various tasks [11]. This model resembles fractal theory as only a single prototypical block is needed
to replicate other blocks of similar texture [3]. In the samemanner, the Warplet [4], [6] could be applied
to classify sub-blocks of an image so as to perform segmentation. Experimental image approximation is
illustrated in Fig.9.

VI. CONCLUSIONS

A general purpose block-to-block affine transform estimation method has been presented. It has use
in many applications, including image segmentation, registration, image coding and motion analysis.
Motion estimation [2], [15] and image registration [16], [17], [18], [19], [1], in particular, require fast
computation and high reliability. Experimental results show that, compared with existing methods, the
proposed technique not only reduces the computational burden but also increases the reliability of the
estimation and maintains noise robustness.

The proposed technique can be summarised as follows.
1) Identify the significant directional structure from the power spectrum, which is invariant under

geometric deformation by theaffine theorem
2) Apply slice-wise phase correlation to determine the exact corresponding invariant points.
3) Finally perform spectral alignment to reveal the affine transformation.
The key elements of these improvements are three-fold. The first is the use of angular bins that determine

the number of significant directional features and change the estimation strategy accordingly. The second
is the deterministic nature of the Fourier slice-projection calculation that replaces the iterative process
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16 x 16 16 x 16 16 x 16

Fig. 9. Use of various prototypes:jaguar (continued); (top)line (middle) cliff, (bottom) ridge (left) highpassapproximation (right) image
reconstruction

of mixture modelling. The last is taking phase information into account in the spectral alignment. This
improves the representative points on which identical structure in the two images can be latched.

The proposed technique shows very encouraging performancein terms of estimation accuracy, and the
computational requirement remains comparable to the accelerated variant of angular variance analysis. The
improvements are important to applications that require estimation of the affine transform, for example
in fast motion estimation. Optimisation is needed in many parts of the implementation to further reduce
the computation time. For example, conversion of the Fourier transform to a polar representation takes
a significant percentage of the overall processing time, when matching one slice to another in the target
block. Computing the correlation function for a subset of candidate slices judged by the energy distribution
around the current representative slice rather than computing it for all possibilities is another means of
reducing complexity.
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[2] R. Wilson, P. Meulemans, A. Calway, and S. kruüger, “Image sequence analysis and segmentation using G-blobs,” inIEEE ICIP., 1998,

pp. 483–487.
[3] H. Park, A. Bhalerao, G. Martin, and A. Yu, “An affine symmetric approach to natural image compression,” inSecond International

Mobile Multimedia Communications Conference, Alghero, Italy, Sep. 2006.
[4] T. Hsu and R. Wilson, “A two-component model of texture for analysis and synthesis,”IEEE Trans. on Image Process., vol. 7, no. 10,

pp. 1466–1476, October 1998.
[5] Y. Keller, A. Averbuch, and M. Israeli, “Pseudopolar-based estimation of large translations, rotations, and scalings in images,”IEEE

Trans. Image Process., vol. 14, no. 1, pp. 12–22, Jan. 2005.



15

[6] A. Bhalerao and R. Wilson, “Warplet: An image-dependentwavelet representation,” inIEEE ICIP., 2005, pp. 490–493.
[7] A. D. Calway, “Image representation based on the affine symmetry group,” inIEEE ICIP., Sep. 1996, pp. 189–192.
[8] I. Pitas,Digital Image Processing Algorithms. Prentice Hall, 1993.
[9] Q. Chen, M. Defrise, and F. Deconinck, “Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration

and recognition,”IEEE Trans. Patt. Anal. Machine Intell., vol. 16, pp. 1156–1168, 1994.
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