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Local Affine Image Matching and Synthesis based
on Structural Patterns

Heechan ParkMember, IEEE Graham Martin Member, IEEE
and Abhir BhaleraoMember, IEEE

Abstract

A general purpose block-to-block affine transformationineator is described. The estimator is based on
Fourier slice analysis and Fourier spectral alignmenthtives encouraging performance in terms of bsgieed
and accuracycompared to existing methods. The key elements of its sacaes attributed to the ability to: 1)
locate an arbitrary number of affine invariant points in tpecrum that latch onto significant structural features;
2) refine each estimated invariant point by taking the phimadient into account; and 3) directly compute all four
linear parameters of the affine transform from the spectighment. Experimental results using a wide range
of textures are presented. Potential applications incliffiee invariant image segmentation, registration, affine
symmetric image coding, and motion analysis.

Index Terms

affine estimation, structural texture

I. INTRODUCTION

An ability to efficiently estimate geometric transformasas desired in many vision related applications.
Determining the transformation parameters, which maplgifkem one image to the corresponding pixels
in related images, enables the comparison of images obt&iom different views or time frames. The
parameters could be utilised to correct misalignment [d]détermine properties such as motion, depth
or shape [2], [3], or as a distance feature between pairs af@s in a classification task [4]. There are
various approaches to estimate the transform [5], [4], [} &ver this paper seeks to explore a particular
texture analysis based technique, which is termedaffiee estimatar

A. Problem Formulation

Geometric deformation can be simplified by using knowledfjthe imaging process to constrain the
class of transformation being estimated. The simplest pi@is to assume that the deformation is only
translational. This is an adequate assumption only whetaioeimaging conditions are maintained such
that the viewpoint is perpendicular to the object and the&adise to the object is constant. A more flexible
approach is to assume that the images are related by a sm@@rmaaffine transformation, corresponding
to scaling, rotation, shear, and translation. The stanaffink transformation] in R? space is defined as

x A A x t
T _ xx Ty + T 1
{?/] [Ay:v Ayy]{y} {ty} M)
where A and ¢ represent a linear part and a translational part of the fbtamation respectively. The

guestion is, given two similar images (deformed under affiaasformation), is it possible to accurately
and efficiently estimate the affine transform?
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Fig. 1. Block to Block Affine transformation

B. Strategy

A straightforward approach to determining the optimal &ffparameters involves a brute-force search
of a six-dimensional space. It requires computation of therim multiplication using Eq.(1) and the
corresponding error/;; shown in Eq.(2) resulting from not only every translationhhnge but also by
all possible linear deformations. The affine estimationlisirated in Fig.1.

dij = | fi(w) — Tz (fi(u))| 2)

where f;(u) and f;(u) are the two blocks. A better approach is to regard the protdsnma class of
parametric optimisations that utilises affine invariargtéees (or at least are based on the same principle)
to fine-tune the transformation parameters and minimiseMiping error with minimal computation.
Hsu and Wilson’s method [4] and its variants [7], [6] show méfhe method performs Fourier spectral
alignment; a direct affine estimation based on the equineeaf the Fourier spectrum (without search).
We develop the algorithm further by incorporating Fourikzesanalysis and Fourier spectral alignment,
the key motivation being the ability to:
« Locate and determine an arbitrary number of affine invageants in the Fourier spectrum that latch
on to significant structural features
« Directly compute all four linear parameters of the affinengfarm by spectral alignment, as opposed
to the limited estimation possible with other Fourier bassethods that excludshear
« Refine the estimated invariant point, by taking the phaselignt information into account, as opposed
to some methods that deal with only the strength of the doeat pattern.

I[I. FOURIER BASED ESTIMATION METHODS REVIEW

For the past few decades researchers have studied affineaisti for motion estimation and image
registration and various methods have been suggested. dumgeeFtransform is often adopted due to a
useful linear property. Given the Fourier transforii)(of the source block f), and a linear relation
(A;;) with the Fourier transform£j;) of a target block f;), a linear relation(m;jl)T) holds in the spatial
domain too. This is thaffine theorem

Fi(u) = AjFi(u) (3)
! F((AZYT f(w)|

= e
|det A|

In addition to the linearity property, the Fourier spectrisra favourite domain in which to estimate

geometric transformations, since the Fourier transforocoa®oses the geometric transforfy; into two

iUTtij
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Fig. 2. Overview of Affine transform estimation process



parts: a linear partd;; that affects only the power spectrum and a translation parthat is exhibited
as a phase gradient. This is shown in Eq.(5). Supgpsead f; satisfy

The Fourier transform of Eq.(4) yields the following by thlkeift theorem
Fi(wz, wy) ellenBrtontiy) — Fi(we, wy) %)

This allows separate estimation of the translational ofése the linear transform, which dramatically
reduces the search space. The overall process of Fouried edimation is illustrated in Fig.2. The
translational offset;; is efficiently obtained using the well-known relation, dedd from Eq.(5), between

the correlation and the Fourier transform as below [8].

Fi(wmwy) ka(wrva) ] }

| Fi(we, wy) || F5 (wa, wy)| (6)

argma>ﬁg7y{F‘1

where f; represents an affine transformed version of a source blbcnd  is the complex conjugate.
Provided that the blocks amewhitenedthe mean is removed), a contrast function can be introdased
follows.

fi(u) = oy fi(Ti;(u)) + By (7)
af, =3 fA)/ S 7 ) By = E[f;(u)]

whereq;; is a contrast coefficient ang;; is the mean of the target block. Various methods of reducing
the amount of computation involved in estimating the lineansform (shaded part of Fig. 2) have been
suggested. Three approaches that estimate the linear fpdur¢ geometric transformation are reviewed,
and their strengths and shortcomings are identified. Réati@ttention is given to the work of Hsu, Wilson
and Bhalerao [4], [6].

A. Fourier Mellin Estimation

This algorithm is designed for efficient estimation of scaihel rotation based on the phase-correlation
relation. An image rotation shifts the functiof; (6, )| along the angular axis. A scaling of the image is
reduced to a scaling of the radial coordinate and a magnditalf the intensity by a constant factef.
Scaling can be further reduced to a translation by using aritignic scale for the radial coordinate.

F’z(ev )‘) = fi(ev IOg T)

Fi(0,\) = s2f;(0 — 0p,logr — log s) (8)
In this polar-logarithmic representation, both rotatiord acaling are reduced to translation.
F’]'(U, w) — 8_26_j27r(vlogs+we0)ﬂ(v, w) (9)

Rotation and scale can be efficiently estimated by the coatediof the maximal value of Eq.(6). This
technique decouples image rotation, scaling, and traasladnd is accurate and computationally efficient.
However, it excludes the estimation of shear [9], [5].
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Fig. 3. Single cluster model with centroi{6) (left) and double cluster model with centroid pair(6:, 62)

B. Angular Variance Analysis

The affine transform in Eq.(1) can be described as the alighofea pair of 2D vectors to another pair.
Assuming the presence of double energy clusters in the éospectra of respective blocks, as shown
in Fig.3, identifying representative centroids (affineanant coordinates) of each cluster can disclose an
affine transformation relating the two blocks by simply sofya matrix equation. Hsu and Wilson [4]
introduced Angular Variance Analysis (AVA) to locate tw@resentative centroids. This is conducted to
find the anglesg; and6,, which minimise the sum of the varianceg(6,, 6,).

P0000) = —— S ][l — pl? (10)

where A, 9,y denotes the coordinate set of the half plane subdivisiomeléfby angleg, and .. 1 is
the representative centroid of the corresponding subdivigs,,;; is the sum of the energy (magnitude)
of the half plane. The angular segmentsand the corresponding centroigsare equivariantunder the
invertible transformation of Eq.(4), which makes the vaca analysis legitimate. This process involves
computation of the centroid and variance for every pair @fudar segments to fin€, andé, that minimise
the variance sum. It requires considerable computationaldast algorithm using the partial summation
technique was developed by Kruger and Calway [10]. A lineat pf the affine matrix is estimated by
simply aligning the centroids of the segments from both kdoci.e. solving the following equation for

a matrix, A;;.

where M; is a2 x 2 matrix that consists of a centroid paif!, 1) obtained from block,f;. Due to
the Hermitian symmetry of the spectra, it is necessary tonéxa all eight possible centroid alignment
combinations and choose the one with the maximum correlatsing Eq.(6).

C. Gaussian Mixture / Levenberg Marquart Optimisation

Bhalerao and Wilson [11], [6] approached the estimatiorhefdffine transformation using least square
optimisation, the Levenberg-Marquardt (LM) optimisatiith a Gaussian mixture model.

The Levenberg Marquart (LM) method [12] is a non-linear d#tang algorithm and has become the
standard of nonlinear least square routines. One can imdbia method as an extension of the simple
Newton method. An important feature of this method is thattessian matrix can indicate how far the
slope extends, whereas the Jacobian matrix can tell onlgréduient. A factor\ is introduced to control
the diagonal dominance of the Hessian matrix of second qraeial derivatives of unknowns. Increasing



or decreasing the factor allows the position to move back farth on the surface of least-squares. In
other words, if the least-square error increases, it isiplesso change direction by the increasing the
factor, decreasing it otherwise. This guarantees conuesgenlike the Newton algorithm.

Bhalerao and Wilson’s algorithm proceeds as follows.

1) Estimate the Fourier power spectrum with a Gaussian maxtuwodel using LM

2) Estimate the affine parameters using LM

A Gaussian Mixture Model (GM) [13] is a type of probabilityristy model which combines an arbitrary
number of Gaussian models. Each constituent Gaussian nsodalighted by a factow;. Employing a
Gaussian mixture model to represent the directional andrsstnic distribution of the Fourier spectrum is
an admirable approach in that each constituent Gaussiaelmtgdan effectively represent a distinctive
directional energy cluster. To model the Fourier spectranset of partial derivatives of the covariance
matrix of the Gaussian mixture model is needed.

) — Gy fom
o Gi(u)uu” /2 (12)

The LM then fine-tunes the covariance matrix of each Gaugsiadel such that the error between the
mixture model and the power spectrum is minimised.

Su(Gi(u) — |Fy(u)])* (13)

In the same manner, the LM algorithm optimises the affinerpatars so that the overall error shown in
Eq.(14) is minimised using partial derivatives of the pagetars.

Su(Ai (Gi(u)) — |Fj(u)])® (14)
IG(A(w) ey T
— = —Gi(A(u)) ; > Auu (15)

D. Remarks

The Fourier-Mellin based method is an efficient and accleatienation technique where the advantages
are maintained even in the presence of noise. The methoddmasdeployed in many applications such
as image matching, recognition, and registration, andicoes to gain widespread support in new areas.
The estimation, however, excludekeardeformation, which is essential in a viewpoint related tesk
involves skewed images.

The advantage of Angular Variance Analysis is that the féfiha transform is computed by simply
aligning the centroids. The segments defined in terms ofamaé help the centroids latch onto the
significant image structure. Nevertheless, the approadtesnidne implicit assumption that double distinct
energy clusters divide the half-plane. This may producess éecurate result when more that two clusters
are present or when the distinctiveness of the energy ctustéess obvious. The reason is that the centroid
fails to latch onto the same structure in respective spettia approach may easily be extended to deal
with an arbitrary number of clusters by dividing the hal&pé accordingly, but it still lacks the ability
to decide on the number of clusters. Calway [7] introduceth®ple metric to determine the underlying
cluster model for the spectrumg, + o7, /a7, ,,, < t, indicates which model in Fig.3 better represents the
spectrum. However it only works well with up to double clustand more work is required to determine
the threshold¢, in an adaptive manner.



The least-square optimisation approach is simple and pgolyemd easily overcomes the problems
identified in the previous method [4]. However, the compatal requirement is significant. This is
mainly because the error shown in Eq.(14) needs to be upddtedery iteration in order to guide
the direction of the gradient of the least-squares. Segpnié computation increases dramatically as
more Gaussian components are used. Modelling with an iogrffi number of components hinders
accurate approximation, and therefore the accuracy of stiemation decreases. Thirdly, by the nature
of the nonlinear optimisation, the method cannot escapa faral optima, as illustrated. The resulting
parameters vary depending on the initial guess, some ofhwhad to local optima. Having multiple initial
guesses attenuates the problem but the computationalrburdeases still further. A new approach that
partly combines the previous three methods is presenteldeiméxt section.

[1l. A COMBINED GAUSSIAN MIXTURE / ANGULAR ANALYSIS APPROACH

A combined solution is suggested that acknowledges thdesftig of direct affine estimation and the
adaptiveness of the Gaussian mixture modelling stratelyg. algorithm proceeds as follows:
1) The spectral data is modelled by a Gaussian mixture uskpgdiation Maximisation (EM).
2) The resulting model undergoes an angular analysis tisatadies the direction and strength of an
arbitrary number of features
3) One (or two) components are selected as the representatiussian models to be aligned (corre-
sponding to the centroid in the AVA).
In [3], the EM was modified so that the analysis is also pertatrduring the estimation iteration but it
was realised that this hinders fast convergence. The cheggasentative Gaussians are used in Eq.(11)
to estimate the affine transformation.

A. Gaussian Mixture Modelling

Expectation Maximisation (EM)[13] is an estimation aldglbm driven by the probability of each data
point belonging to a class. EM is a favourite choice for statal analysis due to its simplicity and fast
convergence rate. Estimation is performed by repeatingsteps, the E-step and the M-step. An example
with respect to the Gaussian mixture model follows. The dp,stomputes expected classes for all data
points for a given class and is given by

plap|wi, pi(t), Xi(t))wi(t) (16)
> e P(ar|ws, (), 25 ())w; (2)
where X;, u;, w;, andt denotes a covariance matrix, centroid, weight of Gaussiarand iteration

respectively. In the M-step, the maximum likelihood is estied given the new membership distribution
of the data

P(wz|xk7 Ht, Zt) -

> Plwilmg, pe, X))y
>k Plwil e, pe, )
Sop Plwilay, e, 3e) (e — pa(t + 1)) (g — pa(t +1))7
> ok Plwil @, p, )
>k Pwil e, pue, )

wilt+1) = number of data points (47

pit+1) =

Y(t+1) =

Having an insufficient number of Gaussian components andgarrect initial guesses always results in
a local optima problem, to which EM is susceptible. To abé®ithis, at least six Gaussian components
of the initial guess are distributed (o 7) with a uniform angular interval.
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Fig. 4. Gaussian mixture model and angular bins

B. Selection of Representative Gaussian Model

In order to determine two significant Gaussian componensolar bin grid is adopted for angular
analysis as shown in Fig.4. Each bin is defined and populaddllaws.

Bi -
(G| =0T 1 0(Gae) < 0(G) < LU 4 0(Gp)}

2k
where(0 < j <1),(0 <i<k—1)andf(G,) is the direction of the principal eigenvector of a Gaussian
component,GG;, and G,,,, is a Gaussian component with the highest weight,.. [ is the number
of Gaussians in the mixture: is set toimagesize x 3/8, which is found empirically. In each bin, a
Gaussian with the greatest weight is selected. Some bins baagmpty and some bins may contain
only Gaussians with a negligible weight, which are treatecempty. Counting the number of selected
Gaussian components (or non-empty bins) shows the numlstrarfy directional features. If the number
of features is greater than that of the target block or if ntbes two features are found, the one with the
smallest weight is discarded, and this is repeated untihtirabers match. Once the required number of
strong Gaussian components is determined, a coordifabé,the representative slices is calculated for
alignment as follows, wherg is fixed for all €.9.p = 0.5).

f; =1/ —202log, p - G, (29)

where( < p < 1 ando? andG are the variance (eigenvalue) and the eigenvector of aipahcomponent
of a Gaussian(z; respectively. The found coordinatgsare used for alignment using Eq.(11).

(18)

C. Discussion

The suggested approach benefits from the efficiency of thextdaffine estimation and the adaptive
modelling of the Gaussian mixture, in particular it can swbe number of significant directional features
and determine the two stronger features if more than two eued. In the case where the number of
features in the source and target patches does not matatingxmethods result in a poor estimation.
The ability to determine the number of features allows usawd the estimation to be based on the
lower number of features. This can prevent an extreme shaagformation being wrongly estimated, see
Fig.5. The estimation process is still expensive and timesaming compared with AVA, because of the
iterative nature of the EM. In the next section, a deternimigpproach that reduces the estimation time
while retaining the important attributes is presented.



Fig. 5. Approximation experiment usinfgi nger pri nt: (from left to right))original image, reconstruction by adweomponent method
with Calway'’s single / double cluster model, reconstruttity the modified EM for GMM

IV. FOURIER SLICE BASED AFFINE ESTIMATION

AVA has merits in direct estimation but it may work less effeely when the underlying cluster model
does not suit the spectrum. Optimisation based estimagiproaches the problem by minimising the error
of a least-square parametric equation iteratively betwberspectrum and the mixture model (the more
components, the more accurate the modelling). The lat@m®re robust solution than the cluster model,
however the computational requirement is prohibitive. Apeximental algorithm is presented that, albeit
slow, combines the beneficial parts of the previous methAdmore efficient and accurate algorithm
based on Fourier slice analysis is then proposed.

An accelerated variant of the previous algorithm is suggkgshat uses a similar strategy to the
Gaussian mixture based angular analysis. The computatearement is greatly reduced by substituting
a deterministic step for the EM. The iterative process of EM is not desirable in some real-time
applications or for hardware implementation. An analyaislogous to a Gaussian mixture, is performed
by considering an angular slice through the origin of therfewuspectrum, thd-ourier slice Using the
Fourier slice also allows us to utilise the slice-projestiheorem, by which the phase gradient can be
taken into account, hence resulting in better estimatidme dlgorithm proceeds as follows.

1) Extract the polar contour signatu€é using Eq.(20)

C = {(r,0)|r=500),0<0 <} (20)
S0) = 3.5, [Fe(z,y)|6(xcosf + ysind)

2) Perform angular binning analysis to select a represeat&burier slice.
3) Perform spectral alignment with a refinement step of skitse phase correlation.
The polar contour signature of the energy distribution lisstrated in Fig.6.

A. Selection of Representative Slice

Angular analysis, similar to Fig.4 is performed to find thgnsficant slices as illustrated in Fig.6, with
w(0) that corresponds to the weight, of the mixture model.
r(9)
®) > =T (t)

The remaining process is identical to that of the previouthous using Eq.(11) except that the centroid,
1 Of the slice is determined with only half the slice, one endwvbich is the origin, as below.

oy = (E(Hy) cos@, E(Hg)sin0) (22)
Hy ={S(r,0)[0 <7 < M/2}
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Fig. 6. Fourier slice and angular bins

where M denotes the size of Fourier slice.

B. Slice-wise Phase-correlation

As a refinement of estimation at the expense of a slight iseréa computation, the phase correlation
can be taken into account in the estimation of the linear aorapt. Eq.(21) resembles that of the Radon
transform. The Fourier slice that passes through the oigieed has a mathematical relation to the Radon
transform as below, thprojection slice theorem

Rf(0) = F(0) (23)

where F' is the Fourier slice function an® is the Radon projection in the spatial domain. The theorem
states that a Fourier slice at angles the Fourier transform of the Radon projection at arfiglas slices

of the Fourier spectrum of images are readily availables ppassible to simply apply phase correlation
using Eq.(6) to find a slice with the highegbodness of fiimaximal correlation) in the target image and
rectify the representative slice. That is, to compute theetation of the slices in the vicinity#6,) of

the representative slice with the representative slicheftarget blockf;, and then to choose a new slice
with the greatest correlation as the representative sieee should be taken when applying the phase
correlation. Either both slices are normalised using Bee@that the centroids of the slices latch onto the
same coordinate, or the correlation should be based on atlogéa scale to cope with scale difference
using Eq.(9), where search for the maximum correlation isfined to a range corresponding frdim

to 2 in terms of the scaling factor. This process improves their@aoy of the estimation (in particular for
shear$ by comparing the spatial structure.

C. Implementation

There are a couple of issues to be addressed regarding irpiation. The slice-wise phase correlation
operation requires several direct and inverse Fouriestoams. The discrete implementation must be done
with care to avoid artefacts due to sampling and truncatioithe case of the unavailability of the polar
Fourier spectrum, the Radon projection of an image in theesanentation followed by the Fourier
transform provides the required Fourier slice, by Eq.(2B)s helpful to window the images before
calculating the Fourier transforms. This effectively rem® thecross signfrom the power spectrum that
is caused by the boundary wrapping of the source. dds& window functionw(y) was used, as given
by Eq.(24).

w(y) = cos*[mp/2B]cos*[mq/2B] (24)
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Fig. 8. Brodatztexture samples for approximation test

Two issues arise in the logarithm resampling of the spectragnitude of the image to polar-log
coordinates. Care needs to be taken in selecting the stgrtimt of the logarithmic resampling, due to
log0 = oo. The rotation angle and scaling factor can be estimated anttaccuracy that depends on
the sampling accuracy, where sub-pixel precision generakults in a more accurate location of the
correlation maximum. The angular coordinate of the spkaagnitude is sampled uniformly and the
precision of the rotation angle is therefore uniform. Hoemrthe logarithmic distortion along the radial
coordinate results in a non-uniform precision in scalenastion. The scaling estimation error becomes
large as it increases or decreases away from 1. Experimental evaluation showed that no significant
error is incurred in the range of5 < r < 2 with a half-pixel precision.

V. EXPERIMENTAL EVALUATION

To illustrate the effectiveness of the algorithms, resalte presented for transformation estimation
involving different texture types as shown in Fig.7. Thette® images are of siz&8 x 128 pixels and
are corrupted by additive, uncorrelated Gaussian nois&/&agSNR of10dB. The images are pre-filtered
using a highpass filter with bandwidth proportional to thechl size, in order to deal with pure texture
using the MFT [14]. The number of angular segments in the A¥Aet to theimagesize of 128. The
texture images are bandpass filtered by taking the two lolegsts (high frequency components) from
the Laplacian pyramid. The reason to remove low frequencgpaments is to focus on the pure texture
information which generally resides in the high frequeneydb, and to remove the distracting energy in
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TABLE |

COMPARATIVE PSNRRESULTS OFrotation+scaleTRANSFORMATION (IN DB)
sanpl e F-Mellin ~ V-Analysis L-Optmiz M-Angular F-Slice
D3 24.53 24.35 24.52 2443 2457
D5 26.89 25.43 26.49 27.37 26.11
D15 27.33 25.35 25.64 27.33 26.50
D18 27.39 25.34 25.51 26.24 2752
D23 26.12 23.34 25.24 27.45 25.30
D56 26.19 26.43 25.64 27.37 26.44
D65 26.03 25.75 25.75 26.17 2642
D66 27.44 25.21 25.77 27.34 26.74
D67 27.59 25.04 25.26 27.56 26.64
D68 26.92 25.43 25.73 26.73 26.32
D74 27.44 24.92 25.71 27.23 26.67
D95 27.17 25.43 25.67 27.75 26.57
D97 26.51 24.88 25.73 26.21  26.73
D104 26.02 25.54 25.45 26.34  26.46
D110 26.49 24.70 25.13 26.75 26.23
D111 26.18 25.21 25.73 27.32 26.38
ti me(sec) 2 4 21 20 2

TABLE I

COMPARATIVE PSNRRESULTS OFrotation+scaletshearTRANSFORMATION (IN DB)

sanpl e | F-Mellin  V-Analysis L-Optmiz  M-Angular F-Slice
D3 22.27 24.80 24.52 2415 2512
D5 25.36 26.25 26.49 27.16 28.53
D15 23.29 26.22 26.65 27.34 26.75
D18 24.76 27.60 27.73 27.21 27.23
D23 22.10 24.12 25.22 27.45 23.50
D56 27.83 28.74 28.66 27.16 28.64
D65 27.72 27.41 27.84 27.17 28.01
D66 25.57 26.75 25.75 27.04 26.00
D67 25.26 25.13 25.75 26.56 27.34
D68 23.26 27.66 27.81 27.57 27.89
D74 22.21 25.98 27.84 27.31 26.88
DO5 23.04 25.32 26.43 27.42 28.00
D97 24.12 25.53 25.67 2721 28.04
D104 22.80 27.53 27.43 27.57 28.06
D110 23.30 27.27 27.75 27.89 28.90
D111 25.73 27.85 27.33 27.09 2823
time 2 4 21 20 2

the Fourier spectrum for accurate estimation of the enehgsters.

The first investigation tests the accuracy of the estimatetsform as well as the noise robustness. The
fidelity of the warping approximation is measured by the PS)Rhe approximated texturef;, which
is warped by the estimated transform. The intensity scadistgmation is ignoredo = 1) to avoid any
bias that may affect the affine estimation results. Tableows the comparative experimental results of
five algorithms; Fourier-Mellin (F-Mellin), Angular vanmae analysis (V-Analysis), Levenberg-Marquart
(L-Opimiz), Gaussian mixture / angular analysis (M-Anglland Fourier slice (F-Slice). The true affine
transform is rotated byr/3, followed by a scaling ofc : 1.2 andy : 1.0. It is noticeable that the AVA
provides a less effective estimation for multi-directibtextures such as D5, D23, D67, D74, D97 and
D110. This confirms that using an adaptive model to betteressmt the data is an important factor.

The second evaluation tests the previous deformations wberined with a shearing af: —0.3 and
y : 0.9. The results are shown in Table.ll. It is observed that Feygiice analysis provides better warping
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TABLE IlI
COMPARATIVE PSNRRESULTS OF TEXTUREApproximation(IN DB)

sanpl e | F-Mellin ~ V-Analysis L-Optmiz M-Angular F-Slice
D3 20.24 19.51 22.15 23.11 24.34
D5 14.67 15.49 16.16 18.53 19.75
D15 19.11 20.65 20.34 21.75 21.11
D18 19.83 21.73 21.11 21.23 2275
D23 19.47 19.22 19.45 19.50 19.12
D56 20.23 20.21 20.06 20.14 20.20
D65 26.62 26.84 26.17 26.71 26.41
D66 19.07 20.55 17.04 19.00 21.75
D67 17.93 17.75 16.56 16.34 18.13
D68 27.73 27.55 27.73 27.57 27.73
D74 17.43 19.84 19.31 19.88 19.98
D95 25.48 25.35 25.37 25.33 25.31
Do7 13.98 15.67 17.11 18.04 20.53
D104 18.24 18.43 18.53 18.06  20.57
D110 20.91 19.17 18.75 20.89 21.90
D111 21.12 19.85 22.33 20.09 22.23
time 2 4 21 20 2

results for transformations involvinghear This is attributed to the phase correlation in the lineat pa
estimation.

The final experiment tests the approximation of a texturelp&b a similar but non-identical texture
patch, sampled from the same texture image but from diffguarts as shown in Fig.8. Intensity scaling
« is enabled in this evaluation. Table.lll shows the resultse Fourier slice based estimation provides
generally better estimation with good computational efficly.

Being self-similar, natural images contain considerabteoants of redundancy. Modelling by affine
symmetry the self-similarity that exists between subbsookfers a different viewpoint from which to
address various tasks [11]. This model resembles fractalytas only a single prototypical block is needed
to replicate other blocks of similar texture [3]. In the samanner, the Warplet [4], [6] could be applied
to classify sub-blocks of an image so as to perform segmentdExperimental image approximation is
illustrated in Fig.9.

VI. CONCLUSIONS

A general purpose block-to-block affine transform estioratmethod has been presented. It has use
in many applications, including image segmentation, tegfion, image coding and motion analysis.
Motion estimation [2], [15] and image registration [16],7]1[18], [19], [1], in particular, require fast
computation and high reliability. Experimental resultowhthat, compared with existing methods, the
proposed technique not only reduces the computationalebubdit also increases the reliability of the
estimation and maintains noise robustness.

The proposed technique can be summarised as follows.
1) Identify the significant directional structure from thewer spectrum, which is invariant under
geometric deformation by thaffine theorem

2) Apply slice-wise phase correlation to determine the exacresponding invariant points.

3) Finally perform spectral alignment to reveal the affirengformation.

The key elements of these improvements are three-fold. T$tadithe use of angular bins that determine
the number of significant directional features and changeeitimation strategy accordingly. The second
is the deterministic nature of the Fourier slice-projeactmalculation that replaces the iterative process
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Fig. 9. Use of various prototypepaguar (continued) (top)line (middle) cliff, (bottom) ridge (left) highpasgpproximation (right) image
reconstruction

of mixture modelling. The last is taking phase informatiomoi account in the spectral alignment. This
improves the representative points on which identicalcstme in the two images can be latched.

The proposed technique shows very encouraging performarteems of estimation accuracy, and the
computational requirement remains comparable to the @@ted variant of angular variance analysis. The
improvements are important to applications that requitenedion of the affine transform, for example
in fast motion estimation. Optimisation is needed in mangtgaf the implementation to further reduce
the computation time. For example, conversion of the Fouransform to a polar representation takes
a significant percentage of the overall processing time,nwhatching one slice to another in the target
block. Computing the correlation function for a subset afdidate slices judged by the energy distribution
around the current representative slice rather than cangittfor all possibilities is another means of
reducing complexity.
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