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Notation 

1. x= Input vector. 

Output vector. 

3. P(x, y) = Production Possibility Set. 

n R= Real number, R+ = Positive real number, R+ =n dimensional 

positive real number. 

11(y) = Input requirement set (the collection of all input vector x that yield 

at least output vector y). 

6. O(x) = Output predicable set (All output vector y that can be produced 

using a given input vector x). 

Indices of input; i=1,2,..., M. 

r= Indices of output; r=1,2,..., S. 

9. j= Indices of DMUs; j=1,2,..., n. 

10. jo DMU under assessment. 

11. xij Amount of input m of DMU j. 

12. yj = Amount of output n of DMU 

Ix 



13. x= (xi, ---, x,, ) = General vector of input. 

14. y= (Y1, ..., y, ) = General vector of output. 

15. xj = (xlj, ..., xmj) = Vector of inputs of DMU 

16. yj = (y, jI.... yý., ) = Vector of outputs of DMU 

17. t= Indices of period; t=l,..., T. 

18. xtij = Amount of input i of DMU j at period t. 

19. ytrj = Amount of output r of DMU j at period t. 

20. xl,, **, tij = Path of input i of DMU j over periods 1 to t. 

21. yl,..., tij = Path of output r of DMU j over periods 1 to t. 

22. Di = Input distance function. 

23. D,, = Output distance function. 

24. Mi = Input-oriented Malmquist productivity index. 

25. Mo = Output-oriented Malmquist productivity index. 

26. AEFF = Efficiency change. 

27. ATECH = Technical change. 

x 



Abbreviations 

1. CRS = Constant Returns to Scale. 

DEA = Data Envelopment Analysis. 

3. DFA = Deterministic Frontier Analysis. 

DMU = Decision Making Units. 

DRS = Decreasing Returns to Scale. 

6. FDH = Free Disposal Hull. 

IRS = Increasing Returns to Scale. 

8. NDRS = Non Decreasing Returns to Scale. 

9. MRS = Non Increasing Returns to Scale. 

10. PPS = Production Possibility Set. 

11. SD = Strong Disposability (in input and output). 

12. SFA = Stochastic Frontier Analysis. 

13. VRS = Variable Returns to Scale. 

14. WD = Weak Disposability (in input and output). 
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Synopsis 

The concept of a "production function" as means to measuring efficiency began 
in 1928 with the seminal paper by Cobb and Douglas (1928). However, until the 
1950s, production functions were largely used as a tool for studying the functional 
distribution of income between capital and labour. Farrell's argument (1957) provides 
an intellectual basis for redirecting attention from the production function specifically 
to the deviation from that function as a measure of efficiency. He developed a 
method so that we can measure efficiency in terms of distance to the "best DMU" on 
the frontier isoquant. 

Charnes, Cooper and Rhodes (1978) generalised Farrell's concept to multiple - input multiple - output situations and reformulated it using mathematical programming 
and thus derived an efficiency measurement known as Data Envelopment Analysis 
(DEA). Therefore DEA is a linear programming based method for comparing 
Decision Making Units (DMUs) such as schools, hospitals, etc. In the method 
originally proposed by Charnes, Cooper and Rhodes (1978) the efficiency of a DMU 
is defined as a ratio of the weighted sum of outputs to the weighted sum of inputs. 
Thus in the original DEA approach the notion of time dimension has been ignored. 

This thesis proposes a IDEA based method for assessing the comparative 
efficiencies of DMUs operating production processes where input - output levels are 
inter - temporally dependent. One cause of inter - temporal dependence between 
input and output levels is stock input which influences output levels over many 
production periods. Such DMUs cannot be assessed by traditional or 'static' DEA. 
The method developed in the study overcomes the problem of inter - temporal input - 
output dependence by using input - output 'paths' mapped out by operating DMUs 
over time as the basis of assessing them. 

The aim of this thesis is, therefore, firstly, to address that traditional or "static" 
IDEA fails to capture the efficiency of DMUs with inter - temporal input - output 
dependence. Secondly the thesis develops an approach for measuring efficiency 
under inter - temporal input - output dependence by defining an inter - temporal 
Production Possibility Set (PPS). The method developed uses path of input - output 
levels associated with DMUs rather than input - output DMUs observed at one point 
in time as static IDEA does. Using this PPS, an assessment framework is developed 
which parallels that of static DEA. 

The thesis develops mathematical programming models which use input - 
output paths to measure efficiency, identify peers and target of performance of 
DMUs. 

The approach is illustrated using simulated and real data. 

xii 



CHAPTER 1: Introduction to efficiency 

measurement and Data Envelopment 

Analysis 

1.1 Introduction 

"Decision Making Units" (DMUs) are units of organisations such as bank 

branches, universities and hospitals, which typically perform the same 

function (e. g. bank service in the case of bank branches). A DMU usually 

uses a set of inputs (resources) to secure a set of outputs (products). The 

process of transforming inputs into outputs is usually called "production 

technology 



A description of production technology, in econometrics theory, is 

expressed by a "production function" which describes the maximum amount of 

one output that can be produced for given levels of production of the 

remaining outputs and for given level of input usage ("profit function"). 

Alternatively, it describes the minimum amount of one input required for the 

production of given outputs with given amount of all other inputs ( i1cost 

function"). Thus a production function specifies a maximum (profit function) or 

a minimum value (cost function) which can be achieved under the constraints 

imposed by technology. That is, it describes a boundary, or a "frontier'. 

For a variety of reasons, interest frequently centres on the distance an 

observed DMU operates from a frontier, since such a distance provides a 

measure of the efficiency of the DMU under observation. 

This concept of a "production function" as a means to measuring 

efficiency began in 1928 with the seminal paper by Cobb and Douglas (1928). 

However, until the 1950s, production functions were largely used as a tool for 

studying the functional distribution of income between capital and labour. 

Farrell's argument (1957) provides an intellectual basis for redirecting 

attention from the production function specifically to the deviation from that 

function as a measure of efficiency. He developed a method so that we can 

measure efficiency in terms of distance to the "best DMU" on the frontier 

isoquant. 

2 



This chapter presents a survey of the methods that have been employed 

for efficiency measurement since Farrell's seminal work. The chapter unfolds 

as follows. 

Section (1.2) lays out some of the definitions and terms used later 

including production technology and "Production Possibility set". Section (1.3) 

discusses the concept of efficiency measurement, "technical efficiency", 

"allocative efficiency" and "overall efficiency", in economics with some studies 

of " parametric frontier analysis". Section (1.4) discusses some studies of non - 

parametric frontier analysis originally developed by Charnes, Cooper and 

Rhodes (1978). These represent the concept of Data Envelopment Analysis 

(DEA) with mathematical details and graphical illustrations. Section (1 -5) 

concludes. 

1.2 Production technology 

A production technology transforming inputs XER+n into Outputs YER+m 

can be represented by input - output correspondences P such that P is the 

collection of all feasible input - output vectors, i. e. 

P ={(X, Y) C R+n+m ,x can produce yj (1.1). 

3 



Fiqure 1-1. The input and output se 

Yi xi 

P is usually called the Production Possibility Set (PPS). The set O(x) is 

called the output set, and it denotes the collection of all output vectors YER+m 

that are obtainable from the input vector XE R+n. The input set 11(y) denotes the 

collection of all input vectors XG R+n that yield at least output vector YE R+m. 

The input set and output set are illustrated in Figure 1 -1. 

The input - output correspondences can be obtained from the PPS as 

I(Y)={XCR+n, (X, Y)e p) and O(X) ={YC R+m , 
(X, Y) E=- P 1. 

The relationship between the input set, output set and PPS is shown in Figure 

1-2. The PPS of the technology is the area bounded by the x-axis and line L. 

The output set corresponding to xO is O(xo)=[O, yo] and the input set 

corresponding to yo is l(yo)=[xo, +oo). 

4 
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Figure 1-2. The relationship between the input set, output set and PPS 

y 
i 

Yo 

v 

The input set, output set and PPS have one feature in common. They 

provide a representation of technology in terms of input quantities and 

corresponding output quantities. In addition two conditions, returns to scale 

and disposability, are very important to determine the shape of the PPS. 

These conditions can apply as follows (see for example Fftre, Grosskopf and 

Lovell (1994) p. 33-44 and Banker et al. (1984) p. 1081 and Fc*ire, Grosskopf 

and Lovell (1985)): 

A technology: 

1. Exhibits Constant Returns to Scale (CRS) iff,; ýP=p V X>O, where Xp ={ 

(ý, x, ; ýY) ;V (X, y)e P 1. 

1111. Exhibits Non Increasing Returns to Scale (NIRS) iff ý, p (--p ; VO<X: 51 

or equivalently if PcXp ; VX>l. 

IIIIII. Exhibits Non Decreasing Returns to Scale (NDRS) iff ý, p (--p ; VXý! j 

or equivalently if P cýXp ; VO<X<l. 

5 
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IV. Exhibits Variable Returns to Scales (VRS) iff none of the above 

returns to scale hold. The returns to scale behaviours of production 

technology are illustrated in Figure 1-3. 

V. Exhibits Weak Disposability (WD) of inputs if (x, y)(E P then (Xx, y)(E P; 

vx>l. 

V1. Exhibits Strong Disposability (SD) of inputs if (x, y)EEP and ký! x then 

(, X', Y) EI P. 

Vill. The output disposability can be defined in a similar way. A PIPS is 

said to exhibit Weak Disposability of output if (x, y) (E P and (x, ý, -ly)(E P 

; VXý! l and it exhibits Strong Disposability of output if (x, y)cz P and 

Y: 5y then (x, y) c 

Fiqure 1-3. The returns to scale of production technoloqy 

X 

x 

6 
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It will be seen later how these assumptions are used to construct a PIPS in 

various approaches to efficiency measurement. 

Next the methods of measurement of efficiency are explained. 

1.3 Measurement of efficiency 

The concept 

The seminal article by Farrell (1957) introduced the concept of the "best 

practice frontier"which outlines the technical limits of what a Decision Making 

Unit (DMU) can achieve. This best practice frontier, also called the production 

or the efficiency frontier, specifies for a DMU the maximum quantities of 

outputs it can produce given any level of inputs and, for any levels of outputs, 

the minimum quantities of inputs needed for producing the outputs. Using this 

frontier the concept and the index of technical inefficiency can be defined. 

A DMU is said to be (technically) inefficient if its outputs and inputs are 

below the frontier, in the sense that it could produce more outputs with the 

available inputs or decrease its levels of inputs while keeping outputs 

unchanged. The measure of "technical efficiency (TE)" is given by the relative 

distance between the actual observed production and the "nearest" 

benchmark production (a benchmark production is a production lying on the 

f rontie r) - 
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Figure 1-4. Production frontier for one-input one-output technoloqy 

Figure 1-4 represents such a production frontier for the one - input one - 

output case. If a DMU yields an input - output vector equal to A it is inefficient 

and its degree of technical efficiency can be given either by an input based 

BC DA 
indicator 

AC 
or by an output based indicator 

DE . 
Either indicator would be 

equal to 1 when the actual production lies on the frontier. The DMUs on the 

frontier are called "Pareto efficient DMUs". 

Farrell (1957) also proposed another measure, "allocative efficiency (AE) 11 Y 

which reflects the ability of a DMU to use inputs in optimal proportions, given 

their respective prices and the production technology. This is illustrated in 

Figure 1-5 for the case of two inputs for one unit output. If the input price ratio 

is represented by the slope of the isocost line DID, the allocative efficiency of 

the DMU operating at A is defined to be the ratio 
0C 

since the distance BC 
OB 

8 



represents the reduction in production costs that would occur if production 

were to occur at the allocatively (and technically) efficient point B instead of 

at the technically efficient, but allocatively inefficient point B. 

The "overall efficiency (OE)", then, is defined to be the ratio 
0C 

where 
OA 

the distance AC can also be interpreted in terms of cost reduction. Note that 

the product of the technical and allocative efficiency provides the measure of 

overall efficiency. 

TExAE= 
OB OC OC 

= OE. x OA OB OA 

Figure 1-5. Production frontier for two inputs and for one unit output 

Input2 

D 

Input] 

This means allocative (and overall) efficiency is input - oriented. One can 

illustrate output - oriented measure of allocative (and overall) efficiency by 

9 
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considering the case where production involves two outputs normalised by a 

single input. 

This case is depicted in Figure 1-6 where the point A corresponds to an 

inefficient DMU which lies below the border of the PPS. Assume DID is the 

isorevenue line, thus the (output - oriented) allocative efficiency is defined by 

OB 
which has a revenue increasing interpretation (similar to the cost 0C 

reducing interpretation of allocative efficiency in the input - oriented case). 

Furthermore, the (output - oriented) overall efficiency is defined as the product 

of the technical and allocative efficiency measures. 

OE=TExAE= OA 
x 

OB 
-- 

OA 
OB OC OC 

Figure 1-6. Production frontier for two outputs and for one unit of input 

0 
D 

Output] 
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1.3.2 The parametric method versus the non - parametric method 

There are two empirical methodologies for the measurement of efficiency: 

cc parametric )7 and "non - parametricI7. 

One distinguishes between these two main alternatives by whether or not 

the frontier can be specified as a function with constant parameters. 

Parametric approach 

In the parametric approach of efficiency measurement the production 

technology is modelled with a single - output production frontier; 

yj = (1.2) 

where y denotes output, x denotes a vector of inputs, P is a vector of 

parameters that is the object of estimation and j denotes the DIVIU. In reality 

the functional form of the production model to be estimated may be linear in 

the logs of output and independent variables such that 

Yj =a + ßxj (1.3) 

where Yj is the log of the single output of DMU j, Xj is a vector of the logs of its 

input levels and ((x, P) is a vector of unknown parameters. 

Technical inefficiency is assumed to enter the production model additively 

in logarithms (1 -3) (or multiplicative in production technology (1 . 2)) in the form 

yj =cc + ßxj + F-j or Y, =f (xj, ß) x F-'i 

where Fj (= log Fj ) is the indicator of the technical efficiency. 

(1.4) 

11 



In this approach the aim is the specification and estimation of E as an 

efficiency rate. For this in the context of econometric literature there are two 

distinct models for estimating (1.3) or (1.2) using observed input - output 

correspondences. 

First, "Deterministic Frontier Analysis" (DFA) which measures the 

technical efficiency relative to a deterministic parametric frontier (see for 

example Aigner and Chu (1968)). There are a few applications of 

deterministic production frontiers including Steveneson (1980) and Aguilar 

(1988). Further discussions appear in Deprins and Simar (1983) and Lovell 

(1993). 

Secondly, "Stochastic Frontier Analysis" (SFA) which measures the 

technical efficiency relative to a stochastic parametric frontier (see for 

example Aigner, Lovell and Schmidt (1977)). This stochastic parametric 

frontier approach assumes Ej in (1.4) is a composed error term; 

ej - vj - ýtj 

where vj , is a symmetric normal term capturing randomness outside of the 

control of the DMU and Rj (ý! O) is a one-sided component capturing 

inefficiency. Further discussion appears in Meeusen et al. (1977). 

Non - parametric approach 

An alternative method of efficiency measurement is "Data Envelopment 

Analysis" (DEA). This is a non - parametric technique in the sense that no 

12 



functional form is assumed for the frontier. It measures efficiency relative to a 

deterministic frontier using linear programming techniques to ýienvelop 91 

observed input - output vectors as tightly as possible (Charnes, Cooper and 

Rhodes (1978)). One main advantage of IDEA is that it allows several inputs 

and several outputs to be considered at the same time. In this case, efficiency 

is measured in terms of inputs or outputs along a ray from the origin. 

Historical background of non - parametric efficiency measurement 

Koopmans (1951) provided a formal definition of technical efficiency: 

A DMU is technically efficient 

==> if an increase in any output requires a reduction in at least one 

other output or an increase in at least one input, and or 

==> if a reduction in any input requires an increase in at least one 

other input or a reduction in at least one output. 

Thus an inefficient DMU could produce the same outputs with less of at 

least one input, or could use the same inputs to produce more of at least one 

output. 

Farrell (1957) introduced a measure of technical efficiency. To relate the 

Farrell measure to Koopmans' definition, Shephard (1953,1970) introduced 

the "input distance function". Assuming P represents the set of 

correspondences of input - output as in (1.1). For each YC: R-, n we may define 

an "isoquant set" 

13 



Isoq(y) = {x 1 (x, y)e p& (Äx, y)e p; v 05Ä<l 1 

and an "efficient set" 

Eff (y) ={x1 (x, y) ep& (x, y) ep; V Y'<: #xý 

where k<#x means each element of x is greater than or equal to the 

corresponding element of k and k is different from x. 

It is obvious Eff (y) g: Isoq(y). The difference between these two sets will 

be illustrated later by an example. 

Shephard's (1970) input distance function can then be defined as 

Di(X, y) = max{ X -x c Isoq(y) 
A 

Clearly Di(X, y) ý! l and Isoq(y) =IXI Di(X, Y) =1 I (Shephard (1970)). The 

"Farrell input - oriented" measure of technical efficiency can now be given as 

Fi(X, y) = min { (p 1 (ýD x, y) E: -: P1 

and it is obvious that Fi(X, Y): ý 1, Fi(X, Y)= (Di(X, y))-l and Isoq(y) ={XI Fj(X, Y)= 

1 ). 

The input set of output y and the input technical efficiency measure are 

illustrated in Figure 1-7. 

It can thus be seen that input vectorsV3x3andV4X4can not be contracted 

radially and still remain capable of producing output vector y. Consequently 

Fi(Xi, Y) = Fi(X2, Y) =1 bUt Fi(X3, Y) <1 and Fi(X4, Y) <1 (thUS Fi((P3X3 y)=l and 
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Fi((P4X4 y)=1). Also the difference between the efficient set and the isoquant 

set of output y can be seen in this example as (P3X3 c Eff (y) but (P4X4 e Eff (y) 

while both (P3x3and ýNX4c Isoq(y). 

Fi_qure 1-7. The input technical efficiency measure 

(I(y) = Set of vectors to the right and above of broken line) 

InpUt2 

Input, 

Since technical efficiency measurement is sometimes used to investigate 

output augmentation it is useful to replicate the above definitions in the output 

orientation. For each XER+m we could define an isoquant and efficiency sets 

as follows 

isoq(x)={yl(x, y)(=-P&(X, XY)V-P; V/'ý>lj 

Eff (x) ={y1 (X, Y)c P& (X, V)E PV; y<: ý'-L Y1 

with the property that Eff(x) c- Isoq(x). 

Thus Shephard's (1970) output distance function 
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Do(X, y) = min {X y c- Isoq(x) 
A 

provides another measure of efficiency which is of course Do(X, y):! ý1. We also 

have lsoq(x) =(yI Do(X, Y) =1 1. The "Farrell's output - oriented" measure of 

technical efficiency can now be defined as 

Fo(X, y)= max {01 (x, 0 y) c P). 

Thus we have Fo(X, Y) = (Do(X, y))-l and Isoq(y) = {y I Fo(X, Y) =1 I. 

Following Farrell's (1957) technical efficiency measure and Shephard's 

(1970) distance function, Charnes, Cooper and Rhodes (1978) developed 

Data Envelopment Analysis (DEA) as a non - parametric method of efficiency 

measurement of a set of DMUs for each of which the only data available are 

the levels of their multiple inputs and outputs. This approach has been shown 

to be a significant generalisation of the Farrell method of efficiency 

measurement and also equivalent to the concepts of "Pareto efficiency". 

The method developed in this thesis is an extension to IDEA. Therefore 

the rest of this chapter will discuss the basic and recent developments in 

DEA. 
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1.4 Data Envelopment Analysis (DEA) 

1.4.1 Basic DEA 

Charnes, Cooper and Rhodes (1978) generalised Farrell's measure to 

multiple - input multiple - output situations and operationalised it using 

mathematical programming. This method for efficiency measurement became 

known as "Data Envelopment Analysis" (DEA). Assume a set of observed 

DMUs, {DMU j; j=l,..., n), is associated with m inputs, {xij ; and s 

outputs, {yrj ; r=1 .... s). In the method originally proposed by Charnes, Cooper 

and Rhodes (1978) the efficiency of the jth DMU is defined as follows. 

I 
U, Yj 

Eff r 
Vixrj 

where 

y, j = the amount of the rth output from DMU 

u, = the weight given to the r 
th output, 

xij = the amount of the ith input used by DMU 

vi = the weight given to the ith input. 

The efficiency is then defined as a ratio of the weighted sum of the 

outputs to the weighted sum of the inputs. Then to measure the efficiency of 

DMU jo Model 1-1 is used. 
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Model 1-1. DEA ratio model 

IuIY 

Eff = MaX r 

U,, vi 
ý vixijo 

s. t. 
yu, yd 
r<I Vi 

vixii 

Ur lVi ý! o Vr, Vi 

This fractional model can be easily transformed to a linear programming 

model (Charnes and Cooper (1962)) as in presented in Model 1-2 and Model 

1-3 respectively for input and output orientation case. 

Model 1-2. DEA weiqhts model, input- 

oriented 

Model 1-3. DEA weights model, output- 

oriented 

Eff = Max U, yd. 
Ur I Vi r 

S. t. 
I UrYrJ -I ViXii :! ý 0; Vj 

r 

vixijo 

Ur 1 
Vi 0 Vr, Vi. 

Eff Min vjxjjo 
Url Vi 

s. t. 
Iu 

ryý 
-I vlxij:! ý 0; Vj 

r 
I 

UrYOO 
r 
Ur I Vi 0 Vr, Vi. 
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The Model 1-2 and Model 1-3 have duals, which measure efficiency with 

reference to production possibility sets. An axiomatic and self - contained 

development of such models is presented in Banker, Charnes and Cooper 

(1984). Let us have the observed DMUs {(xj, yj) j=l,..., nl as defined above. 

Banker et al. (1984) postulated the production possibility set P has the 

following five properties: 

Postulate 1. Non empty. (xj, yj)(-= P (V j=l,..., n) then P is non empty. 

Postulate 2. Constant Returns to Scale (CRS). If (xj, yj)c P then for any 

non-negative scalar (x>- 0 ((xxj, (xyj)c= P. 

Postulate 3. Strong Disposabilit . 

a) If (xj, yj)c P and xjl ý! xj then (xjl, yj)c- P (Input Disposability). 

b) If (xj, yj)c P and yjl :5 yj then (xj, yjl)c= P (Output Disposability). 

Postulate 4. Convexity. P is a closed and convex set. 

Postulate 5. Minimum extrapolation. P is the intersection of all production 

sets satisfying postulates 1 to 4 and which contains all the observed 

DMUs. 

If P satisfies the above postulates then P can be expressed as 

{(Xjo, YJO) S. t. ljXj xj :! ý xjo and Ij ;, ýj yj ý! yjo , Xj ý! 0; j=,, ..., n). 
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The vector X --: 
(X1, X2) 

.... 
Xn)C: R+n enables us to shrink or expand 

individual observed DMU for the purpose of constructing an unobserved but 

feasible DMU. 

Combining this PIPS with the definition of Farrell's technical efficiency and 

Shephard's distance function and reformulating it as a linear programming 

model the following IDEA model is obtained for assessing the efficiency of 

DMU jo. 

Model 1-4. Output Oriented - CRS envelopment model 

Max h+E(IS+ +IS-) 
.jr r X A, h, s, r 

S. t. 
Aix ii =X ijo -si vi 

Aj yj = hyj,, +S Vr 
r 

S_ , S+ >0 Vi, Vr r 

0 Vi 

E>0. 
II 

The Model 1-4 defines the relative efficiency of a DMU in terms of output 

maximisation. An input minimisation model will be presented later. It is the 

dual to the weight Model 1-3 except that we also introduced a new element, F-, 

a positive non-Archimedean (Charnes and Cooper (1984)). Its use ensures 

that all Ur and vi>O, so all inputs and outputs are to be accorded some positive 

value. These values need not to be specified but can be dealt with by 
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computational processes (See for example Ali (1990) and Ali and Seiford 

(1993)). It is noted that h is maximised first, after which the sum of the slacks 

in Model 1-4 is maximised. The model then identifies the non-zero slacks, if 

they exist at an optimal solution, and assurance is provided that no DMUs will 

not be mistakenly characterised as efficient. This is because an optimal 

solution could be obtained showing h*=1 and slacks at zero while alternate 

solutions exist which associate non-zero slacks with h*=l, where h* is the 

optimum value of h (see Ali et al. (1991) and Ali (1992)), In this way, the non- 

Archimedean element F, >O is given a computational form without any need to 

specify it explicitly. (Most IDEA computer codes accomplish this in two stages. 

Stage 1: obtains a value of max h* with slacks all multiplied by zero rather 

than F->O in the objective function. This h* is then fixed in Model 1-4 so that 

cannot be altered in a second stage, which is then directed to maximising the 

sum of slacks (see Arnold et al. (1996) Thanassoulis and Emrouznejad 

(1996)). 

Hence, DMU jo is said to be Pareto efficient iff h =1 and the optimal values 

of Si-* & S, +* are zero for all i&r (Cooper et al. (1999)). This means that no 

other DMU or combination of DMUs exist which can produce at least the 

same amount of output as DMU jo, with less for some resources and / or no 

more for any other resources. 
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In Model 1-4, Si and Sr represent slack variables. Thus a slack in an input 

i, i. e. Sj- > 0, represents an additional inefficient use of input i. A slack in an 

output r, i. e. Sr+* > 0, represents an additional inefficiency in the production of 

output r. 

The IDEA Model 1-4 is known as CRS - output - oriented model because it 

expands the output of DMU jo within the CRS - PPS. It should be solved n 

times once for each DMU being evaluated to generate n optimal sets of 

values of (h, X 

For DMU jo, IDEA efficiency will be the 1/ h jo. Therefore: 

If radial expansion is possible Model 1-4 will yield h jo >1, 

If radial expansion is not possible Model 1-4 will yield h jo =1. 

Figure 1-8. The QRS - output - oriented model ( Output set of input x) 

Ol'tPl't2 

Yl 

Y2 

Output, 

The positive elements of the optimal values in ý. identify the set of 

dominating DMUs located on the constructed production frontier, against 

which DMU jo is evaluated. The DMUs of this set are called "peersý' to DMU jo 
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(Boussofiane, Dyson and Thanassoulis (1991)). The CRS - output - oriented 

model is illustrated in Figure 1-8. 

Output vector y3 can be expanded radially and still there is no need to 

increase its input level x. Consequently h* in Model 1-4 would be over 1 and 

its efficiency, 
1 

<1. However output vector h3 . Y3 can not be expanded radially h* 

using the same amount of input level. Thus h3y3 belongs to the efficient 

output set and Eff(h3 Y3) : --: 1. Since h3y3 lies on the line yjy2 then y3 is 

evaluated against yj and y2and therefore these DMUs are peers for y3. 

The input oriented model of IDEA can be defined in a similar way. The 

CRS - input model which is dual to Model 1-2 is as follows. 

Model 1-5. Input oriented - CRS model 

Min O-e(jS++jS-) 
jr 

A, h, s. -, s, r 

SA. 
Ajxij =Oxiý, -S. - vi 

yAjy, 
j =yd. +S, ' Vr 

i 
S- , S+ >0 Vi , Vr 

0 Vi 

E>0. . 

Notations are as in Model 1-4. 
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Assume that ý is the optimum value of 0. DMU jo is said to be Pareto 

efficient iff 0* =1 and the optimal value of Sj+ and S, - are zero (V i, r). The 

efficiency rate of DMUjo is 0 

1.4.2 VRS model (Variable Returns to Scale) 

This model was developed by Banker, Charnes and Cooper (1984) and is 

frequently referred to as the VRS IDEA model. The difference between VRS 

and CRS efficiencies can be illustrated by using Figure 1-9. The figure depicts 

the production possibility set for the input - output mix (x, y). The line L is the 

boundary of the PIPS for CRS while ABC is the boundary of the PPS for VRS. 

DMU D with input - Output Of (XD) YD) is inefficient. A measure of (input) 

inefficiency can be obtained if it is compared to DMU E for VRS and DMU F 

for CRS. Both E and F have the same output level as D. 

Fi-qure 1-9. CRS and VRS eff icienc 

V 

x 
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The f raction xI is the VRS-(input) efficiency rate and the fraction -ý-' is 
XD XD 

the CRS-(input) efficiency rate of DMU D. In an analogous manner it can be 

seen that the fraction 
YD 

is VRS-(output) efficiency rate and the fraction 
YG 

is CRS-(output) efficiency rate of DMU D. 
YH 

Banker, Charnes and Cooper (1984) have extended the original CRS 

IDEA model to assess the VIRS efficiency by adding a convexity constraint to 

it. Specifically their VIRS input and output orientation models are as follows. 

Model 1-6. Input oriented - VRS model Model 1-7. Output oriented - VRS model 

Min 0- S' + 
Ä, o's. - s+ 

Max O+e(IS+ + IS-) 
,r_, i 

A, 0, si, S, ý 

1, ýi xii =oxij. -s vi Jx ij x ijo -s 

S' Vr Äyý S' Vr 
rr 

s- s+ 0 Vi, Vr s- , 
s+ 0 Vi, Vr 

1r1r 
, ýj 0 Vi Äj ýý 0 Vi 

E>0. E>0. 

Unlike CRS models where input and output efficiency are equal VIRS 

models generally yield different input and output efficiencies. 

25 



Non Increasing Returns to Scale (NIRS) and Non Decreasing Returns to 

Scale (NDRS) are modelled by changing the constrain Ij Xj =1 to Yj Xj ý! l and 

Ij Xj :! ýl respectively in Model 1-6 for input and in Model 1-7 for output 

eff iciency. 

1.4.3 Other DEA models 

Apart from basic IDEA models discussed in the previous section 

researchers have developed further IDEA models. Table 1-1 lists some well 

known IDEA models developed since 1978. 

Table 1-1. Some well-known DEA models. 

Model References 

CRS (Input-oriented, Output - oriented, 
Ratio model) 

Charnes, Cooper, Rhodes (1978) 

VRS (Input-oriented, Output - oriented ratio) Banker, Charnes and Cooper (1984) 

Variant Multiplicative Charnes, Cooper, Seiford and Stutz (1982) 

IVIPSS (Most Productivity Scale Size) Banker(1984) 

Additive Charnes, Cooper, Golany, Seiford and Stutz 
(1985) 

Invariant Multiplicative Charnes, Cooper, Seiford and Stutz (1983) 

Non - discretionary inputs - outputs Banker and Morey (1 986a) 

Categorical Inputs - outputs Banker and Morey (1 986b) 

Incorporating Judgement (A prior 
Knowledge) 

Dyson and Thanassoulis (1988) 

Preferred targets model Thanassoulis and Dyson (1992) 
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Besides developing IDEA in theory, practitioners in a number of fields 

have quickly recognised that IDEA is a useful methodology for measuring 

productive efficiency. Some of the well known applications where IDEA is 

frequently applied are: 

Agricultural and farm industries 

Bank and financial institutions 

Education, schools, colleges and universities 
Health services 

" Police and military services 

" Transport, airline industry and railroads 

" Water industry 

Further applications can be found in the Extensive Bibliography of IDEA 

compiled by Emrouznejad and Thanassoulis (1 996a, 1996b, 1997) and recent 

bibliography published by Seiford (11997). 

1.5 Conclusion 

IDEA is a non - parametric approach of frontier analysis for assessing the 

technical efficiency of DMUs, such as bank branches, hospitals, schools, etc. 

In the IDEA models the relative efficiency is calculated by measuring the 

distance between the observed and efficient input-output levels of DMUs. 

The introductory chapter has outlined the efficiency measurement 

methods, particularly IDEA as a non - parametric approach. IDEA has been 

widely used for comparing of the efficiency of DMUs. However the IDEA 
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models discussed in this chapter do not take into account the time dimension. 

The next chapter will discuss the use of IDEA over time and the motivation for 

this thesis. 
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CHAPTER 2: Using DEA on panel data and the 

motivation for dynamic efficiency 

2.1 Introduction 

The IDEA models that have been presented so far in this thesis do not 

take into consideration the time dimension. With panel data, one has input - 

output observations for each DMU and at each time period (such as Year, 

Month and so on). The IDEA models developed by Charnes et al. (1978) or 

their extensions (Charnes et al. (1995)) can be used to assess DMUs cross - 

sectionaly within each period of time. However the drawback of a cross - 

sectional analysis is that it provides only a snapshot of a process which 

evolves through time. Consequently cross - sectional analysis provides only a 

partial, and possibly a misleading, evaluation of performance. For this reason 



IDEA has more recently been used with panel data in various approaches. 

IDEA was first applied to panel data by Charnes, Clark et aL (1985), Fare 

(1986), and in a much wider range by Fdre et aL (1992,1995a 1995b and 

1997). The advantage of panel data is that it offers the opportunity of 

obtaining a longer term evaluation of the performance of DMUs. 
I 

Perhaps the "window analysis" approach by Charnes, Clark et al. (1985) 

is of considerable importance as a pioneering attempt to deal with the 

problem of time and it has given some valuable insights into the issues 

involved. 

Much more recently, researchers (Tulkens et aL (1995)) have dealt with 

other forms of IDEA assessment over time by studying technical progress and 

technical regress using non - parametric models. For example Sengupta 

(1995) presents models for dealing with limited inter - temporal dependence of 

inputs - outputs while F5re et al. (1992 and 1997) developed an index, 

"Malmquist index", for measuring productivity change over time. 

The aims of this chapter are to overview cross - sectional analysis by IDEA 

and develop the motivation for this thesis. Section (2.2) describes "window 

analysis" as a first approach in the IDEA literature dealing with time series 

data. Section (2.3) discusses aggregate efficiency. Cross - sectional analysis 

of IDEA for both "contemporaneous" and " sequential" technology will be 

presented in section (2.4). Sections (2.5) and (2.6) discuss the "diachronic 
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performance" measurement and "network model" which were developed 

recently by Fare et al. (1996 and 1997). A brief review of dynamic IDEA 

developed by Sengupta (1995) is given in section (2.7). Section (2.8) 

concludes. 

2.2 Window analysis 

A method for detecting trends over time in efficiency scores is provided by 

the window analysis methodology of Charnes, Clark et al. (1985). In this 

approach the set of T periods is divided into a sequence of overlapping sub - 

periods of equal length. Each DMU is seen as a different DMU in each period. 

The methodology defines a sequence of windows consisting of periods { 1, ..., 
for the first window, periods { 2, ..., r +1 1 for the second window and so on 

through periods ( T-(T +1), ..., 
TI for the last window. The IDEA problem is 

solved nxr times in each window where n is the number of observed DMUs. 

The efficiency rate of each DMU can be tracked through the sequence of 

overlapping sub - periods. For example Table 2-1 can be constructed as a 

result of the IDEA assessments carried out in an assessment of n DMUs. The 

three figures in each row correspond to the efficiency rating for each DMU in 

the window relating to the row. For example the efficiencies of DMU 1 taken 

as a separate DMU in years 1,2 and 3 in the first window are 93.5%, 89.3% 

and 91.8% respectively. 

31 



Table 2-1. Window anaiVsis of n DMUs in 10 periods, with the lenc ith of 3 

Year 4 1 2 3 456789 10 
DMU 1 
Window 1 93.5 89.3 91.8 
Window 2 78.9 94.3 84.8 
Window 3 90.4 89.6 93.8 

Window 8 97.4 83.9 89.6 
DMU 2 
Window 1 88.5 91.8 90.8 

DMU n 
Window 1 92.5 87.3 87.1 
Window 2 79.9 91.3 82.4 
Window 3 89.2 83.9 90.1 

Window 8 92.3 89.1 90.3 

The figures in each column give a view of the efficiency of a DMU during 

a year. The efficiency values reflect the relative performance of the DMU in a 

given year as the comparator set of DMU is progressively changed. The 

figures across each row indicate how the efficiency of the DMU changes with 

time within a given window. The length of the window is a matter of judgement 

by the analyst. Windows might cover periods of time over which operating 

conditions are similar or where seasonal effects on performance are similar. 

However the window analysis provides no evidence on the nature of any 

technical change. 
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2.3 Aggregate technology 

Assume a production technology over T periods (t = 1, ..., T). To obtain 

the efficiency of DMUs one possibility is to construct a single PIPS made from 

the summation of inputs and the summation of outputs for the entire life of 

DMUs. This is called aggregate technology and its PPS can be defined as 

pI={ (Xj, Yj)) I Xj can produce Yj; 

where Xj=ltxj(t) and Yj=Etyj(t) ; Vj I. 

With reference to this PPS the efficiency of each aggregated DMU can be 

obtained from standard DEA models (e. g. Model 1-2 and Model 1-3) where 

input - output levels are aggregated over the whole life of DMUs. This 

efficiency ratio is called aggregate efficiency and it does not provide any 

evidence on the efficiency of DMUs in a specific period of time. To obtain 

efficiency of DMUs in each period we have to employ cross - sectional 

analysis as described below. 

2.4 Cross - sectional analysis 

One way to compare DMUs over time is to define a PPS in each time 

period. The PPS of each period can be expressed by 
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Pt=I (x(t), y(t)) I x(t) can produce y(t) under certain conditions of 

technology at period t 1. 

Tulkens et al. (1995) named this PIPS "contemporaneous technology if So 

in this technology a sequence of T PPS's is constructed one for each period. 

DMUs can then be assessed within each period - specific PPS using standard 

IDEA models (e. g. Model 1-2 and Model 1-3). 

Tulkens et al. (1995) also introduced another technology by defining a 

PIPS at each point in time t using the observations from the beginning up until 

t. This technology is called "sequential technology" and can be denoted as 

Pil ... t={ (x(s), y(s)) I x(s) can produce y(s); S=1,2 

Thus again in this technology a sequence of T PPS's is constructed one 

for each period. DMUs in this technology are assessed using standard IDEA 

Model 1-2 and Model 1-3 and the PPS's for each s=1 to s=t, t being combined 

into a single PIPS. 

It is noted that the PPS sets in contemporaneous technology are not 

nested while PIPS sets in sequential technology are nested. i. e. 

11.... t+l 

It can be readily deduced that the sequential PPS in the last period of time 

contains all DMUs observed in each contemporaneous PPS from t=1 to t=T. 
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Thus feasible DMUs in contemporaneous PIPS at a specific time are feasible 

in sequential PIPS at that time too. i. e. 

t c- 41 (_ p tcp 

It follows that the efficiency rate of a DMU in sequential technology at a 

specific time t is not higher than its efficiency rate in contemporaneous 

technology at that time. 

The "cross - sectional performance" of a DMU relates to time period t and 

it is assessed relative to the best observed practice in that time period based 

on contemporaneous (or sequential) PIPS. Cross - sectional efficiency offers a 

snap - shot of the performance of a unit in the time period concerned. It fails 

to identify the progress or regress over time either of the efficient boundary 

itself or of a given operating unit. This point is illustrated in Figure 2-1. 

Figure 2-1 shows the efficient boundary Lt and Lt" for producing a unit of 

output in periods t and 41 respectively. Two inputs are used in the production 

process. Now assume a production unit operates at A in time period t and at B 

in time period 41 . Clearly the unit is more productive in time period 41 in that 

it secures a unit of output using much lower input levels than in period t. 
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Figure 2-1. Cross - sectional eff iciency does not reflect diachronic productivitv 

chanqes. 

4)tA 1 

Nevertheless, the cross - sectional efficiency of the unit in time period t is 

OD 
and in time period W is 

0C. Since OC 
< 

OD 
the cross - sectional 

OA OB OB OA 

efficiencies of the unit convey the incorrect impression that its performance 

deteriorates over time. 

2.5 Diachronic performance measurement 

The problem is addressed using diachronic performance 

measurement. One approach frequently used for measuring productivity 

change over time is that developed by F5re et al. (1992 and 1997) using a 
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"Malmquist index" (See Malmquist (1953)). Fare et aL (1992) decompose the 

total productivity change of a unit into that attributable to the 'shift' in the 

efficient boundary between period t and t+ 1 and that attributable to the 'catch - 

up' of the unit's efficiency. The catch - up factor reflects the change in the 

cross - sectional efficiency of an operating unit as we move from time period t 

to time period W. The boundary shift term reflects the movement in the 

efficient boundary from time period t to time period 41 in terms of how much 

more (less) input is needed to secure a given level of output, under efficient 

operation. For more details of the approach see Fare et al. (1992 and 1995a). 

The concept of Malmquist productivity index can be illustrated by Figure 

2-2 following Fare et al. (1992), Berg et al. (1992), Price and Weyman-Jones 

(1996). In this Figure, a production frontier is representing the efficient level of 

output y than can be produced from a given level of input x. We only 

represent a single-input single-output case but it can be extended to multi- 

input multi-output in the framework of defining IDEA models. The assumption 

made is that the frontiers can shift overtime. The frontiers thus obtained in the 

current, t, and future, t+1 , time periods are labelled accordingly. When 

inefficiency is assumed to exist, the relative movement of any given 

operational unit over time will therefore depend on both its position relative to 

the corresponding frontier (efficiency change) and the position of the frontier 

itself (technical change). If inefficiency is ignored, then the productivity growth 

over time will be unable to distinguish between improvements that derive from 
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an operational unit "catching up" to its own frontier, or those that result from 

the frontier itself shifting up overtime. 

Figure 2-2. Malmquist productivity index and its decomposition 

y 

Frontier at t+l: L(t+l) 

Frontier at t: L(t) 

------------------ ------------- 

A(t) 
--------------------- -------------- ------- ------- ------------ 

CG 
x 

Now assume A(t) represents an input output bundle for some given 

operational unit in period t. Thus an input-based measure of efficiency can be 

deduced by the horizontal distance ratio OC/013. That is, inputs can be 

reduced in order to make production technically efficient with respect to the 

frontier in period t. By comparison and with respect to the same frontier, in 

period t, an input based measure for operational unit A(t+1) can be defined 

with the ratio of OF/OE. Since the frontier has shifted, OF/OE exceeds unity, 
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even though A(t+1) is technically inefficient when compared to the period t+1 

f rontier. 

With using Malmquist input-oriented productivity index, it is possible to 

decompose this total productivity change between the two periods into 

technical change and efficiency change. Note that, some researchers use the 

input oriented measures of Malmquist index (see for example Berg, et al. 

(1992) and Funkuyama (1995)) but many others use the output orientation of 

the Malmquist index. We define the Malmquist index as in input based 

measure. This is also in line with our dynamic extension to the Malmquist 

index in Chapter 7. 

The input based Malmquist productivity index could be formulated as: 

mi 1+1 (xt 
,yt, x t+l, y t+l 

Di'(x", y "' )x 
_Dit+'(xt+', 

y+') 
1/2 

Di'(xt, yt) Dt+'(x', yt) 

Where Di is the input distance function and Mit"(xt, yt, xt+" yt+') is the 

productivity of the most recent production unit, i. e. A(t+l), using period t+l 

technology relative to the earlier production unit, i. e. A(t), with respect to t 

technology. A value greater than unity will indicate positive total factor 

productivity growth between the two periods. Following Fare et aL (1 995a) an 

equivalent way of writing this index is: 

t+I (xt+I 
, 

y(+I )i 1) - 1/2 

t+I (xt �vt, x t+I, yt+l) - 
Di D' (X'+', y'+') 

x 
Dit (X', y 

i- Di'(x', 
_v') 

[Di'+'(xt+', 

yt+') Di'+'(x', y t) 
- 
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or 

M=ATECH xAEFF 

where 

AEFF =Di 
t+l (xt+l, yt+l) 
D, '(x', t) 

iy 
Di'(x"', y"') Di .t (X ty1 

-x- Dt"(x" i yt)_ 

In this view M, the Malmquist total factor productivity index, is the product 

of a measure of technical progress, ATECH, as measured by shifts in a 

frontier at period t+1 and period t (average geometrically) and a change in 

efficiency, AEFF, over the same period. 

In order to calculate these indexes it is necessary to solve several sets of 

linear programming problems as presented in Model 2-1. Assume there are n 

DMUs and that each DMU consumes varying amounts of m different inputs to 

produce s outputs in each period t. The jth DMU, in period t, is therefore 

represented by the vectors (xjt, yj). The purpose is to construct a non- 

parametric envelopment frontier over the data points such that all observed 

DMUs lie on or below the production frontier. The calculation exploits the fact 

that the input distance functions (D) used to construct the Malmquist index 

are the reciprocals of the Farrell (1957) input oriented technical eff iciency 

measure (see Chapter 1). The first two linear programs are where the 
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technology and observation to be evaluated are from the same period, and 

the solution value is less than or equal to unity. The second two linear 

programs occur where the reference technology is constructed from data in 

one period, whereas the observation to be evaluated is from another period. 

Assuming constant returns to scale the following four linear programs are 

used to calculate the Malmquist index and its components. 

Model 2-1. Linear prog ramming models for calculation of the Malmq uist index and 

its components. 

[Di'(x,, y, )] Min 0 [D, " (x, 
+, . y, +, 

)]-' Min 0 

S. t. S. t. 
YAX t<t 

i ii - 
oxijo vi ZI x t+l < ox t+ 

j ii ii 0 vi 

s. t. S. t. 

Aj Y. >Y,. o ri - ri 
Vr Aj Y'+' >Y'+' 

ri rio 
Vr 

A0 Vi 0 v i 

[Di'+'(x,, y, )]-' Min 0 [Di'(x, 
+I, y, +, 

)]-' =Min 0 

S. t. S. t. 

Aj xii < ox1jo vi I Ajxt < oxt+l ij - ijo vi 

S. t. S. t. 
lAjy, +' >Yto 

ri - ri 
Vr Aj Y, >Y'+' 

rj rj 0 Vr 

Ai ý: o Vi Ai ý! o Vi 

By solving these linear programming models it is possible to provide 

four efficiency and productivity indexes for each observed DMU. Regarding 
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change in efficiency, technical efficiency increases (decreases) if and only if 

the optimum AEFF is greater (less) than one and AEFF can be obtained by 

solving the first two linear programming models. An interpretation of the 

technological change is that technical progress (regress) has occurred if 

ATECH is greater (less) than one. 

Fare et al. (1997) recognised that this diachronic performance measure 

also ignores the issue of assessing comparative efficiency of DMUs with inter 

- temporal input - output dependence. They then addressed the problem using 

a "network model" (Fare et aL (1997)). In Chapter 7 we will extend the 

productivity Malmquist index in line with the efficiency model that will be 

introduced in this thesis. 

2.6 Network model of DEA 

Fare et al. (1997) address "intermediate inputs" by introducing a network 

model. In a multi stage process an intermediate input is a product produced 

by technology in one stage and used as input in another stage. Therefore the 

key issue in their model is to divide a technology into sub - technologies so 

that the sub - technologies are connected in a network to form the overall 

frontier or reference technology. Looking at the production as a series of sub - 

technologies allows us to explicitly model intermediate inputs or products. For 
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simplification let us restrict a network to include only the technologies which 

are modelled in a directed network as shown in Figure 2-3. 

Figure 2-3. Sub - technologies 

Let us add a process for distributing exogenous inputs and a process for 

collecting final outputs. The extended network model is illustrated in Figure 

2-4. 

Fiqure 2-4. The network technoloq 

B 

Assuming that total available exogenous input is denoted by A and A'O ; 

i=l 2,3 denotes the amount of the vector of exogenous input used in sub - 
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technology i, then A ý: Jj AiO. Further assume that Bij denotes the amount of 

output from sub - process i that is delivered to sub - process j. Thus for the 

network depicted in Figure 2-4 the total output produced at say sub - process 

1 is B, 3+B, 4, 
where B, 3 

is the vector of intermediate products produced by 

sub - process 1 and used as input in sub - process 3. B, 4 denotes the amount 

of output from process 1 that becomes final output. 

Regarding the collection node (4), given that each sub - technology 

produced distinct products, the final output vector BER+m consists of 

B, 4 
ER+ml, B2 4C 

R+ M2 
and B3 4 

E=- R+ M3 
where m=ml +m2+m3and B=(Bi 4y 

B2 41 B3 4) 

. To formalise the network technology, we assume that there are 

k=l,..., K observations of (Bi 3, B, 4)k 
, (B3 4) k, (B2 3, B2 4) k, (A' O)k , (A 20)k 

, (A 30)k 

and Ak. Fdre presented a piece - wise linear technology associated with this 

network model in terms of output sets (see for example Fare et al. (1997) 

p. 22). 

With reference to this PPS the efficiency of each DMU can be obtained 

from standard IDEA models (e. g. Model 1-2 and Model 1-3) where inputs - 

outputs of DMU k are defined as follows. 
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Inputs 

(A 10)k 

(A 20) k 

(A 30) k 

(Bi 3)k 

(B2 3) k 

outputs 

(Bi 4)k 

(B2 T 

(B3 4)k 

This model takes into account the intermediate output but it does not deal 

with capital input which offers output over a number of periods. Sengupta 

(1995) has addressed the problem of capital input in various IDEA models. 

2.7 Dynamic efficiency, a different aspect 

Sengupta (1995,1996) has extended some IDEA models for dynamic and 

stochastic purposes. He formulated various dynamic models which clarify the 

economic concepts of allocative efficiency and technical change. The bases 

of these models are that the production and cost frontier are viewed 

dynamically over time. Technological change and adjustment of inputs over 

time are some of the major sources of dynamic efficiency in production units. 

His extension of static to dynamic IDEA models is mainly on allocative 

efficiency, or price efficiency, rather than technical efficiency. Recall that two 

types of efficiency measures are usually distinguished in production 
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economics. One is technical efficiency, which measures the success in 

producing maximum outputs from a given set of inputs. The other is the 

allocative efficiency, which measures a DMU's success in choosing an 

optimal set of inputs under a given set of input prices. This measure is 

sometimes also called price efficiency. The advantage of technical efficiency 

is that we do not require prices for inputs. 

Sengupta in various dynamic models used allocative efficiency to 

determine the optimum levels of inputs, whereas the technical efficiency 

model treats the observed inputs and outputs as given, and tests if each DMU 

achieves its maximum possible levels of output for given levels of inputs. In 

some cases Sengupta dealt with capital input as it has output effects spread 

over several periods ahead and developed a cost minimisation model in the 

framework of IDEA. Here we present a formulation of one of his models but 

for a comprehensive discussion see Sengupta (1995). 

The aim of the model presented here is to allow a DMU to compute the 

time path of optimal input usage over a period of time. Assume there are n 

DMUs and that each DMU consumes varying amount of m different inputs to 

produce s outputs in each period t. The input and Output Of jth DMU, for period 

t, are therefore xij', i=l, ..., m and yrj 
t, 

r=l, ..., s. Let qj be the price attached to 

input i. 

Hence Model 2-2 can capture the minimum price for DMUj. 
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Model 2-2. A DEA price eff iciencv model 

Min I q, x, 

s. t. 

x x 
vi, 

Y, ý Y Vr, Y j j jo 

Aj = 1, 
xi ý! 0 vi , Aj ý! 0 vj 

In this model qj is the input price attached to input i, and xi is the ith input 

optimally dedicated by DMU j along with the weights X. Let X* be the optimal 

solution of the above LIP model. The minimal cost of unit j is given by 

cj*=Iiqix *i where the observed cost of the same unit is cj=liqixi where xi is the 

optimal solution of the LP Model 2-2. 

Hence the overall efficiency of the DMUj would be defined as 

OEj = 2: iqix i/ Ziqixi. 

A dynamic extension of this, as developed by Sengupta and presented in 

Model 2-3, is a model where the DMUj uses an objective function to choose 

the sequence of decision variables xi(t) over a planning horizon. The objective 
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of this model is to minimise the expected present value of the total cost 

subject to the constraints in Model 2-2 but for each period. 

Model 2-3. A dynamic DEA price eff iciencV model 

Min Y X(t), A(t) t, 
p(t)c(t) 

s. t. 

Aj (t)xjj (t) xi (t) Vi, 

Ai (t) Yj (t) Yj " (t) Vr, 

JAj(t) =I Vr, 
i 

Xi (t) ý! 0 vi, 
Aj (t) ý! 0 vi 

Where c(t)=Ijqj(t)xj(t) is the total cost in 

period t and p is a known discount factor. 

According to Sengupta this model can be improved if we could make a 

distinction between the current and capital inputs and then minimise a 

discounted stream of costs for both current and capital inputs in the IDEA 

f ramework. 

Therefore he developed a type of dynamic formulation for when capital 

inputs are treated differently from the current inputs. Assume xi (i=l, ..., 

are current inputs and z is a single capital input. If qm(t) is the input price of 
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capital input, then qm(t)z(t) can be treated as the investment in durable goods 

in the process. If we assume continuous discounting at an instantaneous rate 

r, the total equivalent cost of the production unit is 

c(t) = liqi(t) xi(t) + rqr, (t)z(t). 

Minimising this cost function subject to the IDEA constraints in Model 2-3 

we are able to measure the overall efficiency of DMU. If x* is the optimal 

input, then the overall inefficiency of DMUj in the use of capital input is given 

by 

OEj(z)=rq,, z*/rq,, z =z*/z. 

In the dynamic case with the introduction of a planning horizon the 

objective will be choosing current and capital inputs so as to minimise the total 

cost over the horizon O<t<T. 

This is presented in Model 2-4 which is a typical cost minimisation IDEA 

model that is developed by Sengupta. 

Based on this model if the observed path of capital expansion equals the 

optimal path for every t then the model would exhibit dynamic efficiency; 

otherwise any divergence of the two paths would generate inefficiency over 

time. 
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Model 2-4. A dynamic DEA price efficiency model 

treatinq capital and current inputs differentl 

T 
f e-rtc(t)dt 
t=O 
s. t. 

Aj (t)xjj (t) ý5 xi (t) vi, 

Ai (Ozi (t) Z(t) 

'Zi (t) Y rj 
(t) Y rjo 

(t) Vr, 

Aj (t) = 1 Vr, 

Xi (t) 0 vi, 
Aj (t) 0 vi - 

Where c(t) = liqi(t) xi(t) + rq,, (t)z(t) is the total 

cost in period t and r is a known discount factor. 

Sengupta has also developed a series of dynamic efficiency models using 

optimum control theory (Sengupta 1995). As mentioned earlier in almost of his 

models he expanded IDEA using the concept of cost minimisation. He 

therefore either attaches prices to inputs and develops IDEA models treating 

capital and current input differently, or he extends the concept of allocative 

efficiency to a dynamic model. 
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However not only the input prices are unlikely to be known or relevant for 

certain contexts, there are certain basic objections to keeping prices constant 

in a dynamic model. Firstly, the efficiency measures will be biased if the 

observed input prices fluctuate widely overtime and inputs are adjusted to the 

past or to the expected future prices which differ from the current ones. 

Secondly, the price or allocative efficiency measure is very sensitive to error 

of measurement in estimating factor prices. These objections are much less 

valid when developing a dynamic model for technical efficiency, since we do 

not have prices in the model. Therefore the models developed in this thesis 

are different from those of Sengupta as we do not use input prices. 

Our approach could be seen more close to the network technology as 

developed by Fdre et al. (1997) in the sense that the network technology is 

also useful for when we have intermediate input/ output. However network 

technology is more useful for when in a multi - stage production process an 

output in the middle of the process can be turned as input after that. We are 

aiming to introduce a longer assessment IDEA model defining a unit as a path 

over several periods; in particular treating current and capital input differently. 

2.8 Conclusion and Motivation for dynamic efficiency 

In this chapter methods for assessing relative efficiency of DMUs over 

time were reviewed. The drawback of these methods is that they provide only 
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a snapshot of a process which evolves through time. Consequently the 

approaches provide only partial and possibly misleading evaluation of 

performance for production processes with inter - temporal input - output 

which is the area to be addressed in this thesis. 

The issue of assessing comparative efficiency of DMUs where output 

levels over a given period of time depend at least in part on prior resources 

has been so far largely ignored in the literature. The approach developed in 

this thesis considers general forms of inter - temporal input - output 

dependence and in the general multi - period production process but 

particularly it is useful for when we have capital stock. 
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CHAPTER 3: How static efficiency measures 

can fail to capture true performance 

3.1 Introduction 

This chapter demonstrates how static efficiency can fail to capture the 

true performance of DMUs whose operations have not ceased at the time of 

assessment and where output levels over a given period of time depend at 

least in part on resource levels in prior periods. A typical application area of 

this kind is that where DMUs secure their outputs using resources which 

include capital stock. Such stock, which may occasionally be upgraded, 

affects output levels over a continuous time interval which may span several 

assessment periods. In such cases traditional or 'static' approaches to 

assessing performance break down because they implicitly assume that there 



is "correspondence" between "coincident" input - output levels. The distinction 

between correspondence and coincidence of input - output levels is as 

follows: 

=* "Coincident input - output,, levels are those observed during the 

same time period; 

=* "Corresponding input - output" levels are those where the output 

levels are caused exclusively by the input levels. 

Where correspondence of coincident input - output levels does not hold 

we have "inter - temporal input - output dependence". This chapter contains a 

taxonomy of inter - temporal input - output dependencies and a discussion of 

their causes. The chapter unfolds as follows. 

Section (3.2) discusses the classification of production processes. 

Section (3.3) highlights some causes of inter - temporal input - output 

dependencies. Section (3.4) provides an example of a production process 

with inter - temporal input - output and its treatment by static IDEA. 

Conclusions are drawn in section (3.5). 
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3.2 A classification of production processes 

Depending on the duration of the life of operating DMUs and on the 

nature of any inter - temporal dependence of input - output levels three types 

of production process can be discerned: 

* Single period; 

9 Multi - period without inter - temporal input - output dependence; 

9 Multi - period with inter - temporal input - output dependence. 

3.2.1 Single period production processes 

In such production processes clearly the issue of inter - temporal 

dependence of input - output levels does not arise. Thus there is 

correspondence between the coincident input and output levels of each DMU 

and efficiency can be assessed by the IDEA models developed by Charnes et 

aL (1978) as discussed in earlier chapters or their extensions as described in 

Charnes et al. (1995). 

3.2.2 Multi - period production processes without inter - temporal input 

- output dependence 

These processes do have contemporaneous correspondence of input - 

output levels. Thus the IDEA models developed by Charnes et al. (1978) or 

their extensions Charnes et al. (1995) can be used to assess the DMUs 
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concerned. However, DMUs are now in existence over several time - periods 

and issues arise as to their performance over time rather than just at each 

specific point in time. In essence, in multi - period production processes 

performance can be assessed in two contexts: cross - sectionally and 

diachronically. Models for such assessments were outlined in Chapter 2. 

3.2.3 Multi - period production processes with inter - temporal input - 
output dependence 

This is the case examined in this thesis. The DMUs operate over a 

continuing sequence of time periods and we do not have correspondence of 

coincident input - output levels. A clear example of inter - temporal impact of 

input is advertising. While advertising is normally treated as a single period 

business expense its impact can cover many periods. Dhalla (1976) states 

that "management must view advertising as a capital investment with sales 

revenue generated like a stream over time". White et al. (1996) state that 

"advertising expenditures should be analysed as a long - term investment in 

11 
an invisible asset by utilising capital budgeting . Therefore advertising 

behaves much more like an inter - temporal input rather than a single - period 

expense as it produces a multi - period "future income stream". We refer to 

production processes with such dependencies as "inter - temporal production 

processes". 
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3.3 Causes of inter - temporal input - output dependencies 

Some of the main causes of inter - temporal input - output dependence 

are those of "capital stock", "lagged output", and "capital output". These 

causes are elaborated below. 

3.3.1 Capital Stock 

Capital stock, such as robots in car plants, enhance productivity. The 

productive life of capital stock spans in general many time periods such as 

years or quarters typically used for recording coincident input - output data. 

Inter - temporal dependence of input - output levels is caused by changes in 

the level of capital stock, such as those due to capital investments. Asset 

acquisition does not generally lead to an instantaneous rise in productivity and 

may indeed initially lead to its drop. This is because of the 'adjustment' and 

'disruption' processes generally associated with asset acquisition. The 

adjustment process is typically referred to as the 'learning curve' as DMUs 

need to learn how to use new assets acquired. Asset acquisition can also 

entail disruption due to the need to integrate the new with existing assets. The 

duration and timing of the adjustment and disruption effects will generally 

differ from DMU to DMU depending on their asset acquisition activities. 

Sengupta (1993,1994 and 1995) highlights some reasons why static 

assessments fail to measure efficiency of DMUs with capital input. They 

include : 
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e The actual process is in fact a progressive process, in the sense 

that it is accumulating real capital, having more real equipment at 

the end of a period under consideration than it had at the beginning. 

We can not analyse it in a static framework. In a static framework 

we must replace the changing stock of capital by constant stock of 

capital, which is not realistic (Sengupta (1994)). 

e Capital inputs have a multi period dimension, since they generate 

outputs over many periods, yet the standard IDEA applications are 

based exclusively on one period's input. This biases efficiency 

comparisons against the capital-intensive processes (Sengupta 

(1995)). 

9 The decision making units which are compared in terms of relative 

efficiency, may take more than one period to adjust to capital input 

changes and this inter - temporal adaptivity is ignored by the 

standard IDEA application (Sengupta (1995)). 

3.3.2 Lagged Output 

In some production situations output can lag input in a way which 

makes it difficult to establish correspondence between input and output. One 

case in point is that of promotion of sales. Consider, for example, sales teams 

promoting financial products such as personal insurance, pension plans etc. 
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Over some given assessment period a team may use the bulk of its time to 

make a wide range of introductory contacts with potential clients, hold 

explanatory workshops on the products for sale etc. Actual recorded sales 

may be low during such a period. However, the team may have been 

successful in building up goodwill among potential clients which will manifest 

itself in increased sales over future periods. Thus, in essence, there is a lag 

between sales effort and actual sales. Such a lag may span several 

assessment periods which makes it difficult to establish correspondence 

between input (time devoted to promoting sales) and output (sales achieved) 

within a given assessment period. 

3.3.3 Capital Output 

In certain production contexts it is possible for intermediate or capital 

output to be created which is not directly measurable but can enhance 

productivity in subsequent periods. An example of intermediate or capital 

output is that of research. Typically research output is measured by the 

number of research papers or reports published, research grants obtained 

and so on (the important but difficult issue of the quality of the research output 

is ignored here). A research team may generate intermediate output in the 

form of research ideas and provisional research results which are incomplete 

for publication. Such intermediate output is in effect 'work - in progress' and 

cannot be captured by the usual research output measures. Yet it may have 

important implications for a team's productivity in subsequent periods. 
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Capital output whose generation and / or impact spans several 

assessment periods distorts the correspondence of input - output levels within 

any given assessment period. 

Next a simple example of inter - temporal production process is 

provided to show how the static IDEA framework may provide incorrect results. 

3.4 An Example of inter- temporal production and its treatment by 
static DEA 

An inter - temporal production function 

The inter - temporal effects are easily demonstrated by considering a 

simple DMUs with two inputs, capital stock (Z) and period - specific input (x), 

and a single output (y). A period - specific input is an input that is used up in 

one period and has no further impacts on output. Assume that for DMUs the 

technology is expressed by a production function as follows. 

2.4Z" + 0.2x', 0:! ý z t-I Ix 
3 

1.2Z "+0.6x', 

0.27Z" + 1.3x', 

x<Z, j <3 

Zt-I >3 xt 4 

(3.1) 

Where xt is the period - specific input, Z' is capital stock of the starts of 

period t and yt is output at period t. ZO is the level of initial capital stock at t=0. 

The technology is such that any amount of capital stock in period t-1 will 
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impact output in period t. For example as can be seen in (3.1) the level of 

output in period t depends on the ratio of capital stock in the previous period t- 

1 to the period - specific input in period t; 
Zt 

t x 

If this ratio is lower than 1 then stock of capital at t-1 makes a 3 

substantial contribution to output produced in period t, while 

If this ratio is greater than 3 then period - specific input at t makes a 4 

substantial contribution to output produced in period t (x and Z are 

measured in the same units). 

Fiqure 3-1. The impact of capital stock in period t-1 on output in period t for one unit of 

period - specific input associated with technology (3.1) 

Y ( 

- ---- --------- -- 2 :c 
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Figure 3-1 shows how the capital stock in period t-1 impacts on the 

output at t, assuming the period - specific input is constant at the level of 1- 

Static DEA assessment 

Now consider 4 DMUs associated with the above technology which 

have the input - output levels shown in Table 3-1. 

Table 3-1. Observed DMUs associated with the inter - temporal 

technoloqv in (3.1) 

Inputs in period 1 per six 
unit of output 

Inputs in period 2 per six 
units of output 

Z, X, 21 X, 
Ul 2 3 8 6 
U2 4 1 7 8 

U3 
13 6 4 4 

U4 
15 

4 3 5 

The results of static IDEA efficiency Model 1-4 are illustrated in Figure 

3-2. In static IDEA, a model with two inputs, period - specific and capital stock, 

and single output is solved. It indicates that: 

9 In the first period U, andU2are efficient DMUs whileU3andU4are 

inefficient DMUs. 

o In the second periodU3andU4are efficient DMUs while U, andU2 

are inefficient DMUs. 
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Figure 3-2. Static eff iciency model (contemporaneous technoloqv) 

period 1 

! ll/ 
---------- /10. 

/I 

II - 

U4 

2 ---------- 
---------- - 

6 

True performance 

period 2 

X2 

8 --------------- - ------ ------- -9U2 

U 
6 --------------- ------------------- UU4' 

U 
5 -------------- -\ U, 
4 -------------- 

Z2 

348 

The static approach ignores the inter - temporal impact of the previous 

stock of capital which causes the output to rise during future periods. In 

particular looking at technology (3.1) it is known that in the second period, U, 

and U3 are efficient DMUs and U2 and U4 are inefficient. The reasons are 

summarised in Table 3-2. 

Table 3-2 shows the observed output and anticipated output from the 

technology (3.1) in period 2. This indicates that 

o U, andU3are truly efficient while 

* U2andU4are truly inefficient. 
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These results differ from those of static efficiency shown in Figure 3-2. 

Table 3-2. Actual and anticipated output of DMUs associated with inter - temporal 

technoloqv in (3.1 

Observed Anticipated Output in Period 2 from True eff iciency 
Output in technology (3.1) 
Period 2 

U1 6 Y2=2.4 Z' + 0.2 X2 =6 (Note. 100% Eff icient 
Z, 1 (6 %) 

= 
x23) 

6 

U2 6 Y2=1.2 Z' + 0.6 x2 =9.6 (Note. 63% Ineff icient 
Z, 

=i with 
1 

:51 !ý3 
%) 

x22324 9.6 
U3 6 Y2=0.27 Z' + 1.3 X2 =6 (Note. 100% Eff icient 

Z' 3 (6 %) 

x24) 
6 

U4 6 Y2=0.27 Z' +1 .3 
X2 =7.85 (Note. 76% Ineff icient 

ZI 3 
< 

6 %) 
1) 

2 =1 with 
4 7.85 

x 

This simple example demonstrates how the static IDEA approach may 

provide incorrect results when DMUs are operating under inter - temporal 

input - output dependence. 

3.5 Conclusion 

A classification of production process and three particular causes of 

inter - temporal input - output dependence including "capital input ly , "lagged 

outpuf and cc capital output" were described in this Chapter. 
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In multi - period processes with inter - temporal input - output 

dependencies some input (such as capital stock) may impact future output 

levels. In such cases standard IDEA which is a static approach for assessing 

the relative efficiency of DMUs fails because it implicitly assumes that no inter 

- temporal impact of input - output levels exists. 

A simple example was used to illustrate how the IDEA static efficiency 

model does not reflect inter - temporal efficiency of production technology. 

Further example of clarifying the difference between dynamic and static 

efficiency models in capturing inter - temporal input - output will be given in 

Chapter 5 where a new measure of inter - temporal input - output dependence 

is introduced. 

The next chapter addresses how to build a new PIPS for cases where 

inter - temporal input - output is taken into account when measuring efficiency. 
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CHAPTER 4: Defining a Production Possibility 

Set over input - output paths 

4.1 Introduction 

In the previous chapter a simple example was presented illustrating that 

the static efficiency obtained from ordinary IDEA models does not reflect true 

performance under inter - temporal production technology. In such 

technologies DMU efficiency depends upon their input - output levels over 

time. In the "input - orientation" static IDEA framework inefficiency is assessed 

by measuring how far a DMU's observed input levels are from a "best 

practice" set of input levels on the frontier. Given the DMU's output levels 

there is a similar definition of "output - oriented" inefficiency (see for example 

Fare (1988)). We follow this framework and compare DMUs by measuring 



how far a DMU's input vector is from a best practice set of input levels over 

time, given the DMUs output levels. The key methodological problem is that 

the true technically best frontier is unknown and must be estimated from 

observed input - output correspondences. The difference between alternative 

methodologies in IDEA largely reflects alternative maintained assumptions in 

estimating the frontier. Unlike the static IDEA approaches which assess 

inefficiency at each period we introduce a "dynamic efficiency" model which 

assess inefficiency through the DMU's life taking into account inter - temporal 

dependence of input - output levels. 

We introduce for this purpose the concept of a "DMU - path" and use it to 

define a technology of production which reflects inter - temporal input - output 

dependence. Then the necessary and sufficient conditions for a dynamic path 

to be input - efficient will be presented. This concept of input - efficiency will 

be discussed in Chapter 5. 

This chapter defines and illustrates a PIPS using paths of input - output 

coincidences over time. The chapter unfolds as follows. 

Section (4.2) introduces the concept of a path capturing inter - temporal 

input - output dependence. Section (4.3) extends the standard PPS to define 

a PPS using paths of DMU input - output levels. An example will be given to 

illustrative the new PPS in section (4.4). Section (4.5) is an extension to 

section (4.3) to redefine the PPS capturing initial and terminal stock of capital 

input. Conclusions are drawn in section 
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4.2 Capturing inter - temporal input - output correspondence using 
input - output paths 

Correspondence of coincident input - output levels is at the heart of 

the definition of the "Production Possibility Set" (PPS) used to assess the 

comparative performance of DMUs in static IDEA. See for example (Banker et 

al. (1984) p. 1081) and (Tulkens and Vanden Eeckaut (1995) p. 475 ) for the 

definition of the PIPS in static DEA and "Free Disposal Hull" (FDH) 

approaches to measuring eff iciency respectively. Input output 

correspondence is fundamental to performance measurement since what 

must be measured is useful output secured against the resources (inputs) 

used for its procurement. This fundamental requirement of input - output 

correspondence does not alter in the presence of inter - temporal input - 

output dependence. 

Thus, we need a method of capturing inter - temporal input - output 

correspondence which in many situations is more appropriately expressed 

dynamically. When investment or prices change, DMUs do not respond 

immediately, nor do they delay their response. Rather, they spread their 

response over a period of time. Of course the nature of such responses would 

vary from DMU to DMU, a major differentiating factor being the durability of 

the DMU of interest. 

68 



The concept of assessment path and assessment window 

Inter - temporal input - output correspondence can be captured 

through the use of "paths" of coincident input - output levels as follows. 

Consider a DMU j which came into existence n+T time periods ago, it has 

been in existence up to the current i. e. the (n+T) th period and it is expected to 

continue in existence after the end of the current period. Let us further 

assume that input - output coincidences (xjt, yj) are observed, where xjt = 

(Xt j, xtjI ... xt ) are the input levels and yjt = (y'j, ytj,... y' ) are the output levels 12 Mi 12 Si 

observed in time period t at DMU j. Finally let the final T periods ending up at 

the current i. e. (n+T) th period be referred to as the "assessment window". 

Therefore the sequence (xj', yj') t= n+l ... n+T can be defined as the 

"assessment path" of DMU j and denoted (Xjl, 2,..., T 
I 

Yj 1,2,..., T) 

. The concept of 

the assessment path of DMU j is illustrated graphically in Figure 4-1. 

Figure 4-1. The assessment path of DMU a is the sequence of its input - output levels 

from t=n+l to t=n+T. 

t=l t=n t=n+l t=n +T 

Assessment window t=n+I to t=n+T 
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In the case of a stock input (e. g. capital) the levels within the path 

reflect its variation over time such as might be caused by occasional 

investment activity. The shorter the periods into which the assessment 

window is subdivided the more accurate the reflection of the varying levels of 

the underlying continuous variable of stock input. In the case of a flow input 

(e. g. recurrent operating expenditure) the levels within the path reflect the 

resource used up during each period in the procurement of outputs. 

Let us now consider an assessment window covering the entire life of 

the DMU. The assessment path can be said to capture the input - output 

correspondence represented by the DMU. This is because all inputs used by 

the DMU are reflected in the assessment path as are the corresponding 

outputs procured, irrespective of the time lag between inputs and 

corresponding outputs. 

The concept of a path covering the entire life of a DMU is useful for 

seeing how input - output correspondence under inter - temporal effects can 

be captured in a path. However, a path covering the entire life of a DMU is not 

very practical. In most situations the DMUs are expected to continue in 

existence long into the future and what management usually wants is to 

measure performance over a 'sensible' length of time leading up to the 

present. In view of this we need to restrict our attention to assessment paths 

which cover a part of the life of a DMU. The path covering the last T periods of 

a DMU's life, e. g. from t= n+1 to t= n+ T in Figure 4-1, is the type of 
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assessment path which can be constructed in practice. In the remainder of 

this chapter we will focus on paths of this type. 

Is the length of the assessment path important? 

It is evident that the length of an assessment window is a matter of 

judgement by the analyst. It should reflect the input - output correspondence 

mapped out by a DMU over the assessment window. This is because most 

lagged and capital output effects are likely to relate to inputs within the 

window while any adjustment period will represent a short proportion of the 

time covered by the window. Therefore the length of the assessment window 

to be used is a matter of judgement formed in the light of output lag, 

adjustment periods and capital output effects likely to apply to the situation 

modelled. How many assessment periods are used within the assessment 

window is also an issue which needs to be addressed and to which we shall 

return after presenting the assessment method to be used. 

4.3 Defining a Dynamic PPS 

X1 T 
Let us consider n DMUs (DMUj j=l,..., n) each have an input - path j 

yl,..., T 1 .... T 1,... T 1 .... T 
- path where xj (xl j and an output ) and j , ---Y Xmj yi 

1,..., T 1,..., T 
j Sj yl yl ). Thus input and output - paths can be vectors of input - 

paths and output - paths in the case of multi - input multi - output DMUs. Thus 

the entire life of a DMU can be divided to k overlapping windows Wj= 
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A "Dynamic PPS" with reference to each 

window can be defined. For the sake of simplification let us focus on window 

W, which covers time periods t=l,..., T. A dynamic PPS P can be expressed 

as a set of input - paths and output - paths (xl .... T, T) 
such that; 

(xl .... T, yl,. --, T) I input - path Xl.... T can produce output - path yl,..., TI. 

Following the construction of the PIPS in IDEA, (e. g. Banker et aL (1984) 

1081), it is assumed that P has the following properties: 

i. P is non-empty 

All observed paths {( xj 
1,2,..., T 

I 
Yi 1,2,..., T) 

, j=1,2 .... nj c= P. 

ii. Strong disposability of input 

If (Xjl, 2,..., T, 
yj 

1,2,..., T)C 
P and xl 

2,..., T > xj 
1,2,..., T, then (x 1,2,..., T p where I Yj 

> xj 
1,2,..., T 

means xt -> xjt for t=1,2,..., T, and xt -> xjt means that at least 

one element of xt is greater than the corresponding element of xjt. 

iii. Strong disPOsability of output 

12 T 1,2,..., T)e 2,..., T < 1,2,..., T, 1,2,..., T, 
yl, 

2,..., T)e 
If (xj . ..... , yj P and yl yj then xj P. 

iv. No output can be produced without some input ('No free lunch') 

(xj 1,2,..., T, O)EEP; but if yj >0 then (0, yj P. 

v. Constant Returns to Scale 
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If (Xjl, 2,..., T, yj 1,2,..., T)e p then for each positive real value X>O we have (X 

1,2,..., T X 1,2,..., T)C xi 
7 yj = 

vi. Minimum extrapolation 

P is the closed and convex set satisfying i-v. 

A dynamic PIPS P which satisfies the above postulates can be constructed 

from the observed assessment paths (xjl 2,..., T 
I 

Yi 
1,2,..., T), j=1... n as follows: 

={(Xl, 
2,..., T, 

yl, 2,..., T)i 
x 

1,2,..., T > 1,2,..., T. ljxj Xi 

yjXj yj 1,2,..., T; Xj E R+ , 
j= nj 

The next section illustrates P as defined in (4.1) using a graphical 

example. 

4.4 Illustration of the dynamic PPS 

To clarify the difference between the dynamic PPS presented in this 

thesis and static IDEA PPS consider an inter - temporal technology which 

consists of two observed DMUs as presented in Table 4-1. The DMUs use a 

single input to secure a standard unit of output. 
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Table 4-1. Input levels per standard output 

Period 1 Period 2 

Ul 40 20 

U2 10 60 

Table 4-1 shows that DMU U, starts with a large amount of input in period 

one and uses less in period two while DMUU2 starts with a small amount of 

input in period one and rapidly increases it in period two. 

Static contemporaneous technology (see Tulkens et al. (1995)) defines 

two PPS's, one for each period. The PPS in period one is 

P1={ (x 1, y1)Ix1 can produce Y' in the first period 1. 

Therefore the input requirement set to secure output of ylo in period one is 

P, (y10)= { x, i x' >i 0 1. 

The PPS in period two is 

P2={ (x 21y 2) 1 X2 can produce y2 in the second period 1. 

Therefore the input requirement set to secure Output Of Y20 in period two is 

2 (Y20) ={ X2 I X2 >-20 I. 
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These indicate that, for instance, an input path associated with the input 

value of 10 in the first period and an input value of 20 in the second period is 

a feasible path. This definition of contemporaneous technology expresses that 

the PIPS contains all DMUs above of (10,20) as illustrated in Figure 4-2. This 

PPS is 

ppS(y=l) Xl I X2) I Xl >1 09 X2 >20) = {(l Oct', 20cc 2) 1 (Xl & (X2 >1 

Figure 4-2. Static PPS's for each one of two periods of time 

60 
ul 

I 

PPS, PPS2 

40 ýl 

20 u 

t=l t=2 

However an input path (10,20) may not be feasible in dynamic PPS as is 

now explained. 

In a dynamic process there is a "black box" converting inputs to outputs 

as the DMUs move from one period to the next (Figure 4-3). 
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Figure 4-3. Dynamic Process 

Black 
BOX 

Management Policy 

Knowledge 

Outputs 

Skills 

Inputs 

Perio 
t+l 

Outputs 

In a dynamic process only a time flow of inputs and outputs is observed, 

without ever observing the intermediate goods, capital equipment or some 

invisible capability such as management policy, skills, knowledge, 

technological change, etc. which may have been produced and utilised inside 

the black box. This black box will lead managers to change the input 

quantities from period t to period t+l. 

For instance consider the above example of only two observed DMUs 

with a single input (40,20) and (10,60) per unit of output respectively. If the 

same management policy as in the two observed DMUs is adopted, and 

assuming the same invisible capability such as skills, knowledge, 

technological change then if in the first period a DMU uses a low level of 

input, it is expected to use a large amount of input in the second period (DMU 
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U2)- Similarly, if in the first period a DMU uses a large level of input, it is 

expected to use a small amount of input in the second period (DMU Ul). 

Now assume a DMU starts with input level of 20 per unit of output in the 

first period. This can be expressed as a convex combination of the inputs of 

DMU U, andU2 in period one so that: 

20 =Ix input of U, in the first period +2x input ofU2 in the first period. 
33 

It is then expected that the DMU is using the same convex combination of 

input of DMU U, andU2 in period two. Thus for this it needs to use at least 

47.77 units of input in the second period, that is 

Ix 
input of U, in second period +2 

33 

47.77. 

x input ofU2 in second period = 

So an input path of (20,47.77) can be assumed a feasible path by reason 

of convexity of the PPS over time. Note that an input path of (20,40) indicated 

by the static PIPS is not feasible in the dynamic PPS because starting with an 

input of 20 in the first period we need an input of at least 47.77 in the second 

period to secure one unit of output. 

On the other hand, if the plan in the second period is to use an input level 

of 40 then this DMU should start with an input level of 25 at least in the first 

period. This is because 
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40 =Ix input of U, in second period +Ix input ofU2 in second period. 22 

This suggests that the DMU needs input level of 25 units in the first 

period, that is 

Ix 
input of U, in first period +Ix input ofU2 in first period = 25. 

22 

Thus a path of (10,20) which is feasible and in fact eff icient in 

contemporaneous static IDEA technology is not feasible in the dynamic PIPS. 

Stated in another way, the issue is whether the input available in one 

period allows managers an unrestricted choice of production process in the 

period after; 

* If such a unrestricted choice is possible, the process will not be 

dynamic because the production process in the next period will not be 

built on the past process (hence the DMU in the second period can 

be seen as a new DMU in the analysis). 

* If such an unrestricted choice is not possible the process is dynamic. 

In this case all feasible DMUs constructed from observed DMUs 

should admit the policy of observed DMUs in each black box for 

moving from one period to the next. 

Under the dynamic PPS, using the two observed DMUs in Table 4-1 it can 

be seen that a feasible set of input levels in periods 1 and 2 is 
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{ ((l Oul + 40CC2), (60ccl, + 20(Y-2)) ; S-L CC1 + CC2 :: -- 1, (Xi, OC2 ý! 01 

which is a convex combination of the path of U, and U2. These convex 

combination paths are assumed feasible and are illustrated Figure 4-4. It is 

clear that the choice of input in period two is conditional on the level of input 

used in period one. 

Figure 4-4. A set of convex combination of two observed paths over two periods of time 

A= {(x 15x 2) 1 

x1= (1 Occi + 40(X2) 
3 

x2= (60(xi + 20(x2), 

(Y-1 + U2 --:: 
l 

7 
(Xl 9 (Y-2 ý! 0) 

The dynamic PIPS will be constructed by adding strong disposability to the 

set A. This is illustrated in Figure 4-5 where; 

*B is a set of paths constructed by strong disposability to the path of 

Ull 

*C is a set of paths constructed by strong disposability to the path of 

U2and 
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9D is a set of paths constructed by strong disposability to a path of a 

convex combination of U, & U2 which itself is an element of A in 

Figure 4-4. 

Figure 4-5. Sets of paths constructed from stronq disposability of two observed paths 

over two periods 

B= {(x 1, x 
2) 1 

x1 >-40, x2 >-201 

C= {(x 1, 
x 

2) 1 

x1 >-10, x2 >- 601 

{(x 1, x 
2) 1 

X1 > (10X, + 4W-2)5 

2> 
- (60X, + M-A 

ý- 
1+ 

ý-2: 
'- 

19 ý-l 
9 

X2 Al 

60 ----------- ........................... 

4( ------------- ------------------------ 

2( 
-------------- 

60 -------------- --- - -- ........ .. 

41f -------------- ................. 

2( 
--- .......... 

r 
--- -------- ---------------------- 

t=2 -, I 

60 --------------- ------ ---- -- 

4( ------------- 
Convex combimuon 
-- ------------- 

of V, and I 

2c 
-------------- - ------ ------ ------ ---------------- 

t=2 

Therefore the dynamic PIPS is the smallest convex closed set which 

contains A, B, C and D. 

Mathematically, if the feasible input - path (X1' X2) is denoted by X1,2 the 

full PPS is expressed as follows. 

Xl, 
2C The path = ppS iff 

xl > (1 OX, + 40X2)) X2 >- (60Xl+ 20X2) 
i 
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ý, 1 + Ä2 `A 5 
ý-1 

j 
Ä2 

Thus on the contemporaneous static IDEA technology there is no 

relationship between the convex combination of input - output levels in one 

period and the convex combination of input - output levels in another period. 

(Note that in contemporaneous technology the PIPS is defined as: 

PPS ={(x 
1, X2) 1 x' >- (1 OÄ1+ 402-2) 

9 
X2 > (60Ä3+ 20Ä4) 

9 

'41 + X2 
.. 

43 + X4 X1, X2 
t 

X3, X4 ý! O) 

4.5 Capturing initial and terminal stock of capital within the PPS 

There is, however, a further aspect which is important from a capital 

theory viewpoint. As noted earlier, capital is viewed here as stock. Once, a 

capital input is implemented, it produces a flow of outputs in future periods 

(see Figure 4-6). 

It is clear from Figure 4-6 that there is lagged production of output from 

changes in capital taking place at some point in time. So long as lagged 

outputs are within the assessment window used we are not concerned about 

their timing. However, where lagged output due to changes in capital stock 

made within the assessment window, falls outside of it, and also where output 

within the assessment window is the result of changes in capital prior to the 

assessment window, then lagged output of this kind needs to be reflected in 
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the dynamic assessment. Thus one distinction between static and dynamic 

PIPS is that the definition reflects initial and terminal conditions of capital 

stock. Whereas, the static PPS does not require these two additional 

conditions. 

Figure 4-6. The flow of output from capital 

eriods 

Now focus upon DMU - paths from the point of view of terminal stock in 

each assessment path. To clarify this issue, consider two feasible paths P and 

P both of a finite duration and length t=1, ..., T. Assume that they start with 

the same level of capital stock in the first period and they provide identical 

output streams yl,, **, " =yA...... r but that the terminal capital stocks differ, with KT 

K"'. Thus path P provides more terminal capital stock than P which can 

contribute to future outputs. Clearly, then, this capability of path P should be 

reflected in its assessment. However; 

* If period T is literally the end of the life of the DMU - path, then terminal 

capital stock of path P can not be used to produce output in future and 

can be ignored; 
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* On the other hand if DMU - path P survives after period T then having 

more of terminal capital stock than DMU F will enable higher future 

output at DMU - path P. 

Let us assume that stock of capital input at period r can be used for 

producing output in future. 

To take into account this assumption in the PIPS, terminal capital stock 

must be treated as another output. 

Similar discussion can be made for initial capital stock in the assessment 

window. If, in time horizon t=1 2,..., T, the initial capital stocks of DMUs at t=O 

are not identical the PPS should take into account the difference between 

those DMUs which start with a large and those which start with a small 

quantity of capital stock at the beginning of the process under consideration. 

Initial capital stock should be reflected in the PIPS as another input, as it can 

be converted to output within the assessment period. 

Restating the dynamic PPS to reflect initial and terminal stock input 

Let us consider a window of periods t= -r, z- + 1, ..., -r + T. Assume that 

the set of inputs, 1={l, ..., ml, can be divided into two sub - sets of period - 

specific inputs and capital - inputs, respectively 11 and12such that 

ll& 12C:: I) 11U12' I and llnl2 :. -: 
0- 

Then the set of inputs is: 

period - specific input paths: x'", r+1, ..., r+T 
.1- 
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changes in stock input paths: zr, "+1, ---, r+Ty. 

Initial - stock inputs: Z" - I. 

The set of outputs is : 

output - paths: y", " -1- 1, -- 'r +T 
.1. 

terminal - stock inputs as outputs: Zr +T 

For example in case of capital the changes in stock inputs will be 

reflected by investment. 

This raises the issue of how to estimate the level of initial and terminal 

stock of inputs. The details of how to estimate such values are not directly 

addressed in this thesis. However one possibility is to reflect stock input by 

means of converting it to a capital value which takes into account the age and 

productive capabilities of the stock. Depreciation is of use as a means of 

reflecting in monetary terms the age of stock of capital. 

The PPS within the assessment window T ..... . r+T can be now stated as 

follows: 

{(XT,..., T+T, z 
T,..., T+T 

7yT,..., 
T+T )I 

xit >lixi xii,; 
V t= T+T & iE=- 11 

zit ý>Yjxj zijt; 
t y <lixi yj,; 

V t= T'..., T+T & iý-= 12 

V t= I r+T 
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ZiT-1 >1 
- ýdjXj 

ZijT-1 
i 

ZiT+T <yj4 T. 
i 

Zii"+ 
9 

XjG R+ 

iý-: 12 

iC- 12 

(4.2) 

Note that if it is assumed that there is only one period, then this PPS will 

collapse to the static PPS which was discussed in Chapter one. 

4.6 Conclusion 

The relative efficiency of a DMU is calculated from the distance of its input 

levels to those of efficient DMUs (or linear combination of efficient DMUs). 

The inter - temporal input - output dependence is at the heart of the definition 

of the PPS used to assess dynamic efficiency. This chapter has introduced 

the concept of DMU paths. Then it has defined a dynamic PPS of DMU input 

- output levels over time. An example was given to illustrate dynamic PIPS 

and to reveal its difference from static PPS. 

In the PIPS developed one important issue is to capture initial and terminal 

stock of input. Therefore extra constraints were included in the definition of 

the PPS to take into account the initial level of stock and capability of 

enhancing product from the DMU's terminal stock of input. 

The next chapter uses the PPS as defined in this chapter to measure the 

relative efficiency of the assessment path of a DMU. 
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CHAPTER 5: Measuring the comparative 

efficiency of an assessment path 

5.1 Introduction 

So far in this thesis it has been shown that static IDEA assessment fails 

to capture true performance of DMUs with inter - temporal input - output 

dependence. Thus for these DMUs a dynamic PPS was defined in Chapter 4. 

This chapter introduces and illustrates a measure for comparative efficiency of 

an assessment path. The dynamic efficiency measure of DMU - paths will be 

introduced in two phases. In the first phase an efficiency model is introduced 

to illustrate the basic idea of comparing assessment paths. An example will be 

given to illustrate the difference between dynamic and static efficiency. In the 

second phase a more general case of dynamic efficiency of DMU - paths will 



be introduced. This model will be based upon the PPS in (4.2) so that it can 

capture initial and terminal stock of capital input. The chapter unfolds as 

follows. 

Section (5.2) defines "dynamic efficiency in a window" of a DMU - path, 

taken as the unit of assessment. Then it introduces a measure of dynamic 

efficiency for comparing DMU - paths. Section (5.3) provides an illustrative 

assessment of dynamic efficiency with hypothetical data, based on an inter - 

temporal production process and it outlines the difference between static and 

dynamic efficiency where initial and terminal stock of capital are available. 

Sections (5.4) shows how to capture initial and terminal stock of capital in a 

dynamic efficiency model. Conclusions are drawn in section (5.5). 

5.2 An inter - temporal DEA model 

Definition of a dynamic efficient path in a window 

We begin by extending the definition of Pareto efficiency to 

assessment paths. Drawing from Charnes et al. (1978) p. 433, Solow (1970), 

Abel et aL (1989) and Burmeister (1980) a Pareto efficient path can be 

defined as follows. 

An observed path Pl-*, " is called a "Pareto efficient path" over the 

time horizon t=1 I ... 9T if no alternative feasible path exists over the same 

time horizon along which 
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a) Less input can be used in some time period while producing at 

least the same output - path or 

b) More output is produced in some period while using no more than 

the same input - path. 

We shall refer to an assessment path, which is Pareto efficient in the 

foregoing sense as a "dynamic efficient path in window t=l,..., T". We call 

dynamic efficient path in window t=1 ..... .r because the efficiency is only in 

window t=l ..... . r. The obvious distinction is that dynamic efficiency requires 

consideration of how the DMU performs through the period from t=l to t=-r. In 

contrast, static efficiency requires the consideration of how the DMU performs 

at each period and ignores the inter - temporal impact through the 

assessment window. 

Dynamic efficiency measure, a comparison of DMU - paths 

With reference to the PPS presented in section (4.3) the following 

linear programming model can be used to determine whether the assessment 

path (xjol, 2,..., T 
, yjO 1,2,..., T) of DMU jo is dynamically efficient within window 

t=l 
I.. IT. 
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Model 5-1. Dynamic eff iciencV within window t=l r. 

aTmrs 
Min ao= -e(IlSit- + t+) JjSr 

t=l i=l t=l r=l 

S. t. Aj xii =a, xu'ý - si 

N 
Aj yt=yt0 +s t+ 

ri ri r 

Ai0; Vj 

SI- iý Sr+ý! 0Vi, r and t. 

;i=IM, t 

; r=l S, t=l... r 

Where xijt is the level of input i and yrjt is the level of output r observed ý 

in period t at DMU 

An optimal solution to Model 5-1 specifies a production point 

(xtj =1... m, yr, r= I s, t within the PPS of the assessment window 
ir9 

where 

x, 
- = a*xl -s 

t-* 

i=1... m, t=1..., r t ijo i 

yt=yt +S 
t+* 

r=1... s, t=1. - -, r. ijo r 

The superscript * denotes the optimal value of the corresponding 

variable in Model 5-1. 
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Note that when T=1 Model 5-1 collapses to Model 5.9 in Charnes et 

al. (1978) (p. 433) used to measure efficiency in the single production period 

context. 

The assessment path specified in expression (5.1) is "dynamically 

efficient in window in line with the earlier definition. By virtue of Model 

5-1. it is the case that there exists no path within the PPS which offers a 

reduction in one of the input levels xi for any i or t without either a 

consequent rise in some other input level or a reduction in the level of at least 

one of the outputs in some time period t. By implication, when at the optimal 

solution to Model 5-1; 

a*=l Vt, S'-*=o Vi, t and Sr+*=OVr, t tir 

the assessment path of DMU j,, is "dynamically efficient in window In 

such a case; 

CC,, =1. 

Where the assessment path of DMU jo is not dynamically efficient, the 

value of a, can be seen as a measure of its "dynamic (input) efficiency'9. 

Specifically, c(,, measures the average proportion to which the observed input 

levels of DMU jo can be contracted without detriment to any one of its output 

levels in any time period while maintaining its input mix in each period of the 

assessment window. Each component at measures the extent to which the 
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input levels in period t can be lowered radially under efficient production. The 

cross - sectionally radial measure of efficiency used is consistent with the 

basic notion in IDEA of not imposing a prior value system over input - output 

levels within each time period. 

The difference between static and dynamic efficiency 

It can be seen that the inter - temporal Model 5-1 with T periods (m inputs 

and s outputs) is analogous to a one - period static IDEA model with mxT 

inputs and sxT outputs except that aý varies with t, unlike static IDEA where we 

would have (ý=oc Vt. 

Thus one way to view Model 5-1 is as one which sub - divides the 

assessment window into shorter periods in order to reflect changes in the 

levels of inputs and outputs which have inter - temporal dependence. 

Model 5-1 then gives flexibility to the unit being assessed as to which time 

period it chooses to reduce the use of resources in order to gain the maximum 

efficiency rating over the assessment window. In this way the model gives 

explicit recognition to the fact that different units can operate with different 

resource profiles over time and still being efficient. 

Subdivision of periods within an assessment window 

The measure of efficiency yielded by Model 5-1 will not alter if the 

periods of the assessment window are aggregated or subdivided, provided 

the input - output levels in the new periods are obtainable by simply scaling 
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the input - output levels of the original periods. This can be readily seen by 

noting that such scaling of input - output levels merely generates redundant 

constraints within Model 5-1 in going from the original to the new periods 

within the assessment window. 

In the more general case, however, where the subdivision or 

aggregation of the original periods does not preserve the ratios of the original 

input - output levels the efficiency measure cý, will be assessment period 

subdivision variant. This is as should be since the aim is to assess DMUs by 

charting their resource use and output creation over time during the 

assessment window. 

Thus an important question is which assessment window subdivision 

yields the more reliable efficiency measure. The answer is the sub-division is 

a subject of judgement by the analyst and it may differ in different 

applications. Say, for example, in assessing universities windows of 3 or 4 

years may prove more accurate in reflecting correspondence between input - 

output levels of DMUs. This is because the cycle of study in universities is 

about 3 years. Obviously a balance has to be struck between reflecting 

accurately the input - output path of each DMU and the number of 

assessment periods used. 
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Referent assessment paths in dynamic efficiency 

The assessment paths corresponding to positive X values at the 

optimal solution to Model 5-1 will be referred to as the "referent assessment 

paths" or "efficient peer paths" of DMU j,,. The dynamic efficiency rating of the 

assessment path of DMU j,, is with reference to these input - output paths. 

Alternative measures of dynamic efficiency 

With the approach developed in this chapter it is possible to identify 

whether or not a DMU - path is Pareto efficient. However, how far is a DMU - 

path from its peer(s) on the frontier is another question. Just as in static DEA, 

here too there is no unique measure of a DMU's distance from the best 

practice frontier. In Chapter 8 some alternative measures of dynamic 

efficiency will be discussed. 

The next section illustrates the assessment of the dynamic efficiencies 

of a set of hypothetical DMUs and contrasts the results obtained, with those 

that would be obtained in a 'static' IDEA framework. 

5.3 An illustrative assessment of the dynamic efficiencies of 
hypothetical DMUs 

In order to compare the static and dynamic IDEA approaches a set of 

10 DMUs associated with a specific production function is chosen. We will use 
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a technology in which there is inter - temporal dependence where stock input 

of a period affects output in the subsequent period but not beyond that. 

Using hypothetical input levels, the output levels of DMUs were 

generated in line with the inter - temporal technology (5.2) (see also section 

(3.4)). The index t indicates the time period. 

An inter - temporal production technoloqV 

9zt-1 +x', 0 :9 Z'-' <- 0.67 x' 
t= 6Z' + U, 0.67x' <- Z'-' <- 2x' ]3Zt-1 

+ 9xt, 2x' < Zt-1 

(5.2) 

Figure 5-1. The impact of stock input at t-1 on output at t, for xt =1 

Expression (5.2) shows a continuous production function where output 

at each period depends on flow input, x, and stock input, Z. Stock input is 

measured at the start of each period. It is the fraction of stock input at t-1 to 
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the period - specific input at t, i. e. 
Ztt I 

which impacts the contribution of Z to 
x 

output produced at t. The impact of stock input at t-1 on output at t, for xt = 1, 

is illustrated in Figure 5-1. The figure clearly shows the output increase when 

the capital stock increases. 

Let us assume that there are 10 observed DMUs U, ... Uio over four 

periods which operate under the production technology in expression (5.2). 

Their data appear in Table 5-2 generated using the arbitrary inputs in Table 

5-1. 

Initial 
stock 

zo 
Ul 50 

U2 50 

U3 50 

U4 50 

U5 50 

U6 50 

U7 50 

U8 50 

U9 50 

ulo 50 

Table 5-1. Inputs of 10 hypothetical DMUs in 4 periods. 

Period 1 

z 

40 100 

40 20 

40 20 

40 20 

40 40 

80 10 

80 10 

30 40 

140 10 

10 20 

Period 2 

x2 z2 

40 20 

40 100 

40 20 

40 20 

40 40 

90 40 

120 40 

10 100 

180 10 

20 2 
ýO 

period 3 

x3 z3 

40 20 

40 20 

40 100 

40 20 

40 40 

80 50 

90 50 

10 180 

130 20 

20 10 

period 4 

x4 z4 

40 20 

40 20 

40 20 

40 100 

40 40 

120 60 

80 60 

20 60 

190 

- 
20 

F 10. 

The output paths in Table 5-2 as generated have 100% efficiency. 
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Table 5-2. Output of 10 DMUs in 4 periods of time under expression 

JL21. 

Output path 

(yl, 2,3,4) 

(t1, t2, t3, W) Total 

U1 (420,810,870,930) 3030 

U2 (420,540,870,930) 2760 

U3 (420,540,630,930) 2520 

U4 (420,540,630,690) 2280 

U5 (420,630,750,870) 2670 

U6 (530,630,840,1260) 3260 

U7 (530,660,870,1140) 3200 

U8 (390,360,660,1290) 2700 

U9 (590,720,760,1000) 3070 

U10 (240,390,450,390) 1470 

The DMUs in Table 5-2 have been assessed using Model 5-2 and 

windows of two periods. The model is solved with windows of two periods 

because the production technology has two-period interdependence of input - 

output levels. Model 5-2 is an instance of Model 5-1. 

0 
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Model 5-2. Dynamic eff iciencV of hypothetical data in periods T-1, T. 

For r=2,3,4: 

Min ao = 
ar-1 + ar r 

sl- 
2 

I=r-I 
, 

10 
S. t. IAj xj =a, xj,, - 

j=l 
10 I Aj zj =a, zj, - S' 
j=l 
10 

Aj Y, = Y'. + S, ' + 
j=l 
Äi ýý Vj 

+ Sý 'S, >0 Vt. 

S'- + S'*) 

; t=r-1, r 

t= v-I, v 

;t= 'r - 1, 'r 

The static IDEA efficiencies were also calculated under 

contemporaneous and aggregate technology using in Model 5-3 and Model 

5-4 respectively. 

Model 5-3. Static DEA eff iciencv in period Model 5-4. Aggregate DEA eff iciencv of 

t. hvpothetical data. 

For t=1,2,3,4 

Min 0' -c(S, ', - + Sz'- + S,, +) 
Z 

s. t. 1 ij x' =O' x' - s'- 
10 

x j=I 
10 lÄjzl 

=of 
zi 

-St- jo Z 

jýI 
10 

Aj y' +S, y j=I 

1- sl+> 0v ýýo; vj&Sxl-Isz 

Mino-c(S- +S- +S+) xZy 

S. t. EAjxj =O xj" -sx 
j=I 

10 
IA 

i zi =ozj. -sz 
j=I 
10 

Äj yi =yj. +sy j=I 

Ä 2ý0; 'Vj&s- 's-, 
S+ýýO. ixZy 

where 
44 

Exi Zi=1 zi, y i=1 yi vj - 
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We assume, in Model 5-3, that DMUs are using x and Z as inputs to 

produce single output y in the assessment period. In each time, Z is he total 

capital stock up to and including the last period under assessment. In Model 

5-4 we use the aggregate levels of input and output over the horizon tj to t4- In 

this model X and Y are, respectively, the total level of the current input and 

the total level of the output over periods tj to t4- Z is the total level of capital 

invested within time horizon tO to t4which includes initial capital investment as 

well as all the invested capital over periods tj to t4. The dynamic, static and 

aggregate efficiency results are summarised in Table 5-3. 

Table 5-3. Comparison of static, aggreqate and dvnamic eff iciencV results of the 10 

DMUs described in Table 5-1 and Table 5-2. 

Contemporaneous technology 

t1, t2, t3, W 

Aggregate 
technology 

Dynamic eff iciency 

(tl & t2) (t2 & t3) (t3 & M) 

U1 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U2 1.00 0.67 1.00 1.00 0.91 1.00 0.97 1.00 

U3 1.00 1.00 0.72 1.00 0.83 1.00 0.72 1.00 

U4 1.00 1.00 1.00 0.74 0.75 1.00 0.72 0.66 

U5 0.89 0.93 0.93 0.94 0.88 0.83 0.80 0.77 

U6 1.00 0.91 0.91 1.00 0.91 1.00 0.48 0.56 

U7 1.00 0.88 0.92 1.00 0.89 0.99 0.47 0.53 

U8 0.95 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 

U9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U10 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 

Two main questions arise here. First, why is there such a big difference 

between the dynamic efficiency and static efficiency scores? Second, why 

98 



could the dynamic efficiency Model 1-1 not capture the true performance in 

some cases? We answer these using some examples. 

For instance, consider unit U4 that is the least efficient unit in the 

aggregate model (efficiency = 75%) and it is the least efficient unit in the 

fourth period of the static contemporaneous model (eff iciency=74%). A study 

of capital investment of this unit shows that almost of the investment made by 

U4 is in periodt4. However none of the static models could capture the impact 

of this investment within the assessment periods. Probably if the production 

process continues this unit will become much more efficient in the next period 

since its production process suggests a high level of output in periods 

following periods of investment. 

A comparison of capital investment by U1, U2, U3 and U4 and their 

static efficiency scores are very informative with regard to their investment 

plan. All these units use the same level of current inputs in each period. The 

total invested capital by these units is the same but their investment 

sequencing is different. Major investment of unit U, is in the first period of the 

production process. Therefore this unit becomes inefficient, and in fact the 

least efficient unit in period tj according to the static contemporaneous 

technology. We have the same results for other three units, U2 is the least 

efficient unit with high level of capital stock in period 2. SO is U3 in period 3 

andU4 in period 4. In all static contemporaneous technology a high level of 

capital investment means lower efficiency, e. g. U, in Period tj, U2 in Period t2, 
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U3 in Period t3 and U4 in Period t4. However the aggregate efficiency model 

distinguishes between earlier investment and late investment. As it is 

expected earlier investment would have more benefit to the unit than late 

investment. This can be readily seen from a comparison of the aggregate 

efficiency results of these four units. The aggregate efficiency scores are 

ordered exactly as the investments, i. e. U, is more efficient thatU2, U2 iSmore 

efficient thatU3andU3 iSmore eff icient thatU4. 

The dynamic efficiency Model 5-1 also fails to capture the efficiency of 

some DMUs under certain circumstances. A study of the data and dynamic 

efficiency scores shows that this must be investigated according to the level of 

initial capital stock and / or the level of capital stock remaining at the end of 

the assessment window. We give three examples here. 

First, consider dynamic efficiency in the window covering periodst2and 

t3. Within this windowU2 and U3 are using the same level of capital and 

current input in total. However the dynamic efficiency score Of U3 (=0.72) is 

much lower than the dynamic efficiency score of U2 (=0.97). Why has this 

happened? The invested capital of 100 in period t2 would return in output 

format within the assessment window while the invested capital of 100 forU3 

would not. This is why the dynamic efficiency ofU3 iSmuch lower than that of 

U2- 

As a second example we consider U3 and U4 in dynamic efficiency 

window made up of periods t3 and t4- U4 shows less efficient than U3while 
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both units use the same level of capital and current inputs in total. Again the 

late investment of capital input in U4 could not be captured by dynamic 

efficiency Model 5-1 as this would increase the output beyond the window 

under assessment. 

As a third example but different from the previous two we consider U, 

andU4under dynamic efficiency within the window made up of periods t2and 

t3. Interestingly both units have exactly the same level of capital and current 

inputs in both periods under assessment but U, becomes dynamically efficient 

while U4 is inefficient with very low efficiency score of 0.72. Why has the 

dynamic efficiency Model 5-1 assigned such very different scores to these 

units with the same levels of current and capital inputs? The answer lies in the 

continuous nature of the production process. In this particular case a high 

level of capital invested by U, in period tj, prior to assessment window 

impacts on the efficiency score obtained within periods t2andt3. 

The above examples clarify the weakness of the dynamic efficiency 

Model 5-1 in capturing the efficiency scores properly when a DMU has a huge 

amount of capital invested prior to the assessment window and / or when the 

unit accumulates in some assessment window a large amount of capital 

stock, probably for further production in future periods. 

The example clearly illustrates how snap - shot static efficiencies can 

fail to capture true performance when there is inter - temporal dependence of 

input - output levels. The dynamic efficiency model captures better the 
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performance of DMUs in such cases. However this dynamic efficiency model 

could not capture the impact of any stock input at the end of the assessment 

window, nor could it capture the difference in stock at the start of the 

assessment window had there been any. 

This is the main reason that in the next section we are aiming to 

capture the role of end level of capital stock as well as the role of initial 

investment by introducing further constraints to the model. 

5.4 Capturing initial and terminal - stock in the dynamic efficiency 
model 

Assume that we have a set of DMU - paths over the periods t=T, ..., T+T. 

Assume further that the set of inputs can be divided into two sub - sets, one of 

period - specific inputs and the second of capital inputs. Let us denote these 

two sub - sets 11 and 12such that; 

11 and 12 C- 0, 
..., 

M) 
, 

11 U 12 : -- 
0, 

..., ml and 11 (-) 12 ý-- 0- 

11 is the set of period - specific and 12is the set of capital inputs. 

In the previous chapter it was argued that if r+T is literally the end of the 

DMU, then we can ignore terminal capital input. However if DMUs survive 

after period r+T then Model 5-1 must be reformulated to capture both initial 

and terminal stock or capital inputs. 
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Model 5-5. Dynamic eff iciency within window t= -r, r+1, ..., r+T to take into 

account the initial and terminal stock of capital. 

r+T 
I 

at T 

Min a= I=T - F( Y'Ist I- 
T t=r 

S. t. 

N 

Cl: I Ai Xii =a, X"Jý - st t- 
j=l 
N 

C2: I Ai Zii =a zij() - 
j=l 
N 

1+ C3: Ai Yri = Yri, + Sr 

N 

C4: lAjzij"+7' 

i 

N 

C5: 7-1 lAizij 
j=l 

z r+T + ri, 
lio 

ZT-1 
- Y: 

ijo I 

T+T s 
1+ +) Yj yi + Sr ++I '6 12 t=r r= 12 12 

; ie 11 ýt=, r r 

;iE: - 1 
21 t=-r ...... r+T 

; r=l,..., s, t=r,..., z-+T 

; 'G 12 

; 'G 12 

Aj ý: 0; Vi, Si'- ý: 0,45i'- ý! 0( Vt, Vi F= 'ý), Sr" -ý! O(Vr, Vt), yj ý! 01 yi- ýý O(V'12 12) 

where; 
Il mI are flow inputs, 

1, mI are those inputs that their end - stock wiH be converted, directley or indirectley, 
into more output some type at some future period. 

Z'-' is the initial - stock of capital of type 1 for DMU i ý:: ii 
- 12 

z r+T is the end - stock capital of type i for DMU j; 1 12 
ii 

With reference to the PPS (4.2), Model 5-1 can be reformulated to Model 

5-5 to take into account both initial and terminal stock inputs using constraints 

sets C1 - C5 as follows: 

Cl are period -specific input constraints, 

=: > C2 are stock - change input constraints, 
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==> C3 are output constraints and, 

C4 are end - stock constraints, 

C5 are initial - stock constraints. 

Model 5-5 modifies Model 5-1 essentially by adding constraint sets C4 and 

C5. Set C4 treats terminal capital stock as an output and that is why 

constraint sets C3 and C4 are essentially the same. Constraint C5 treats initial 

stock of capital as an exogenously fixed input. Thus the model measures the 

extent to which inputs, both flow and stock, can be reduced further, given the 

initial and terminal stock input of the unit and given its output levels during the 

assessment window. 

5.5 Conclusion 

In this chapter an extension was made to the definition of Pareto 

efficiency from the static case where Pareto efficiency is defined with the 

reference to DMUs to one where Pareto efficiency is defined with reference to 

paths of DMUs. We have also defined a measure of dynamic efficiency. The 

measure was used in our model is radial in each period. Alternative measures 

of dynamic efficiency will be introduced in Chapter 8. 
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The dynamic IDEA models developed in this chapter can capture initial 

and terminal stock of capital input where terminal stock input impacts future 

output. 

Hence Model 5-1 was introduced as a first step for measuring the 

dynamic efficiency. If there is no capital input in the production process, or we 

ignore the role of initial investment and the role of end capital stock, this 

model can be used for measuring the dynamic efficiency of DMUs. 

An example was used to illustrate how snap - shot static efficiencies can 

fail to capture true performance when there is inter - temporal dependence of 

input - output levels. The dynamic efficiency model captures better the 

performance of DMUs in such cases. However example shows that Model 5-1 

is fail to capture true performance in some cases with high level of initial 

capital and / or with high level of end stock capital. Therefore a new model 

was introduced, Model 5-5, which is the base of our analysis for the rest of 

this thesis. 

The next chapter generalises the comparison of the two methods by 

looking at a larger number of DMUs with more complex comparative 

performance relationships. 
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CHAPTER 6: A simulation study comparing 

static and dynamic efficiency measures 

6.1 Introduction 

This chapter compares more comprehensively static and dynamic IDEA 

efficiency. The chapter uses simulation data drawn from two different 

scenarios. The scenarios differ in that one holds the data constant and varies 

the technology and the other holds the technology constant and varies the 

data. In this manner any bias in the results which is technology or data 

specific can be identified. 

In each scenario there are 10 runs. Each run has 100 DMUs each one 

observed over 15 periods of time. Hence 



=* In scenario (1) the input - output path (data) of DMUs is kept constant 

and we vary the technology which describes the inter - temporal input - 

output dependence. 

=* In scenario (11) the technology is kept constant and we vary the data 

set. 

The chapter unfolds as follows. 

Section (6.2) lays out scenario (1). In this section the method of generating 

the data set is discussed and both static and dynamic efficiency are compared 

against true efficiency. Section (6.3) lays out scenario (11). In this scenario an 

inter - temporal Cobb- Douglas production function is employed to generate a 

large data set under varying input levels. We then compare static and 

dynamic efficiency. Section (6.4) compares static and dynamic IDEA models 

across the two scenarios. Conclusions are drawn in section (6.5). 

6.2 Scenario 1: Constant input data and varying technology 

Assume a technology with two inputs, flow x and stock change z, and a 

single output y. The values of the input variables, x and z, are generated 

randomly and independently from uniform distributions with range [1,100] and 

with means and standard deviations varying over time as in Table 6-1. 
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Table 6-1. Mean and stdv. of input variables 

Period Flow input 

W 

Changein 

stock input (z) 

Mean Stdv. Mean Stdv. 

ti 52 28 57 26 

t2 48 29 53 26 

t3 51 30 56 27 

t4 52 29 57 26 

t5 48 29 53 26 

t6 50 27 55 24 

U 51 31 56 28 

t8 47 28 52 25 

t9 51 28 55 26 

tio 53 28 57 26 

til 55 29 59 26 

t12 55 28 59 25 

t13 43 28 49 25 

t14 50 26 54 24 

t15 53 31 58 28 

Therefore in this assessment we have three input variables: 

==> Flow input, x, that is the input used up in each given period, 

Stock input, Z, accumulated over many periods and 

Change in stock input, z, that is the difference of stock input from one 

period to the next. 

The actual values of flow input, stock change and stock input are shown 

in Tables Al - A3 (Appendix A) respectively. 
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To generate the output levels, the data in Tables Al - A3 (Appendix A) 

are used with the following function (see Burmeister (1980)) which is the inter 

- temporal production function (see also Chapter 3). 

a, zt-1 + Ax' 0:! ý Zt 
tI:! ý cl x 

t-I Zt-I Y=f(X'Zlt)= a2Z + 182Xt cl 
t-<C2 

a3Z 1-1 +)83Xt C2 <zt 
x 

Where y represents the maximum amount of a single output that can be 

produced from flow input x' and the level of stock input at the end of period t- 

19 Zt-1. Then 10 technologies of this kind with different parameters are 

considered. These technologies are labelled TEC1 - TEC1 0 as in Table 6-2. 

Table 6-2. Parameters in different technoloqies of type (6.1 

Technology (Xj (X2 P2 (X3 P3 Cl C2 

TEC1 9 6 3 3 9 0.67 2 

TEC2 12 1 6 5.02 3 11 0.67 2 

TEC3 9 1.5 6 3 4 10 0.5 3.5 

TEC4 5 9 7 8 9 1 0.5 3.5 

TEC5 2 8 2.75 3 3 2.5 0.67 2 

TEC6 3 6 3 6 1 10 0.67 2 

TEC7 8 3 5 4.5 6 1 0.5 3.5 

TEC8 6 8 3 9.5 2 13 0.5 3.5 

TEC9 3 12 6 10 10 2 0.67 2 

TEC1 0 7 5 2 4 4 0.5 0.5 3.5 

For example technology TEC1 is as follows; 
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9zt-1 +x' 

y(t) f (x, z, t) 6Z'-' + 3x' 

M' + 9x' 

0: 5 
Zt-1 

<- 0.67 
xt 

0.67 < 
Zt-1 

<2 

2 ZI-1 
t x 

(6.2) 

The parameters in each TEC have been selected so as to maintain the 

continuity of the production function. As in Banker, Chang and Cooper (1996) 

the value 0 :! ý etj <1 is used to represent the efficiency associated with 

observation j at period t, so that 

ýItt 
Yjyjxej (6.3). 

ýt 

yj is the efficient output level in line with the underlying technology in 

(6.1). 

Therefore for each observation we have 

ýt< 

Yj- 

which accords with the characterisation of yt, as always being the maximal 

amount obtained from utilised values of xj and Zj. True efficiency figures in etj 

will provide the benchmark against which the performance of static and 

dynamic models can be judged. 

The efficiencies ejt used are such that for 10% of DMUs output levels are 

exactly as the technology would predict and the DMUs are efficient over all 
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periods (i. e. ej' =1, t=l,..., 15). Overall 25% of the DMUs are efficient in each 

period. However 60% of these efficient DMUs differ in general from one 

period to the next. 

Mean and standard deviation of efficiency rate of DMUs in each period 

are as in Table 6-3. The efficiencies generated are listed in Table A4 

(Appendix A). 

Table 6-3. Mean and stdv. of true eff iciency (e) 

Period Mean Stdv. 

ti 0.87 0.11 

t2 0.88 0.10 

t3 0.87 0.11 

t4 0.88 0.10 

t5 0.88 0.11 

t6 0.87 0.11 
t7 0.87 0.11 

t8 0.86 0.11 

t9 0.87 0.11 

tio 0.87 0.10 

til 0.87 0.12 

t12 0.88 0.11 

t13 0.87 0.11 

t14 0.88 0.11 

t15 0.86 0.11 

The 10 technologies in Table 6-2 have been selected to secure a mixed 

impact of stock and flow input. They can be classified in 3 groups as follows. 

ill 



=> Group 1: Technologies (TEC1 - TEC5, TEC9 and TEC10) have output 

levels in which the impact of stock and flow input vary depending on 

the ratio of stock to flow input as in Table 6-2; 

Group 2: Technologies TEC6 and TEC8 have outputs which are highly 

impacted by flow input. The flow input coefficients are much bigger 

than those of stock input and both inputs are measured in the same 

units. Compare, for example in TEC6, the coefficients of current inputs 

are (3,3,1) against the coefficients of capital inputs which are (6,67 

10). Obviously this technology is highly influenced by capital input than 

current input. The same is true for TEC8. 

Group 3: Technology TEC7 has output which is highly impacted by 

stock input. The stock input coefficients are much bigger than those of 

flow input. Compare the coefficient of capital stock which are (3,4.5ý 

1) against the coefficient of current input which are (8,5,6). The 

technology shows it is dominated by current input with a very little 

impact by capital. 

We are intended to show that for technologies in group 1 and 3 static IDEA 

models must perform worse than for technologies in group 2 as static IDEA 

models do not reflect well stock input. Therefore it is expected that for 

technologies in group 1 and 3 dynamic IDEA models should perform better 

than static IDEA models. 
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6.2.1 Static efficiency scores for simulated data 

The static DEA efficiencies were obtained by solving the CRS IDEA model 

in each period and for each DMU. The inputs are two contemporaneous, flow 

and stock and there is only one output. 

The average of static IDEA efficiencies across all DMUs and for each time 

period are presented in the second row of Tables Bla - B10a (Appendix A) 

respectively for technologies TEC1 - TEC10. For example, in Table Bla 

(Appendix A) the mean of 0.5798 under t4 in the row labelled "static" is the 

average obtained over all DMUs in period t4 using the static IDEA efficiency 

model. The averages of absolute deviations of static IDEA from true efficiency 

are shown in the first row of Tables B1 b- B1 Ob (Appendix A) for technologies 

TEC 1- TEC 10 respectively. 

6.2.2 Dynamic efficiency scores for simulated data 

Dynamic efficiencies have been computed using Model 5-5. In this model 

there are three types of input; flow input, stock input and stock change. As 

noted in Chapter 5 the length of the assessment window used and its 

relationship with the lag in inter - temporal effects involved will affect the 

results in the assessment. As can be seen in expression (6.1) the lag in the 

technologies used is one period. Thus any assessment window of length of 

two or more periods will be sufficient. To investigate the impact of length of 

window used we solve dynamic efficiency model using windows of length from 
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2 to 15 periods. Dyn-2 will be used to denote the measurement of dynamic 

efficiency with a window of length of two periods and so on for Dyn-3,..., Dyn- 

15. 

Table 6-4. Mean eff iciencv for replication in 15 periods for 100 DMUs 

TEC1 TEC2 TEC3 TEC4 TEC5 TEC6 TEC7 TEC8 TEC9 TEC10 Average 

True 0.851 0.851 0.851 0.851 0.851 0.851 0.851 0.851 0.851 0.851 0.851 
Static 0.618 0.641 0.605 0.625 0.721 0.717 0.615 0.738 0.638 0.674 0.659 
Dyn-2 0.765 0.777 0.757 0.767 0.804 0.816 0.754 0.827 0.743 0.78 0.779 
Dyn-3 0.843 0.851 0.837 0.827 0.853 0.869 0.829 0.875 0.811 0.842 0.844 
Dyn-4 0.887 0.892 0.88 0.86 0.881 0.898 0.87 0.9 0.849 0.875 0.879 

Dyn-5 0.93 0.936 0.923 0.908 0.924 0.939 0.915 0.94 0.895 0.92 0.923 

Dyn-6 0.954 0.959 0.948 0.968 0.945 0.958 0.94 0.959 0.921 0.943 0.949 

Dyn-7 0.972 0.975 0.966 0.976 0.961 0.972 0.959 0.972 0.942 0.96 0.966 

Dyn-8 0.983 0.986 0.979 0.969 0.973 0.982 0.972 0.982 0.958 0.972 0.976 

Dyn-9 0.991 0.993 0.987 0.967 0.983 0.989 0.983 0.989 0.971 0.982 0.984 

Dyn-10 0.995 0.996 0.992 0.977 0.989 0.993 0.989 0.993 0.981 0.989 0.989 

Dyn-1 1 0.997 0.997 0.995 0.985 0.992 0.995 0.992 0.995 0.986 0.992 0.993 

Dyn-12 0.998 0.998 0.997 0.997 0.995 0.997 0.995 0.997 0.991 0.995 0.996 

Dyn- 13 0.999 0.999 0.998 0.998 0.997 0.998 0.997 0.998 0.994 0.997 0.997 

Dyn-14 0.999 1 0.998 0.998 0.997 0.998 0.997 0.998 0.995 0.997 0.998 

Dyn-15 1 1 0.999 1 0.999 1 0.998 1 0.999 0.998 0.999 0.995 1 0.998 0.998 

The averages of dynamic IDEA efficiency models Dyn-2 to Dyn-15 are 

presented in the row labelled "Dyn-2" to "Dyn-15" in Tables Bla - B10a 

(Appendix A) respectively for technologies TEC1 - TEC10. The average 

efficiencies have been computed for each window over all DMUs. For 

example, in Table B1 a the mean of 0.8577 in the row labelled "Dyn-3", under 
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t4, is the average obtained over all DMUs from the dynamic efficiency model 

associated with data generated using technology TEC1 and for window of 

length of 3 periods (i. e. Periods of t2, t3 and t4). 

The averages of absolute deviations of dynamic IDEA efficiencies from 

true efficiencies are shown in the rows labelled "Dyn-2" to "Dyn-1 5" in Tables 

131 b- 131 Ob (Appendix A) for technologies TEC1 - TEC1 0. 

The overall averages of static and dynamic efficiency for all technologies 

TEC1 - TEC10 in each period are summarised in Table 6-4. In this table, for 

example, 0.843 under TEC1 in the row labelled "Dyn-T is the mean dynamic 

efficiency of all DMUs when assessed in windows of 3 periods (t1, t2 and t3), 

(t2, t3 and t4), ..., (t13, t14 and t15). 

6.2.3 Analysis of the results across all technologies 

We will compare dynamic with static IDEA efficiency scores by reference 

to mean efficiencies and mean absolute deviations from true efficiencies for 

each technology. 

The results of static IDEA vary in accuracy. For example in technology 

TEC3 the mean static efficiency is very far from its true mean while in 

technology TEC8 the mean static efficiency is closer to true mean efficiency 

among the static IDEA results. Figure 6-1 conveys this information pictorially. 
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Figure 6-1. The difference between static DEA and true mean eff icienc 
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Figure 6-1 shows that the static DEA efficiency performs better in 

technologies 

TEC8, TEC5, TEC6, TEC10, TEC2, TEC9, TEC4, TEC1, TEC7, TEC3 (6.4) 

in that order. 

This suggests that: 

* Having the higher inter - temporal input - output dependence in the 

technology reduces the accuracy of efficiency estimated in static IDEA 

models. Such technologies were TEC3 in group 1 and TEC7 in group 

For example in TEC7 output is highly impacted by stock input (see 

the coefficients of stock and flow inputs of TEC7 in Table 6-2). The 
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difference between static and true efficiency in TEC7 can be readily 

seen from Figure 6-1 where: 

The overall mean efficiency in static IDEA is 0.615 (see 

column TEC7 in the row labelled "Static" in Table 6-4) while 

The true mean efficiency is 0.851 (see column TEC7 in the 

row labelled "True" in Table 6-4). 

9 Having lower inter - temporal input - output dependence improves the 

accuracy of efficiency in static IDEA models. Technologies with lower 

inter - temporal input - output dependence are TEC6 and TEC8 in 

group 2. For example output in TEC8 is highly impacted by flow input 

(see coefficients of stock and flow inputs of TEC8 in Table 6-2). For 

TEC8: 

The overall mean efficiency in static IDEA is 0.738 (see 

column TEC8 in the row labelled "Static" in Table 6-4) while 

)ýý The true mean efficiency is 0.851 (see column TEC8 in the 

row labelled "True" in Table 6-4). 

It is evident in Table 6-4 that Dyn-3 captures true performance better than 

the other dynamic models. For the time being it might be noted that the 
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technologies of scenario (1) have maximum lag between stock input and 

output of 3 periods. 

Figure 6-2 illustrates this for each technology comparing static and Dyn-3 

against the true performance. The figure clearly shows that the Dyn-3 

efficiency model captures true performance better than the static efficiency 

model. 

Fiqure 6-2. Average efficiency in simulation (1) for replication in technoloqies TEC1 

throuqh TEC10 
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Further evidence of the comparative performance of static and dynamic 

IDEA models is provided by the mean absolute deviations between true and 

computed efficiencies. These results are summarised in Table 6-5 (Dyn-x 

efficiencies used are as in Table 6-4. ) 
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Table 6-5. Mean absolute deviation from true eff icienc 

TEC1 TEC2 TEC3 TEC4 TEC5 TEC6 TEC7 TEC8 TEC9 TEC10 Average 

Static 0.244 0.221 0.255 0.255 0.138 0.145 0.244 0.122 0.222 0.185 0.203 
Dyn-2 0.175 0.167 0.177 0.157 0.137 0.135 0.172 0.131 0.172 0.149 0.157 
Dyn-3 1 0.147 0.143 0.145 0.135 0.124 0.125 0.14 0.123 0.141 0.129 0.135 
Dyn-4 0.128 0.127 0.127 0.137 0.121 0.121 0.125 0.121 0.127 0.122 0.126 
Dyn-5 0.128 0.128 0.125 0.145 0.115 0.118 0.12 0.118 0.119 0.116 0.123 
Dyn-6 1 0.13 0.131 0.128 0.143 0.122 0.125 0.124 0.125 0.123 0.122 0.127 
Dyn-7 0.132 0.133 0.13 0.11 0.127 0.13 0.127 0.13 0.124 0.127 0.127 

Dyn-8 0.139 0.14 0.136 0.126 0.131 0.136 0.132 0.135 0.127 0.131 0.133 

Dyn-9 1 0.142 0.143 0.14 0.15 0.137 0.14 0.137 0.14 0.133 0.137 0.14 

Dyn-10 0.141 0.142 0.14 0.16 0.138 0.141 0.139 0.14 0.136 0.138 0.141 

Dyn-1 1 0.146 0.146 0.145 0.16 0.143 0.145 0.144 0.145 0.141 0.143 0.146 

Dyn-12 0.144 0.144 0.143 0.153 0.142 0.144 0.142 0.143 0.139 0.142 0.144 

Dyn-13 0.138 0.139 0.138 0.138 0.137 0.138 0.137 0.138 0.135 0.137 0.137 

Dyn-14 0.148 0.148 0.147 0.147 
1 

0.147 0.148 0.147 0.147 0.146 0.147 0.147 

Dyn-15 0.147 0.147 0.146 0.146 0.146 0.146 0.146 0.146 0.145 0.146 1 0.146 

It is clearly seen from this table that except for technology TEC8 the mean 

absolute deviation from the true efficiencies in Dyn-3 is much less than those 

of static IDEA models. (E. g. for TEC1 mean absolute deviation from true 

efficiency is 0.244 in the static IDEA model and it is 0.147 in the Dyn-3 model). 

One reason why static IDEA is performing better in technology TEC8 is that 

stock input has very little impact on output compared to flow input (see 

coefficients of flow and stock inputs of TEC8 in Table 6-2). 

Clearly the strength of impact of stock input is very important for the 

accuracy of static efficiency measurement in IDEA. The simulation shows that 

if the impact of stock is very high then the static efficiency fails to capture the 
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true performance of DMUs while the dynamic IDEA model captures true 

performance better. 

6.2.4 Analysis of the results on a selected technology 

Table 6-6 presents results from the simulation of technology TEC1. The 

efficiency means obtained from the static IDEA and dynamic IDEA models over 

15 periods and different lengths of window are shown. To assess the impact 

of the length of the window in dynamic efficiency the model was solved for 

different lengths of window and the results in Table 6-6 are based on lengths 

of 2 to 15 periods. For this technology the estimates from dynamic IDEA Dyn-3 

are better than from other lengths of window. 

Table 6-6. Mean efficiency scores in simulation (1), technology TEC1 

Tl Q t3 W t5 W U t8 t9 tlO t1l t12 M t14 t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 
1 
0.835 0.880 0.849 0.853 0.851 

Static 0.852 0.760 0.599 0.580 0.612 0.572 0.6061 0.545 0.5621 0.566 0.569 0.612 0.6251 0.585 0.6311 0.618 

Dyn-2 0.852 10.858 0.855 0.757 0.740 0.757 0.725 0.760 0.702 0.728 0.751 0.735 0.746 0.7481 0.765 

Dyn-3 0.852 0.858 0.899 0.902 0.834 0.825 0.837 0.823 0.851 0.808 0.812 0.830 0.831 0.843 

Dyn-4 0.852 0.858 0.899 1 0.928 0.924 0.884 0.890 0.892 10.880 0.905 0.869 0.866 0.887 

Dyn-5 0.941 0.946 0.9241 0.927 0.932 10.926 0.945 0.916 0.9161 0.924 0.936 0.930 

Dyn-6 0.957 0.963 0.952 0.947 0.956 0.958 0.966 0.947 0.943 0.9521 0.954 

Dyn-7 0.972 0.976 0.969 0.969 0.972 0.978 0.977 0.965 0.9671 0.972 

Dyn-8 0.9831 0.986 0.981 0.982 0.986 0.985 0.986 0.979 0.983 

Dyn-9 0.991 0.992 0.990 0.989 0.9921 0.993 0.992 0.991 

Dyn-10 0.995 0.995 0.995 0.992 0.993 0.996 0.995 

Dyn-1 1 0.997 0.998 0.998 0.994 0.996 0.997, 

Dyn-12 0.998 10.999 0.999 0.996 0.998 

Dyn-13 0.999 0.999 10.999 0.999 

Dyn-14 0.999 0.999 0.999 

Dyn- 15 1.000 11.000 
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The mean absolute deviations between true and estimated efficiency 

parallel the performance of the mean values. The mean absolute deviations 

are shown Table 6-7. 

Table 6-7. Mean absolute deviation between true and estimated efficiency in simulation 

(1), technoloqv TEM 

tl t2 t3 t4 t5 W U t8 t9 tl 0 tl 1 tl 2 tl 3 tl 4 tl 5 Ave 
rage 

Static 0.009 0.099 0.266 0.289 0.236 0.281 0.26 0.316 0.291 0.304 0.284 0.234 0.269 0.277 0.243 0.244 

Dyn-2 0.137 0.115 0.117 0.167 0.19 0.172 0.192 0.164 0.231 0.215 0.182 0.207 0.175 0.189 0.175 

Dyn-3 0.135 0.114 0.118 0.129 0.156 0.144 0.138 0.157 0.158 0.162 0.17 0.157 0.166 0.147 

Dyn-4 0.127 0.126 0.131 0.125 0.101 
1 
0.119 0.13 

1 
0.137 0.14 

- 
0.113 0.153 0.131 0.128 

Figure 6-3 shows graphically the results in Table 6-7. Figure 6-3a shows 

that static efficiency always underestimates true efficiency. 

The use of paths in dynamic efficiency reflects any output resulting from 

earlier stock input. The dynamic efficiencies of window with length 2,3, and 4 

are illustrated in Figure 6-3b, Figure 6-3c and Figure 6-3d respectively. 

Dynamic efficiency of window with length 3 more or less matches true 

performance. This is because in this technology DMUs take 3 periods to 

adjust to stock level changes. That is all stock input changes up to and in 

period t-2, make up stock input Zt-1 which impacts output in period t. Thus the 

lag between accumulated stock change at the end of t-2 and period t is 3 

periods. 
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Figure 6-3. Mean efficiency results from simulation (1) in technoloqy TEM 
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However Figure 6-3d and Table 6-4 show that dynamic efficiency results 

with length of 4' (more than 4) always overestimate efficiency scores. It is 

evident in Table 6-4 that dynamic efficiency scores in the larger windows (e. g. 

Dyn-14 and Dyn-15) approach 1. This is as we expect because when the 

length of the window increases the number of constraints in Model 5-5 

increases which can only increase the optimal value of the objective function 

being minimised. Put another way, DMUs have more opportunity to appear 

efficient by having a "high" output level in at least one time period. 
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The mean absolute deviations from true efficiency shown in Table B1b in 

Appendix A are plotted in Figure 6-4. The Dyn-3 mean absolute deviations are 

consistently better than those of the static IDEA efficiencies. The same is true 

for all technologies as can be seen in Tables B1 b- B1 Ob (Appendix A). 

In conclusion, The results of scenario (1) show that the impact of inter - 

temporal input - output dependence is very important in efficiency 

measurement. The simulation shows that those technologies that are highly 

impacted by stock input are assessed especially inaccurately by static IDEA. 

Dynamic DEA captures better the performance of DMUs. However, the length 

of window used in dynamic efficiency can impact the accuracy of the results 

obtained. 

Figure 6-4. Mean absolute deviation from true efficiency, scenario (1) in technoloqV 
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The next scenario examines the results obtained with single technology 

using different data sets. 

6.3 Scenario /I: Constant technology and varying input data 

Our aim in this scenario is to investigate the impact of input - output paths 

profiles on the comparison of static and dynamic IDEA efficiency models. For 

this purpose we use a single technology and vary the paths. We use a 

function taken from Banker, Chang and Cooper (1996) as our technology. It is 

a piece wise Cobb-Douglas function with inter - temporal effects and Constant 

Returns to Scale (see 6.5). 

io(Xt)0.2(zt-1)0.8, 

f Z, t) = 

14.42(x' )0.6(Zt-1)0.4, 

14.42(x' )0,35(Z, -1)0.65, 

8.33(x' )0.85(zt-1)0.15, 

t 

0:! ý x<0.4 
z t-I - 

t 

0.4<-<l 
zt-I - 
x 

I<<3 
z 
t 

<x 
Zt-I 

I 

(6-5) 

In (6.5) y represents the maximum amount of a single output that can be 

produced from flow input xt and stock input Zt-1. The parameters in this 

technology were selected to maintain continuity and Constant Returns to 

Scale. Some 10 different input sets are used. 
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In scenario (11) the value of the input variables, flow input x (in the range of 

[10,100] ) and stock change z (in the range of [10,20] ), are generated 

randomly and independly from uniform distributions. 

At any point in time t, xt and Zt are regarded as exogenous and yt is 

regarded as an endogenous variable since it is determined by the production 

technology. Once exogenous variables are known the production technology 

may be used to generate the enclogenous variable y. Ten sets of exogenous 

variables x and Z were generated. The value of the output y for DMU j was 

then calculated using the following equation: 

^1t. (x, Z) =yi (x, Z) x ei ;j=1,2,..., n (6.6) 

where ej is a residual term and it stands for the true efficiency for DMU j in 

period t. 

For generating true efficiencies the same method was used with the same 

distributions as in scenario (1). The true efficiency is generated in the range of 

[0.30,1] using the uniform distribution with a mean of 0.75. Table A5 

(Appendix A) shows the eff iciencies generated. The 10 data sets used are 

denoted SET1 to SET1 0. 
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6.3.1 Analysis of the results 

As in scenario (1), the static DEA efficiencies in each SET were obtained 

by solving the CRS IDEA model in each period and for each DMU using two 

contemporaneous inputs, flow and stock, and one output. The dynamic 

efficiency scores were obtained from dynamic efficiency Model 5-5 associated 

with three inputs, flow input, stock input and stock change input. 

The mean efficiencies across all DMUs and for each assessment window 

in scenario (11) are summarised in Tables C1 - C10 (Appendix A) respectively 

for SET1 - SET1 0. 

The average of static IDEA efficiency across all DMUs and for each time 

period are presented in the second row of Tables C1 - C10 (Appendix A) 

respectively for SET1 - SET10. For example in Table C2 the mean of 0.719 

under t4 in the row labelled "Static" is the average obtained over all DMUs 

solving the static DEA efficiency model for data at period t4 in SET2. Dynamic 

efficiency results were computed using Model 5-5 and it was solved for 

window of length of 2 to 15 periods. The results are surnmarised in Table C1 

- C10 (Appendix A) in the rows labelled "Dyn-2" to "Dyn-15". For example, in 

Table C2 the mean of 0.712 under M and in the row labelled "Dyn-3" is the 

average efficiency obtained over all DMUs using the dynamic efficiency model 

with length of 3 periods on the input - output levels in SET2. The overall mean 
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efficiencies obtained for each set of 100 DMUs are summarised in Table 6-8 

bellow. 

Table 6-8. Mean eff iciency of 10 sets SET1 -SET1 0 of 100 DM Us, over 15 periods 

SET1 SET2 SET3 SET4 SET5 SET6 SET7 SET8 SET9 SET10 Average 

TRUE 0.734 0.734 0.734 0.734 0.734 0.734 0.734 0.734 0.734 0.734 0.734 
Static 0.713 0.712 0.710 0.715 0.712 0.709 0.714 0.713 0.712 0.714 0.712 
Dyn-2 0.722 0.717 0.718 0.720 0.718 0.719 0.721 0.717 0.718 0.720 0.719 
Dyn-3 0.746 0.742 0.743 0.749 0.743 0.742 0.749 0.745 0.750 0.750 0.746 
Dyn-4 0.774 0.761 0.763 0.774 0.762 0.765 0.774 0.766 0.773 0.777 0.769 
Dyn-5 1 0.811 0.798 0.803 0.808 1 0.799 0.802 0.809 0.804 0.807 0.810 0.805 
Dyn-6 0.837 0.825 0.830 0.840 0.826 0.826 0.838 0.829 0.837 0.834 0.832 

Dyn-7 0.865 0.849 0.854 0.858 0.850 0.856 0.863 0.858 0.863 0.864 0.858 

Dyn-8 0.887 0.872 0.875 0.887 0.872 0.879 0.886 0.875 0.885 0.884 0.880 

Dyn-9 0.906 0.896 0.900 0.902 0.896 0.899 0.905 0.900 0.906 0.909 0.902 

Dyn-10 0.929 0.916 0.921 0.925 0.916 0.925 0.926 0.917 0.927 0.928 0.923 

Dyn-1 1 0.941 0.934 0.939 0.948 0.934 0.939 0.945 0.938 0.943 0.947 0.941 

Dyn-12 0.955 0.947 0.951 0.951 0.947 0.953 0.954 0.949 0.951 0.957 0.952 

Dyn- 13 0.965 0.958 0.961 0.961 0.958 0.964 0.962 0.962 0.956 0.956 0.960 

Dyn-14 0.9 8 0.964 0.967 0.968 0.964 0.973 0.968 0.967 0.973 0.969 0.968 

Dyn-15 0.965 0.965 0.968 0.959 0.965 0.970 0.968 0.968 0.969 0.958 0.965 

In Table 6-8, for example, 0.761 under SET2 in the row labelled "Dyn-4" is 

the mean dynamic efficiency of all DMUs when assessed in windows of 4 

periods (tl, t2, t3, t4), (t2, t3, t4l t5), ..., (tl 2, tl 3, tl 4, tl 5). 

A look at the average efficiencies in Table 6-8 shows that dynamic 

efficiency with a window of 3 periods again performs better than all other IDEA 

models. It is readily seen from Table 6-8 that the dynamic efficiency with 

longer windows (above 6 or 7) overestimates the true efficiency while the 
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static IDEA model underestimates the true efficiency. This is parallel with what 

we obtained in scenario (1). 

Figure 6-5 shows the mean absolute deviation between true and 

computed IDEA efficiencies for all 10 data sets and 15 periods. In this figure it 

is clearly shown that the mean absolute deviation is lowest in Dyn-3. This 

highlights the importance in dynamic IDEA of choosing assessment windows 

with appropriate length. 

Figure 6-5. The overall mean of absolute deviation from true efficiency across all 

DMUs in scenario (11) 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
L) 

CO 

6.3.2 Analysis of the impact in a selected SET 

If we know the lag between input and output the length of window we use 

in the dynamic IDEA model can be set to capture it. 
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Take for example SET1. Results of the first run for static efficiency and 

dynamic efficiency models are summarised in Table 6-9. This run indicates 

that dynamic efficiency with window of length of 2 and 3 are much closer to 

the true performance. However it is clear from Table 6-9 that static IDEA 

model and Dyn-2 underestimates the efficiency score while Dyn-4 

overestimates the efficiency scores. 

Table 6-9. Average efficiency in scenario (11) for data set SET1 

tl Q t3 W t5 t6 t7 t8 t9 tlo tll t12 M M t15 Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0.759 0.734 

0.737 0.701 10.729 0.737 0.730 0.721 0.710 0.684 0.687 0.718 0.725 0.732 0.665 0.693 0.732 0.713 

Dyn-2 0.745 0.730 0.719 0.722 0.742 0.753 0.726 0.701 0.698 0.732 0.738 0.735 0.685 0.675 0.722 

Dyn-3 0.741 0.727 0.743 0.735 0.771 0.775 0.755 0.736 0.724 0.738 0.756 0.769 0.724 0.746 

Dyn-4 0.741 0.736 0.757 0.779 0.775 0.804 0.809 0.786 0.767 0.763 0.780 0.786 0.774 

Dyn-5 0.823 0.826 0.837 0.836 0.811 0.815 0.815 0.805 0.797 0.793 0.765 0.811 

Dyn-6 0.853 0.858 0.857 0.841 0.837 0.840 0.838 0.817 0.817 0.817 0.837 

Dyn-7 0.882 0.874 0.869 0.876 0.875 0.880 0.857 1 0.853 0.822 0.865 

Dyn-8 0.908 0.886 0.888 0.899 0.912 0.873 0.871 0.859 0.887 

Dyn-9 0.903 0.903 0.915 0.922 0.912 0.898 0.886 0.906 

Dyn-10 0.927 0.941 0.939 0.918 0.943 0.904 0.929 

Dyn-1 1 0.948 0.945 0.939 0.942 0.931 0.941 

Dyn-12 0.959 0.955 0.961 0.946 0.955 

Dyn-13 0.967 0.973 0.956 0.965 

Dyn-14 0.971 0.966 0.968 

Dyn-15 0.965 0.965 

All results obtained from 10 different data sets using technology (6.5) are 

similar with what was obtained in the first run. These results appear in Tables 

Cl - Cl 0 (Appendix A). 
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The absolute deviation of average from true efficiencies in the first data 

set in simulation (11) is illustrated in Figure 6-6. This figure clearly shows that 

the absolute deviation of average efficiency from true efficiency in Dyn-3 is 

less than the other dynamic models and static model. 

Figure 6-6. Mean absolute deviation from true eff iciency in scenario (11) for data set 
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Therefore, scenario (11) confirms that the dynamic efficiency model 

captures the true performance better according to evaluate the efficiency of 

DMUs in 10 data sets generated from a Cobb - Douglas inter - temporal 

production function. 
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6.4 Comparing static and dynamic DEA models across the two 
scenarios 

Table 6-10 shows the summary of results on IDEA efficiencies across the 

two scenarios. The first two numerical columns contain the results of scenario 

(1) and the second two columns the results of the scenario (11). 

Table 6-10. Summaries of the results in scenario (1) and scenario(ID 

Scenario (1) for technologies TEM - 
TEM 0 

Scenario (11) for data set SET1 - SET10 

Overall average 
eff iciency 

Overall absolute 
deviation between 
true and estimated 

DEA eff iciencies 

Overall average 
eff iciency 

Overall absolute 
deviation between 
true and estimated 

DEA eff iciencies 

True 0.851 0.734 

Static 0.659 0.203 0.712 0.021 

Dyn-2 0.779 0.157 0.719 0.015 

Dyn-3 0.844 0.135 0.746 0.012 

Dyn-4 0.879 0.126 0.769 0.035 

Dyn-5 0.923 0.123 0.805 0.071 

Dyn-6 0.949 0.127 0.832 0.098 

Dyn-7 0.966 0.127 0.858 0.124 

Dyn-8 0.976 0.133 0.880 0.146 

Dyn-9 0.984 0.14 0.902 0.168 

Dyn-10 0.989 0.141 0.923 0.189 

Dyn-1 1 0.993 0.146 0.941 0.207 

Dyn-12 0.996 0.144 0.952 0.218 

Dyn- 13 0.997 0.137 0.960 0.227 

Dyn-14 0.998 0.147 0.968 0.234 

Dyn-15 0.998 0.146 0.965 0.232 
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The overall average efficiency in scenario (1), which is reported in column 

2 of Table 6-10, was obtained from mean efficiency across all DMUs in TEC1 

to TEC10. Similarly the overall efficiency in scenario (11), which is reported in 

column 4 of Table 6-10, was obtained from mean efficiency across all DMUS 

in SET1 to SET1 0. 

In the same way overall absolute deviation between true and estimated 

efficiencies was obtained as an average across TEC1 - TEC10 in scenario (1) 

and across SET1 - SET1 0 in scenario (11). 

In scenario (11) the true average efficiency is 0.734, the mean static IDEA 

efficiency is 0.712. Of the dynamic IDEA efficiencies the closest mean to the 

true mean is offered by Dyn-3 with the average of 0.746. In scenario (1) the 

true average efficiency is 0.851 while again the closest dynamic IDEA 

efficiencies are those of Dyn-3 with average of 0.844. The static DEA 

efficiency has mean of 0.659. Thus it is concluded that the static efficiencies 

are worse than the best dynamic efficiencies, in Dyn-3, for both scenario (11), 

where we keep the technology constant and scenario (1), where we vary the 

technology. This is also confirmed by the mean absolute deviations in Table 

6-10 under static and Dyn-3. 

Several other important conclusions can be drawn from these 

simulations: 
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I. In all 20 case studies of TEC1 TEC10 and SET1 - SET10 dynamic 

IDEA has captured true performance better than static IDEA. In all 

cases it was the better estimation of efficiency as well as receiving 

better average of deviations with true efficiency. 

11. All cases were aimed at testing the effect of length of window. As 

expected, the window of length 3 becomes the better in the efficiency 

estimation for these special production technologies. However more 

research is needed on the issue of what window length is better. 

111. TEC1 - TEC10 were intended to test the effect of changing the 

production technology while the data remain constant. The efficiency 

results showed little sensitivity to the changing of production 

technology. 

SET1 - SET1 0 were run to check the effect of changing the data under a 

given production technology. It is found that there was little impact on the 

accuracy of results. 

6.5 Conclusion 

In this chapter we compared static and dynamic IDEA efficiency models 

when DMUs operate under inter - temporal input - output dependence. For 

this purpose simulated data has been used. 
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Two scenarios were considered. In scenario (1) static and dynamic IDEA 

models were compared under different production technologies keeping input 

- output paths constant. In scenario (11) the approaches were compared under 

changing input - output paths, keeping technology the same. In each scenario 

10 runs of 100 DMUs over 15 periods were examined. 

In all cases at least one dynamic IDEA model performed better than the 

static IDEA model. The window performing best under dynamic IDEA was that 

which matched most closely the lag of inter - temporal effects. However, 

further investigation is needed of the impact of the length of window on 

dynamic efficiency. At this stage it can be suggested that the selection of 

length of window will depend on the nature of operations of the DMUs and the 

lag of inter - temporal effects. 

An analysis of the dynamic efficiency obtained in both approaches across 

all windows indicates that the length of window in dynamic efficiency is 

important and it should be selected in line with the inter - temporal technology 

which mainly depends on the process of transferring capital input to output. 

The results show that the degree of accuracy of static IDEA is also very 

dependent on the technology. For example we found that static IDEA captures 

the efficiency of TEC8 in scenario (1) better than it captures the efficiency 

score of the other technologies. Certainly, in TEC3 static efficiency is far 

closer to true efficiency. Why does static IDEA better in some technologies 

and fails to capture the true performance in others? The answer must be 
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sought in the degree of inter - temporal effects in the technology operated by 

the DMUs. Between technologies TEC8 and TEC3, we note that TEC3 is very 

dependent on the current input while TEC8 is influenced by capital input. 

(Compare the current and capital coefficients of TEC3 and TEC8 in Table 

6-2). What can be generalised from this is that if DMUs are operating under a 

technology that is highly influenced by capital input we explicitly ignore the 

role of future production in static IDEA and the static model fails to assess the 

efficiency of such DMUs. In other words: 

)ý. High inter - temporal dependence of input output would reduce the 

accuracy of efficiency obtained in static DEA. 

)ý, Lower inter - temporal dependence would improve the accuracy of 

efficiency scores obtained in static DEA. 

This generalisation can be clearly seen in the next chapter where we use 

real data for measuring the dynamic efficiency of industrialised countries. We 

will see that DMUs with high level of capital investment become less efficient 

in static IDEA while they are showing more efficient under dynamic IDEA. 
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CHAPTER 7. - An Assessment of the Efficiency 

and Productivity of Industrialised Countries 

Using Dynamic DEA Models 

7.1 Introduction 

Analysis of production efficiency of industrialised countries, which is 

directly interested in the question of whether certain countries perform better 

than others in producing more output with the same or less inputs, is an 

example of the importance of estimating production relationships. In order to 

estimate production relationships we need to develop appropriate measures 



for the two major inputs into production activity, namely labour and capital. A 

physical asset once installed is capable of contributing several years of 

outputs for the production unit that uses it. This implies that we must take into 

account investments made in the previous years in order to produce a 

measure of the efficiency and productivity for any given year. 

In this chapter we use dynamic efficiency and compare our results with 

previous work on the analysis of efficiency and productivity of OECD 

(Organisation for Economic Cooperation and Development) countries. Our 

sample constructed from 17 countries consist of: AUSTRALIA, AUSTRIA, 

BELGIUM, CANADA, DENMARK, FINLAND, FRANCE, GERMANY, 

GREECE, IRELAND, ITALY, JAPAN, NORWAY, SPAIN, SWEDEN, UK, USA. 

We shall use the data from Fare, Grosskopf, Norris and Zhang (1994) 

(hereafter FGNZ) who calculated the efficiency and productivity of OECD 

countries. In a separate study, Taskin and Zaim (1997) show the importance 

of efficiency gains as a source of labour productivity convergence in high and 

low income countries including those in the OECD. Both studies capture the 

role of capital stock and they assume that production in each period is carried 

out by using capital and labour. 

However, studies of the kind used by FGNZ are 'static), using one period 

of time (e. g. one year) at a time which captures only part of the impact of 

investment in long-lived assets. They ignore the effects of lags in the 
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investment process on the capital stock. If we know that investment affects 

production technology with certain time lags, then our initial choice of capital 

and the timing of investments should take these lags into account. The 

dynamic efficiency model presented in this thesis captures inter- temporal 

effects including lags in the impact of investment in capital. Therefore this 

analysis should enable us to examine better the influences of capital stock on 

the efficiency and productivity of OECD countries during the period studied. 

FGNZ computed productivity indexes for OECD countries and 

decomposed them into 'efficiency catch up' and 'technology change' (see 

Chapter 2 for the definition of these terms). Their analysis covered the time 

period 1979 to 1988. We shall compute these same measures of efficiency 

and productivity using dynamic efficiencies. This will make it possible to 

compare the static and dynamic efficiency-based results and highlight the 

additional insights offered by using dynamic efficiency. Thus we introduce 

here a dynamic Malmquist productivity index and its decomposition. The 

chapter unfolds as follows. Section (7.2) introduces the dynamic productivity 

index and its decomposition into technical change and efficiency catch-up. 

Section (7.3) sets up the models we need to calculate the required measures. 

Section (7.4) examines the efficiency and productivity of OECD countries in 

the dynamic context and compares the results with those previously reported 

for the same data set in the static context. Conclusions are drawn in section 

(7.5). 
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7.2 Productivity index under the dynamic model 

The basic Malmquist index computed under static IDEA is presented in 

Chapter 2. To calculate each index under static IDEA we use the data of two 

periods (e. g. two consecutive years) assessing efficiency in each period 

separately. The approach does not explicitly take into account the past or the 

future of invested inputs and does not take into account any intermediate 

production. The indexes are exclusively based on the input output of two 

consecutive periods. Our dynamic Malmquist index avoids this problem. 

7.2.1 A Dynamic Malmquist index for productivity change: Methodology 

The Malmquist non-parametric productivity index introduced by Fc5re et aL 

(1992 and 1995a) is based on linear programming and can be decomposed in 

several ways to give various indexes of productivity changes from one period 

to another. See, for example, FGNZ (1994), Caves, Christensen and Diewert 

(1982a, b). The conventional methodology used to derive the non-parametric 

Malmquist index can be extended in a straightforward way to a dynamic 

Malmquist Index using assessment paths. 

The calculation of the new productivity measure using dynamic production 

possibility sets requires an estimate of the dynamic efficiency measure for two 

adjacent windows. For simplicity we use Wt for the window ending in period t, 
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e. g. periods t-4, t-3, t-2, t-1 and t where the length of window is 5 periods, and 

we use PPS(W) for the Dynamic Production Possibility Set in window Wt as 

defined in Chapter 4. 

Assume (Xwt, Ywt) is an input-output path in window Wt, and Fi(XW, YW) 

denotes for "dynamic input - oriented" measure of technical efficiency of path 

(Xwt, Yw) as defined in Chapter 5. It is obvious that Fi(XWt, Ywt): 5 1. Following 

Shephard (1970) and Fare (1988) the input distance function for window Wt 

can be defined as: 

Di(XV14, YW) = (Fi(XWt, YW) )-l. 

This function is the reciprocal of the "minimum" proportional shrink of 

input path Xw', given output path Ywt. Note that Di(XWt, Yw) ý, 1 if and only if 

(Xwt, Ywt)EPPS(Wt). In addition Dj(XM, YW) =1 if and only if (Xwt, Yw) is 

dynamically efficient. The output distance function (Shephard (1970)) is 

defined similarly and under constant returns to scale. 

Output distance function = (input distance function)-' (See Chapter 1). 

The time reference of the technology can be different from the time 

reference of the input-output path assessed. For example DiWtl (XWt2, Ywt) is a 

distance function where the time superscript on the distance function indicates 

the reference technology's time window; the time superscript on the input 

output path indicates the window of operation for the observation whose 
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efficiency is being assessed. If the observation and the technology relate to 

the different windows then a cross-window evaluation is performed and the 

resulting efficiency score will be in the range of 0 to oo. 

Linear programming models introduced in earlier chapters for dynamic 

efficiency, first envelop the observed input output paths, for the purpose of 

defining best practice frontier, and then measure a path's distance from the 

frontier, yielding a technical efficiency score. Applied to the cross-window 

data, these models produce a dynamic measure of a path's productive 

efficiency relative to paths of a time window other than its own. Thus we 

introduce a dynamic Malmquist index, which can recognise sources of 

productivity change across windows. A dynamic Malmquist index and its 

decompositions are an extension of the static Malmquist index. (Fare et al. 

(1992 and 1997)). 

Let us now define two cross-window distance functions, 

Diwt(Xwt+', Ywt+') and Diw'+'(Xwt, Ywt). We do not assume that (Xwt+l, ywt+l) 

necessarily belongs to PPS(W) or that (Xwt, Yw) belongs to PPS(Wt, j). With 

these distance functions and following the standard definition of a Malmquist 

index (Caves et al. (1982a, b)) we are able to define and provide a basic 

decomposition of the Malmquist productivity index under dynamic efficiency 

as; 
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mwt(xwt Ywt, xwt+l 
D ý'(X Y 

i Ywt+l)= i 
Diw'(Xwt, Ywt) 

Mil"(XIII Yvll, X11+1 Yw"') provides an index to compare (Xwt+l, ywt+l) to 

(Xwt Yw) by using Wt technology as a reference technology. Although 

Diwt(Xwt, Ywt) ý! l but Diwt(Xwt+', Ywt+') and Diwt+'(Xwt Yw') may or may not be 

greater than or equal to 1 since Wt, j input-output paths may or may not be 

feasible with the technology of the Wt window. Similarly Wt input-output path 

may or may not be feasible within the technology of the Wt, j window. 

Thus Miwt(Xwt Ywt, Xwt" Ywt") <=>1 depending on whether 

productivity between t and t+1 has respectively become worse, is constant or 

has risen. 

Alternatively, one could define window Wt, j technology as reference 

technology in a dynamic Malmquist index; i. e. 

D w" (X w"', Y w") 
mwt+l(xwt, ywt, xwt+l, ywt+l)- i 

Dý'+'(Xwt, Ywt) i (7.2) 

Fare et aL (1992) define the Malmquist index as the geometric mean of 

the above two indexes. Similarly the dynamic Malmquist index can be defined 

as: 
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(xwt ywt, Xwt+I ywt+1) 

=(mwt(Xwt, Ywt, xwt+I Ywt+I)Xmwt+I(Xwt, ywt, Xwt+I, Ywt+I 
1/2 

ii 

::::::: 
-D 7'(X w"', Y w"') ]x[D ý"' (X w"', Y w"') - 1/2 

_D 
ý'(X w', Y w') D 7"' (X w', Y w') 

- (7.3) 

Then we define efficiency change between window Wt and Wt+l as 

AEFF(W, WI) 
Dý"l(Xw"', Ywt+') 

Dýt(Xw', Ywt) 

] 

and technical change as 

TECH(Wt, W,,, ) = 

D7'(Xw"' 

_D 
ý"' (X w"' 

ywt+1) ]x[ D7'(Xwt, Ywt) - 1/2 

, ywt+1) D 7"' (X w', Y w') 

(7.4) 

(7.5) 

ATECH(Wt, Wt, j) measures the relative distance between the production 

frontier in window Wt and window Wt, l and thus how much the best-practice 

technology shifts from one window to the next. This index captures the shift in 

technology between the two windows Wt and Wt+,. 

The change in productive efficiency is given by AEFF(Wt, Wt, j), that is , 

the ratio of two own-window productive efficiency scores calculated relative to 

best practice in window Wt, j and window Wt respectively. It indicates whether 

a path has moved closer to or further from one window to another. 
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As can be seen in the above definitions the product of the above two 

indexs, AEFF(Wt, Wt+, ) and ATECH(Wt, Wt, j), is equal to Malmquist index, 

X"'+', Y""). i. e. 

Mi(Xwt, Ywt, Xwt+l Ywt+')= AEFF(Wt, Wt+l)x ATECH(Wt, Wt+, ). (7.6) 

Values of Mi(Xwt, Ywt, Xwt+1 Ywt+'), AEFF(Wt, Wt+, ) and ATECH(Wt, Wt+, ) 

greater that one indicate that performance in that area has worsened from 

one window to another; values less than one indicate a progress in 

performance. 

These productivity indexes under dynamic efficiency enable us to 

compare our results with FGNZ since they used similar indexes for the 

decomposition of the productivity indexes of 17 OECD countries. 

7.3 Setting up the assessment model 

7.3.1 The data 

Our data on GDP levels, labour and capital stocks comes from the most 

recent version of the Penn World Tables (Summers and Heston (1991) - 

version 5.6). The Penn World Tables display a set of national accounts 

covering a large number of countries. A unique feature of the tables is that 

expenditure entries are denominated in a common set of prices in a common 
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currency so that real international quantity comparisons can be made both 

between countries and over time (Summers and Heston (1991)). These data 

are built from the benchmark studies of the "International Comparison 

Progress of the United Nations and National Accounts data". The procedures 

used to create the data set are discussed in some detail in Summers and 

Heston (1991). 

7.3.2 The eff iciency model 

The model used to calculate the dynamic efficiency of each country is 

Model 5-5. Similar to FGNZ we use Gross Domestic Product (GDP) as our 

single measure of aggregate output and capital stock and employment as our 

aggregate input proxies. 

In each window we cover a period of five years. For example for the 

dynamic efficiency of the window ending 1980 we used the input output data 

paths from 1976 to 1980. We included the capital stock in 1975 as initial 

capital stock to the model and the total capital stock at the end of 1980 as end 

stock of capital. Therefore, our model constructs a best practice frontier from 

the data over long windows of time, covering five years, which enables us to 

compare the long-term performance of different countries. Thus the dynamic 

efficiency score for each country depends on the input output levels within the 

window, the initial level of capital stock and the level of capital stock at the 

end of the window. Hereafter, we refer to each dynamic efficiency score with 
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its last year in the window under assessment, for example dynamic efficiency 

score 1980 is the outcome of the comparison of input output paths over 

periods ending in 1980 using the dynamic efficiency model with length of 5 

years. 

7.3.3 The productivity indexes 

In this section we use the productivity approach described in the previous 

section to calculate the dynamic Malmquist index and its components using 

the OECD data referred to above. The distance functions needed were 

computed using Model 5-5 to compute cross-window distance functions, e. g. 

for Diwt(Xwt+', Ywt+') we solved Model 5-5 using for the country under 

assessment the input output path of window Wt, l within a reference set 

including all countries with their input output paths of window Wt. 

We decompose the Malmquist index as shown in (7.6). 

7.4 Results and discussion 

All calculations were done in SAS version 6.12 (see SAS Institute (1989)), 

using PROC LIP in SAS/OR as explained in Emrouznejad (2000). A result 

sheet for each country is presented in Appendix B. In each sheet we provide 

dynamic efficiency scores, technical change, efficiency change, Malmquist 
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index and its decomposition. Some graphs are presented for better visual 

comparison of the results. 

For instance take the USA. Its efficiency scores appear in the bottom of 

the sheet. Its efficiency graph clearly shows that the dynamic efficiency of the 

USA is lower during the 1970s than the 1980s. The USA efficiency trend is 

very stable with its highest rate in the last 6 windows. The low efficiency trend 

of the USA in the 1970s has been confirmed by other researchers too, (see 

for example Abramovitz (1986,1990), Baumol (1986) and Baumol et al. 

(1989)). 

One should bear in mind that we set up the dynamic efficiency model for 5 

years in each assessment window. This means that we implicitly assume that 

the bulk of the impact on GDP due the capital invested at one point in time 

would be seen within 5 years. However this assumption may not always be 

correct. For example, Maddison (1982,1989) in his the study of the world 

economy provides evidence that incomes have been converging over a fairly 

long period and Mauclos et aL (1999) in their OECD assessment model 

assumed 25 years age as a proxy of the per capita endowment of human 

capital. 

The investment of the USA for enhancing its productivity has been 

articulated by many researchers including Abramovitz (1986,1990), Baumol 

(1986) and Baurnol et al. (1989). 
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The efficiency change, technical change, dynamic Malmquist productivity 

index and its decomposition for the USA are presented on the top of its sheet 

in Appendix B. Overall averages of each index in two decades are provided in 

the right top table on the sheet. For the USA, productivity progress (1.00601 

average Malmquist productivity index over all period) is more due to efficiency 

change (1.01051 on average over all periods) than technical change (0.99711 

on average over all periods). The decomposition of the Malmquist index to 

technical change and efficiency change is figured in the left top table and it is 

illustrated in the middle graph in the sheet. 

The aim of this Chapter is not to go to a discussion of the results for all 

countries. Rather to comment on the comparison of our results with those 

based on the static IDEA model, as presented in FGNZ. We focus on those 

where the two studies differ substantially. 

7.4.1 Comparison of dynamic efficiency with static efficiency 

Using the dynamic efficiency approach, JAPAN and the UK are 

consistently efficient. This is different from the FGNZ results. Table 7-1 

provides the comparison of our results with those of FGNZ. To make our 

results more comparable with those of FGNZ we report, in Table 7-1 , the 

dynamic efficiency for window 1988 and the average of FGNZ efficiencies for 

1988 and 1983, using efficiencies rather than distance functions. The last two 

148 



columns show the efficiency rank of OECD countries under the two different 

approaches. 

Table 7-1: The average efficiency of each country 

Average from 
dynamic eff iciency 

(1984-88) 

Average from 
FGNZ 

Dynamic 
eff iciency 

rank 

FGNZ 
rank 

AUSTRALIA 0.9206 0.8117 14 6 

AUSTRIA 0.9474 0.7437 12 11 

BELGIUM 0.9075 0.7633 17 9 

CANADA 0.9821 0.8883 6 3 

DENMARK 0.9780 0.6387 7 16 

FINLAND 1.0000 0.6548 1 joint 14 

FRANCE 0.9545 0.7612 11 10 

GERMANY 0.9983 0.7195 5 12 

GREECE 0.9083 0.8836 16 4 

IRELAND 0.9204 0.6113 15 17 

ITALY 0.9208 0.7917 13 8 

JAPAN 1.0000 0.6525 1 joint 15 

NORWAY 0.9642 0.7993 10 7 

SPAIN 0.9700 0.6681 9 13 

SWEDEN 0.9722 0.8777 8 5 

U. K. 1.0000 0.9343 1 joint 2 

U. S. A 1.0000 1.0000 1 joint 1 

Average 0.9614 0.7765 

As can be seen our scores are relatively high and this is because of the 

nature of the dynamic IDEA model, covering a larger number of inputs and 

outputs. We find JAPAN and FINLAND very efficient while FGNZ found them 

very inefficient. In contrast FGNZ found GREECE in fourth place after the UK 

and CANADA while we find that GREECE is one of the least efficient 

countries. 
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Why does dynamic efficiency make such a big difference for JAPAN and 

GREECE? Probably the main difference in modelling dynamic and static 

efficiency measures is due to the effect of capital stock. The initial capital 

stock in each window is given to the dynamic efficiency model as an extra 

input. The end stock of capital is treated as an extra output. Therefore the 

level of growth of capital stock can affect the dynamic efficiency scores. 

The growth in capital stock from 1983 to 1988 is presented in Table 7-2. 

Table 7-2: Growth in capital, from Figure 7-1. OECD in the order of capital qrowth 

1983 to 1988, for OECD countries 

Growth in Capital 
stock 

JAPAN 

SWEDEN 

AUSTRALIA 7.90% CANADA 

AUSTRIA 15.14% FINLAND 

BELGIUM 3.25% AUSTRIA 

CANADA 18.12% SPAIN 

DENMARK 11.59% UbA 

FINLAND 15.36% 
DENMARK 

UK 

FRANCE 7.44% 
GERMANY 

GERMANY 10.22% 
FFA LY 

GREECE 6.85% NORWAY 

IRELAND 6.92% AUSTRAL 

ITALY 8.85% FRANCE 

JAPAN 25.89% IRELAND 

NORWAY 8.03% GREECE 

SPAIN 15.13% BELGIUM 

SWEDEN 18.53% 8-9 8-1 CD 0000 C) C? 9000 C) 
UK 10.43% 0 to 666 

C\j (Ij Cl) 
it l t k h f 

USA 13.37% cap a s oc Average growt o 

Avera 

The overall average of annual capital growth is nearly 2% (11.94% 

increase from 1983 to 1988). JAPAN with the capital growth of about 4.3% 
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each year (25.8% increase from 1983 to 1988) is the OECD country with the 

highest level of capital growth. In contrast, GREECE is one of the countries 

with the least growth in capital stock of about 1.1 % per annum. So its level of 

capital at the end of the window is not improved compared with the other 

OECD countries. 

Figure 7-2. Dynamic eff iciencv rises when capital qrowth rises 

1 

0.99 
0.98 
0.97 

.20.96 
0.95 
0.94 

cu 0.93 
0.92 
0.91 

0.9 i 
0.0% 

-- 410- -*-* 

This is one of the differences between the dynamic and static DEA 

models. The dynamic efficiency model recognises countries with high growth 

of capital as more efficient than countries with the same level of outputs but 

lower level of capital growth. This can be trivially seen in Figure 7-2, which 

shows the correlation of growth in capital stock and dynamic efficiency. As 

this figure shows, dynamic efficiency rises, generally, when the capital growth 
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rises. This is the important factor of the dynamic efficiency model which can 

not be captured with a static IDEA model in terms of calculating the efficiency. 

Maudos et al. (1999) have also analysed the OECD countries but they 

included human capital as an extra input to the model. What they found is that 

human capital is an important factor in the efficiency and productivity 

measures. They found that the position of JAPAN improves considerably in 

terms of efficiency (and productivity) when we consider human capital as an 

extra input. Our analysis confirms their finding in that capital growth is an 

important factor in efficiency (and productivity) measurement. 

7.4.2 Comparison of productivity indexes with those of FGNZ 

For the comparison of productivity indexes we report, in Table 7-3, the 

average of the Malmquist index, technical change and efficiency change for 

windows ending 1984 to 1988 covering assessment periods 1979 to 1988. 

These results are the closest comparable with the averages of the same 

indexes reported by FGNZ over similar periods. This is drawn from 

disaggregated results in Appendix B. 

The indexes in Table 7-3 are computed using efficiencies rather than 

distance functions and so an index value of over 1 represents productivity 

gain while under 1 productivity regress. A comparison of the foregoing results 

with those in table 6 in FGNZ, reproduced here in Table 7-4 for ease of 
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reference, shows that there is agreement overall that technical change 

increased slightly over these periods. 

Table 7-3. Averaqe of Productivitv indexes over for 1984 - 1988 under the dvnamic DEA 

model 

Malmquist Technical Change Eff iciency Change 

AUSTRALIA 0.97573 0.97276 1.00299 

AUSTRIA 1.02029 1.02127 0.99902 

BELGIUM 0.99914 0.99589 1.00358 

CANADA 1.00794 1.00805 0.99986 

DENMARK 1.03442 1.02610 1.00839 

FINLAND 1.00718 1.00718 1.00000 

FRANCE 0.98418 0.99907 0.98507 

GERMANY 0.99833 1.00000 0.99833 

GREECE 0.95888 0.98190 0.97660 

IRELAND 0.96716 0.98443 0.98254 

ITALY 0.99797 1.01321 0.98473 

JAPAN 1.00000 1.00000 1.00000 

NORWAY 0.99266 1.00809 0.98478 

SPAIN 1.00056 0.99188 1.00892 

SWEDEN 0.99804 0.99725 1.00062 

UK 1.00000 1.00000 1.00000 

USA 1.00015 1.00015 1.00000 

Average 0.99662 1.00042 0.99620 

Therefore average productivity enhancement is due to innovation 

(technical change) than improving in efficiency (note average technical 

change>1 while average efficiency change<1). However, our Malmquist index 

components are different from those in FGNZ for some countries. Why is 

there a difference between the two approaches? Again we relate this to the 
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level of capital growth as the capital stock is one of the important factors that 

has been taken into account in dynamic but not in static efficiency. 

Table 7-4. Average of productivitv indexes from FGNZ 

Malmquist Technical Change Eff iciency Change 

AUSTRALIA 0.9973 1.0009 0.9964 
AUSTRIA 0.9981 1.0009 0.9972 
BELGIUM 1.0092 1.0161 0.9932 

CANADA 1.0151 1.0161 0.9990 

DENMARK 1.0026 1.0009 1.0017 

FINLAND 1.0272 1.0161 1.0108 

FRANCE 1.0081 1.0161 0.9921 

GERMANY 1.0117 1.0161 0.9956 

GREECE 0.9962 1.0009 0.9953 

IRELAND 0.9821 1.0009 0.9813 

ITALY 1.0195 1.0161 1.0033 

JAPAN 1.0287 1.0161 1.0124 

NORWAY 1.0236 1.0161 1.0073 

SPAIN 0.9898 1.0009 0.9890 

SWEDEN 1.0019 1.0009 1.0010 

UK 1.0012 1.0009 1.0003 

USA 1.0085 1.0085 1.0000 

Average 1.0070 1.0085 0.9986 

Figure 7-3 illustrates the correlation of the dynamic Malmquist productivity 

index and the level of annual capital growth in OECD countries. This figure 

clearly shows that an increase in capital stock can improve the productivity 

index. A comparison of average annual growth with technical change and 

efficiency change also shows the same picture. 
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Figure 7-3. Correlation of capital growth with dynamic Malmquist indexes 
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7.5 Conclusion 

In this chapter we first developed a dynamic productivity index and 

decomposed it. Then we provided both efficiency and productivity indexes for 

a set of 17 industrialised countries. 

Results at country level are presented in Appendix B. We focused on the 

difference between static and dynamic results. The comparison of our results 

shows that static models, ignore the important factor of the capital stock. We 

concluded that dynamic efficiency increases when capital stock rises. A 

similar result was obtained for the productivity index and its components. This 

conf irms similar results obtained by Mauclos et al. (1999). They found that the 
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inclusion of human capital has a significant effect on the accurate 

measurement of total factor productivity. We both recognise the higher rate of 

efficiency gains in JAPAN, for example, are due to higher growth of capital in 

Japan. It is reasonable to expect that, since capital stock has effects which 

spread over several years. The dynamic efficiency results should reflect 

reality better than those based on static IDEA models. 
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CHAPTER 8: Alternative measures of dynamic 

efficiency and interpretation of DEA weights 

8.1 Introduction 

This chapter extends further the dynamic IDEA model developed in this 

thesis. It examines alternative efficiency measures and it offers an 

interpretation of the dual to the model. 

In essence the approach developed in this thesis constructs a PPS and 

our dynamic IDEA Model 5-5 can identify whether a DMU path is Pareto 

efficient over time or not. How far a DMU path is from its peer(s) on the 

frontier is another question which will be addressed in this chapter. The 



chapter also discusses the insights offered by the dual to the dynamic IDEA 

model. The chapter unfolds as follows. 

Section (8.2) lays out some alternative measures of dynamic efficiency. In 

this section we define a radial measure then we introduce a dynamic model to 

deal with non - discretionary inputs and outputs in some periods. A more 

general measure of dynamic efficiency for when the length of sub - periods 

under assessment are not equal is also presented in this section. The 

formulation of the dual dynamic model with the interpretation of dual variables 

as input - output prices is explored in section (8.3). Section (8.4) concludes. 

8.2 Alternative measures of dynamic efficiency 

As noted above the dynamic Model 5-5 can be used to identify whether or 

not a DMU - path is Pareto efficient. How far a DMU - path is from its peer(s) 

on the frontier is another question. Just as under static DEA there is no 

unique measure of the distance of a DMU from the PPS frontier so here too 

there is no unique measure of distance from the frontier. Normally a radial 

measure of this distance is used but other measures are also possible. Two 

such measures are discussed next. 
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8.2.1 Defining an efficiency measure of radial reduction across all 
periods within the assessment window 

The measure of dynamic efficiency in Model 5-5 is the average of the 

lowest proportional contraction of the input levels of a path, contraction being 

the smallest in each period but not necessarily across all periods. To see 

better the meaning of this consider a simple case of three paths in two periods 

associated with a single input per unit of output as illustrated in Figure 8-1. 

Figure 8-1. Three paths in two periods associated with a sinqle input 

per unit of output 

ti t2 

70 ---------------------- 
------------- -C '00 

C? 

50---- C+ 

------------------ Bj- -- 
30 ---- A, ------ -------- 

B, ----------- 

ti t2 
A 30 20 
B 10 40 
C 50 60 

Obviously paths A and B are efficient paths and C is an inefficient path. 

Model 5-5 provides a different rate of reduction for path C in different periods 

of time. In tl the efficiency is 11 
= 20% and in t2 it is 

A2 
= 33% and Model 

C, C, 
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5-5 gives min {( 
A, 

+ 
A2 

)/2, ( 
B, 

+ 
B2 

21 = 43%. An alternative measure of 
ci C, CI C2 

dynamic efficiency can be defined which does not permit different contraction 

ratios over time. In this new model the efficiency rate of each inefficient path 

can be calculated by projecting it to the PIPS radially over time. Model 5-5 is 

modified to Model 8-1 to yield this measure of efficiency. 

Model 8-1. Equal radial contraction in all periods within a window 

+ 

TTTS 
t- t+ +I+ 

ly+) 
Mina= ko -. F(l ýýS + jj(5j'- +YES 

., 
y 

t=l 'ý= 12 t=l iE 1, t=l r=l 'E 12 'E 12 

S. t. 
N 

Aj x' k,, x' - S'- ic 11 t =, r ...... r+T 

N 

Aj z' k0z' -GIt =z ...... r+T ii ijo 2 

and constraints sets C3, C4 and C5 in Model 5-5. 

Variables are as in Model 5-5. 

In this model the efficiency rate of path C in Figure 8-1 is 45.5% in 

each period and the target path is (22.73,27.27) which is a convex 

combination of the two efficient paths A and B and hence it belongs to the 

PPS frontier. (Note that (22.73,27-27)= 0.635 xA+0.365 xB and 

22.73 27.27 
and cl =_c-, =0.455) 
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Comparing Model 8-1 with Model 5-5, it is obvious that the measure in 

Model 8-1 is never lower than those obtained from Model 5-5. This is because 

Model 5-5 is less constrained than Model 8-1. In fact Model 8-1 is the same 

as Model 5-5 with the additional constraint of 

ko Vt . 

8.2.2 Defining an efficiency measure when some inputs -outputs are 
non discretionary 

In computing the dynamic efficiency of DMU paths Model 5-5 estimates 

the projection of "inefficient paths" onto "efficient paths". These projections 

involve input reduction. However inputs may not be controllable by 

management to the same degree over time. Therefore Model 5-5 may not 

yield an appropriate measure of efficiency in certain cases. For example a unit 

may have external inputs such as changing market size over time which the 

manager has no control. Such a DMU can not improve its efficiency by 

reducing an input level in all periods. 

In order to deal with the problems associated with non - discretionary 

inputs, in static DEA, several alternative models have been suggested (see 

Banker and Morey (1 986a)). Dynamic eff iciency models can also deal with 

non - discretionary inputs in some, if not all, periods of time. This will lead us 

to define an alternative measure of dynamic efficiency based on the reduction 

of inputs in specific periods of time and holding input levels constant in other 

periods. A model for this purpose is formulated in (8.2). 
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Model 8-2. Period non - discretionarv measure of dvnamic eff iciency 

within window t=r, r+1, ..., r+T 

I 
a, _ 6( 

T 
t- 

T 
t- 

T5 

Min a= III Si + 2ýý 105i +II Sr+ +I yl- +I yi+) NI teT, t=l iE 12 t=l '6 12 t=l r=l 'r= 12 12 

S. t. 

2: ýj x' =a, x' - 
N 

zt =afzt ii ijo 
N 

2:, ýjxt =xt - S'- 
ii ijo i 

i 

;i E=- 11 t (z- T, 

; 1C 21tc T, 

;i (=- I19te T2 

Aj z' = z' - (5. '- F- 12 
It E=- 

T2 
ii ijo 

and C3, C4 and C5 in Model 5-5, 

Variables are as described in Model 5-5. 

where T=T, u T2 and N, is the number of periods in T, - 

This model is based on the assumption that managers are interested in 

holding the input levels in periods tE=- T2as non - discretionary and examine the 

possibility of reducing input levels in periods tcTj. The model will measure the 

(in)efficiency according to the possibility of reducing input in tE=-T, while not 

increasing inputs in other periods. 

To illustrate the efficiency measure with non - discretionary input in Figure 

8-1 assume we are interested in holding input level as it is in period tl and 
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examine any possible reduction in period t2. Therefore the efficiency of path C 

is 0.33 (= 20 
60 

8.2.3 Defining a dynamic efficiency model when periods under 
assessment are not of equal length 

In all models presented in this thesis we assumed that the assessment 

periods are divided to sub - periods with equal length. Generally one is that 

assessing the performance of organisations when the data are available over 

not - equivalent length of periods. Assume, a window of length of K is divided 

to T sub - periods, Ki, K2, 
..., 

KT (not necessarily equivalent length) such that 

K, +K2+,.. +KT=K. Assume further that x, z and y are the same notations as 

used in Model 5-5 with reference to the sub - periods K, y K2, ..., KT. i. e. the 

input output paths are: (XK1, K2, ..., KT, 
z 

Kl, K2, 
..., 

KT 
Iy 

Kl, K2, 
..., 

KT) 

. Let ZO and Z are 

respectively the initial input to the assessment window and the final capital 

input at the end of assessment window. Therefore we could define a similar 

model to Model 5-5 for assessment of organisations with variant sub - 

periods. This is presented in Model 8-3. 

The main difference in this model is that the definition of efficiency 

measure is now adjusted by the length of sub - periods. In other words since 

the length of the sub - periods under assessment are not equivalent instead of 

minimising the simple average we minimise the weighted average, weighted 

by length of sub - periods. It is obvious, if we assume that the window is 
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equality divided to T sub - period the Model 8-3 will collapse to Model 5-5. 

This can be easily seen with replacing K1,1<2ý ..., KTwith K in Model 8-3. 
T 

Model 8-3. Dynamic eff iciencV for unequivalent sub - periods 

KT 
I 

ta, KT KT K7 s 

Min a= -E(Y , 
IS'++I] -+I 

I=K, 

'Isi 

I- + 
1191 

+Ir yi yi+ 
K 

i=Kl iE 11 t=Kl ie 12 [=Kl r=l iE 12 'e 12 

S. t. 

Cl: 
N 

x' ii =a, x' - S'- ijo I ie 1ý ,t= Kl,..., K T 
j=l 

C2: 
N 

Aj Z' =a, z' - I] ijo i -icI t=K 9 21 1, ..., 
KT 

C3: 
N 

YAj Yri +S Yrio r r=l,..., s, t =K 1, ..., 
KT 

j=l 

C4: 
N 

1, ýj Zj =Zij. + Yi +; i E=- 12 

i 

C5: 
N 

IAJZO 
d ii = zo ijo 2 

. j=1 

0; vj, Sl- >0 (Vt, Vi c 1ý), S, " > O(Vr, Vt), y' ý! 01 Yi- O(V'(ý 
2) irII 

where; 
ImI are flow inputs, 

12 C111 .... m) are those inputs that their end - stock will be converted, directley or indirectley, 

into more output some type at some future period. 

,, 
is the initial - stock of capital of type i for DMU j; 'ýý 12 

Z 

Z, j is the end - stock capital of type i for DMU j; 12 * 

The next section uses the original model to discuss the insight its dual 

offers. 
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8.3 Dual dynamic efficiency model 

As it is known in the static IDEA context the dual to the envelopment 

model gives implicit values to inputs and outputs (Thanassoulis (1995)). In the 

dynamic efficiency context we also have similar information from the dual to 

Model 5-5. 

The aim of this section is to derive an economic interpretation of the dual 

to the dynamic IDEA Model 5-5. This can be of value in practical applications 

as in static DEA. 

8.3.1 Economic interpretation of dual variables - static DEA model 

As developed by Charnes et aL (1978) the IDEA model in which input 

vector x is related to a vector of outputs y can be written as follows: 

Model 8-4. Static DEA model 

MinA, hh 

s. t Ij Aj xj h xjo 
Ej Aj yj Z? yjo , 

Aj 1? 0 

where X is the intensity vector, (xj , yj) is the input - output vector of DMU 

j, jo is the DMU being assessed and, h is the efficiency rate. Thus (1-h) is the 

inefficiency rate or the failure of the DMU jo to use minimum input given its 

output levels. 
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Let us assume the DMUs sell the output at price p, and their objective is 

to maximise revenue. This problem can be formulated as in Model 8-5 (see 

Lovell (1993)). 

Model 8-5. Revenue maximisation DEA 

M axp, Ä 1, Pjo y�jo 

s. t Ij Äj xij ý5 xijo ; vi 
Ij Äj YI z2ý yrjo; Vr 

Äj 2ý 0, yr --->0 ; Vj, r. 

where prj = (plj, ..., p,, j) are the output prices for DMU 

Now let u, and vi be dual variables associated with the constraints to 

Model 8-5. Then the dual to Model 8-5 becomes: 

Model 8-6. Dual revenue maximisation DEA 

M in�, li vi xijo 

s. t. lruryj - IM xij -'5' 0; Vj 

Ur:: 2ý Prio ; Vr 

u, 2ý 0, vi 2,0 ; Vi , Vr 

At optimality, the two objective functions of the primal and the dual Model 

8-5 and Model 8-6 are equal. Thus Ii Vi* Xijo = Ir PrjoYr jo*, where a superscript * 

denotes an optimal value of the corresponding variable. 

166 



Based upon the complementary slackness condition of linear 

programming (see Thrall (1996)) for the optimum solution to Model 8-5 and 

Model 8-6 it is obtained that, 

(Prio- Ur ) Yr jo =O ,V 

Thus if Yrjo >0 then Prjo: -- Ur Vr. 

This indicates that if the rth component of the revenue maximisation output 

vector is positive then its corresponding dual variable may be interpreted as 

the imputed r 
th 

output price. 

In an analogous way the corresponding dual variables to input constraints 

may be interpreted as imputed input prices in a cost minimisation primal IDEA 

model (see Sueyoshi (1995))- 

This interpretation of dual variables indicates that vi and Ur respectively 

can be seen as input - output price in the following IDEA model which is dual 

to Model 8-4. 

Model 8-7. Dual to Model 8-2. 

MaXu, , Y-r Ur Yrio 

S. t. ErUrYý YLM Xii ý5 0 Vi 

Ei Vi Ajo =; vj 
Ur ýý 0, Vi ýý 0; Vi , Vr 
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8.3.2 Economic interpretation of dual variables - dynamic DEA model 

Dynamic DEA models can also be discussed along the same lines. In the 

context of dynamic IDEA, the total cost for path j can be calculated as the 

Jtjjvtj xtij where vtj is the price of input i at period t. Similarly, the total revenue 

for path j can be calculated as ItIrUtr Ytrj where Utr is the price of output r at 

period t. Thus any changes over time due to dynamic properties of production 

will be reflected in the price variables ut, and vti. We can identify the following 

revenues and costs for DMU 

Table 8-1. Cost and revenue notations - DMU a 

Notation Interpretation Calculation 

R, jt Revenue to path j from output r at 
period t 

Ur tyrit. 

Rjt Revenue to path j from its outputs at t Ir Rrj' - Y-r Ur t Yri t 

Rj" Revenue - path of DMU j (R11 I .... Rit ) ---: (Ir UrlYril 9 ... 5 Ir UrtYrmt) 

Rj Total revenue to DMU j from its output 
paths 

It Ir Rrj t :- Y-r It Urýrjt- 

Cii t Cost to path j from input i at period t V1 t X11 t 

Cit Cost to path j from its inputs at t Er Ciit Ir VitXjt- 

Cal, -, t Cost - path of DMU j (C*1 , 
Cqt) ---: (Er VllXi*l 5 .... Ir VitXi*t) - 

Cj Total cost to DMU j from its input paths It Ej Cjit = Y-t Ji Vjtxjjt . 

We have two different orientations to efficiency measurement of DMUs 

under dynamic DEA. First, the course of the revenue - path Rjl' ... ' t can be 

maximised while the cost - path remains constant over the entire life of DMU 

jo. 
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Second, cost - paths Cjl, can be minimised for a given revenue - path 

Rj" "-" (= constant). 

Let us consider the revenue maximisation orientation. The dynamic 

efficiency of DMU jo with cost - path of CjOl, ..., T 
and revenue path of Rjol, ..., 

T 

can be assessed using the following model: 

Model 8-8. Dual dvnamic DEA -Model 1 

MaxR, cEt 
9jo 

S. t Et F ej - It &j.:! ý0; vj 

dio =I (or 1) ; Vt 
T 

R and C as defined in Table 8- 1. 

The model estimates the maximum total revenue DMU jo could generate 

over the assessment window given its costs incurred. Its total cost over the 

period has been shared equally across the periods of the assessment 

window, that is Ct jo =I for all t. We have normalised the level of the total cost 
T 

TtTI 

through the life of DMU jo to 1 since Yc jo J-=1. Therefore It Rt 
t=1 T jo< 

t=1 

and so the optimum value of the objective function in Model 8-8 is less than 1 

which can be interpreted as an efficiency rate. 

Using the notation in Table 8-1 we see that Model 8-8 can be written as 

Model 8-9 below. 
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Model 8-9. Dual dynamic DEA - Model 2 

ejo =Max,, , -yrtUrYrio' 
S. t. E,, tUr'Y6t - EoVit Xijt <0; vj 

livi t 
xijo 

t= (or 1) ; Vt 
T 

Ur 
t 

-> 
0, vit 20; vi , vr, vt 

From duality theory of linear programming the dual to Model 8-9 is Model 

8-10 below. 

Model 8-10. Primal dVnamic DEA 

Min 00 =1 T 

2: Äi x' -<o, x' ijo 1 M, t =I T 

r ýý- yI; r=l ... S, t=l T 
jY rl - rio 

0; Vj 

This is the envelopment dynamic IDEA Model 5-1 presented in Chapter 5. 

An inspection of the optimal set of weights for a DMU in dual Model 8-9 

would reveal which of its inputs and outputs contribute to its efficiency rating 

in each period. Thus the dual dynamic IDEA Model 8-9 gives the value-based 

measure of the efficiency of DMU jo (see Thanassoulis (1995))- The variables 
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Ur 1,2,..., T 
, Vr 1,2,..., T in Model 8-9 are respectively the dual variables relating to the 

constraints in Model 8-10 corresponding to the path of output r and the path of 

input i. The dual variable - paths Ur 
1,2 .... T 

and Vil, 2 .... T 
can be seen respectively 

as a virtual marginal value of output - path r and an implicit marginal value of 

input - path i. The efficiency measure of DMU jo yielded by the dual IDEA 

Model 8-9 is the ratio of the total virtual value of its output levels to the total 

virtual value of its input levels over successive periods of time. The total 

virtual input value at each period is always fixed at some arbitrary level, 

usually 
I 

as in Model 8-9. Hence the total virtual output is restricted the 
T 

range of [0,1 ]. 

Similarly the dual to Model 5-5 is presented in Model 8-11. 

The virtual input - output paths attributable to each input - output show 

exactly how the efficiency rating of the corresponding DMU is derived. Dual 

Model 8-11 allows each DMU to select the weighting structure over 

successive periods for the inputs - outputs which would make the DMU 

appears at its most efficient in comparison to the other DMUs. 
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Model 8-11. Dual to Model 5-5 
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8.4 Conclusion 

In this chapter alternative measures of dynamic efficiency were 

examined and the dual to dynamic efficiency model was explored. 

Two alternative measures of dynamic efficiency were introduced. One 

defines an efficiency measure of equal radial contraction across all periods 

within the assessment window. In a second measure non - discretionary 
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variables are handled. The measure is based on the assumption that 

managers wish not to raise the input levels in some periods and examine the 

possibility of reducing input levels in other periods. 

Further, the interpretation of the dual to the dynamic efficiency model 

was given, arriving as a value - based dynamic IDEA model. This model offers 

valuable insights on the performance of DMUs being assessed. In the next 

chapter we use this model for the assessment of higher education institutions. 
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CHAPTER 9: The assessment of higher 

education institutions using dynamic DEA: A 

case study in UK universities 

9.1 Introduction 

This chapter compares dynamic DEA, static DEA and performance 

indicators as alternative tools for assessing the performance of organisational 

units such as higher education institutions (HEls). Such units typically use one 

or more resources in one or several years to secure outputs in the same or 

future years. The assessment of UK universities is used as a base for 

comparing three assessment methods, dynamic DEA, static DEA and 
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performance indicators. The comparison focuses on how well the three 

methods agree on the performance of an institution relative to the HEI sector. 

Performance indicators (Pls) are normally used to assess organisations and 

each one is set up as a ratio of one input to an output, or of one output to an 

input. Pis are widely used in both public and private sectors. In particular they 

are adopted by the UK Government for assessing the performance of 

governmental bodies like National Health Service (NHS), Local education 

Authorities (LEA) and Higher Educational Institutions. Probably the main 

advantage of using Pls for representing the performance of organisations is 

that they are easy to understand since in each PI we deal with single input 

single output. 

However, various studies have suggested that Pls are not suitable 

measures for the case of multiple input multiple output. The problem will arise 

from the fact that a PI reflects only one input and one output level and so it is 

difficult to gain an overall view of the performance of a DMU when not all of its 

Pis indicate a similar level of performance. This has been addressed in 

several studies including Barrow and Wagstaff (1989), Greenberg and 

Nunamaker (1987) and Thanassoulis, Boussof iane and Dyson (1996). 

On the other hand since the seminal paper of IDEA by Charnes et al. 

(1978) there have been numerous enhancement to the methodology (See 

Seiford (1997)) and increasing number of applications of the method 

particularly in assessment of public sector organisations (See for example 
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Thanassoulis et al. (1995) Thanassoulis and Dunstan (1994) and 

Thanassoulis (1995)). However, the problem with single period (i. e. static) 

IDEA is the fact that static contemporaneous IDEA reflects only one period of 

time so it is difficult to gain an overall view of the performance of a DMU 

operating over several periods. We would normally expect dynamic IDEA and 

contemporaneous static DEA based assessment of the performance of a 

DMU not to agree for some institutions. Hence, the three methods may 

disagree substantially on the relative performance of an individual institution. 

Dynamic DEA, unlike static DEA and Pis, considers simultaneously all 

aspects of the performance of a DMU which may therefore be deemed a good 

performer even when its performance on individual Pls or on a specific period 

static DEA is not outstanding. 

The prime purpose in this chapter is to explore the difference between the 

three approaches dynamic IDEA, static IDEA and Pis and to show what the 

dynamic IDEA methodology proposed in this thesis can add to the static IDEA 

and PI based analyses that higher education funding councils might have 

undertaken. The chapter suggests that they complement rather than replace 

one another in assessment of performance. The chapter is structured as 

follows. 

it begins with an overview of the assessment of teaching and research in 

the UK higher education sector in section (9.2). Then it sets up a dynamic 

IDEA model for assessing UK universities over periods 1995 to 1998 in section 

176 



(9.3). The availability of data and selecting suitable input output variables are 

also discussed in this section. Section (9.4) compares the results of the three 

methodologies and comment on the differences. Some further results from 

dynamic IDEA for individual institutions are presented in section (9.5). These 

include target setting, peers and variable returns to scale scores. Conclusions 

are drawn in section (9.6). 

9.2 Background 

The assessment of teaching and research outcomes in UK higher 

education institutions have been central to both Government and institutions 

in the last two decades. As mentioned earlier due to simplicity of the use of 

Pls, they are widely accepted by UK Government for assessing public bodies. 

For example Pls are used in higher education funding bodies to help 

% 
managers to assess the efficiency of service for which they are responsible. 

Earlier work of specific performance indicators in the UK was done in the late 

1970s as part of the OECD's Institutional Management in higher education 

programme (see Sizer (1979)). Further developments at a national level were 

limited until the Jarratt Report (1985) on university efficiency and the Green 

paper (1985) on higher education, which recommended the introduction of 

Pls. Following that a Joint working group was established. Their first report 

was published in 1986, having considered a range of Pls for teaching and 

research. In 1986, the University Grants Committee (UGC) also published the 
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results of the research selectivity exercises which was to influence research 

funding. This exercise was repeated in 1989 taking into account the quality of 

research output per member of staff. However there are many difficulties 

including the problem of weighting different types of outputs; for example 

different type of publications (see for example Gillett (1989)). 

Following these but specifically for the purpose of research outcomes the 

most comprehensive assessment of research in UK universities is undertaken 

by the Research Assessment Exercises (RAE) (see for example HEFCE 

(1996)). The RAE in UK universities aims to produce a quality rating as a 

basis for the allocation of research grant from funding bodies. (The funding 

bodies in UK include the Higher Education Funding Council for England 

(HEFCE), Scottish Higher Education Funding Council (SHEFC), Higher 

Education Funding Council For Wales (HEFCW) and Department of 

Education Northern Ireland (DENI)). The first research assessment exercise 

was carried out in 1986 followed by those in 1989 and 1992. The 1996 RAE 

was the latest. 

Immediately after the publication of the results of the latest Research 

Assessment Exercise the Higher (see for example the Times Higher 

Education Supplement (1996)) and other newspapers published a tabulation 

of universities in a league table. The league table is based on a simple 

procedure of converting the RAE grades to 1 to 7 to then produce a score by 

multiplying up by the number of research active staff in a given unit of 
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assessment and taking the average grade for all research active staff in the 

University. 

The most recent development of Pls at a national level has been 

published by HEFCE in 1999 (see HEFCE (1999b)). The main reason of the 

development of Pls by HEFCE was the Government's concern with ensuring 

value for money, increasing accountability and the strengthening of 

institutional management. Therefore the development of Pls may help HEFCE 

in distributing the right funds to institutions in terms of their scores obtained 

from various Pls or to help the institutions with lower scores to improve them 

to national level relative to the other institutions. 

However the main criticism of performance indicators is that they are 

taking into account only single input and single output at a time. A public 

sector organisation like a university usually provides a mix of outputs which 

can not easily be aggregated into a single index of output. In particular some 

output may be the outcome of several years' investment both in teaching and 

research. Therefore with using Pls one must produce a set of indicators to 

over come this problem. Some studies attach weights to mulitple inputs and 

outputs and take weighted outputs and weighted inputs, but the weights must 

be given prior to the calculation of Pis. Readers interested in performance 

indicators in higher education are referred to Cave et al. (1991) or Johnes and 

Taylor (1990). 
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Data Envelopment Analysis (DEA) when applied to the evaluation of 

universities has the advantage that there is no need to assign prior weights to 

inputs and outputs. IDEA is attaching the 'best' weights possible for each 

institution's profile of input-output values. For example, Bessent et al. (1983) 

used the CCR model to analyse the performance of technical colleges. Ahn et 

al. (1988) used IDEA to compare the efficiencies of private and public 

institutions in the USA. Beasley (1989) used IDEA for comparing university 

departments. Readers interested in IDEA in higher education could refer to 

Sarrico (1999). 

However, in almost all IDEA studies in higher education, data for one year 

is used. Some authors have indicated that the efficiency of a university could 

not be captured by analysis of one year's data only. For example Tomkins 

and Green (1988) in the assessment of UK universities pointed out that 

"ideally one needs data over more years for some of the variables used". 

Beasley (1989) used data for one year to analyse the performance of 

university departments but he has noted that "it is clear departments should 

be compared over a number of years (e. g. equipment expenditure in one year 

will affect research output in future years)". 

In this chapter we demonstrate how the dynamic IDEA model developed in 

this thesis could be used for evaluating efficiency in higher education. In 

particular we assess the UK universities for the period 1995 to 1998. The next 
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section identifies input and output variables and sets up the different models 

which can be used to assess HEls. 

9.3 Setting up the assessment model 

9.3.1 Input output variables 

The determination of input output variables is difficult in an educational 

organisation and in particular in university assessments. The main products of 

a university are its teaching and research outcomes. Therefore in order to 

assess HEls on their responsibility of delivering knowledge it is necessary to 

identify input output variables pertaining to this function. 

The inputs should represent all the resources used and the outputs the 

corresponding activity levels of the research and teaching as main objectives 

of the HEls. However, following publication of HEFCE Pis, we want to use 

inputs and outputs as close to those of HEFCE as possible to make the 

comparison of the dynamic IDEA results with this set of Pis easier. In this set, 

HEFCE (1999a and 1999b) has used two inputs and two outputs as follows: 

Inputs outputs 

Academic staff cost 

Funding council allocation 

Number of PhDs awarded 

Income from research grants 

for research and contracts 
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The HEFCE indicators therefore look on the number of PhDs awarded 

and income of research grants and contracts relative to the academic staff 

cost and to the funding council allocation for research to that institution. The 

main advantage of HEFCE Pls is that they took into account the different 

patterns of input to output in different cost centres and then combined them to 

give the single indicator. However in our IDEA analysis, and due to lack of 

data over all the assessment period, we ignore the difference in different cost 

centres and treat all cost centres similarly. 

The main criticism of the use of the above input output variables is that 

academic staff cost is used for training of both undergraduate as well as 

postgraduates, including PhDs. An indicator of number of PhDs to academic 

staff cost may be incorrect and perhaps misleading when they are used solely 

for interpretation of university performance. A university that efficiently uses its 

resources on the academic staff cost for undergraduate purposes and does 

not produce a high number of PhDs may be given a very low score. Yet, a 

university which is not using its resource on the academic staff cost efficiently 

on teaching but produces a large number of PhDs will be given a higher 

score. However this indicator would be more acceptable if it used only 

research academic staff cost as input but unfortunately disaggregated data for 

academic staff cost by research and teaching is not available. The same 

problem applies to the indicator of research grants and contracts relative to 

academic staff cost. The numerator of this indicator covers the income from 
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research activity while its denominator covers both research and teaching 

academic staff cost. To avoid this problem we have to recognise what other 

output should be involved when we include academic staff cost in a multiple 

input output model like IDEA. 

As a proxy of output of academic staff cost we also include in the model 

number of undergraduates and other postgraduates awarded degrees in 

addition to the number of PhDs awarded. With these three outputs we need to 

include other staff cost as well as academic staff cost. Therefore it would be 

probably better to use total funding council grants for input purposes. This 

includes both academic and non-academic staff cost as well as any other cost 

in the institution. 

The funding council grant can be generally categorised into recurrent and 

capital cost (Ahn et al. (1988)). Disaggregation of total funding council grant to 

current and capital enables us to define a dynamic model and to distinguish 

between current and capital input. Therefore on the input side the two main 

inputs in our model are capital and recurrent grants allocated by Funding 

Councils (HEFCE, SHEFC, HEFCW and DENI). The recurrent grants are the 

block grant for teaching and research and include academic and other staff 

cost. The capital grants include all non-recurrent grants from the funding 

council to support special initiatives and capital grants in respect of buildings 

and equipment. Therefore the inputs are: 

REC : Total recurrent grants. 
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9 CAP : Total capital grants. 

On the output side and following the above discussion we consider, for 

each academic year 4 output measures as follows. 

9 RGC : Income from research grants and contracts. 

* PhDs : Number of PhDs awarded. 

* PGs : Number of other postgraduate degrees awarded, not including 
PhDs. 

e UGs : Number of undergraduate degrees awarded. 

It must be noted that our model is mainly for comparison with the HEFCE 

Pls. Both assessments ignore other research outputs such as papers or the 

quality of research. 

Note that we regard research income as an output measure. In HEFCE 

Pls also it is considered as output but this contrasts with some previous work, 

for example Beasley (1989) who used research income as input measure. 

Tomkins and Green (1988) point out that there is confusion over the role of 

research income. They noted that "some conceptual development is needed 

regarding income generation as a measure of output. Where income is 

generated to further academic research that income is an intermediate 

measure of output. " Overall also some have used research income as an 

input measure and others used it as an output measure but research income 

is output in some stages and input at another stages. Therefore a static 

analysis will not be able to capture the role of the research income in 
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educational organisations like universities. However we believe that our 

dynamic IDEA model will capture the role of research income better than static 

IDEA would since in a dynamic model we assess a university over a longer 

period. 

9.3.2 Data 

The assessment periods we are examining in this chapter are the 

academic years 1994-1995,1995-1996,1996-1997 and 1997-1998. For 

simplicity hereafter we refer to each of these academic years to 1994,1995, 

1996 and 1997 respectively. The data we used in this study are derived from 

the publication of Higher Education Statistics Agency (HESA). The Higher 

education Statistics Agency is the official agency of the collection, analysis 

and dissemination of quantitative information between the relevant 

government departments, the higher education funding councils and 

universities and colleges. 

REC, CAP and RGC are derived from HESA (1996), HESA (1997a), 

HESA (1998a) and HESA (1999a). UGs, PGs and PhDs are derived from 

HESA (1997b), HESA (1998b) and HESA (1999b). We include 102 

Institutions in our analysis which data is available over the assessment 

periods. 
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9.3.3 Assessment by standard DEA 

In order to formulate the IDEA model for the academic year t we denote; 

RECjt Total recurrent grants in year t for the jth university. 

CAPjt Total capital grants in year t for the jth university. 

* RGCjt: Income from research grants and contracts in year t for the jth 

university. 

9 PhDsjt: Number of PhDs awarded in year t for the jth university. 

* PGsjt: Number of other postgraduates awarded in year t for the jth 

university. 

UGsjt: Number of undergraduates awarded in year t for the jth 

university. 

It is assumed that constant returns to scale hold in the IDEA analysis. 

Therefore the IDEA model solved, in academic year t, to estimate the relative 

efficiency of university jo is Model 9-1. This is the weights based version of the 

CRS IDEA model. The weights that Mode 9-1 determines are: 

Input we g ts: vt REC, Vt CAP. 

Output weights: UtUGs, UtPGs, UtPhDs, UtRGC. 

These weights are called "virtual multipliers". The weighted output in each 

year is the "virtual output" in the reference year, t; i. e. 

WO t 
-.: 

(U t UGs XUGs)+(UtPGs XPGs)+(UtPhDs XPhDS)+(UtRGCx RGC). 
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The weighted input in each year is the "virtual input" in the reference year, 

t: 

Wl'= WREC 
x REC)+(VtCAP x CAP). 

It is arguable that weights attached to PhDs should be no less than 

weights attached to PGs, and the weights attached to PGs should be no less 

than the weights attached to UGs. Therefore a simple weight restriction can 

be added to the model as follows: 

ut UGs < UtPGs < UtPhDs. 

Beasley (1989) in the analysis of efficiency of UK higher education 

accounting departments used similar constraints but he restricted them more, 

ensuring that the weight associated with a PhD is at least 25% greater than 

the weight associated with a taught postgraduate and a weight associated 

with a taught postgraduate is at least 25% greater than the weight associated 

with an undergraduate student. Obviously setting up such weight restrictions 

would affect the results but for the purpose of our model we admit the concept 

of his weight restrictions and set up 

1.25 UtPGs '-ý UtPhDs. 

1.25 UtUGs '-'ý UtPGs. 

As Beasley (1989) also mentioned, it is clear that policy makers might 

have set up their own preferred weights and run the model again. 
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Therefore for university jo Model 9-1 finds the best weights for inputs and 

outputs so that its efficiency measure is maximised. In other words the model 

maximises the sum of the ratio of the virtual output to the virtual input in the 

reference year t. 

Maximise 
wo, 

. wil 

Therefore each university is assigned the highest possible efficiency 

score that the constraints allow from the given data by choosing the 

appropriate virtual multipliers (weights) for the outputs and inputs in the 

reference year t. 

The constraints ensure that none of the HEls register an efficiency 

measure greater than 1. If the optimum value of the objective function is 1 

then university jo is relatively efficient in the sense that it cannot improve the 

level of any one output without at the same time shrinking the level of some 

other output or input. 

We run the static Model 9-1 for each academic year 1995-96,1996-97) 

1997-98. As an overall static IDEA efficiency we calculated the average of the 

efficiency scores obtained by each institution in these academic years. This 

average is more suitable for comparison with our dynamic IDEA scores over 

the same years. 
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Model 9-1. A DEA model for assessing HEls in academic year t. 

Ux UGs')jo xPGs)jo+(u' xPhDs')jo x RGC') jo 
'**Iý ( tU 

Gs+( UtPGs PhD +( UtRGC 

s. t. 

x UGs') j xPGst)j +(u' 
l(U tUGs +( UPtGS 

PhDsxPhDs')j+ 
( URtGCxRGCt)j 

-[ (v' xREC')j XCAP')j ]<0 
REC 

+( VtCAP 

(vt x REC) jo x CAP')., 0 REC 
+( VCtAP 

1.25 u' <ut PGS - PhDs 

1.25 u' <Ut UGs - PGs 

ut<Ut CAPOUT - PhDs 

All u and v>0. 

; Vi 

Table 1 (in Appendix C) shows the average efficiency scores obtained. 

The distribution of institutions over the range of efficiency rating obtained is 

shown in Table 9-1. The results indicate that in comparative terms all but 5 

institutions could reduce some of their source in these academic years. 

Table 9-1. Distribution of average relative eff iciency obtained from 

static contemporaneous DEA in 1995-96,1996-1997 and 1997-98. 

Eff iciency range Number of Institutions 

Efficiency < 39-99 6 

40-49.99 18 

50-59.99 28 

60-69.99 24 

70-79.99 12 

80-89.99 5 
90-99.99 4 

100 5 
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Therefore, an institution with an efficiency range of 80 to 90 percent 

should be able to reduce resource levels by between 10 to 20% across the 

board, and so on for the remaining institutions with efficiency rating below 

100%. As already noted, the sole data used in each academic year may mean 

that the efficiency estimates are incorrect or, alternatively, that an institution 

which appears relatively inefficient may be able to justify its lower activity 

levels for its resource levels by investing them for future purposes. This is in 

particular correct when high level of capital input, for example, could increase 

the level of future output but it can not be captured in static IDEA, then the 

institution becomes less efficient in the reference assessment period. 

The next section assess the performance of institutions over a longer 

period of time using the dynamic IDEA model introduced in this thesis. 

9.3.4 Assessment by dynamic DEA 

We use the dynamic IDEA Model 5-5 for assessing the HEls on the same 

data set and for the same academic years as above. For this, we need an 

initial and a final capital input. Obviously it is very difficult to estimate the initial 

capital but as a proxy measure the capital input in 1994 is considered as initial 

capital for assessment periods 1995 to 1997, thought this is only part of the 

larger underlying capital prior to 1995. We are not capturing changes to base 

capital prior to 1995. The capital output is the total capital during the periods 

under assessment and includes initial capital. We have not assigned any 
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depreciation (or appreciation) though this is quite possible once appreciation 

or depreciation rates are decided upon. 

In order to formulate the model mathematically let; 

* CAPINj be the level of initial capital for the jth university. 

e CAPOUTj be the level of capital output as of the last year of the 

assessment period for the jth university. 

The other variables needed are RECj', CAPjt, RGCjt, PhDsjt, PGsjt and 

UGsjt which are as defined earlier in this chapter. 

In setting dynamic IDEA we could use Model 5-5 but we prefer to set up a 

weights version of the model (see Model 8-11), as it is better for presenting 

the weights restrictions. Therefore for each university we find the best weights 

for inputs and outputs in each academic year: 

Input weights: VCAPIN, Vt REC, Vt CAP. 

Output weights: UtUgs, UtPGs, UtPhDS, UtRGC, UCAPOUT 

We also find the sum of maximum ratio of the weighted output to the 

weighted input as in Model 9-2. 

Like static IDEA the output and input weights are called "virtual 

multipliers". The weighted output in each year is the "virtual output" in the 

reference year, t: 

W0t:: -- (utuGs x UGS)+(UtPGsXPGs)+(UtPhDs XPhDs)+ 
(UtRGCx RGC). 
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The virtual output over three years is the sum of the virtual outputs of the 

three years in the assessment window plus the virtual output for capital output 

in the last period, i. e. 

WO= Wol995 + Wol996 + Wol997 + (UCAPOUT X CAPOUT) 

The weighted input in each year is the "virtual input" in the reference year, 

t: 

Wlt: -- 
WREC 

x REC)+(VtCAP. x CAP). 

The virtual input is the sum of the virtual inputs of the three years in the 

assessment window plus virtual input from initial capital input in the first year, 

i. e. 

Wl-'-": (VCAPINX CAPIN)+ wil995 + wil996 + wil997. 

The model maximises the average of the ratio of the total virtual output to 

the total virtual input over periods under consideration subject to holding the 

virtual input of the institution under assessment equal to unity at each time 

and make sure that the total virtual output would not be greater than the total 

virtual input for all institutions in the assessment set. 

Therefore each university is assigned the highest possible efficiency 

score that the constraints allow from the given data by choosing the 

appropriate virtual multipliers (weights) for the outputs and inputs over 

assessment periods. 
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Like static IDEA to avoid attaching equal weights for UGs, PGs and PhDs 

we use the weight restrictions that we set up already. Le. 

1.25 UtPGS '-'ý UtPhDs ; Vt 

1.25UtUGs '-ý UtPGS. ; Vt- 

Moreover, with respect to the capital output at the end of assessment 

periods we felt that the weight associated with it should be related to the 

weight associated with other outputs within the assessment window. 

Essentially the purpose of considering capital output at the end of the 

assessment window is that it can potentially be used to produce outputs in 

future. However arguably output after the assessment window is less certain 

than that observed during the window and so the terminal output cannot be 

more valuable than the output during the window itself. Therefore for the 

purposes of this study we set up the following weights. 

u CAPOUT <U UGs 

U CAPOUT <U PGs 

tIt U CAPOUT SU PhDs. 

An alternative way would be to restrict the weight for terminal capital 

output in relation to the weight attached to the initial capital. Our initial capital 

only related to 1994 and so we did not pursue this approach. 
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With the above specification the model we solved for dynamic IDEA is 

Model 9-2 which is an instance of weights Model 8-11 with extra constraints 

for weight restrictions. 

Model 9-2. Dvnamic DEA model for assessinq HE institutions in 1995 to 1997. 

1 1997 

Max -Ix UGs') jo + xPGs')jo+(u' xPhDs')jo x RGC') jo ., 

1( 
U'UG, U tPGs 

PhD 
+(U tRGC 

3 
t=1995 

UCAPOUTxCAPOUT)jo- ( VCAPINxCAPIN)jo 
s. t. 

( UCAPOUT xCAPOUT)j+ 
1997 

(uGsx UGs') j xPGs')j+(ut xPhDst)j+(UtGCxRGCt)j u+( UPGS PhD R 
t=1995 

1997 

,[ 
(vt xRECt)j t xCAPt)j ]:! ýO forj=l .... 102. (v xCAPIN)j -y CAPIN REC 

+( VCAP 

t=1995 

vtx REC') jo 
tx CAP') jo =1 REC 

+( VCAP 

1.25u' < u' PGs - PhDs 

1.25u' <ut UGs PGs 

t<Ut 
U CAPOUT PhDs 

ut<Ut CAPOUT - PGs 

ut<Ut CAPOUT - UGs 

All u and v>0. 

for t= 1995,1996 and 1997. 

Using this model the total of 102 institutions were assessed using data for 

the academic years 1994 to 1997. The efficiency score and institutions) 

ranking are presented in Table 2 of Appendix C. The distribution of HEls over 

the range of efficiency ratings obtained are shown in Table 9-2. 
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Table 9-2. Distribution of relative eff iciencv obtained from 

dynamic DEA. 

Efficiency range Number of Institutions 

Efficiency < 40 3 
40-49.99 9 
50-59-99 27 
60-69-99 22 
70-79.99 18 
80-89-99 13 
90-99-99 2 

100 8 

The model indicates that 8 institutions are dynamically efficient while the 

remaining 94 institutions are dynamically inefficient. It means that 94 

inefficient institutions are able to reduce their resource used within years 

1995 to 1997 and without reducing any of their output levels. Obviously we did 

not take into account the quality of output, notably the quality of the research 

output. This may affect the accuracy of the efficiency scores obtained. But this 

applies to static IDEA and the HEFCE Pls too. 

The next section assesses the performance of HEls using performance 

indicators. 

9.3.5 Assessment HEls by Performance indicators 

In order to compare the three approaches, Dynamic DEA, Static DEA and 

Pis we constructed Pis defined as the ratios of each output to each input 
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variable used within the dynamic IDEA for each academic year. Then the Pls 

constructed are: 

* UGs/ CAP; Ratio of undergraduate degrees awarded to capital cost. 

* PhDs / CAP; Ratio of PhDs awarded to capital cost. 

e PGs/ CAP; Ratio of other postgraduate degrees awarded to capital 
cost. 

* RGC/ CAP; Ratio of income from research grant and contracts to 

capital cost. 

e UGs/ REC; Ratio of undergraduate degrees awarded to recurrent 
cost. 

9 PhDs / REC; Ratio of PhDs awarded to recurrent cost. 

9 PGs/ REC; Ratio of other postgraduate degrees awarded to recurrent 

cost. 

e RGC/ REC; Ratio of income from research grants and contracts to 

recurrent cost. 

Each one of these ratios is calculated for the three academic year 1995- 

1996,1996-1997,1997-1998. Some of these Pis are very similar to those 

defined and published by HEFCE (1999b). However we decided to reproduce 

them here. There are several reasons for this. First, the published Pls are 

available only for the academic year 1997-98. However our dynamic IDEA 

model covers three academic years. Hence we need to produce Pls to cover 

the additional academic years. Secondly, in the publication there are only 4 

Pls while the number of inputs and outputs in our model gives rise to 8 Pls. 

Thirdly, our sector comprises 102 institutions hence our dynamic IDEA and 
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static DEA scores are represent the efficiency respect to the best frontier 

within the set of 102 institutions while HEFCE published Pls for 170 institution 

in academic year 1997-98. The data for three years is available for these 

institutions only. Finally, the published Pls are adjusted by cost centres 

neither our IDEA models take into account the factor of different cost centres. 

We reported in Table 3 (in Appendix C) the average of each PI obtained 

over the three academic years. This means the higher the PI value, the better 

the performance of the institutions on that Pl. The main difference of this 

ratios with those of HEFCE comes from the fact that some of our inputs and 

outputs are defined slightly different from HEFCE and that our Pls are 

averages of three years while the HEFCE ones cover only the academic year 

1997-98. 

The Pis do not generally agree on the performance of an institution. Table 

9-3 shows the pair - wise correlation of eight Pls. 

Table 9-3. Pair - wise correlation Pls 

UGs/ CAP PGs/ CAP PhDs / CAP RGC/ CAP UGS/ REC PGS/ REC PhDs / REC RGC/ REC 

UGs/ CAP 1 

PGs/ CAP 0.112326 1 

PhDs/CAP -0.37091 0.443588 1 

RGC/ CAP -0.53604 0.307881 0.869438 

UGs/ REC 0.846854 -0.10698 -0.58161 

PGs/ REC -0.16753 0.867131 0.386919 

PhDS/REC -0.52272 0.299444 0.939361 

RGC/ REC -0.70412 0.154068 0.781952 

1 

-0.66861 1 

0.320694 -0.20319 
0.862777 -0.61271 
0.953973 -0.71601 
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The correlation coefficients are generally low in most cases and are 

negative in some (in 19 pairs out of 28 pairs, the correlation coefficients are 

negative or less than 0.50) . The negative correlation coefficients are not 

really surprising and they are fully consistent with different objective of the 

institutions in the comparison set. For example the negative correlation 

between UGs/ REC and PhDs / REC (=-0.61271) is showing that universities 

with high level of research may fail in the undergraduate training and so 

universities with high level of teaching may not gain high level of the research 

output. Large correlation coefficients in Table 9-3 are due to the highly 

correlated corresponding activities captured in those Pls. For example, the 

coefficient of 0.855585 between PhDs / REC with RGC/ REC indicates that 

both number of PhDs awarded and income from research grants and 

contracts are very correlated. 

We are not, in this chapter, aiming to discuss the individual results 

obtained from the Pis but rather to focus on the main difference between Pis 

and dynamic IDEA. In order to make the comparison we need to summarise, 

in some way, the eight Pls obtained for each institution to one score as overall 

PI score for the institution over three academic years. 

One way usually used for surnmarising a set of Pls into one indicator is 

weighting combination of them (see for example Johnes and Taylor (1990)). 

Generally the weights are given and they may be subjective. Differently, 

Thanassoulis, Boussofiane and Dyson (1996) used a ranking method to 
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surnmarise 25 Pls in their study of heath care into 4 Pls. The advantage of the 

ranking method is that we do not need to give any weights hence the final 

rank will be less subjective than the weighting method. We adopted, here, 

their method and summarise the Pls into a set of four indicators. The 

procedure is as follows. 

First we ranked all 102 institutions in each of the overall average of PI 

values (Table 3 in Appendix C). These ranks are shown in Table 4 (Appendix 

C). These values mean the lower the PI rank, the better the performance of 

the institutions on that PI (i. e. rank of 1 is used for the best performing 

institution on that PI). These ranks are then used to construct four summary 

Pls as follows: 

9 Mean Rank (MRank): This is the average of the ranks for each 
institution across eight Pis in Table 4 (Appendix C). 

e Rank of Mean Rank (RMRank): This indicates the ranks of the 

institution on MRank, 1 is the rank of the institution with the lowest 

mean rank value in MRank. 

* Favourite Rank (FRank): This holds the lowest value of the rank of an 

institution on all eight Pls. Hence, FRank takes the most favourable 

view of the performance of the institution as conveyed by its best 

rank on any one of eight Pls. 

e Rank Favourite Rank (RFRank): This indicates the ranks of FRank, 

the rank 1 means the best performing institution in one of the eight 

PIS. 

199 



All these summary ranks appear in Table 5 in Appendix C. Hence in the 

next section we comment on the comparison of the scores obtained from the 

three different approaches. 

9.4 Comparison of dynamic DEA scores with static DEA and Pls 

9.4.1 Difference between the three approaches 

We begin with a comparison of dynamic IDEA ranks, overall static IDEA 

ranks and PI ranks three different methods for ranking higher education 

institutions. 

The dynamic DEA efficiency measure of institution jo maximises the sum 

of the ratio of the virtual output to virtual input over three academic years (See 

Model 9-2). The virtual input and virtual output are determined based on the 

optimal weight value that Model 9-2 assigned to the institution under 

assessment. These weights values are determined so as the maximise the 

efficiency score of the institution assessed simultaneously over three 

academic years and with consideration of what level of capital the institution 

had before the time horizon and what level of the capital the institution will 

have at the end of the horizon for the future. The static DEA scores in each 

year can be seen as being a particular instance of the corresponding dynamic 

IDEA efficiency score. Let us for example assume that in the context of our 

dynamic IDEA model we consider only the academic year of 1996-1997 and 
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ignore the initial and capital constraints in the dynamic IDEA. Therefore the 

dynamic IDEA model will collapse to static IDEA for the reference year 1996- 

97. In terms of similarity, hence, it can be seen that static IDEA can be 

thought of as an instance of dynamic DEA. Dynamic DEA thus gives more 

realistic scores to units where they are operating over several years. One 

disadvantage of dynamic IDEA occurs when there are large numbers of 

periods in the assessment horizon. In this case the weight flexibility of 

dynamic IDEA may well lead to little discrimination between various units, 

while static IDEA models may well represent the differences between DMUs 

better. 

Similar to the above discussion each PI, in the reference period, can be 

seen as an instance of the static IDEA model in that period with inclusion of 

the one input and one output as indicated in the PI and replacing all other 

input outputs to zero. Again the difference between static IDEA and Pls will 

arise from the fact that IDEA will examine the performance of a unit with 

reference to possibility of increasing all outputs, or decreasing all input, 

simultaneously while Pis consider the maximum gain in a single output from a 

single input, but both static IDEA and PI within the reference year. 

Next we see in which cases the three approaches are consistent. 
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9.4.2 Consistency of the three approaches 

We provide in, each approach, an overall rank for institutions. See Table 1 

for static efficiency overall rank, Table 2 for dynamic efficiency rank, Table 4 

for Pls rank and Table 5 for Pls summary rank (all in Appendix C). These 

make all three approaches comparable on the performance of HEls in the 

sense that in each case a lower rank value represents better performance. 

Table 9-4 shows the correlation coefficients between dynamic IDEA and the 

other two approaches; Pls and static DEA. 

Table 9-4. Correlation of dvnamic DEA with Pis and static DEA 

Indicator Correlation 

Pis 

UGs/ CAP 0.26 
PGs/ CAP 0.54 
PhDs / CAP 0.37 
RGC/ CAP 0.32 
UGs/ REC 0.13 
PGs/ REC 0.34 
PhDs / REC 0.27 
RGC/ REC 0.21 

Pi based summary measures of 

performance 
Mean Rank 0.59 
Rank of Mean Rank 0.57 
Favourite Rank 0.79 
Rank Favourite Rank 0.86 

DEA 

Overall static IDEA 0.92 
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The correlation coefficients in Table 9-4 show that there are always 

positive but generally very poor agreement between individual Pls and 

dynamic IDEA. We obviously expect a higher correlation between dynamic 

IDEA and PI-based summary ranks. Table 9-4 shows that the correlation 

coefficients are relatively higher than with individual Pls. The maximum 

correlation between dynamic IDEA and Pls is with Rank Favourite Rank at 

0.86. 

We see from Table 9-4 that the overall rank of dynamic IDEA is highly 

correlated to static IDEA rank. This suggests that generally dynamic IDEA and 

static DEA are in the same direction with very high association. The more 

general practical significance of this finding is that we will get a similar view on 

performance from a period - specific static DEA and from dynamic DEA. 

Dynamic DEA takes into account more general performance by an institution 

over several years simultaneously and thus it conveys a broader view of the 

institution's efficiency. 

Despite the overall agreement between the static and dynamic DEA the 

two approaches disagree substantially in some institutions. This can be seen 

by looking at the actual ranks of the two approaches in Table 1 and Table 2 

(in Appendix C). According these two tables 62 institutions are ranked very 

closely (Absolute deviation of the two ranks <10), 27 institution are ranked 
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with difference between 10 to 20, the remaining 13 institutions are ranked 

very differently in the two static and dynamic IDEA approaches. 

The main reason that dynamic DEA gives different scores to these 

institutions is that, firstly, dynamic IDEA assesses the institutions by examining 

them over three academic years simultaneously and secondly, the variation of 

capital input affects much more the dynamic than the static efficiency. We, 

would argue that the three approaches complement each other rather to 

replace one another. Each gives a different insight to the efficiency of 

organisations like universities. 

9.5 Further results obtained using dynamic DEA (Supper efficiency,, 
weak efficiency, Peers, target and VRS) 

As can be seen in Table 2 (Appendix C) eight Institutions are dynamically 

efficient (i. e. efficiency score = 1) which determine the dynamic efficient 

frontier. These include: Cranfield University, Institute of Education, Keele 

University, London Business School, London School of Economics & Political 

Science, The London Institute, University College London and University of 

London. All other institutions were inefficient. 

From the dual formulation we could get the source of inefficiency, the 

target of input output and the peers to each inefficient Institution. 
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In order to find the institution rank we ordered all institutions by their 

efficiency score. In this manner we could only distinguish between inefficient 

institutions as all efficient institutions are ranked the same. It would be useful 

to distinguish between efficient institutions. Anderson and Peterson (1993) 

have set up a procedure for ranking efficient units in IDEA. This is called 

supper efficiency. In order to rank the efficient units under the dynamic IDEA 

model we used the same procedure developed by Anderson and Peterson 

(1993) excluding the institution under assessment from the reference set. The 

results are presented in table below. 

Table 9-5. Supper eff iciencV and rank of efficient units 

Institution Supper eff iciency Rank under dynamic 

DEA super-efficiency* 
Cranfield University 241.83 1 
Keele University 198.77 2 
University of London 156.32 3 
University College London 150.32 4 
The London Institute 149.15 5 
London Sch of Economics & Political Sci 117.46 6 
London Business School 122.62 7 
*Institute of Education has undetermined super efficiency score and so cannot be ranKed in this context. 
See below. 

As seen in this table Cranfield University is the most efficient institution. 

In order to view where the source of inefficiency (or efficiency) comes 

from we could analyse the weights obtained under the dynamic efficiency 

model. For Cranfield University the weights suggest that its efficiency score 
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mainly comes from its high level of income from research grants and 

contracts, in particular, in 1997. 

Our dynamic efficiency scores show 94 institutions are below the dynamic 

envelope boundary, that is, with efficiency score less than 1. They can 

achieve higher number of degree awarded (UGs, PGs and PhDs) and / or 

higher income from research grant and contracts with the same levels of their 

inputs. Like static IDEA, from the dynamic model we can find the peers to each 

inefficient institution (see Chapter 8). The peers to each institution are 

presented in Table 6 (Appendix C). 

An odd but interesting efficient university is Institute of HE. It is not peer to 

any non-efficient institution. An analysis of its weights in Model 9-2 and its 

dual variables shows that this institution is weak efficient. In other words, 

when we use two phase solutions it gains the objective function of 1 in the first 

phase but it has non-zero slacks. This can also be seen in Table 9-8 where in 

the super efficiency calculation the institution becomes unbounded. The 

reason is probably because this university is specialist in the postgraduate 

training. So its number of postgraduate is relatively high and this would cause 

IDEA to put it on the frontier, but on the inefficient part of the envelope. 

There are numerous options that an inefficient institution can choose for 

moving itself closer to the efficiency frontier. Like static IDEA, an institution can 

become efficient by increasing its outputs while keeping the inputs at their 
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current levels, or by decreasing its inputs while maintaining the current output 

levels. This requires simultaneous changes in the input output levels over 3 

years. From the weight assigned by dynamic DEA to non - efficient institutions 

it is possible to calculate virtual inputs, virtual outputs and target for each 

institution. In particular the target value for inputs, for an inefficient institutions 

that its slacks in envelope dynamic IDEA model are zero, can be obtained 

using their efficiency scores x the actual input level. 

In earlier chapters we mentioned that it is possible to extend the CRS 

dynamic DEA to VRS dynamic DEA by adding an extra convexity constraint, 

Le, 

Ij Xj= 1; 

Here we recalculated the dynamic efficiency scores adding the above 

constraint to Model 9-2. As we expected, like static DEA, the efficiency scores 

in VIRS dynamic IDEA generally are greater than the efficiency scores in CRS 

dynamic IDEA. The VIRS efficiencies are presented in Table 7 in Appendix C. 

The deviation between CRS and VRS dynamic efficiency scores differs by 

institution. There is no change to the scores of 57 institutions. The deviation 

scores for the rest of the institutions range from 1 to 49. 
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9.6 Conclusion 

In this chapter we compared dynamic IDEA, static IDEA and performance 

indicators as alternative tools for assessing the performance of higher 

education institutions in the UK. Such institutions use resources to secure 

outputs over several years. We commented on the recent publication of 

HEFCE Pls (1999b) and extended it to cover several more Pls which could 

complement each other. Then we analysed the same data set using static 

contemporaneous technology. Static IDEA is trying to find the best frontier in 

each year and ignores the possibility of using previous resources or the 

possibility of enhancing the resources left for future output. The issue is 

addressed by setting up a dynamic IDEA model. 

We then attached a rank to each institution on performance using each of 

above three assessments to make our results by the three alternative 

approaches reasonably comparable. The study showed that there is 

consistency as well as diversion between the three approaches. We 

concluded that the three approaches complement each other, rather than 

replace one by another, in the sense that each one offers a different 

perspective of the performance of each institution. 

Further to the above, additional information traditionally obtained in static 

IDEA assessments was also obtained using the dynamic efficiency model on a 

real data set. Such information includes peers and targets which now can be 
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used to guide an inefficient institution to improved performance over time 

rather than at one point in time. The next chapter gives a summary of the 

methods developed in this thesis and comments on potential future research. 
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conclusions and CHAPTER 10: Summary 

further exploration 

In this thesis we propose a IDEA based approach for assessing the 

comparative efficiencies of units operating production processes where input - 

output levels are inter - temporally dependent. One cause of inter - temporal 

dependence between input and output levels is capital stock which influences 

output levels over many production periods. Such units cannot be assessed 

by traditional or 'static' IDEA. The method developed in the thesis overcomes 

the problem of inter - temporal input - output dependence by using input - 

output 'paths' mapped out by operating units over time as the basis of 

assessing them. 



The aim of this thesis was therefore to deal with the problem that 

traditional or "static" IDEA fails to capture the performance of DMUs with inter 

- temporally dependent input - output levels. The proposed approach 

extended static PPS to a dynamic PPS, capturing longer periods of the life of 

DMUs. 

In dynamic PPS one important issue is to capture initial and terminal stock 

of input. Therefore extra constraints were included in the definition of the PIPS 

to take into account the initial level of stock and the capability of enhancing 

product from the DMU's terminal stock of input. 

The dynamic PPS used to develop a new IDEA model for measuring the 

dynamic efficiency of DMUs. 

Using simulated data, we illustrated how snap - shot static efficiencies can 

fail to capture true performance when there is inter - temporal dependence of 

input - output levels. The dynamic efficiency model captured better the 

performance of DMUs in such cases. 

The possibility to define alternative measures of dynamic efficiency was 

examined. As another possibility we defined a non - discretionary period 

measure. The measure is based on the assumption that managers wish not to 

raise the input levels in some periods and examine the possibility of reducing 

input levels in other periods. 
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Moreover, the use of dual variables in the new approach as input - output 

price was argued. The interpretation of the dual to the dynamic efficiency 

model was given, arriving as a value - based dynamic IDEA model. This model 

offers valuable insights on the performance of DMUs being assessed. 

Further to these, the conventional methodology used to derive the non- 

parametric Malmquist index was extended in a straightforward way to a 

dynamic Malmquist Index using assessment paths. The methodology then 

was used to examine the efficiency and productivity of OECD countries in the 

dynamic context and to compare the results with those previously reported for 

the same data set in the static context. The comparison showed that there is 

overall consistency but individual diversion in both static and dynamic results. 

Some individual countries were scored very differently by dynamic vs. static 

IDEA model and we concluded that dynamic efficiency increases when capital 

stock rises. A similar result was obtained for the productivity index and its 

components. 

A further application used to compare dynamic IDEA, static IDEA and 

performance indicators as alternative managerial tools for assessing the 

performance of organisational units such as higher education institutions. In 

particular we used data for 102 UK universities to illustrate the differences in 

the above three methodologies. Such institutions use resources to secure 

outputs over several years. We also commented on the recent publication of 

HEFCE Pls (1999b) and extended it to cover several more Pls which could 
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complement each other. Then we analysed the same data set using static 

contemporaneous technology. Static IDEA is trying to find the best frontier in 

each year and ignores the possibility of using previous resources or the 

possibility of future enhancement. The issue is addressed by setting up a 

dynamic IDEA model. The study showed that there is consistency as well as 

diversion between the three approaches. We concluded that the three 

approaches complement each other, rather replace one by another, in the 

sense that each one offers a different perspective of the performance of each 

institution. However the variation of capital input affects much more the 

dynamic than the static efficiency. 

Further to the above, additional information traditionally obtained in static 

IDEA assessments was also obtained using the dynamic efficiency model on a 

real data set. Such information includes peers and targets which now can be 

used to guide an inefficient institution to improved performance over time 

rather than at one point in time. 

However further extensions of the dynamic efficiency model are needed. 

In particular it would be useful to extend the other static IDEA models such as 

additive model to dynamic IDEA. In term of definition of the dynamic efficiency 

measure further it would be useful to extend our measure to a non - radial 

measure over a sequence of time periods. Also further investigation is needed 

of the impact of the length of window in dynamic efficiency assessments. 

Since DMUs are accumulating capital input for further use, the capital may be 
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incorporated into the risk averse behaviour of DMUs, hence it would be 

interesting to extend the dynamic IDEA model to stochastic dynamic IDEA. 
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Appendix A: The simulation results 

Table Al. Flow input aenerated in simulation (I 

tl t2 t3 M t5 t6 U t8 t9 

Ul 12 24 46 45 86 16 6 42 48 

U2 65 2 30 33 17 58 87 99 36 

U3 74 82 4 96 17 4 24 9 97 

U4 20 95 39 47 8 11 75 26 91 

U5 72 88 5 94 59 75 8 76 85 

U6 77 6 39 42 90 13 66 34 39 

U7 25 15 99 6 84 68 93 14 19 

U8 51 95 87 90 23 3 74 63 31 

U9 43 97 28 37 9 40 31 77 15 

ulo 48 43 75 88 84 42 32 22 81 

Ull 6 22 55 50 10 44 100 11 15 

U12 39 19 16 13 10 57 38 75 42 

U13 58 16 51 35 7 77 89 3 5 

U14 39 23 94 12 13 43 23 23 8 

U15 29 71 89 46 66 20 7 77 90 

U16 5 46 21 82 37 94 81 29 46 

U17 91 36 95 74 92 40 55 88 42 

U18 49 8 69 48 45 34 49 48 7 

U19 15 46 6 96 57 82 12 87 75 

U20 69 92 53 79 25 29 84 84 27 

U21 38 62 41 98 47 90 82 13 22 

U22 4 47 41 79 82 12 72 11 2 

U23 98 28 10 66 4 89 28 2 44 

U24 27 85 57 57 86 42 96 58 77 

U25 20 19 83 55 52 55 20 95 41 

U26 76 87 3 52 53 54 34 23 93 

U27 40 43 82 97 61 63 79 14 58 

U28 40 67 78 24 34 45 90 64 25 

U29 57 87 15 14 25 65 74 46 31 

U30 74 15 39 58 94 53 81 10 59 

U31 58 67 32 98 60 92 92 17 70 

U32 93 12 47 60 54 39 22 9 69 

U33 71 23 60 80 53 87 28 47 7 

U34 54 83 48 50 48 27 85 38 98 

U35 30 86 12 23 52 51 26 58 23 

U36 15 60 28 67 4 25 29 84 46 

U37 69 43 93 87 23 62 77 73 86 

U38 94 98 55 97 36 74 3 31 33 

U39 89 20 40 51 45 13 4 67 81 

U40 99 20 45 80 8 85 42 42 54 

UO tll t12 M t14 t15 Ave 
rage 

44 100 91 7 21 72 44 

40 54 89 19 50 87 51 

6 89 88 65 74 97 55 

44 83 98 36 83 3 51 

17 73 34 83 34 59 57 

61 48 73 57 41 82 51 

92 14 42 48 8 13 43 

52 80 69 66 78 6 58 

20 51 70 77 5 89 46 

44 90 19 65 80 75 59 

35 6 67 10 19 71 35 

95 47 78 3 91 47 45 

52 60 96 28 93 5 45 

35 45 74 46 68 88 42 

66 80 13 42 56 23 52 

10 45 92 48 62 93 53 

18 40 81 16 58 92 61 

47 80 47 90 51 74 50 

93 76 31 67 84 23 57 

6 10 51 89 65 77 56 

93 36 30 52 13 4 48 

72 83 55 57 72 4 46 

73 24 77 3 33 89 44 

16 49 64 47 35 52 57 

78 18 63 46 75 89 54 

50 74 71 71 51 62 57 

36 56 38 81 70 48 58 

17 12 94 60 8 3 44 

45 39 69 22 61 18 45 

43 19 72 29 80 100 55 

89 76 65 38 95 62 67 

93 40 74 91 91 67 57 

9 97 69 15 6 85 49 

100 89 47 5 70 31 58 

84 68 65 11 52 71 48 

38 3 19 99 27 14 37 

35 5 54 55 77 65 60 

31 67 73 54 32 22 53 

36 95 55 85 46 24 50 

64 92 94 92 34 13 58 



U41 84 43 95 66 78 89 98 44 32 29 13 17 45 70 29 56 
U42 90 10 53 37 40 25 65 64 48 88 34 26 31 28 85 48 
U43 59 79 100 19 9 87 9 13 21 5 64 6 25 84 52 42 
U44 52 54 57 25 24 81 11 72 39 29 97 8 81 20 62 48 
U45 15 21 46 93 81 67 95 6 82 88 32 58 33 20 71 54 
U46 98 65 83 33 58 60 65 22 75 87 55 25 75 73 5 59 
U47 52 91 66 91 41 38 8 73 27 38 81 99 7 10 52 52 
U48 61 12 10 58 64 88 45 86 93 31 44 66 56 53 6 51 
U49 37 72 34 13 21 6 45 34 38 88 75 87 14 47 70 45 
U50 3 10 84 7 58 35 12 97 11 48 92 82 18 29 97 46 
U51 66 52 26 24 77 14 46 87 12 46 8 28 18 52 15 38 
U52 45 5 25 76 10 21 74 26 57 92 88 72 13 54 88 50 
U53 29 53 71 24 49 62 98 70 37 76 50 76 31 74 33 56 
U54 19 50 24 40 99 96 22 23 81 90 46 57 52 62 66 55 
U55 27 38 43 11 28 64 91 55 17 49 16 26 18 70 2 37 
U56 75 4 63 14 31 64 96 95 72 82 90 17 43 27 16 53 
U57 99 36 86 39 79 75 48 62 17 37 55 9 36 8 30 48 
U58 12 89 43 16 55 25 27 16 22 76 79 73 7 20 26 39 
U59 91 35 44 66 18 55 72 66 98 45 66 9 38 97 76 58 
U60 8 53 26 42 57 58 52 34 90 87 23 19 25 74 22 45 
U61 42 87 95 5 32 68 13 39 85 20 96 80 61 34 95 57 
U62 55 44 28 6 79 88 61 23 3 18 14 25 89 82 57 45 
U63 64 22 57 38 35 62 81 21 63 36 10 84 16 78 97 51 
U64 45 57 10 75 85 62 78 33 66 4 49 81 7 25 50 49 
U65 5 89 26 80 65 4 58 83 85 66 68 82 65 30 80 59 

U66 88 53 38 60 82 34 13 47 71 58 47 100 20 59 93 58 

U67 42 75 100 3 47 64 92 25 68 87 16 12 26 2 98 50 

U68 37 68 1 80 75 41 84 14 59 40 45 26 45 13 37 44 

U69 13 13 78 76 62 41 17 29 96 57 21 32 24 32 39 42 

U70 13 86 3 12 46 14 85 41 18 32 89 73 28 74 67 45 

U71 47 12 30 23 93 3 62 15 28 22 61 73 25 15 37 36 

U72 67 14 21 33 42 95 95 62 62 6 73 39 82 32 89 54 

U73 23 86 10 46 31 92 97 47 50 2 76 80 98 61 41 56 

U74 76 62 23 59 24 69 83 55 62 15 63 81 35 12 35 50 

U75 54 40 65 39 11 34 61 10 56 42 53 43 60 32 50 43 

U76 24 85 96 84 69 88 12 55 71 84 97 38 15 18 76 61 

U77 53 56 32 29 77 31 65 59 94 78 85 60 77 46 82 62 

U78 96 83 80 27 96 67 43 16 61 79 67 25 96 77 7 61 

U79 70 60 96 75 9 48 9 31 89 94 33 14 55 16 7 47 

U80 84 48 82 96 65 84 37 50 46 61 43 58 46 74 91 64 

U81 55 95 94 42 4 33 84 30 91 73 3 7 7 52 90 51 

U82 63 3 97 65 91 14 29 34 21 52 46 44 17 36 99 47 

U83 82 58 73 3 51 68 62 87 9 44 32 59 30 49 75 52 

U84 42 67 97 6 88 45 12 87 37 2 88 71 77 90 34 56 

U85 85 35 54 12 10 15 3 73 90 13 84 6 18 54 96 43 

U86 70 25 48 15 53 34 30 4 27 99 71 69 26 83 39 46 

U87 28 36 8 76 43 8 23 86 15 84 33 98 71 68 12 46 

U88 90 32 5 70 52 17 7 84 55 56 7 59 28 71 55 46 

U89 40 94 87 54 31 60 61 43 48 35 58 18 63 49 78 55 

U90 25 58 66 68 81 54 49 10 76 31 66 26 16 5 21 44 

U91 92 42 74 74 3 13 13 43 69 54 98 44 4 83 82 53 
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U92 85 68 11 77 44 41 18 48 52 82 18 27 31 35 6 43 

U93 99 78 74 90 95 75 13 23 37 92 84 19 66 65 27 62 

U94 77 21 43 58 2 66 53 90 22 50 88 76 30 3 80 51 

U95 12 21 40 44 9 46 91 59 56 89 18 94 75 57 21 49 

U96 13 8 90 36 74 18 14 5 86 57 93 88 2 87 52 48 

U97 66 15 85 95 45 76 43 96 29 52 76 7 96 51 63 60 

U98 26 11 68 28 2 14 47 70 3 45 6 86 23 19 49 33 

U99 64 62 7 96 90 54 67 52 76 67 50 47 21 61 42 57 

uloo 77 24 26 61 78 70 81 68 43 90 66 22 35 27 89 57 

Avera 52 48 51 52 48 50 51 47 51 53 55 55 43 50 53 51 
ge 
Stdv. 28 29 30 29 29 27 31 28 28 28 29 28 28 26 31 29 

Table A2. Change in stock input qenerated in simulation (1) 

tl t2 t3 t4 t5 t6 t7 t8 

Ul 10 42 51 50 88 24 15 47 

U2 69 11 36 39 25 62 88 99 

U3 76 84 13 97 24 13 31 18 

U4 27 95 45 52 16 20 77 33 

U5 74 89 13 94 62 77 16 79 

u6 79 14 45 47 91 21 69 40 

U7 32 22 100 14 85 71 94 22 

u8 55 95 88 91 30 12 76 66 

u9 48 97 35 43 17 45 37 79 

Ulo 53 48 77 89 85 47 38 29 

Uli 14 29 59 55 18 50 100 19 

U12 44 27 24 21 18 61 43 77 

U13 61 23 55 41 15 79 90 12 

U14 45 30 94 20 21 48 30 30 

u15 36 74 90 51 69 27 16 79 

U16 13 50 28 84 43 95 83 36 

U17 92 42 96 76 93 46 59 89 

u18 54 16 72 53 50 40 53 53 

u19 22 51 15 97 61 84 20 88 

U20 71 93 57 81 32 36 86 86 

U21 43 66 46 98 51 91 84 21 

U22 13 51 46 81 84 20 74 19 

U23 98 35 18 69 13 90 35 11 

U24 34 87 61 61 88 48 97 62 

U25 28 27 85 59 57 59 28 95 

U26 78 89 12 57 57 58 40 30 

U27 45 48 84 97 64 66 80 22 

U28 46 70 80 31 40 50 91 67 

U29 61 88 23 22 32 68 76 51 

U30 76 23 45 62 94 57 82 18 

U31 62 70 38 99 63 93 93 24 

U32 94 20 52 64 59 44 29 17 

t9 tlo tll t12 MM t15 Ave 
rage 

53 49 100 92 15 29 75 49 

42 45 59 90 26 55 88 56 

97 14 90 89 68 77 97 59 

92 49 85 98 42 85 12 55 

87 25 75 40 84 40 63 61 

45 65 52 75 61 47 83 56 

26 93 22 48 52 17 21 48 

37 56 82 71 69 80 15 62 

23 27 55 73 79 14 90 51 

83 49 91 26 68 82 77 63 

23 41 15 70 18 27 74 41 

47 95 52 80 12 92 52 50 

14 56 63 96 35 94 13 50 

16 41 50 77 51 71 89 48 

91 69 82 21 48 60 30 56 

51 19 50 93 53 65 94 57 

47 26 46 82 23 62 93 65 

15 52 82 52 91 55 77 54 

77 93 78 37 70 86 30 61 

34 15 18 56 90 68 79 60 

29 93 42 36 56 21 13 53 

11 75 85 59 61 75 13 51 

49 76 31 79 11 39 90 50 

79 23 54 67 52 41 57 61 

47 80 25 66 51 77 90 58 

94 54 76 73 74 56 65 61 

61 42 60 44 83 72 53 61 

32 24 20 95 64 16 11 49 

37 50 44 72 29 64 26 50 

63 48 27 75 36 82 100 59 

72 90 78 68 44 95 66 70 

72 93 46 77 91 92 70 61 
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U33 74 30 64 82 57 88 34 51 16 17 98 72 23 14 86 54 
U34 59 85 53 55 53 33 86 44 98 100 90 52 14 72 37 62 
U35 36 87 20 30 56 55 33 62 30 85 71 69 19 57 73 52 
U36 22 63 34 70 13 32 36 85 51 43 12 27 99 34 22 43 
U37 72 49 94 88 30 66 79 75 87 41 14 58 59 79 68 64 
U38 95 98 59 97 42 76 12 37 39 38 70 76 59 38 29 58 
U39 90 28 45 55 50 21 13 70 83 42 95 59 86 51 31 55 
U40 100 27 50 82 16 86 47 47 58 67 93 94 93 40 21 61 
U41 85 48 95 69 80 90 98 49 38 35 21 24 50 73 36 59 
U42 91 18 57 42 46 32 68 67 53 89 40 33 37 35 86 53 
U43 63 81 100 26 17 88 17 21 28 14 67 14 32 85 57 47 
U44 56 59 61 32 31 83 19 75 45 35 98 17 83 27 65 52 
U45 23 28 51 94 83 70 95 15 84 89 39 62 39 27 74 58 
U46 98 68 84 39 62 64 68 29 77 88 60 32 77 76 13 62 
U47 57 91 69 92 46 43 17 75 34 43 83 99 16 18 56 56 
U48 65 20 18 62 68 89 50 87 94 37 49 69 60 57 14 56 
U49 42 75 40 21 28 15 50 40 44 89 77 88 21 52 73 50 
U50 12 18 86 15 62 41 20 98 19 53 93 84 26 36 97 51 
U51 69 57 33 31 79 22 51 88 20 51 16 35 25 57 23 44 
U52 50 13 32 78 18 28 76 33 61 93 89 75 20 58 89 54 
U53 35 57 74 31 54 66 98 73 42 78 54 79 38 76 39 60 
U54 26 55 31 45 100 96 29 30 83 91 51 61 56 66 69 59 
U55 34 44 48 19 35 67 92 59 25 54 24 33 26 73 11 43 
U56 77 13 66 22 37 67 96 95 75 84 91 25 48 33 23 57 
U57 99 42 87 45 81 77 53 65 25 43 59 18 42 17 37 53 
U58 20 90 48 24 59 32 34 24 29 78 81 76 15 27 32 45 
U59 92 40 49 69 25 59 74 69 98 50 69 17 44 98 78 62 
U60 17 57 33 48 61 62 56 40 91 88 30 26 32 76 29 50 
U61 48 88 96 13 38 71 21 45 86 27 97 82 64 40 95 61 
U62 59 49 34 15 81 89 65 30 12 26 22 31 90 84 61 50 
U63 67 29 61 44 41 65 83 28 67 42 18 86 24 80 97 55 
U64 50 61 18 77 86 65 80 39 69 13 54 83 16 32 55 53 
U65 14 90 33 82 68 13 62 85 86 69 71 83 68 36 82 63 
U66 89 57 44 63 84 40 21 52 74 62 52 100 27 63 93 61 
U67 47 77 100 12 52 67 93 32 71 88 24 20 32 11 98 55 
U68 42 71 10 82 77 46 86 21 63 46 50 33 50 21 42 49 
U69 20 21 80 78 66 46 25 35 96 61 28 38 31 39 44 47 
U70 21 88 12 20 51 22 87 47 25 38 90 75 34 77 70 50 
U71 52 20 37 30 94 12 66 23 35 29 65 75 32 23 43 42 
U72 70 22 28 39 47 95 95 65 65 14 76 45 84 38 90 58 
U73 30 87 18 51 37 93 98 52 55 11 78 81 98 64 47 60 
U74 78 66 30 63 31 71 84 60 65 23 66 82 41 20 41 55 
U75 58 45 69 45 19 40 64 19 60 47 58 48 64 38 55 49 
U76 31 87 97 86 72 89 20 59 74 85 97 44 23 26 78 65 
U77 57 60 38 36 79 38 68 63 94 80 86 64 79 51 84 65 
U78 96 85 82 33 96 70 48 24 64 81 70 32 96 79 15 65 
U79 73 64 97 77 18 53 18 37 90 95 39 22 59 24 15 52 
U80 85 53 84 97 68 85 43 54 51 64 48 62 51 76 92 68 
U81 59 95 95 48 13 39 85 36 92 75 12 15 16 56 91 55 
U82 67 12 97 68 91 22 35 40 28 56 51 49 25 42 99 52 
U83 84 62 75 11 56 71 66 88 17 49 38 62 36 54 77 56 
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U84 

U85 

U86 

U87 

U88 

U89 

U90 

U91 

U92 

U93 

U94 

U95 

U96 

U97 

U98 

U99 

uloo 

Avera 
ge 
Stdv. 

47 70 97 14 89 50 20 88 43 11 89 74 79 91 40 60 

87 41 58 20 18 23 12 75 91 21 86 15 25 58 96 48 

73 32 53 23 57 40 36 12 33 99 73 72 33 84 44 51 

34 42 17 78 48 16 30 87 23 85 39 98 74 71 20 51 

91 38 14 73 56 25 16 85 59 60 16 63 35 73 59 51 

46 94 88 59 37 64 64 48 53 40 62 26 66 54 80 59 

32 62 69 71 83 58 54 18 78 37 69 33 23 14 29 49 

93 47 77 77 12 20 21 48 72 58 98 49 13 84 84 57 

86 71 19 79 49 47 25 53 57 83 26 34 37 41 14 48 

99 80 76 91 96 78 21 30 43 92 86 27 69 68 34 66 

79 29 48 62 11 70 57 91 29 55 89 78 37 12 82 55 

20 28 45 49 17 51 92 63 60 90 25 95 77 61 28 53 

21 17 91 42 77 25 22 13 88 61 93 89 10 88 56 53 

70 23 87 95 50 78 48 96 35 56 78 16 96 55 66 63 

33 19 71 34 11 22 51 72 12 50 15 88 30 26 53 39 

67 65 16 97 91 58 70 57 78 70 55 52 28 65 48 61 

79 31 33 64 80 73 83 71 48 91 69 29 41 34 90 61 

57 53 56 57 53 55 56 52 55 57 59 59 49 54 58 55 

26 26 27 26 26 24 28 25 26 26 26 25 25 24 28 26 

Table A3. Stock input generated in simulation (1) 

Ul 

U2 

U3 

U4 

u5 

U6 

U7 

u8 

u9 

ulo 

Uli 

U12 

U13 

U14 

u15 

u16 

U17 

U18 

u19 

U20 

U21 

U22 

U23 

U24 

U25 

tl Q t3 t4 t5 t6 U t8 t9 tl 0 tll t12 M t14 t15 
10 52 103 153 241 265 280 327 380 429 529 621 636 665 740 

69 80 116 155 180 242 330 429 471 516 575 665 691 746 834 

76 160 173 270 294 307 338 356 453 467 557 646 714 791 888 

27 122 167 219 235 255 332 365 457 506 591 689 731 816 828 

74 163 176 270 332 409 425 504 591 616 691 731 815 855 918 

79 93 138 185 276 297 366 406 451 516 568 643 704 751 834 

32 54 154 168 253 324 418 440 466 559 581 629 681 698 719 

55 150 238 329 359 371 447 513 550 606 688 759 828 908 923 

48 145 180 223 240 285 322 401 424 451 506 579 658 672 762 

53 101 178 267 352 399 437 466 549 598 689 715 783 865 942 

14 43 102 157 175 225 325 344 367 408 423 493 511 538 612 

44 71 95 116 134 195 238 315 362 457 509 589 601 693 745 

61 84 139 180 195 274 364 376 390 446 509 605 640 734 747 

45 75 169 189 210 258 288 318 334 375 425 502 553 624 713 

36 110 200 251 320 347 363 442 533 602 684 705 753 813 843 

13 63 91 175 218 313 396 432 483 502 552 645 698 763 857 

92 134 230 306 399 445 504 593 640 666 712 794 817 879 972 

54 70 142 195 245 285 338 391 406 458 540 592 683 738 815 

22 73 88 185 246 330 350 438 515 608 686 723 793 879 909 

71 164 221 302 334 370 456 542 576 591 609 665 755 823 902 

43 109 155 253 304 395 479 500 529 622 664 700 756 777 790 

13 64 110 191 275 295 369 388 399 474 559 618 679 754 767 

98 133 151 220 233 323 358 369 418 494 525 604 615 654 744 

34 121 182 243 331 379 476 538 617 640 694 761 813 854 911 

28 55 140 199 256 315 343 438 485 565 590 656 707 784 874 
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U26 78 167 179 236 293 351 391 421 515 569 645 718 792 848 913 

U27 45 93 177 274 338 404 484 506 567 609 669 713 796 868 921 

U28 46 116 196 227 267 317 408 475 507 531 551 646 710 726 737 

U29 61 149 172 194 226 294 370 421 458 508 552 624 653 717 743 

U30 76 99 144 206 300 357 439 457 520 568 595 670 706 788 888 

U31 62 132 170 269 332 425 518 542 614 704 782 850 894 989 1055 

U32 94 114 166 230 289 333 362 379 451 544 590 667 758 850 920 

U33 74 104 168 250 307 395 429 480 496 513 611 683 706 720 806 

U34 59 144 197 252 305 338 424 468 566 666 756 808 822 894 931 

U35 36 123 143 173 229 284 317 379 409 494 565 634 653 710 783 

U36 22 85 119 189 202 234 270 355 406 449 461 488 587 621 643 

U37 72 121 215 303 333 399 478 553 640 681 695 753 812 891 959 

U38 95 193 252 349 391 467 479 516 555 593 663 739 798 836 865 

U39 90 118 163 218 268 289 302 372 455 497 592 651 737 788 819 

U40 100 127 177 259 275 361 408 455 513 580 673 767 860 900 921 

U41 85 133 228 297 377 467 565 614 652 687 708 732 782 855 891 

U42 91 109 166 208 254 286 354 421 474 563 603 636 673 708 794 

U43 63 144 244 270 287 375 392 413 441 455 522 536 568 653 710 

U44 56 115 176 208 239 322 341 416 461 496 594 611 694 721 786 

U45 23 51 102 196 279 349 444 459 543 632 671 733 772 799 873 

U46 98 166 250 289 351 415 483 512 589 677 737 769 846 922 935 

U47 57 148 217 309 355 398 415 490 524 567 650 749 765 783 839 

U48 65 85 103 165 233 322 372 459 553 590 639 708 768 825 839 

U49 42 117 157 178 206 221 271 311 355 444 521 609 630 682 755 

U50 12 30 116 131 193 234 254 352 371 424 517 601 627 663 760 

U51 69 126 159 190 269 291 342 430 450 501 517 552 577 634 657 

U52 50 63 95 173 191 219 295 328 389 482 571 646 666 724 813 

U53 35 92 166 197 251 317 415 488 530 608 662 741 779 855 894 

U54 26 81 112 157 257 353 382 412 495 586 637 698 754 820 889 

U55 34 78 126 145 180 247 339 398 423 477 501 534 560 633 644 

U56 77 90 156 178 215 282 378 473 548 632 723 748 796 829 852 

U57 99 141 228 273 354 431 484 549 574 617 676 694 736 753 790 

U58 20 110 158 182 241 273 307 331 360 438 519 595 610 637 669 

U59 92 132 181 250 275 334 408 477 575 625 694 711 755 853 931 

U60 17 74 107 155 216 278 334 374 465 553 583 609 641 717 746 

U61 48 136 232 245 283 354 375 420 506 533 630 712 776 816 911 

U62 59 108 142 157 238 327 392 422 434 460 482 513 603 687 748 

U63 67 96 157 201 242 307 390 418 485 527 545 631 655 735 832 

U64 50 ill 129 206 292 357 437 476 545 558 612 695 711 743 798 

U65 14 104 137 219 287 300 362 447 533 602 673 756 824 860 942 

U66 89 146 190 253 337 377 398 450 524 586 638 738 765 828 921 

U67 47 124 224 236 288 355 448 480 551 639 663 683 715 726 824 

U68 42 113 123 205 282 328 414 435 498 544 594 627 677 698 740 

U69 20 41 121 199 265 311 336 371 467 528 556 594 625 664 708 

U70 21 109 121 141 192 214 301 348 373 411 501 576 610 687 757 

U71 52 72 109 139 233 245 311 334 369 398 463 538 570 593 636 

U72 70 92 120 159 206 301 396 461 526 540 616 661 745 783 873 

U73 30 117 135 186 223 316 414 466 521 532 610 691 789 853 900 

U74 78 144 174 237 268 339 423 483 548 571 637 719 760 780 821 

U75 58 103 172 217 236 276 340 359 419 466 524 572 636 674 729 

U76 31 118 215 301 373 462 482 541 615 700 797 841 864 890 968 
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U77 57 117 155 191 270 308 376 439 533 613 699 763 842 893 977 

U78 96 181 263 296 392 462 510 534 598 679 749 781 877 956 971 

U79 73 137 234 311 329 382 400 437 527 622 661 683 742 766 781 

U80 85 138 222 319 387 472 515 569 620 684 732 794 845 921 1013 

U81 59 154 249 297 310 349 434 470 562 637 649 664 680 736 827 

U82 67 79 176 244 335 357 392 432 460 516 567 616 641 683 782 

U83 84 146 221 232 288 359 425 513 530 579 617 679 715 769 846 

U84 47 117 214 228 317 367 387 475 518 529 618 692 771 862 902 

U85 87 128 186 206 224 247 259 334 425 446 532 547 572 630 726 

U86 73 105 158 181 238 278 314 326 359 458 531 603 636 720 764 

U87 34 76 93 171 219 235 265 352 375 460 499 597 671 742 762 

U88 91 129 143 216 272 297 313 398 457 517 533 596 631 704 763 

U89 46 140 228 287 324 388 452 500 553 593 655 681 747 801 881 

U90 32 94 163 234 317 375 429 447 525 562 631 664 687 701 730 

U91 93 140 217 294 306 326 347 395 467 525 623 672 685 769 853 

U92 86 157 176 255 304 351 376 429 486 569 595 629 666 707 721 
U93 99 179 255 346 442 520 541 571 614 706 792 819 888 956 990 

U94 79 108 156 218 229 299 356 447 476 531 620 698 735 747 829 

U95 20 48 93 142 159 210 302 365 425 515 540 635 712 773 801 

U96 21 38 129 171 248 273 295 308 396 457 550 639 649 737 793 

U97 70 93 180 275 325 403 451 547 582 638 716 732 828 883 949 

U98 33 52 123 157 168 190 241 313 325 375 390 478 508 534 587 
U99 67 132 148 245 336 394 464 521 599 669 724 776 804 869 917 

uloo 79 110 143 207 287 360 443 514 562 653 722 751 792 826 916 

Avera 57 110 165 222 275 329 385 437 492 549 608 667 715 770 827 
ge 
Stdv. 26 35 45 53 60 68 71 72 79 81 85 80 88 93 96 

Table A4. Eff iciency scores generated in simulation (1) 

tl t2 t3 W t5 t6 t7 t8 t9 tlo tl 1 t12 M M tl 5 Ave 
rage 

Ul 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
U2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
U3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
U4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

ulo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Ull 0.96 1.00 0.76 0.97 0.75 0.69 0.90 0.95 0.92 0.93 0.74 1.00 0.91 0.62 0.83 0.86 

U12 0.74 1.00 0.74 0.91 0.69 0.96 1.00 1.00 0.76 0.88 1.00 0.97 0.96 0.98 0.77 0.89 

U13 0.92 0.90 0.98 1.00 1.00 0.81 0.69 0.79 0.62 0.79 1.00 0.66 0.89 0.87 1.00 0.86 

U14 0.85 0.60 0.83 1.00 0.83 1.00 0.91 0.71 1.00 1.00 0.64 0.79 0.86 1.00 0.72 0.85 

U15 1.00 0.70 0.78 1.00 0.67 0.76 0.98 0.95 0.69 0.87 0.71 0.62 0.80 0.63 0.72 0.79 

U16 1.00 0.74 0.94 0.72 0.89 0.91 0.78 0.92 0.90 0.61 1.00 0.73 0.96 1.00 1.00 0.87 

U17 0.69 0.90 0.93 0.76 0.97 0.74 0.75 1.00 0.80 0.84 0.98 0.75 0.97 0.73 0.89 0.85 
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U18 0.89 0.93 0.78 0.80 0.62 0.93 0.65 074 0.61 0.88 0.93 0.78 0.75 0.80 0.98 0.80 

U19 0.85 0.68 1.00 0.94 0.74 0.78 0.99 0.94 1.00 0.96 0.83 0.75 0.80 0.83 1.00 0.87 

U20 0.90 0.85 0.70 0.76 0.78 0.94 0.95 0.87 0.85 0.64 0.66 0.76 0.90 0.77 0.87 0.81 

U21 1.00 0.98 0.67 0.86 0.63 0.72 0.82 0.72 0.63 0.98 0.86 1.00 0.71 1.00 0.78 0.82 

U22 0.86 0.81 0.75 0.72 0.82 0.71 0.69 0.90 0.79 0.90 0.95 1.00 0,88 0.87 0.80 0.83 

U23 0.74 0.98 0.91 0.72 1.00 0.80 0.93 0.98 0.64 1.00 0.79 1.00 0.87 0.76 0.63 0.85 

U24 0.93 0.60 0.78 0.75 0.95 0.92 1.00 0.62 0.68 0.67 0.76 0.88 0.66 0.62 0.77 0.77 

U25 0.82 0.67 0.65 1.00 0.84 0.61 0.89 0.83 0.63 0.93 0.66 0.62 0.71 1.00 0.84 0.78 

U26 0.91 0.83 0.89 0.92 0.66 0.79 0.85 1.00 1.00 0.85 0.99 0.79 0.82 0.99 0.71 0.87 

U27 0.72 0.96 0.76 1.00 0.68 0.97 1.00 0.91 0.61 0.85 0.90 0.66 0.76 0.92 0.72 0.83 

U28 1.00 0.81 0.89 0.92 1.00 1.00 0.75 0.70 0.87 0.67 0.91 0.68 0.73 1.00 0.71 0.84 

U29 0.93 0.94 0.93 1.00 1.00 0.82 0.81 0.94 0.66 0.98 0.71 0.72 1.00 0.68 0.64 0.85 

U30 0.64 0.66 0.91 0.80 0.71 1.00 0.83 0.82 0.65 0.96 0.87 0.75 1.00 0.67 0.66 0.80 

U31 0.70 0.73 1.00 0.64 0.69 0.76 0.84 0.71 0.86 0.69 1.00 0.82 0.88 0.66 0.63 0.77 

U32 1.00 0.61 1.00 0.70 0.75 1.00 0.72 0.87 0.87 0.80 0.93 0.76 0.99 0.71 0.61 0.82 

U33 0.72 0.82 0.70 0.93 0.61 0.95 0.65 0.68 0.62 0.97 0.84 0.67 0.80 1.00 0.83 0.79 

U34 1.00 0.66 0.88 1.00 1.00 0.90 0.97 0.66 0.84 0.87 0.72 0.90 0.73 0.79 0.82 0.85 

U35 0.65 0.79 0.82 0.88 0.70 0.76 0.88 0.90 0.67 0.76 1.00 0.77 0.97 1.00 0.80 0.82 

U36 0.72 0.67 0.63 0.84 0.85 0.68 0.87 0.87 0.93 0.65 1.00 0.63 0.75 0.86 1.00 0.80 

U37 1.00 1.00 0.70 0.98 0.70 1.00 0.72 0.98 0.88 0.95 0.63 0.68 1.00 0.91 0.91 0.87 

U38 0.74 1.00 0.90 0.93 0.93 0.94 0.69 0.86 0.85 0.89 0.63 0.92 0.96 0.70 1.00 0.86 

U39 0.62 1.00 0.74 0.92 0.98 1.00 0.97 0.64 0.64 0.95 0.66 0.64 0.82 1.00 0.98 0.84 

U40 0.70 0.90 0.95 0.72 1.00 1.00 1.00 0.85 0.83 0.88 0.96 0.78 0.73 0.78 0.62 0.85 

U41 0.93 0.82 0.73 0.62 0.82 0.89 1.00 0.93 0.79 0.82 0.88 0.98 0.96 0.96 0.74 0.86 

U42 0.91 0.68 0.67 0.61 0.82 0.70 0.98 0.91 0.91 0.97 1.00 0.91 0.81 0.65 0.96 0.83 

U43 0.72 1.00 1.00 0.77 0.78 0.67 0.67 0.79 0.91 1.00 0.61 1.00 0.95 0.76 0.88 0.83 

U44 1.00 1.00 0.78 1.00 0.62 0.71 0.82 0.75 1.00 0.95 0.63 0.60 0.98 0.93 0.93 0.85 

U45 0.94 0.93 0.87 0.81 0.73 0.68 0.94 0.74 0.94 0.72 0.87 0.72 0.98 0.71 0.94 0.83 

U46 0.89 0.62 0.84 0.65 0.78 0.83 0.83 0.90 0.77 1.00 0.90 0.87 1.00 0.76 1.00 0.84 

U47 1.00 0.85 1.00 1.00 0.96 0.77 0.97 1.00 0.82 0.94 0.63 0.65 0.95 0.78 1.00 0.89 

U48 1.00 0.73 0.99 1.00 0.90 1.00 0.80 1.00 0.83 0.70 0.67 0.62 0.87 0.84 0.88 0.86 

U49 0.99 0.94 0.72 0.66 0.91 0.94 0.75 0.88 0.77 1.00 0.62 0.74 0.62 0.81 0.95 0.82 

U50 0.82 0.64 0.96 0.84 0.82 0.64 0.63 0.63 0.69 0.60 0.61 1.00 1.00 0.62 0.83 0.76 

U51 0.69 0.85 0.94 0.78 0.71 0.97 0.63 0.69 0.77 0.77 0.92 1.00 0.76 0.97 0.89 0.82 

U52 0.91 0.67 0.73 1.00 1.00 0.81 0.71 0.87 0.72 0.97 0.64 0.63 0.64 1.00 0.65 0.80 

U53 0.64 0.63 0.62 0.64 0.76 0.92 0.75 0.62 0.82 0.76 1.00 0.81 0.79 0.90 0.69 0.76 

U54 0.63 0.98 0.90 0.74 0.73 0.91 0.86 0.75 1.00 0.80 0.95 0.73 0.83 0.97 0.62 0.83 

U55 0.63 0.73 0.93 0.75 0.85 0.85 0.73 0.68 1.00 0.95 0.71 0.85 0.66 0.95 0.62 0.79 

U56 0.79 0.85 0.87 0.72 0.60 0.99 0.99 1.00 1.00 0.64 0.74 0,60 0.98 0.68 0.98 0.83 

U57 0.94 0.75 0.87 0.74 0.90 0.73 1.00 0.88 0.83 0.97 0.92 0.72 0.99 0.95 0.89 0.87 

U58 0.72 0.76 1.00 0.69 0.62 0.62 0.90 0.88 0.89 0.81 0.68 0.62 1.00 0.71 0.70 0.77 

U59 0.83 0.80 0.75 0.86 0.61 0.67 0.63 0.80 0.87 0.86 0.75 0.83 0.60 1.00 0.71 0.77 

U60 0.89 0.93 1.00 0.90 0.97 0.70 0.95 1.00 1.00 0.66 0.93 1.00 0.80 0.67 1.00 0.89 

U61 0.73 0.65 0.80 0.74 0.74 0.87 0.63 1.00 0.93 0.64 1.00 0.87 0.72 0.92 0.95 0.81 

U62 1.00 0.77 0.75 0.61 0.97 1.00 0.68 0.75 0.72 0.68 0.93 0.62 0.81 0.69 0.91 0.79 

U63 1.00 0.81 0.93 0.87 0.60 0.82 0.93 0.75 0.71 0.73 0.92 0.98 0.82 0.98 0.64 0.83 

U64 0.78 0.71 0.66 0.85 0.88 0.92 0.70 0.81 1.00 1.00 0.93 1.00 1.00 0.62 1.00 0.86 

U65 1.00 0.79 0.77 0.90 0.74 0.85 0.68 0.62 1.00 0.91 0.86 0.88 1.00 0-83 0.92 0.85 

U66 0.81 0.94 1.00 0.75 0.66 0.89 1.00 0.95 1.00 0.90 0.92 0.78 0.75 0.92 0.91 0.88 

U67 0.98 1.00 0.72 0.65 1.00 1.00 0.67 1.00 0.70 0.87 0.73 0.68 1.00 0.98 0.82 0.85 

U68 0.65 0.99 1.00 0.98 1.00 0.60 1.00 0.78 0.73 1.00 0.96 0.81 0.84 0.80 0.72 0.86 
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U69 0.73 1.00 0-81 0.78 0.74 0.78 0.97 0.91 0.74 0.94 0.71 0.70 0.96 0.98 0.86 0.84 

U70 0.66 0.93 0.76 0.94 1.00 0.63 0.83 1.00 0.87 0.69 0.86 0.77 0.92 0.77 0.87 0.83 

U71 0.93 0.72 0.91 0.97 0.83 0.77 1.00 1.00 0.87 0.64 0.89 0.93 0.79 0.76 1.00 0.87 

U72 0.86 0.97 0.88 0.74 1.00 0.69 1.00 1.00 0.75 0.88 1.00 0.73 0.92 0.71 0.83 0.86 

U73 0.74 1.00 0.92 032 0.98 0.64 0.97 0.82 1.00 0.96 0.76 0.99 1.00 0.85 0.64 0.87 

U74 0.89 0.98 1.00 0.90 1.00 0.92 1.00 0.99 0.87 0.71 0.66 0.61 0.78 0.89 0.98 0.88 

U75 0.66 0.71 0.77 0.69 0.73 1.00 1.00 0.62 0.79 1.00 0.92 0.71 1.00 0.88 0.78 0.82 

U76 0.71 0.75 0.89 1.00 0.91 0.90 0.89 0.88 0.91 0.60 0.73 1.00 1.00 0.75 0.99 0.86 

U77 0.72 0.96 0.93 0.93 0.65 0.76 1.00 0.77 0.90 1.00 1.00 0.85 0.84 0.91 0.96 0.88 
U78 1.00 0.77 1.00 0.83 0.90 0.87 0.64 0.66 0.65 0.72 0.75 1.00 0.84 0.70 0.90 0.82 
U79 0.69 0.86 0.84 0.67 0.65 0.65 0.65 0.72 0.69 1.00 0.95 1.00 1.00 0.83 0.85 0.80 
U80 0.60 0.85 1.00 0.94 0.70 0.63 0.66 0.67 0.64 0.86 0.88 1.00 0.86 0.80 1.00 0.81 
U81 0.94 1.00 0.82 0.90 0.62 0.94 1.00 0.94 0.77 1.00 0.63 0.66 0.93 0.63 0.78 0.84 
U82 0.84 0.65 0.82 1.00 0.91 0.79 0.95 1.00 0.64 0.93 0.63 1.00 0.99 1.00 0.75 0.86 
U83 1.00 1.00 0.72 0.81 0.94 0.61 0.88 1.00 0.94 1.00 0.74 0.74 0.75 1.00 0.74 0.86 
U84 0.96 1.00 0.61 0.82 0.72 1.00 0.90 0.94 0.95 0.71 0.87 0.84 0.82 0.84 0.91 0.86 
U85 0.88 0.97 0.81 1.00 0.65 0.91 0.69 0.80 1.00 0.76 0.63 0.69 0.78 1.00 0.87 0.83 
U86 0.82 0.95 0.86 0.91 0.97 0.87 0.67 0.67 0.63 0.73 0.82 0.91 0.97 0.86 0.68 0.82 
U87 0.66 0.78 1.00 1.00 0.70 1.00 0.69 0.61 0.68 0.89 0.73 0.91 0.77 1.00 0.81 0.82 
U88 0.70 0.64 0.87 0.90 1.00 0.81 0.78 0.81 0.74 0.94 1.00 0.98 1.00 0.66 1.00 0.86 
U89 0.80 0.90 0.61 0.85 0.95 0.82 0.69 0.88 0.92 1.00 0.95 0.86 0.79 0.89 0.93 0.86 
U90 0.64 0.90 1.00 0.69 0.94 0.61 0.68 0.78 0.81 0.77 0.64 0.86 1.00 0.86 1.00 0.81 
U91 0.92 0.64 0.95 0.69 0.84 0.77 0.64 0.88 0.82 0.63 1.00 0.72 0.98 1.00 0.73 0.81 
U92 0.86 0.73 0.64 0.80 0.75 0.69 0.94 0.81 0.90 0.87 0.63 0.98 0.94 0.80 0.64 0.80 
U93 0.64 0.65 0.73 0.82 0.94 1.00 0.93 0.75 0.90 0.96 0.75 0.96 0.83 0.70 1.00 0.84 
U94 0.68 0.95 0.85 0.96 1.00 0.79 0.98 1.00 0.96 0.96 0.90 0.73 0.94 0.62 1.00 0.89 
U95 0.90 0.96 0.88 0.73 0.67 0.91 0.90 0.76 0.67 1.00 0.76 0.96 0.94 0.60 0.79 0.83 
U96 0.98 1.00 0.88 0.62 0.76 0.85 0.67 0.86 0.85 1.00 1.00 0.82 0.70 0.85 0.83 0.84 
U97 0.92 1.00 0.79 0.86 0.88 1.00 0.98 0.76 1.00 0.93 1.00 0.88 0.72 0.99 0.68 0.89 
U98 0.97 0.76 1.00 0.91 1.00 0.75 0.73 0.84 0.74 0.70 0.95 1.00 0.98 0.87 0.94 0.88 
U99 0.90 0.93 0.89 0.65 0.64 0.66 1.00 0.85 0.72 0.91 0.62 0.81 0.81 0.65 0.83 0.79 
uloo 0.68 0.85 0.73 0.96 0.64 0.76 0.94 0.73 1.00 0.95 0.80 0.93 0.76 0.76 0.77 0.82 
Avera 0.85 0.85 0.86 0.85 0.84 0.85 0.86 0.85 0.84 0.87 0.84 0.84 0.88 0.85 0.85 0.85 
ge 
Stdv. 0.13 0.13 0.12 0.13 0.14 0.13 0.13 0.12 0.13 0.13 0.14 0.14 0.11 0.13 0.13 0.06 

Table A5. Eff iciency scores generated in simulation (11) 

tl t2 t3 M t5 t6 U t8 t9 tlo tll t12 M t14 t15 Ave 
rage 

Ul 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
U2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
U5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
U7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U8 1.00 1.00 1M 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

U9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Ulo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Uli 0.33 1.00 0.67 0.64 0.36 0.60 0.99 0.37 0.40 0.54 0.34 1.00 0.36 0.43 0.79 0.59 

U12 0.56 1.00 0.40 0.38 0.37 0.69 1.00 1.00 0.59 0.96 1.00 0.84 0.31 0.93 0.62 0.71 

U13 0.69 0.40 0.65 1.00 1.00 0.83 0.91 0.31 0.33 0.66 1.00 0.96 0.49 0.94 1.00 0.74 

U14 0.56 0.45 0.95 1.00 0.38 1.00 0.45 0.45 1.00 1.00 0.61 0.81 0.62 1.00 0.91 0.75 

u15 1.00 0.79 0.91 1.00 0.75 0.43 0.34 OM 0.92 0.75 0.85 0.38 0.59 0.68 0.45 0.71 

U16 1.00 0.61 0.44 0.87 0.55 0.95 0.86 0.50 0.62 0.37 1.00 0.94 0.63 1.00 1.00 0.76 

U17 0.93 0.54 0.96 0.81 0.93 0.57 0.68 1.00 0.59 0.42 0.57 0.85 0.40 0.70 0.93 0.73 

u18 0.64 0.35 0.78 0.63 0.61 0.53 0.63 0.63 0.34 0.62 0.85 0.62 0.92 0.65 0.81 0.64 

u19 0.39 0.61 1,00 0.97 0.69 0.86 0.38 0.90 1.00 0.94 0.82 0.51 0.76 0.88 1,00 0.78 

U20 0.77 0.94 0.66 0.84 0.47 0.50 0.88 0,88 0.48 0.34 0.36 0.65 0.91 0.75 0.83 0.68 

U21 1.00 0.73 0.58 0.98 0.62 0.92 0.87 0.38 0.45 0.94 0.55 1.00 0.65 1.00 0.32 0.73 

U22 0.32 0.62 0.58 0.85 0.87 0.38 0.79 0.37 0.31 0.80 0.87 1.00 0.69 0.80 0.32 0.64 

U23 0.97 0.49 0.36 0.75 1.00 0.91 0.49 0.31 0.60 1.00 0.46 1.00 0.31 0.52 0.91 0.67 

U24 0.48 0.89 0.69 0.69 0.89 0.59 1.00 0.70 0.83 0.40 0.64 0.74 0.62 0.54 0.66 0.69 

U25 0.44 0.43 0.87 1.00 0.66 0.67 0.43 0.95 0.58 0.84 0.42 0.73 0.62 1.00 0.91 0.70 

U26 0.82 0.90 0.31 0.66 0.66 0.67 0.53 1.00 1.00 0.64 0.81 0.78 0.79 0.65 0.72 0.73 

U27 0.57 0.59 0.87 1.00 0.72 0.73 1.00 0.39 0.69 0.54 0.69 0.56 0.86 0.78 0.63 0.71 

U28 1.00 0.76 0.84 0.46 1.00 1.00 0.92 0.74 0.47 0.41 0.37 0.95 0.71 1.00 0.31 0.73 

U29 0.69 0.90 0.40 1.00 1.00 0.75 0.81 0.61 0.51 0.61 0.56 0.77 1.00 0.72 0.42 0.72 

U30 0.81 0.40 0.56 0.70 0.95 1.00 0.85 0.36 0.71 0.59 0.43 0.80 1.00 0.85 0.99 0.73 

U31 0.70 0.76 1.00 0.98 0.71 0.93 0.94 0.41 0.78 0.92 1.00 0.75 0.56 0.95 0.73 0.81 

U32 1.00 0.37 1.00 0.71 0.67 1.00 0.44 0.35 0.77 0.94 0.57 0.81 0.92 0.93 0.76 0.75 

U33 0.79 0.45 0.71 0.85 0.66 0.90 0.49 0.62 0.34 0.35 0.97 0.78 0.40 1.00 0.88 0.68 

U34 1.00 0.87 0.63 1.00 1.00 0.48 0.89 0.56 0.97 0.99 0.92 0.62 0.33 0.78 0.51 0.77 

U35 0.50 0.89 0.38 0.46 0.66 0.65 0.48 0.70 0.45 0.88 1.00 0.75 0.37 1.00 0.79 0.66 

U36 0.39 0.71 0.49 0.76 0.32 0.47 0.50 0.88 0.62 0.56 1.00 0.43 0.98 0.48 1.00 0.64 

U37 1.00 1.00 0.94 0.90 0.45 1.00 0.83 0.80 0.89 0.54 0.33 0.67 1.00 0.83 0.75 0.80 

U38 0.95 1.00 0.68 0.97 0.54 0.81 0.31 0.51 0.53 0.51 0.76 0.80 0.67 0.52 1.00 0.70 

U39 0.91 1.00 0.57 0.65 0.61 1.00 0.32 0.76 0.86 0.54 0.95 0.67 0.88 1.00 0.46 0,75 

U40 0.99 0.43 0.60 0.85 1.00 1.00 1.00 0.59 0.67 0.74 0.94 0.95 0.94 0.53 0.39 0.77 

U41 0.88 0.59 0.95 0.76 0.84 0.92 1.00 0.60 0.52 0.49 0.39 0.41 0.60 0.78 0.50 0.68 

U42 0.92 0.36 0.66 0.55 0.57 0.47 0.74 0.74 0.63 0.91 1.00 0.47 0.51 0.49 0.88 0.66 

U43 0.71 1.00 1,00 0.42 0.35 0.90 0.35 0.39 0.44 1.00 0.74 1.00 0.47 0.88 0.66 0.69 

U44 1.00 1.00 0.69 1.00 0.46 0.86 0.37 0.80 1.00 0.49 0.97 0.35 0.86 0.43 0.73 0.73 

U45 0.40 0.44 0.61 0.94 0.86 0.76 0.95 0.34 0.87 0.91 0.52 0.70 0.52 0.43 0.79 0.67 

U46 0.98 0.75 0.87 0.52 0.70 0.71 0.74 0.45 0.81 1.00 0.68 0.47 1.00 0.80 1.00 0.77 

U47 1.00 0.92 1.00 1.00 0.58 0.56 0.35 1.00 0.48 0.55 0.86 0.99 0.34 0.36 1.00 0.73 

U48 1.00 0.38 0.36 1.00 0.74 1.00 0.61 1.00 0.94 0.51 0.60 0.75 0.68 0.66 0.33 0.70 

U49 0.55 0.80 0.53 0.39 0.44 0.34 0.61 0.53 0.56 1.00 0.82 0.90 0.39 0.62 0.78 0.62 

U50 0.32 0.36 0.88 0.34 0.70 0.54 0.38 0.97 0.37 0.63 0.94 1.00 1.00 0.50 0.97 0.66 

u51 0.75 0.66 0.48 0.46 0.83 0.39 0.61 0,90 0.38 0.61 0.35 1.00 0.42 0.66 0.40 0.59 

U52 0.60 0.32 0.47 1.00 1.00 0.44 0.81 0.48 0.69 0.94 0.91 0.80 0.38 1.00 0.91 0.72 

U53 0.49 0.66 0.79 0.46 0.63 0.73 0.98 0.78 0.55 0.82 1.00 0.83 0.51 0.81 0.52 0.70 

U54 0.42 0.64 0.46 0.57 0.99 0,96 0.45 0.45 1.00 0.92 0.62 0.69 0.65 0.73 0.75 0.69 

U55 0.48 0.56 0.59 0.37 0.49 0.74 0.93 0.68 1.00 0.64 0.41 0.48 0.42 0.78 0.31 0.59 

U56 0.81 0.32 0.73 0.39 0.51 0.74 0.96 1.00 1.00 0.86 0.92 0.41 0.59 0.48 0.40 0.67 

U57 0.98 0.54 0.89 0.57 0.84 0.82 1.00 0.72 0.41 0.55 0.68 0.36 0.54 0.35 0.50 0.65 

U58 0.38 0.91 1.00 0.41 0.67 0.47 0.48 0.40 0.44 0.82 0.84 0.81 1.00 0.43 0.47 0.64 

U59 0.93 0.53 0.60 0.75 0.42 0.67 0.79 0.75 0.97 0.60 0.76 0.35 0.56 1.00 0.82 0.70 

U60 0.35 0.66 1.00 0.59 0.69 0.70 0.65 1.00 1.00 0.90 0.45 1.00 0-47 0.81 1.00 0.75 
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U61 0.59 0.90 0.96 0.33 0.52 0.77 0.38 1.00 0.88 0.43 1.00 0.85 0.72 0.53 0.95 0.72 

U62 1.00 0.60 0-49 0.34 0.84 1.00 0.72 0.45 0.32 0.42 0.39 0.46 0.91 0.87 0.69 0.63 

U63 1.00 0.44 0-69 0.56 0.54 0.72 0.86 0.44 0.73 0.55 0.36 0.88 0.40 0.84 0.97 0.67 

U64 0.60 0.69 0.36 0.82 0.88 0.73 0.84 0.52 1.00 1.00 0.63 1.00 1.00 0.47 1.00 0.77 

u65 1.00 0.91 0.48 0.85 0.74 0.32 0.70 0.87 1.00 0.75 0.77 0.86 1.00 0.50 0.85 0.77 

U66 0.91 0.66 1.00 0.71 0.87 0.53 1.00 0.62 1.00 0.70 0.62 0.99 0.43 0.71 0.94 0,78 

U67 0.58 1.00 0.99 0.31 1.00 1.00 0.93 1.00 0.77 0.90 0.40 0.38 1,00 0.31 0.98 0.77 

U68 0.55 0.77 1.00 0.85 1.00 0.58 1.00 0.39 0.71 1.00 0.60 0.47 0.61 0.39 0.55 0.70 

U69 0.38 1.00 0.84 0.82 0.73 0.58 0.41 0.49 0.96 0.69 0.44 0.51 0.46 0.52 0.56 0.63 

U70 0.38 0.90 0.31 0.38 1.00 0.39 0.89 1.00 0.42 0.52 0.91 0.80 0.49 0.81 0.76 0.66 

U71 0.62 0.37 0.50 0.45 0.94 0.31 1.00 1.00 0.49 0.44 0.72 0.80 0.47 0.40 1.00 0.63 

U72 0.76 0.39 0.44 0.52 1.00 0.95 1.00 1.00 0.72 0.33 1.00 0.57 0.87 0.52 0.91 0.73 

U73 0.45 1.00 0.36 0.61 0.51 0.93 0.97 0.62 1.00 0.31 0.82 0.85 1.00 0.72 0.58 0.72 

U74 0.82 0.73 1.00 0.71 1.00 0.77 1.00 0.68 0.72 0.40 0.73 0.85 0.54 0.37 0.53 0.72 

U75 0.67 0.57 0.75 0.57 0.37 1.00 1.00 0.37 0.68 1.00 0.66 0.59 1.00 0.52 0.64 0.69 

U76 0.46 0.89 0.96 1.00 0.77 0.91 0.37 0.68 0.79 0.88 0.97 1.00 1.00 0.42 0.82 0.79 

U77 0.66 0.69 0.51 0.50 0.83 0.51 1.00 0.70 0.94 1.00 1.00 071 0.83 0.61 0.87 0.76 

U78 1.00 0.87 1.00 0.48 0.96 0.76 0.59 0.41 0.72 0.84 0.76 1.00 0.96 0.83 0.34 0.77 

U79 0.78 0.71 0.96 0.81 0.36 0.63 0.36 0.51 0.91 1.00 0.52 1.00 1.00 0.41 0.34 0.69 

U80 Oý88 0.63 1.00 0.96 0.75 0.88 0.55 0.64 &61 0.71 0.59 1.00 0.61 0.81 1.00 0.77 

U81 0.68 1.00 0.95 0.59 0.32 0.52 1.00 0.50 0.93 1.00 0.32 0.34 0.34 0.66 0.92 0.67 

U82 0.73 0.31 0.97 1.00 0.92 0.39 0.50 1.00 0.44 0.66 0.61 1.00 0.41 1.00 0.98 0.73 

U83 1.00 1.00 0.80 0.31 0.65 0.77 0.73 1.00 0.35 1.00 0.52 0.70 0.50 1.00 0.82 0.74 

U84 0.59 1.00 0.97 0.33 0.91 1.00 0.38 0.90 0.55 0.31 0.91 0.79 0.83 0.92 0.53 0.73 

U85 0.89 0.54 0.67 1.00 0.37 0.40 0.31 0.80 1.00 0.39 0.88 0.34 0.42 1.00 0.96 0.66 

U86 0.78 0.47 0.63 0.40 0.66 0.53 0.50 0.32 0.48 0.98 0.79 0.78 0.47 0.87 0.56 0.61 

U87 0.49 0.55 1.00 1.00 0.59 1.00 0.46 0.89 0.40 0.88 0.52 0.98 0.79 1.00 0.38 0.73 

u88 0.92 0.51 0.33 0.78 1.00 0.41 0.34 0.88 0.67 0.68 1.00 0.71 1.00 0.79 1.00 0.73 

U89 0.57 0.95 0.90 0.67 0.51 0.71 0.72 0.59 &63 1.00 0.70 0.42 0.73 0.64 0.83 0.70 

u90 0.47 0.70 1.00 0.76 0.86 0.67 0.64 0.36 0.82 0.51 0.75 0.47 1.00 0.33 1.00 0.69 

u91 0.93 0.58 0.81 0.81 0.32 0.38 0.38 0.59 0.78 0.67 1.00 0.60 0.32 1.00 OS7 0.67 

U92 0.89 0.76 0.37 0.83 0.60 0.58 0.42 0.63 0.66 0.86 0.42 0.48 0.51 0.54 0.33 0.59 

U93 0.99 0.84 0.81 0.92 0.96 1.00 0.38 0.45 0.55 0.93 0.88 0.43 0.75 0.75 1.00 0.78 

U94 0.83 0.44 0.59 0.70 1.00 0.76 0.66 1.00 0.44 0.64 0.91 0.82 0.50 0.31 1.00 0.71 

U95 0.38 0.44 0.57 0.60 0.36 0.61 0.93 0.70 0.68 1.00 0.42 0.95 0.82 0.69 0.44 0.64 

U96 0.38 1.00 0.92 0.55 0.81 0.42 0.39 0.33 0.89 1.00 1.00 0.91 0.30 0.90 0.65 0.70 

U97 0.76 1.00 0.89 0.95 0.61 1.00 0.59 0.96 1.00 0.65 1.00 0.35 0.96 0.65 0.73 0.81 

u98 0.48 0.37 1.00 0.49 1.00 0.39 0.62 0.78 0.31 0.61 0.33 1.00 0.45 0.43 0.63 0.59 

u99 0.74 0.72 0.34 0.96 0.92 0.67 1.00 0.66 0.82 0.76 0.64 0.62 0.44 0.72 0.59 0.71 

uloo 0.83 0.46 0.48 0.72 0.83 0.78 0.86 0.76 1.00 0.92 0.75 0.44 0.54 0.48 0.91 0.72 

Avera 0.75 0.72 0.75 0.74 074 0.74 0.72 0.70 0.72 0.75 0.74 0.76 0.70 0.73 0.76 0.73 
ge 
Stdev 0.23 0.23 0.23 0.23 0.22 0.22 0.25 0.24 0.23 0.23 0.23 0.22 0.24 0.22 0.23 0.10 
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Table Bl a: Averaqe eff iciencv in simulation (1) for technoloqv TEC1 

tl t2 t3 t4 t5 W G t8 t9 tlo t1l t12 M t14 t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 0.880 0.849 0.853 0.851 

Static 0.852 0.760 0.599 0.580 0.612 0.572 0.606 0.545 0.562 0.566 0.569 0.612 0.625 0.585 0.631 0.618 

Dyn-2 0.852 0.858 0.855 0.757 0.740 0.757 0.725 0.760 0.702 0.728 0.751 0.735 0.746 0.748 0.765 

Dyn-3 0.852 0.858 0.899 0.902 0.834 0.825 0.837 0.823 0.851 0.808 0.812 0.830 0.831 0.843 

Dyn-4 0.852 0.858 0.899 0.928 0.924 0.884 0.890 0.892 0.880 0.905 0.869 0.866 0.887 

Dyn-5 0.941 0.946 0.924 0.927 0.932 0.926 0.945 0.916 0.916 0.924 0.936 0.930 

Dyn-6 0.957 0.963 0.952 0.947 0.956 0.958 0.966 0.947 0.943 0.952 0.954 

Dyn-7 0.972 0.976 0.969 0.969 0.972 0.978 0.977 0.965 0.967 0.972 

Dyn-8 0.983 0.986 0.981 0.982 0.986 0.985 0.986 0.979 0.983 

Dyn-9 0.991 0.992 0.990 0.989 0.992 0.993 0.992 0.991 

Dyn-10 0.995 0.995 0.995 0.992 0.993 0.996 0.995 

Dyn-11 0.997 0.998 0.998 0.994 0.996 0.997 

Dyn-12 0.998 0.999 0.999 0.996 0.998 

Dyn-1 3 0.999 0.999 0.999 0.999 

Dyn-14 0.999 0.999 0.999 

Dyn-1 5 1.000 1.000 

Table Bl b: Average of absolute deviation with true eff iciency in simulation (1) for 

technoloqy TEC1 

tl t2 t3 t4 t5 W U t8 t9 tlo t1l t12 M t14 t15 Ave 
rage 

Static 0.009 0.099 0.266 0.289 0.236 0.281 0.260 0.316 0.291 0.304 0.284 0.234 0.269 0.277 0.243 0.244 

Dyn-2 0.137 0.115 0.117 0.167 0.190 0.172 0.192 0.164 0.231 0.215 0.182 0.207 0.175 0.189 0.175 

Dyn-3 0.135 0.114 0.118 0.129 0.156 0.144 0.138 0.157 0.158 0.162 0.170 0.157 0.166 0.147 

Dyn-4 0.127 0.126 0.131 0.125 0.101 0.119 0.130 0.137 0.140 0.113 0.153 0.131 0.128 

Dyn-5 0.121 0.122 0.133 0.116 0.134 0.127 0.137 0.142 0.114 0.130 0.131 0.128 

Dyn-6 0.131 0.129 0.128 0.142 0.113 0.146 0.155 0.106 0.125 0.126 0.130 

Dyn-7 0.130 0.125 0.146 0.124 0.143 OA48 0.113 0.137 0.121 0.132 

Dyn-8 0.131 0.151 0.123 0.154 0.158 0.111 0.144 0.142 0.139 

Dyn-9 0.155 0.125 0.154 0.156 0.115 0.146 0.145 0.142 

Dyn-1 0 0.127 0.155 0.160 0.113 0.147 0.144 0.141 

Dyn-1 1 0.156 0.163 0.118 0.147 0.147 0.146 

Dyn-12 0.164 0.119 0.150 0.143 0.144 

Dyn-1 3 0.119 0.150 0,146 0.138 

Dyn-14 0.150 0.146 0.148 

Dyn-15 0.147 0.147 
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Table B2a: Averaqe eff iciencv in simulation for technoloqv TEC2 

tl t2 t3 M t5 W U t8 t9 tlo t1l t12 M U4 t15 Ave 
rage 

TRUE O. B49 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 0.880 0.849 0.853 0.851 

Static 0.852 0.782 0.636 0.606 0.634 0.593 0.627 0.565 0.583 0.597 0.604 0.632 0.648 0.607 0.649 0.641 

Dyn-2 0.852 0.857 0.856 0.775 0.757 0.770 0.741 0.774 0.722 0.743 0.768 0.747 0.760 0.763 0.777 

Dyn-3 0.852 0.857 0.900 0.905 0.844 0.837 0.847 0.836 0.860 0.821 0.828 0.840 0.841 0.851 

Dyn-4 0.852 0.857 0.900 0.930 0.926 0.893 0.897 0.901 0.890 0.912 0.878 0.875 0.893 

Dyn-5 0.942 0.949 0.931 0.933 0.940 0.934 0.950 0.923 0.924 0.931 0.941 0.936 

Dyn-6 0.959 0.966 0.959 0.951 0.962 0.964 0.969 0.952 0.948 0.959 0.959 

Dyn-7 0.973 0.979 0,974 0.972 0.976 0.981 0.979 0.968 0.970 0.975 

Dyn-8 0.984 0.988 0.985 0.984 0.989 0.988 0.987 0.981 0.986 

Dyn-9 0.992 0.994 0.993 0.989 0.993 0.994 0.993 0.993 

Dyn-10 0.996 0.996 0.997 0.992 0.994 0.997 0.996 

Dyn-1 1 0.997 0.998 0.998 0.995 0.997 0.997 

Dyn-1 2 0.999 0.999 0.999 0.996 0.998 

Dyn-13 1.000 0.999 1.000 1.000 

Dyn-14 1.000 0.999 1.000 

Dyn-15 1.000 1.000 

Table B2b: Average of absolute deviation with true eff iciencV in simulation (1) for 

technoloqv TEC2 

tl Q t3 M t5 W V t8 t9 tlo tl 1 t12 M t14 t15 Ave 
rage 

Static 0.009 0.076 0.229 0.264 0.213 0.259 0.239 0.295 0.270 0.273 0.253 0.213 0.245 0.254 0.225 0.221 

Dyn-2 0.137 0.115 0.116 0.160 0.179 0.162 0.182 0.157 0.216 0.206 0.172 0.197 0.167 0.179 0.167 

Dyn-3 0.135 0.114 0.118 0.129 0.151 0.140 0.135 0.150 0.155 0.157 0.163 0.151 0.162 0.143 

Dyn-4 0.127 0.125 0.131 0.123 0.101 0.121 0.130 0.135 0.140 0.112 0.148 0.128 0.127 

Dyn-5 0.121 0.123 0.132 0.116 0.135 0.125 0.138 0.142 0.113 0.129 0.130 0.128 

Dyn-6 0.132 0.129 0.127 0.144 0.113 0.145 0.156 0.107 0.126 0.127 0.131 

Dyn-7 0.130 0.127 0.148 0.124 0.145 0.151 0.113 0.138 0.122 0.133 

Dyn-8 0.132 0.153 0.123 0.155 0.160 0.112 0.144 0.142 0.140 

Dyn-9 0.156 0.126 0.154 0.157 0.115 0.146 0.145 0.143 

Dyn-10 0.127 0.156 0.162 0.113 0.147 0.145 0.142 

Dyn-11 0.156 0.163 0.118 0.147 0.146 0.146 

Dyn-12 0.164 0.119 0.150 0.143 0.144 

Dyn-1 3 0.120 0.150 0.147 0.139 

Dyn-14 0.151 0.146 0.148 

Dyn-15 0.147 0.147 
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Table B3a: Averaqe efficiency in simulation for technoloqv TEC3 

tl t2 t3 M t5 W U t8 t9 tlo t1l t12 M t14 t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 OMO 0.849 0.853 0.851 

Static 0.837 0.737 0.596 0.577 0.602 0.562 0.594 0.540 0.548 0.566 0.571 0.598 0.580 0.549 0.624 0.605 

Dyn-2 0.837 0.863 0.856 0.761 0,735 0.750 0.702 0.742 0.692 0.717 0.746 0.731 0,733 0.733 0.757 

Dyn-3 0.837 0.863 0.893 0.904 0.829 0.822 0.831 OM5 0.845 0.800 0.809 0.823 0.825 0.837 

Dyn-4 0.837 0.863 0.893 0.923 0.919 0.877 0.884 0.880 0.870 0.897 0.861 0.862 0.880 

Dyn-5 0.934 0.938 0.918 0.919 0.923 0.919 0.937 0.914 0.909 0.918 0.928 0.923 

Dyn-6 0.949 0.956 0.945 0.940 0.948 0.953 0.960 0.942 0.935 0.948 0.948 

Dyn-7 0.966 0.969 0.960 0.965 0.965 0.973 0.974 0.961 0.962 0.966 

Dyn-8 0.977 0.979 0.975 0.977 0.981 0.981 0.983 0.975 0.979 

Dyn-9 0.985 0.988 0.986 0.987 0.988 0.989 0.990 0.987 

Dyn-1 0 0.992 0.992 0.994 0.991 0.991 0.993 0.992 

Dyn-1 1 0.994 0.996 0.996 0.993 0,994 Oý995 

Dyn-12 0.997 0.997 0.998 0.994 0.997 

Dyn-1 3 0.998 0.998 0.999 0.998 

Dyn-14 0.998 0.998 0.998 

Dyn-1 5 0.999 0.999 

Table B3b: Average of absolute deviation with true eff iciencv in simulation (1) for 

technoloqv TEC3 

tl Q t3 M t5 t6 V t8 t9 tlo tl 1 t12 M M t15 Ave 
rage 

Static 0.014 0.117 0.271 0.293 0.245 0.291 0.272 0.321 0.304 0.304 0.283 0.246 0.308 0.308 0.248 0.255 

Dyn-2 0.137 0.115 0.108 0.162 0.189 0.175 0.201 0.170 0.239 0.219 0.177 0.205 0.178 0.199 0.177 

Dyn-3 0.134 0.115 0.117 0.128 0.158 0.140 0.137 0.163 0.157 0.159 0.172 0.152 0.161 0.145 

Dyn-4 0.127 0.125 0.133 0.127 0.099 0.115 0.128 0.132 0.140 0.114 0.151 0.133 0.127 

Dyn-5 0.117 0.120 0.133 0.113 0.132 0.127 0.133 0.138 0.115 0.123 0.126 0.125 

Dyn-6 0.127 0.129 0.124 0.136 0.113 0.145 0.151 0.104 0.124 0.125 0.128 

Dyn-7 0.131 0.121 0.140 0.124 0.140 0.146 0.110 0.137 0.120 0.130 

Dyn-8 0.126 0.147 0.124 0.151 0.155 0.109 0.142 0.139 0.136 

Dyn-9 0.150 0.124 0.152 0.155 0.112 0.144 0.142 0.140 

Dyn-10 0.126 0.154 0.160 0.112 0.146 0.142 0.140 

Dyn-1 1 0.155 0.162 0.117 0.147 0.145 0.145 

Dyn-12 0.163 0.117 0.149 0.142 0,143 

Dyn-13 0.118 0.149 0.146 0.138 

Dyn-14 0.149 0.145 0.147 

Dyn-15 0.146 0.146 
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Table B4a: Averaqe eff iciencv in simulation for technoloqv TEC 

tl Q t3 W t5 t6 U t8 t9 tlo t1l t12 M t14 t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 0.88 0.849 0.853 0.851 

Static 0.837 0.737 0.596 0.577 0.602 0.562 0.594 0.54 0.548 0.566 0.571 0.598 0.58 0.549 0.624 0.605 

Dyn-2 0.837 0.863 0.856 0.761 0.735 0.75 0.702 0.742 0.692 0.717 0.746 0.731 0.733 0.733 0.757 

Dyn-3 0.837 0.863 0.893 0.904 0.829 0.822 0.831 0.805 0.845 0.8 0.809 0.823 0.825 0.837 

Dyn-4 0.837 0.863 0.893 0.923 0.919 0,877 0.884 0.88 0.87 0.897 0.861 0.862 0.88 

Dyn-5 0.934 0-938 0.918 0.919 0.923 0.919 0.937 0.914 0.909 0.918 0.928 0.923 

Dyn-6 0.949 0.956 0.945 0.94 0.948 0.953 0.96 0.942 0.935 0.948 0.948 

Dyn-7 0.966 0.969 0.96 0.965 0.965 0.973 0.974 0.961 0.962 0.966 

Dyn-B 0.977 0.979 0.975 0.977 0.981 0.981 0.983 0.975 0.979 

Dyn-9 0.985 0.988 0.986 0.987 0.988 0.989 0.99 0.987 

Dyn-10 0.992 0.992 0.994 0.991 0.991 0.993 0.992 

Dyn-1 1 0.994 0.996 0.996 0.993 0.994 0.995 

Dyn-1 2 0.997 0.997 0.998 0.994 0.997 

Dyn-1 3 0.998 0.998 0.999 0.998 

Dyn-14 0.998 0.998 0.998 

Dyn-1 5 0.999 0.999 

le of absolute deviation with true efficiency in simulation (1) for Table B4b: Averac 

technoloqv TEC4 

tl t2 t3 M t5 t6 U t8 t9 tlo t1l t12 M M t15 Ave 
rage 

Static 0.014 0.117 0.271 0293 0.245 0.291 0.272 0.321 0.304 0.304 0.283 0.246 0.308 0.308 0.248 0,255 

Dyn-2 0.137 0.115 0.108 0.162 0.189 0.175 0.201 0.17 0.239 0.219 0.177 0.205 0.178 0.199 0.177 

Dyn-3 0.134 0.115 0.117 0.128 0.158 0.14 0.137 0.163 0.157 0.159 0.172 0.152 0.161 0.145 

Dyn-4 0.127 0125 0.133 0.127 0.099 0.115 0.128 0.132 0.14 0.114 0.151 0.133 0.127 

Dyn-5 0.117 0.12 0.133 0.113 0.132 0.127 0.133 0.138 0.115 0.123 0.126 0.125 

Dyn-6 0.127 0.129 0.124 0.136 0.113 0.145 0.151 0.104 0.124 0.125 0.128 

Dyn-7 0.131 0.121 0.14 0.124 0.14 0.146 0.11 0.137 0.12 0.13 

Dyn-8 0.126 0.147 0.124 0.151 0.155 0.109 0.142 0.139 0.136 

Dyn-9 0.15 0.124 0.152 0.155 0.112 0.144 0.142 0.14 

Dyn-10 0.126 0.154 0.16 0.112 0.146 0.142 0.14 

Dyn-11 0.155 0.162 0.117 0.147 0.145 0.145 

Dyn-12 0.163 0.117 0.149 0.142 0.143 

Dyn-13 0.118 0.149 0.146 0.138 

Dyn-14 0.149 0.145 0.147 

Dyn-1 5 0.146 0.146 
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Table B5a: Averaqe efficiency in simulation for technoloqy TEC5 

tl V t3 M t5 W U t8 t9 tlo tl 1 t12 M t14 t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 0.880 0.849 0.853 0.851 

Static 0.842 0.790 0.741 0.712 0.699 0.682 0.726 0.660 0.699 0.696 0.730 0.704 0.724 0.711 0.705 0.721 

Dyn-2 0.842 0.830 0.830 0.800 0.778 0.801 0.789 0.800 0.778 0.814 0.801 0.807 0.798 0.785 0.804 

Dyn-3 0.842 0.830 0.857 0.869 0.845 0.850 0.848 0.855 0.869 0.850 0,867 0.857 0.857 0.853 

Dyn-4 0.842 0.830 0.857 0.888 0.890 0.895 0.894 0.889 0.903 0.901 0.892 0.894 0.881 

Dyn-5 0.910 0.920 0.924 0.921 0.924 0.932 0.936 0.928 0.926 0.923 0.926 0.925 

Dyn-6 0.930 0.942 0.942 0.941 0.946 0.954 0.958 0.950 0.944 0.947 0.945 

Dyn-7 0.950 0.955 0.955 0.960 0.961 0.972 0.969 0.964 0.965 0.961 

Dyn-8 0.962 0.966 0.971 0.973 0.979 0.980 0.979 0.976 0.973 

Dyn-9 0.972 0.980 0.981 0.987 0.986 0.988 0.986 0.983 

Dyn-10 0.985 0.986 0.991 0.991 0.990 0.991 0.989 

Dyn-1 1 0.988 0.993 0.995 0.993 0.992 0.992 

Dyn-1 2 0.994 0.995 0.996 0.994 0.995 

Dyn-13 0.996 0.996 0.997 0.997 

Dyn-14 0.997 0.997 0.997 

Dyn-1 5 0.998 0.998 

Table B5b: Average of absolute deviation with true efficiency in simulation (1) for 

technoloqv TEC5 

tl V t3 M t5 W U t8 t9 tlo t1l t12 M M tl 5 Ave 
rage 

Static 0.010 0.065 0.122 0.157 0.142 0,171 0.143 0.199 0.149 0.176 0.124 0.138 0.169 0.146 0.160 0.138 

Dyn-2 0.136 0.119 0.114 0.130 0.151 0.144 0.136 0.123 0.177 0.147 0.122 0.135 0.141 0.146 0.137 

Dyn-3 0.132 0.117 0.114 0.125 0.134 0.114 0.115 0.127 0.136 0.129 0.120 0.127 0.124 0.124 

Dyn-4 0.125 0.129 0.126 0.127 0.097 0.119 0.114 0.127 0.133 0.104 0.128 0.124 0.121 

Dyn-5 0.107 0.120 0.128 0.106 0.121 0.108 0.130 0.124 0.095 0.119 0.110 0.115 

Dyn-6 0.123 0.131 0.114 0.128 0.110 0.136 0.139 0.092 0.126 0.118 0.122 

Dyn-7 0.131 0.116 0.137 0.114 0.138 0.146 0.101 0.134 0.125 0.127 

Dyn-8 0.116 0.143 0.118 0.145 0.151 0.106 0.136 0.132 0.131 

Dyn-9 0.145 0.122 0.148 0.155 0.110 0.142 0.136 0.137 

Dyn-10 0.125 0.151 0.159 0.113 0.144 0.140 0.139 

Dyn-1 1 0.152 0.160 0.115 0.147 0.141 0.143 

Dyn-1 2 0.161 0.116 0.149 0.143 0.142 

Dyn-13 0.117 0.149 0.145 0.137 

Dyn-14 0.149 0.145 0.147 

Dyn-15 0.146 0.146 
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Table B6a: Averaqe eff iciencv in simulation for technoloqv TEC 

tl t2 t3 W t5 M V t8 t9 tlo t1l t12 M M t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 0.880 0.849 0.853 0.851 

Static 0.843 0.826 0.720 0.754 0.706 0.661 0.721 0.658 0.654 0.708 0.678 0.692 0.697 0.703 0.737 0.717 

Dyn-2 0.843 0.854 0.862 0.828 0.832 0.798 0.791 0.824 0.780 0.798 0.813 0.794 0.802 0.812 0.816 

Dyn-3 0.843 0.854 0.890 0.909 0.868 0.876 0.861 0.850 0.879 0.862 0.867 0.867 0.877 0.869 

Dyn-4 0.843 0.854 0.890 0.922 0.917 0.907 0.917 0.898 0.897 0.923 0.904 0.902 0.898 

Dyn-5 0.929 0.936 0.939 0.940 0.930 0.940 0.950 0.939 0.941 0.943 0.945 0.939 

Dyn-6 0.947 0.957 0.958 0.953 0.956 0.961 0.968 0.963 0.956 0.964 0.958 

Dyn-7 0.964 0.970 0.967 0.973 0.970 0.978 0.981 0.975 0.975 0.973 

Dyn-8 0.976 0.980 0.981 0.983 0.983 0.986 0.987 0.984 0.982 

Dyn-9 0.984 0.988 0.987 0.991 0.990 0.991 0.992 0.989 

Dyn-10 0.991 0.991 0.995 0.995 0.993 0.994 0.993 

Dyn-1 1 0.993 0.996 0.997 0.996 0.996 0.995 

Dyn-1 2 0.996 0.998 0.998 0.997 0.997 

Dyn-1 3 0.998 0.998 0.999 0.998 

Dyn-14 0.998 0.998 0.998 

Dyn-15 0.999 0.999 

le of absolute deviation with true efficiency in simulation (1) for Table B6b: Averac 

technoloqv TEC6 

tl Q t3 M t5 W U t8 t9 tlo tl 1 t12 M M tl 5 Ave 
rage 

Static 0.010 0.031 0.145 0.131 0.137 0.192 0.152 0.201 0.191 0.165 0.175 0.157 0.197 0.157 0.136 0.145 

Dyn-2 0.137 0.114 0.104 0.130 0.129 0.141 0.138 0.126 0.171 0.159 0.120 0.145 0.141 0.139 0.135 

Dyn-3 0.132 0.111 0.114 0.127 0.138 0.112 0.121 0.128 0.136 0.135 0.128 0.119 0.128 0.125 

Dyn-4 0.127 0.123 0.130 0.128 0.099 0.116 0.116 0.118 0.136 0.110 0.121 0.124 0.121 

Dyn-5 0.113 0.119 0.126 0.110 0.123 0.112 0.133 0.136 0.096 0.120 0.116 0.119 

Dyn-6 0.126 0.130 0.119 0.132 0.113 0.138 0.149 0.099 0.125 0.123 0.125 

Dyn-7 0.129 0.123 0.140 0.118 0.141 0.151 0.109 0.137 0.127 0.131 

Dyn-8 0.125 0.147 0.122 0.149 0.155 0.110 0.140 0.138 0.136 

Dyn-9 0.149 0.126 0.151 0.158 0.113 0.144 0.140 0.140 

Dyn-1 0 0.127 0.153 0.161 0.115 0.145 0.143 0.141 

Dyn-1 1 0.154 0.162 0.117 0.148 0.144 0.145 

Dyn-12 0.163 0.118 0.150 0.144 0.144 

Dyn-1 3 0.118 0.150 0.146 0.138 

Dyn-14 0.149 0.146 0.148 

Dyn-15 0.146 0.146 

231 



Table B7a: Averaqe eff iciencv in simulation for technoloqv TEC 

tl t2 t3 W t5 W U t8 t9 tlo t1l t12 M t14 t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 0.880 0.849 0.853 0.851 

Static 0.841 0.738 0.644 0.555 0.600 0.558 0.606 0.533 0.575 0.570 0.608 0,594 0.604 0.594 0.612 0.615 

Dyn-2 0.841 0.838 0.841 0.763 0.725 0.730 0.706 0.732 0.692 0.735 0.749 0.745 0.730 0.728 0.754 

Dyn-3 0.841 0.838 0.869 0.882 0.825 0.812 0.818 0.800 0.836 0.799 0.817 0.824 0.820 0.829 

Dyn-4 0.841 0.838 0.869 0.897 0.903 0.876 0.872 0.870 0.869 0.883 0.857 0.863 0,870 

Dyn-5 0.917 0.926 0.915 0.906 0.915 0.912 0.928 0.913 0.906 0.911 0.918 0.915 

Dyn-6 0.933 0.946 0.938 0.930 0.939 0.948 0.954 0.939 0.930 0.941 0.940 

Dyn-7 0.955 0.957 0.952 0.956 0.957 0.968 0.967 0.959 0.959 0.959 

Dyn-8 0.966 0.969 0.969 0.971 0.977 0.977 0.980 0.971 0.972 

Dyn-9 0-975 0.982 0.982 0.984 0.985 0.986 0.986 0.983 

Dyn-1 0 0.987 0.987 0.991 0.990 0.989 0.990 0.989 

Dyn-1 1 0.990 0.994 0.995 0.992 0.991 0.992 

Dyn-12 0.995 0.996 0.996 0.993 0.995 

Dyn-13 0.997 0.996 0.997 0.997 

Dyn-14 0.997 0.997 0.997 

Dyn-15 0.998 0.998 

Table B7b: Average of absolute deviation with true eff iciencV in simulation (1) for 

technoloqv TEC7 

tl Q t3 W t5 W t7 t8 t9 tlo t1l t12 M t14 t15 Ave 
rage 

Static 0.011 0.115 0.222 0.310 0.244 0.293 0.259 0.327 0.279 0.299 0.249 0.248 0.286 0.266 0.254 0.244 

Dyn-2 0.136 0.116 0.107 0.152 0.192 0.187 0.191 0.166 0.236 0.200 0163 0.187 0.175 0.194 0.172 

Dyn-3 0.132 0.116 0.113 0.124 0.151 0.134 0.135 0.162 0.153 0.153 0.163 0.143 0.148 0.140 

Dyn-4 0.125 0.128 0.127 0.125 0.098 0.117 0.127 0.127 0.136 0.113 0.148 0.129 0.125 

Dyn-5 0.109 0.120 0.133 0.112 0.125 0.118 0.131 0.129 0.111 0.118 0.120 0.121 

Dyn-6 0.123 0.131 0.118 0.128 0.111 0.140 0.144 0.098 0.124 0.119 0.124 

Dyn-7 0.131 0.117 0.134 0.117 0.137 0.144 0.105 0.135 0.121 0.127 

Dyn-8 0.119 0.143 0.120 0.147 0.152 0.107 0.139 0.132 0.132 

Dyn-9 0.146 0.122 0.150 0.153 0.110 0.142 0.139 0.137 

Dyn-10 0.125 0.153 0.159 0.112 0.144 0.139 0.139 

Dyn-1 1 0.154 0.161 0.115 0.147 0.142 0.144 

Dyn-12 0.162 0.116 0.148 0.142 0.142 

Dyn-1 3 0.117 0.149 0.145 0.137 

Dyn-14 0.149 0.145 0.147 

Dyn-15 0.146 0.146 

232 



Table B8a: Averaqe eff iciencv in simulation for technoloqv TEC 

tl V t3 W t5 t6 U t8 t9 tlo tl 1 t12 M t14 t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 0.880 0.849 0.853 0.851 

Static 0.842 0.839 0.752 0.739 0.723 0.703 0.734 0.684 0.693 0.724 0.720 0.723 0.730 0.723 0.742 0.738 

Dyn-2 0.842 0.856 0.871 0.842 0.819 0.819 0.807 0.825 0.798 0.825 0.824 0.807 0.818 0.822 0.827 

Dyn-3 0.842 0.856 0.886 0.911 0.875 0.873 0.867 0.874 0.887 0-872 0.881 0.872 0.878 0.875 

Dyn-4 0.842 0.856 0.886 0.916 0.919 0.915 0.915 0.906 0.913 0.922 0.911 0.906 0.901 

Dyn-5 0.929 0.939 0.940 0.939 0.937 0.946 0.951 0.941 0.939 0.940 0.943 0.940 

Dyn-6 0.947 0.956 0.958 0.954 0.960 0.965 0.968 0.963 0.956 0.961 0.959 

Dyn-7 0.963 0.968 0.968 0.973 0.972 0.980 0.978 0.974 0.973 0.972 

Dyn-8 0.973 0.978 0.982 0.982 0.985 0.986 0.985 0.983 0.982 

Dyn-9 0.981 0.988 0.988 0.991 0.991 0.991 0.990 0.989 

Dyn-10 0.991 0.991 0.995 0.995 0.993 0.994 0.993 

Dyn-1 1 0.993 0.996 0.997 0.996 0.995 0.995 

Dyn-12 0.997 0.997 0.998 0.996 0.997 

Dyn-1 3 0.998 0.998 0.998 0.998 

Dyn-14 0.998 0.998 0.998 

Dyn-15 0.999 0.999 

Table B8b: Average of absolute deviation with true eff iciencV in simulation (1) for 

technoloqv TEC8 

tl t2 t3 M t5 W U t8 t9 tlo t1l t12 M M t15 Ave 
rage 

Static 0.010 0.017 0.114 0.134 0.119 0.149 0.136 0.176 0.156 0.148 0.134 0.120 0.161 0.136 0.126 0.122 

Dyn-2 0.136 0.115 0.104 0.126 0.132 0.137 0.130 0.117 0.160 0.150 0.119 0.138 0.139 0.131 0.131 

Dyn-3 0.132 0.113 0.114 0.129 0.134 0.111 0.118 0.123 0.134 0.133 0.121 0.121 0.123 0.124 

Dyn-4 0.125 0.124 0.129 0.128 0.100 0.120 0.114 0.124 0.135 0.104 0.122 0.124 0.121 

Dyn-5 0.113 0.122 0.127 0.109 0,125 0.113 0.132 0.132 0-096 0.120 0.113 0.118 

Dyn-6 0.127 0.131 0.117 0.134 0.114 0.138 0.147 0.096 0.125 0.121 0.125 

Dyn-7 0.130 0.122 0.142 0.117 0.141 0.152 0.106 0.136 0.127 0.130 

Dyn-8 0.123 0.147 0.122 0.148 0.155 0.110 0.140 0.136 0.135 

Dyn-9 0.148 0.125 0.151 0.158 0.113 0.144 0.139 0.140 

Dyn-10 0.126 0.153 0.161 0.115 0.145 0.142 0.140 

Dyn-1 1 0.154 0.162 0.117 0.148 0.143 0.145 

Dyn-12 0.163 0.117 0.150 0.144 0.143 

Dyn-1 3 0.118 0.149 0.146 0.138 

Dyn-14 0.149 0.145 0.147 

Dyn-15 0.146 0.146 
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Table B9a: Averaqe eff iciencv in simulation for technoloqv TEC9 

tl Q t3 M t5 W G t8 t9 tlo t1l t12 M t14 t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 0.88 0.849 0.853 0.851 

Static 0.843 0.722 0.651 0.595 0.603 0.583 0.637 0.558 0.613 0.609 0.657 0.622 0.616 0.626 0.637 0.638 

Dyn-2 0.843 0.801 0.791 0.705 0.694 0.716 0.719 0.728 0.708 0.751 0.733 0.756 0.734 0.724 0.743 

Dyn-3 0.843 0.801 0.837 0.832 0.786 0.792 0.8 0.786 0.824 0.8 0.816 0.814 0.816 0.811 

Dyn-4 0.843 0.801 0.837 0.865 0.862 0.851 0.851 0.847 0.863 0.863 0.848 0.859 0.849 

Dyn-5 0.887 0.894 0.893 0.882 0.894 0.898 0.907 0.901 0.896 0.894 0.897 0.895 

Dyn-6 0.908 0.924 0.915 0.913 0.917 0.931 0.938 0.926 0.915 0.927 0.921 

Dyn-7 0.936 0.937 0.932 0.934 0.938 0.957 0.953 0.944 0.947 0.942 

Dyn-8 0.947 0.951 0.949 0.953 0.966 0.967 0.968 0.961 0.958 

Dyn-9 0.959 0.967 0.966 0.974 0.976 0.978 0.98 0.971 

Dyn-1 0 0.975 0.976 0.984 0.982 0.982 0.985 0.981 

Dyn-1 1 0.981 0.988 0.989 0.987 0.987 0.986 

Dyn-12 0.99 0.992 0.992 0.989 0.991 

Dyn-1 3 0.994 0.993 0.994 0.994 

Dyn-14 0.995 0.994 0.995 

Dyn-15 0.995 0.995 

Table B9b: Avera-qe of absolute deviation with true eff iciencv in simulation (1) fo 

technoloqv TEC9 

tl t2 t3 t4 t5 t6 U t8 t9 tlo t1l U2 M M t15 Ave 
rage 

Static 0.01 0.133 0.216 0.273 0.237 0.268 0.231 0.301 0.24 0.263 0.198 0.22 0.276 0.233 0.227 0.222 

Dyn-2 0.136 0.125 0.126 0.173 0.21 0.195 0.177 0.163 0.225 0.181 0.157 0.17 0.178 0.192 0.172 

Dyn-3 0.132 0.124 0.115 0.134 0.163 0.136 0.133 0.161 0.15 0.149 0.153 0.144 0.139 0.141 

Dyn-4 0.126 0.133 0.132 0.13 0.099 0.121 0.132 0.131 0.139 0.113 0.144 0.131 0.127 

Dyn-5 0.106 0.12 0.138 0.115 0.122 0.115 0.135 0.121 0.108 0.116 0.119 0.119 

Dyn-6 0.123 0.135 0.116 0.122 0.114 0.141 0.133 0.099 0.125 0.117 0.123 

Dyn-7 0.135 0.112 0.129 0.115 0.137 0.139 0.099 0.133 0.118 0.124 

Dyn-8 0.111 0.137 0.118 0.143 0.145 0.103 0.133 0.126 0.127 

Dyn-9 0.139 0.122 0.145 0.148 0.105 0.139 0.134 0.133 

Dyn-10 0.124 0.15 0.155 0.109 0.141 0.136 0.136 

Dyn-1 1 0.152 0.158 0.112 0.143 0.138 0.141 

Dyn-12 0.16 0.114 0.145 0.139 0.139 

Dyn-1 3 0.115 0.147 0.144 0.135 

Dyn-14 0.148 0.144 0.146 

Dyn-15 0.145 0.145 
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Table B10a: Averac ie eff iciencv in simulation for technoloqv TEC1 0 

tl t2 t3 M t5 W V t8 t9 tlo t1l t12 M t14 t15 Ave 
rage 

TRUE 0.849 0.853 0.859 0.853 0.835 0.846 0.856 0.854 0.837 0.869 0.843 0.835 0.880 0.849 0.853 0.851 

Static 0.842 0.751 0.702 0.655 0.641 0.627 0.676 0.594 0.642 0.649 0.690 0.656 0.669 0.661 0.653 0.674 

Dyn-2 0.842 0.816 0.820 0.785 0.749 0.765 0.761 0.771 0.746 0.787 0.786 0.776 0.762 0.758 0.780 

Dyn-3 0.842 0.816 0.857 0.866 0.836 0.829 0.835 0.834 0.851 0.835 0.854 0.848 0.837 0.842 

Dyn-4 0.842 0.816 0.857 0.885 0.891 0.893 0.885 0.881 0.892 0.893 0.882 0.886 0.875 

Dyn-5 0.909 0.920 0.922 0.915 0.921 0.925 0.931 0.923 0.919 0.918 0.920 0.920 

Dyn-6 0.928 0.943 0.942 0.936 0.943 0.953 0.954 0.945 0.938 0.944 0.943 

Dyn-7 0.950 0.954 0.955 0.958 0.962 0.970 0.966 0.963 0.962 0.960 

Dyn-8 0.962 0.966 0.971 0.972 0.979 0.978 0.978 0.974 0.972 

Dyn-9 0.972 0.979 0.982 0.985 0.986 0.987 0.986 0.982 

Dyn-10 0.985 0.986 0.990 0.990 0.990 0.991 0.989 

Dyn-1 1 0.989 0.993 0.994 0.993 0.992 0.992 

Dyn-12 0.994 0.995 0.996 0.994 0.995 

Dyn-1 3 0.996 0.996 0.997 0.997 

Dyn-14 0.997 0.997 0.997 

Dyn-15 0.998 0.998 

Table Bl Ob: Average of absolute deviation with true efficiency in simulation (1) for 

technoloqv TEC10 

tl Q t3 W t5 W V t8 t9 tlo t1l M M t14 M Ave 
rage 

Static 0.010 0.102 0.163 0.215 0.198 0.225 0.193 0.265 0.208 0.222 0.164 0.186 0.219 0.193 0.210 0.185 

Dyn-2 0.137 0.124 0.113 0.139 0.171 0.162 0.155 0.137 0.195 0.162 0.128 0.155 0.150 0.164 0,149 

Dyn-3 0.132 0.122 0.116 0.122 0.138 0.119 0.121 0.138 0.140 0.133 0.133 0.127 0.133 0.129 

Dyn-4 0.126 0.133 0.129 0.125 0.097 0.117 0.121 0.126 0.133 0.109 0.132 0.123 0.122 

Dyn-5 0.107 0.121 0.129 0.109 0.120 0.108 0.129 0.122 0.101 0.118 0.112 0.116 

Dyn-6 0.123 0.133 0.115 0.127 0.109 0.136 0.138 0.094 0.125 0.119 0.122 

Dyn-7 0.132 0.116 0.136 0.114 0.138 0.145 0.101 0.135 0.124 0.127 

Dyn-8 0.117 0.142 0.118 0.145 0.151 0.106 0.136 0.130 0.131 

Dyn-9 0.145 0.121 0.149 0.155 0.110 0.141 0.137 0.137 

Dyn-10 0.124 0.152 0.159 0.113 0.143 0.140 0.138 

Dyn-1 1 0.152 0.160 0.115 0.146 0.141 0.143 

Dyn-12 0.161 0.116 0.149 0.142 0.142 

Dyn-13 0.117 0.149 0.145 0.137 

Dyn-14 0.149 0.145 0.147 

Dyn-15 0.146 0.146 
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Table Cl: Averaqe eff iciencv in simulation (11) for data set SET1 

tl t2 t3 t4 t5 W U t8 t9 tlo t1l t12 M M t15 Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0,759 0.734 

Static 0.737 0.701 0.729 0.737 0.730 0.721 0.710 0.684 0.687 0.718 0.725 0.732 0.665 0.693 0.732 0.713 

Dyn-2 0.745 0.730 0.719 0.722 0.742 0.753 0.726 0.701 0.698 0.732 0.738 0.735 0.685 0.675 0.722 

Dyn-3 0.741 0.727 0.743 0.735 0.771 0.775 0.755 0.736 0.724 0.738 0.756 0.769 0.724 0.746 

Dyn-4 0.741 0.736 0.757 0.779 0.775 0.804 0.809 0.786 0.767 0.763 0.780 0.786 0.774 

Dyn-5 0.823 0.826 0.837 0.836 0.811 0.815 0.815 0.805 0.797 0.793 0.765 0.811 

Dyn-6 0.853 0.858 0.857 0.841 0.837 0.840 0.838 0.817 0.817 0.817 0.837 

Dyn-7 0.882 0.874 0.869 0.876 0.875 0.880 0.857 0.853 0.822 0.865 

Dyn-8 0.908 0.886 0.888 0.899 0.912 0.873 0.871 0.859 0.887 

Dyn-9 0.903 0.903 0.915 0.922 0.912 0.898 0.886 0.906 

Dyn-1 0 0.927 0.941 0.939 0.918 0.943 0.904 0.929 

Dyn-1 1 Oý948 0.945 0.939 0.942 0.931 0.941 

Dyn-1 2 0.959 0.955 0.961 0.946 0.955 

Dyn-1 3 0.967 0.973 0.956 0.965 

Dyn-14 0.971 0.966 0.968 

Dyn-15 0.965 0.965 

Table C2: Averaqe efficiency in simulation (11) for data set SET2 

tl Q t3 M t5 W U t8 t9 tlO t1l t12 M t14 M Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0.759 0.734 

Static 0.736 0.689 0.720 0.719 0.730 0.727 0.709 0.688 0.702 0.729 0.723 0.730 0.663 0.693 0.721 0.712 

Dyn-2 0.736 0.712 0.722 0.736 0.730 0.731 0.707 0.690 0.703 0.723 0.737 0.740 0.692 0.678 0.717 

Dyn-3 0.736 0.712 0.743 0.753 0.771 0.755 0.733 0.716 0.722 0.737 0.764 0.763 0.740 0.742 

Dyn-4 0.736 0.712 0.743 0.777 0.788 0.788 0.775 0.744 0.751 0.753 0.780 0.787 0.761 

Dyn-5 0.808 0.807 0.802 0.790 0.783 0.776 0.799 0.812 0.805 0.801 0.798 0.798 

Dyn-6 0.830 0.832 0.818 0.815 0.809 0.822 0.836 0.832 0.833 0.827 0.825 

Dyn-7 0.852 0.847 0.840 0.839 0.855 0.854 0.853 0.854 0.851 0.849 

Dyn-8 0.866 0.868 0.862 0.882 0.883 0.871 0.871 0.873 0.872 

Dyn-9 0.883 0.890 0.903 0.911 0.900 0.888 0.896 0.896 

Dyn-10 0.906 0.918 0.926 0.921 0.915 0.912 0.916 

Dyn-11 0.929 0.940 0.937 0.932 0.934 0.934 

Dyn-1 2 0.949 0.948 0.945 0.947 0.947 

Dyn-13 0.957 0.956 0.960 0.958 

Dyn-14 0.963 0.965 0.964 

Dyn-15 0.965 0.965 
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Table C3: Average eff iciency in simulation (11) for data set SET3 

tl V t3 M t5 W U t8 t9 tlO t1l M M M t15 Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0.759 0.734 

Static 0.744 0.674 0.724 0.714 0.720 0.729 0.708 0.689 0.707 0.724 0.727 0.725 0.660 0.692 0.720 0.710 

Dyn-2 0.744 0.706 0.713 0.742 0.725 0.726 0.715 0.689 0.705 0.726 0.737 0.744 0.696 0.682 0.718 

Dyn-3 0.744 0.706 0.741 0.748 0.760 0.758 0.738 0.721 0.725 0.743 0.769 0.769 0.745 0.743 

Dyn-4 0.744 0.706 0.741 0.778 0.779 0.791 0.777 0.750 0.754 0.757 0.788 0.795 0.763 

Dyn-5 0,808 0.807 0.806 0.793 0.788 0.781 0.805 0.819 0.813 0.809 0.806 0.803 

Dyn-6 0.832 0.834 0.822 0.819 0.813 0.831 0.841 0.835 0,839 0.834 0.830 

Dyn-7 0.856 0.848 0.846 0.843 0.859 0.860 0.855 0.859 0.859 0.854 

Dyn-8 0.869 0.869 0.867 0.886 0.885 0.874 0.874 0.877 0.875 

Dyn-9 0.886 0.892 0.908 0.915 0.905 0.892 0.900 0.900 

Dyn-1 0 0.908 0.923 0.931 0.927 0.919 0.917 0.921 

Dyn-1 1 0.934 0.944 0.944 0.938 0.937 0.939 

Dyn-12 0.952 0.951 0.951 0.951 0.951 

Dyn-13 0.961 0.959 0.964 0.961 

Dyn-14 0.966 0.968 0.967 

Dyn-1 5 0.968 0.968 

Table C4: Average eff iciency in simulation (11) for data set SET4 

tl Q t3 t4 t5 W U t8 t9 tlo t1l t12 M t14 M Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0.759 0.734 

Static 0.745 0.702 0.723 0.735 0.739 0.729 0.714 0.683 0.690 0.724 0.721 0.724 0.664 0.700 0.726 0.715 

Dyn-2 0.739 0.717 0.718 0.734 0.741 0.746 0.717 0.695 0.690 0.722 0.747 0.734 0.694 0.690 0.720 

Dyn-3 0.747 0.728 0.757 0.732 0.778 0.782 0.764 0.742 0.722 0.747 0.756 0.764 0.718 0.749 

Dyn-4 0.744 0.736 0.744 0.777 0.776 0.817 0.803 0.787 0.773 0.761 0.786 0.786 0.774 

Dyn-5 0.813 0.821 0.832 0.822 0.812 0.815 0.811 0.803 0.797 0.787 0.773 0.808 

Dyn-6 0.847 0.853 0.867 0.850 0.840 0.851 0.849 0.825 0.811 0.805 0.840 

Dyn-7 0.869 0.872 0.859 0.862 0.878 0.867 0.858 0.834 0,826 0.858 

Dyn-8 0.894 0.895 0.884 0.891 0.911 0.882 0.878 0.861 0.887 

Dyn-9 0.902 0.905 0.918 0.922 0.901 0.894 0.872 0.902 

Dyn-10 0.929 0.927 0.929 0.936 0.928 0.901 0.925 

Dyn-1 1 0.952 0.960 0.937 0.946 0.943 0.948 

Dyn-12 0.951 0.943 0.958 0.953 0.951 

Dyn-1 3 0.966 0.964 0.953 0.961 

Dyn-14 0.970 0.967 0.968 

Dyn-15 0.959 0.959 
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Table C5: Average eff iciency in simulation (11) for data set SET5 

tl V t3 M t5 W U t8 t9 tlo t1l t12 M t14 t15 Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0.759 0.734 

Static 0.742 0.690 0.719 0.720 0.730 0.727 0.710 0.688 0.702 0.729 0.724 0.729 0.662 0.693 0.723 0.712 

Dyn-2 0.742 0.713 0.723 0.736 0.731 0.731 0.708 0.690 0.703 0,722 0.738 0.740 0.692 0.679 0.718 

Dyn-3 0.742 0.713 0.744 0.754 0.773 0.755 0.733 0.716 0.722 0.737 0.764 0.762 0.740 0.743 

Dyn-4 0.742 0.713 0.744 0.778 0.789 0.789 0.775 0.744 0.751 0.753 0.780 0.788 0.762 

Dyn-5 0.810 0.807 0.803 0.790 0.783 0.776 0.799 0.812 0.806 0.802 0.798 0.799 

Dyn-6 0.830 0.833 0.818 0.816 0.809 0.822 0.837 0.832 0.833 0.826 0.826 

Dyn-7 0.853 0.848 0.841 0.839 0.855 0.854 0.853 0.854 0.851 0.850 

Dyn-8 0.866 0.868 0.862 OM2 0.883 0.871 0.871 0.873 0.872 

Dyn-9 0.883 0.890 0.903 0.910 0.900 0.889 0.896 0.896 

Dyn-10 0.906 0.919 0.926 0.921 0.915 0.911 0.916 

Dyn-1 1 0.930 0.940 0.937 0.932 0.934 0.934 

Dyn-1 2 0.949 0.948 0.945 0.947 0.947 

Dyn-1 3 0.958 0.956 0.960 0.958 

Dyn-14 0.963 0.965 0.964 

Dyn-1 5 0.965 0.965 

Table C6: Average efficiency in simulation (11) for data set SET6 

tl t2 t3 t4 t5 W U t8 t9 tlO t1l t12 M t14 t15 Ave 
rage 

TRUE 0.746 0.716 0.746 '0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0.759 0.734 

Static 0.739 0.680 0.719 0.720 0.716 0.726 0.712 0.686 0.706 0.729 0.719 0.724 0.662 0.692 0.712 0.709 

Dyn-2 0.746 0.705 0.714 0.747 0.718 0.728 0.708 0.689 0.701 0.735 0.747 0.740 0.705 0.686 0.719 

Dyn-3 0.734 0.715 0.734 0.752 0.751 0.748 0.730 0.726 0.725 0.743 0.775 0.771 0.742 0.742 

Dyn-4 0.751 0,711 0.751 0.785 0.785 0.796 0.769 0.742 0.756 0.761 0.781 0.786 0.765 

Dyn-5 0.818 0.806 0.796 0.791 0.784 0.773 0.807 0.810 0.821 0.803 0.810 0.802 

Dyn-6 0.823 0.828 0.816 0.812 0.814 0.830 0.833 0.828 0.831 0.843 0.826 

Dyn-7 0.864 0.853 0.842 0.846 0.856 0.868 0.848 0.859 0.864 0.856 

Dyn-8 0.879 0.872 0.872 0.886 0.892 0.880 0.877 0.873 0.879 

Dyn-9 0.895 0.887 0.898 0.924 0.902 0.883 0.903 0.899 

Dyn-10 0.909 0.922 0.930 0.936 0.928 0.926 0.925 

Dyn-1 1 0.935 0.943 0.935 0.943 0.939 0.939 

Dyn-12 0.944 0.949 0.960 0.958 0.953 

Dyn-13 0.970 0.966 0.956 0.964 

Dyn-14 0.973 0.972 0.973 

Dyn-1 5 0.970 0.970 
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Table C7: Average eff iciency in simulation (11) for data set SET7 

tl Q t3 M t5 W V t8 t9 tlo t1l t12 M M t15 Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0,696 0.731 0.759 0.734 

Static 0.746 0.694 0.720 0.728 0.734 0.727 0.714 0.687 0.696 0.720 0.725 0.724 0.668 0.695 0.725 0.714 

Dyn-2 0.746 0.727 0.711 0.729 0.745 0.748 0.723 0.702 0.693 0.722 0.746 0.730 0.685 0.684 0.721 

Dyn-3 0.746 0.727 0.750 0.738 0.776 0.777 0.764 0.738 0.730 0.745 0.757 0.765 0.724 0.749 

Dyn-4 0.746 0.727 0.750 0.776 0.780 0.807 0.803 0.789 0.776 0.771 0.786 0.782 0.774 

Dyn-5 0.813 0.818 0.834 0.827 0.815 0.808 0.808 0.813 0.790 0.796 0.772 0.809 

Dyn-6 0.845 0.852 0.857 0.846 0.846 0.847 0.840 0.821 0.817 0.811 0.838 

Dyn-7 0.878 0.876 0.868 0.869 0.879 0.874 0.851 0.843 0.830 0.863 

Dyn-8 0.898 0.892 0.890 0.899 0.906 0.875 0.872 0.854 0.886 

Dyn-9 0.910 0.909 0.914 0.919 0.910 0.892 0.879 0.905 

Dyn-10 0.926 0.931 0.936 0.926 0.936 0.899 0.926 

Dyn-1 1 0.947 0.950 0.942 0.944 0.941 0.945 

Dyn-1 2 0.960 0.953 0.955 0.948 0.954 

Dyn-1 3 0.961 0.963 0.961 0.962 

Dyn-14 0.969 0.968 0.968 

Dyn-1 5 0.968 0.968 

Table CQ: Average efficiency in simulation (11) for data set SET8 

tl Q t3 W t5 t6 V t8 t9 UO t1l M M M M Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0.759 0.734 

Static 0.744 0.666 0.732 0.724 0.727 0.736 0.715 0.694 0.714 0.718 0.722 0.720 0.661 0.696 0.726 0.713 

Dyn-2 0.736 0.702 0.707 0.748 0.723 0.727 0.714 0.695 0.699 0.723 0.746 0.751 0.689 0.674 0.717 

Dyn-3 0.739 0.709 0.745 0.751 0.760 0.750 0.748 0.724 0.724 0.751 0.773 0.768 0.749 0.745 

Dyn-4 0.743 0.713 0.745 0.768 0.781 0.797 0.783 0.760 0.749 0.759 0.796 0.797 0.766 

Dyn-5 0.810 0.814 0.798 0.802 0.780 0.789 0.796 0.817 0.814 0.812 0.809 0.804 

Dyn-6 0.830 0.842 0.815 0.818 0.805 0.829 0.850 0.825 0.836 0.838 0.829 

Dyn-7 0,848 0.838 0.854 0.852 0.863 0.868 0.862 0.867 0.868 0.858 

Dyn-8 0.869 0.869 0.872 0.877 0.884 0.870 0.882 &874 0.875 

Dyn-9 0.880 0.893 0.910 0.916 0.908 0.891 0.900 0.900 

Dyn-10 0.901 0.926 0.924 0.931 0.912 0.910 0.917 

Dyn-1 1 0.942 0.947 0.939 0.935 0.928 0.938 

Dyn-12 0.946 0.942 0.955 0.952 0.949 

Dyn-13 0.967 0.951 0.969 0-962 

Dyn-14 0,965 0.968 0.967 

Dyn-1 5 0.968 0.968 
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Table C9: Averaqe efficiency in simulation (11) for data set SET9 

tl V t3 W t5 W t7 t8 t9 tlo t1l t12 M M t15 Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0759 0.734 

Static 0.739 0.696 0.711 0.724 0.736 0.736 0.721 0.687 0.690 0.713 0.729 0.721 0.662 0.694 0.719 0.712 

Dyn-2 0.737 0.718 0.707 0.739 0.741 0.740 0.726 0.698 0.699 0.716 0.743 0.724 0.682 0.687 0.718 

Dyn-3 0.741 0.727 0.758 0.730 0.786 0.781 0.763 0.731 0.736 0.751 0.757 0.772 0.723 0.750 

Dyn-4 0.751 0.722 0.760 0.776 0.773 0.797 0.796 0.784 0.774 0.763 0.794 0.784 0.773 

Dyn-5 0.808 0.816 0.843 0.820 0.806 0.802 0.800 0.817 0.786 0.797 0.777 0.807 

Dyn-6 0.852 0.847 0.858 0.841 0.837 0.840 0.832 0.829 0.822 0.816 0.837 

Dyn-7 0.882 0.881 0.861 0.879 0.873 0.874 0.859 0.838 0.822 0.863 

Dyn-8 0.902 0.893 0.883 0.905 0.903 0.870 0.869 0.859 0.885 

Dyn-9 0.909 0.917 0.918 0.912 0.915 0.901 0.872 0.906 

Dyn-1 0 0.917 0.935 0.945 0.918 0.942 0.906 0.927 

Dyn-1 1 0.938 0.944 0.945 0.947 0.938 0.943 

Dyn-12 0.956 0.953 0.947 0.948 0.951 

Dyn-13 0.956 0.961 0.952 0.956 

Dyn-14 0.970 0.976 0.973 

Dyn-1 5 0.969 0.969 

Table Cl 0: Average eff iciency in simulation (11) for data set SET1 0 

tl t2 t3 W t5 t6 U t8 t9 tlo t1l tl 2 tl 3 tl 4 tl 5 Ave 
rage 

TRUE 0.746 0.716 0.746 0.738 0.742 0.738 0.722 0.703 0.721 0.748 0.743 0.756 0.696 0.731 0.759 0.734 

Static 0.750 0.701 0.713 0.726 0.737 0.733 0.719 0.694 0.692 0.710 0.718 0.731 0.676 0.690 0.716 0.714 

Dyn-2 0.744 0.736 0.716 0.730 0.738 0.739 0.716 0.709 0.687 0.724 0.741 0.732 0.682 0.681 0.720 

Dyn-3 0.746 0.737 0.747 0.740 0.767 0-769 0.764 0.744 0.739 0.753 0.764 0.768 0.716 0.750 

Dyn-4 0.750 0.724 0.758 0.770 0.786 0.808 0.812 0.793 0.770 0.779 0.794 0.779 0.777 

Dyn-5 0.816 0.821 0.827 0.831 0.823 0.801 0.817 0.803 0.796 0.804 0.771 0.810 

Dyn-6 0.839 0.843 0.854 0.841 0.841 0.848 0.832 0.822 0.810 Oý816 0.834 

Dyn-7 0.885 0.880 0.862 0.876 0.887 0.868 0.855 0.839 0.823 0.864 

Dyn-8 0.894 0.887 0.899 0.898 0.898 0.878 0.862 0.853 0.884 

Dyn-9 0.919 0.906 0.916 0.924 0.919 0.895 0.883 0.909 

Dyn-10 0.934 0.932 0.945 0.926 0.942 0.891 0.928 

Dyn-1 1 0.946 0.951 0.937 0.949 0.950 0.947 

Dyn-1 2 0.959 0.957 0.956 0.956 0.957 

Dyn-13 0.952 0.961 0.9540.956 

Dyn-14 0.974 0.964 0.969 

Dyn-15 0.958 0.958 
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Appendix B: A report of efficiency and 

productivity of Industrialised counties, OECD. 
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Summary of dynamic efficiency, productivity and its decomposition for AUSTRALIA 

Efficiency 
Change 

Technical 
Change 

Malmquist 
Index 

Average 
69-78 

Average 
79-88 

Average 
69-88 

1969-70 0.92289 1.00000 0.92289 Efficiency 0.86910 0.92965 0.89938 

1970-71 1.00446 0.99236 0.99678 Efficiency Change 1.00181 1.00695 1.00425 

1971-72 1.01053 1.00307 1.01362 Malmquist Index 1.04370 0.98552 1.01614 

1972-73 0.99245 1.00000 0.99245 Technical Change 1.03798 0.97741 1.00929 

1973-74 1.01630 1.18989 1.20929 7- --- 
1974-75 1.18983 1.16212 1.38272 ! i. uoiöö 

1975-76 0.87090 0.97304 0.84743 1 ýU2914 

1976-77 1.03121 1.05601 1.08897 099641 

1977-78 0.98687 1.00465 0.99146 0.96367 

1978-79 0.99271 0.99868 0.99140 
093094 

1979-80 1.13658 0.99878 1.13519 

1980-81 1.00000 0.99976 0.99976 089820 

1981-82 0.90352 0.89247 0.80636 086547 

1982-83 1.00749 1.04191 1.04971 083273 

1983-84 1.01139 0.91173 0.92212 0.80000 

1984-85 1.00450 0.99778 1.00227 (D 131 

1985-86 0.99201 0.91773 0.91039 
.0 

CD 
(D C: 

t co 

5 

cr (1) 
E -0 

L) C, 
cc 
1- M 

1986-87 0.99856 1.00751 1.00606 w w 
co 
2 

1987-88 1.00850 1.02904 1.03779 13 Average 69-78 0 Average 79- 88 0 Avera ge 69-88 

1 50000 

1 40000 

1 30000 

1 20000 

1 10000 

1 00000 

0,90000 

0.80000 

Decomposition of Productivity Index to Technical Change and 
Efficiency Change 

CD C\i 

cr) c C\j Cl) LO 
(D rl ;z r- rý r- r- 
a) (3) 0) C) C) CY) 0) 

* Efficiency Change 

Year 
Dynamic 
eff iciency Year 

Dynamic 
eff iciency 

1969 0.88952 1979 0.87983 

1970 0.82093 1980 1.00000 

1971 0.82459 1981 1.00000 

1972 0.83327 1982 0.90352 

1973 0.82698 1983 0.91029 

1974 0.84046 1984 0.92066 

1975 1.00000 1985 0.92481 

1976 0.87090 1986 0.91742 

1977 0.89808 1987 0.91609 

1978 0.88629 1988 0.92388 

P- aD 0) 0N CO 'IT Ln ýO r- 00 T op cp c? ap ap c? op 
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Summary of dynamic efficiency, productivity and its decomposition for AUSTRIA 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 0.89509 0.90410 0.80925 Eff iciency 0.93553 0.95261 0.94407 

1970-71 0.99412 0.95909 0.95345 Efficiency Change 0.99956 0.99721 0.99845 

1971-72 1.01370 0.97674 0.99012 Malmquist Index 0.95809 1.00016 0.97802 

1972-73 1.01IS16 0.96807 0.98274 Technical Change 0.95817 1.00290 0.97936 

1973-74 1.04459 0.94136 0.98334 
F 

1974-75 1.02188 0.93272 0.95312 
l. UIV 14 

1975-76 1.01673 0.94401 0.95980 0.99641 

1976-77 1.02740 0.96132 0.98766 
0.96367 

1977-78 0.98005 1.00197 0.98197 

1978-79 0.98693 0.99237 0.97940 0.93094 

1979-80 0.99766 1.02970 1.02729 0.89820 

1980-81 0.99227 0.98249 0.97489 

1981-82 0.99365 0.97264 0.96647 
0.86547 

1982-83 0.99621 0.93494 0.93140 0.83273 

1983-84 0.99740 0.98285 0.98030 0.80000 

1984-85 1.00291 1.00007 1.00297 C) 
1985-86 1.00359 1.05577 1.05956 .0 

C: 3 
(D C: CT 
6mE '0 

_r_ c 

C: c 

-c-- Co 
C) 

1986-87 0.99741 1.05532 1.05259 
0 Average 69-78 0 Average 79-88 0 Average 69-88 

1987-88 0.99377 1.01232 1.00601 

1 10000 

1 05000 

1,00000 

0.95000 

0.90000 

0,85000 

0.80000 
CD 

(3) CD 

Year 
Dynamic 
eff iciency Year 

Dynamic 
eff iciency 

1969 0.97940 1979 0.96723 

1970 0.87665 1980 0.96497 

1971 0.87149 1981 0.95751 

1972 0.88344 1982 0.95143 

1973 0.89683 1983 0.94782 

1974 0.93682 1984 0.94536 

1975 0.95732 1985 0.94811 

1976 0.97333 1986 0.95151 

1977 1.00000 1987 0.94905 

1978 0.98005 1988 0.94313 

Decomposition of Productivity Index to Technical Change and 
Efficiency Change 
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--S-u-mm-ory-of dynamic efficiency, productivity and its decomposition for BELGIUM 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 0.85334 0.91087 0.77728 Eff iciency 0.88492 0.90648 0.89570 

1970-71 1.04182 Oý94089 0.98023 Efficiency Change 1.00237 1.00022 1.00135 

1971-72 1.03340 0.95032 0.98207 Malmquist Index 0-97989 0.98139 0.98060 

1972-73 1.03810 0.83554 0.86738 Technical Change 0.97756 0.98129 0.97933 

1973-74 1.02846 1.12423 1.15623 --- 
1974-75 1.12102 1.00000 1.12102 1 UZV14 

1975-76 M1726 1.07953 0.99020 099641 

1976-77 1.00551 0.96464 0.96995 
0,96367 

1977-78 0.99826 0.97737 0.97567 

1978-79 0.98651 0.99221 0.97883 093094 

1979-80 1.00381 0.99568 0.99948 089820 

1980-81 0.99424 1.00000 0.99424 

1981-82 1.00036 0.89721 0.89753 
086547 

1982-83 0.98568 0.95928 0.94554 0.83273 

1983-84 0.99424 0.98009 0.97445 0.80000 

1984 -85 0.99767 0.97108 0.96882 

1985 -86 1.08527 0.98580 1.06986 
c (1) 
.9 

3 c 
S? cl (L) 
ý2 co E -0 

c 
cc 
'c cu 0 

-C 

1986 -87 0.93069 1.01350 0.94325 LU LU 2 
(D 

0 Average 69-78 M Average 79-88 0 Average 69-88 
1987 -88 1.01006 1.02898 1.03933 

Decomposition of Productivity Index to Technical Change and 
Pffir-ig. -Ind-w rhnnna 

Dynamic Dynamic 105 
Year eff iciency Year eff iciency 

1 
1969 0.90944 1979 0.90829 

1970 0.77606 1980 0.91175 095 

1971 0.80851 1981 0.90650 0.9 
1972 0.83552 1982 0.90682 

1973 0.86736 1983 0.89384 Oý85 

1974 0.89205 1984 0.88869 08 
1975 1.00000 1985 0.88662 

075 
1976 0.91726 1986 0.96222 

1977 0.92231 1987 0.89552 

1978 0.92071 1988 0.90453 

A comparison of efficiency with least efficient country 
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Summary of dynamic efficiency, productivity and its decomposition for CANADA 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 0.90480 0.82639 0.74772 Eff iciency 0.86747 0.97663 0.92205 

1970-71 1 
ý004911 

0.98766 0.99250 Efficiency Change 1.01366 1.00726 1.01063 

1971-72 1. OOS93 1.27107 1.27861 Malmquist Index 1.00932 1.00925 1.00929 

1972-73 1.01179 1.00385 1.01569 Technical Change 0.99773 1.00183 0.99967 

1973-74 1.25465 0.98692 1.23823 

1974-75 0.84436 0.97875 0.82642 l. U2914 

1975-76 1.18433 0.84314 0.99855 0.99641 

1976-77 0.90505 1.10078 0.99626 
0.96367 

1977-78 1.01305 0.98035 0.99314 

1978-79 1.00771 0.99842 1.00611 0.93094 

1979-80 1.02457 1.01139 1.03624 0.89820 

1980-81 1.05639 1ý01116 1.06818 

1981-82 1.00000 0.98053 0.98053- 
0.86547 

1982-83 0.98508 0.97312 0.95861 0.83273 

1983-84 1.00121 0.97942 0.98060 0.80000 

1984-85 0.99840 0.98292 0.98135 (D CD 

1985-86 0.99079 1.01604 1.00669 
C4 
C CT 

05 
Q) c cr 

z co u r- 

1986-87 1.00418 1.03041 1.03473 LU w2 
0 Average 69-78 M Average 79-88 OAverage 69-88 

1987-88 1.00474 1.03146 1.03635 

Decomposition of Productivity Index to Technical Change and 
Efficiencv Chancie 
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Year 
Dynamic 
eff iciency Year 

Dynamic 
efficiency 

1969 0.86127 1979 0.92392 

1970 0.77928 1980 0.94662 

1971 0.78311 1981 1.00000 

1972 0.78775 1982 1.00000 

1973 0.79703 1983 0.98508 

1974 1.00000 1984 0.98627 

1975 0.84436 1985 0.98470 

1976 1.00000 1986 0.97563 

1977 0.90505 1987 0.97971 

1978 0.91686 1988 0.98435 
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0.75 
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Summary of dynamic efficiency, productivity and its decomposition for DENMARK 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 0.91132 0.90877 0.82818 Efficiency 0.91813 0.95779 0.93796 
1970-71 0.99838 1.13923 1.13739 Efficiency Change 1.00393 0.99890 1.00155 
1971-72 1.11655 1.02584 1.14540 Malmquist Index 0.99979 1.01476 1.00688 
1972-73 0.87571 0.89055 0.77987 Technical Change 0.99338 1.01566 1.00393 
1973-74 1.02137 0.99875 1.02009 -- 
1974-75 0.99440 0.97939 0.97391 I. U, 'j 14 

1975-76 1.02287 0.98828 1.01089 0,99641 

1976-77 1.01112 0.99104 1.00206 
0.96367 

1977-78 0.99475 1.00463 0.99936 

1978-79 1.09283 1.00727 1.10077 0.93094 

1979-80 0.90615 0.98509 0.89263 Oý89820 

1980-81 1.00968 0.99362 1.00323 

1981-82 1.00798 1.00165 1.00964 
086547 

1982-83 1.02436 1.03014 1.05523 0,83273 

1983-84 0.99419 1.05285 1.04674 0.80000 

1984-85 1.06475 1.01901 1.08498 C> u CDO 

'j; 
Dx 

-ý6 <D 
ý-) co I 

1985-86 1.00000 1.01618 1.01618 
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9 10 - 
CT (D 

E 'D 
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-C ru I 
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Year 
Dynamic 
eff iciency Year 

Dynamic 
eff iciency 

1969 0.98436 1979 1.00000 

1970 0.89707 1980 0.90615 

1971 0.89561 1981 0.91491 

1972 1.00000 1982 0.92221 

1973 0.87571 1983 0.94468 

1974 0.89443 1984 0.93919 

1975 0.88942 1985 1.00000 

1976 0.90976 1986 1.00000 

1977 0.91988 1987 0.96826 

1978 0.91506 1988 0.98252 
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Summary of dynamic efficiency, productivity and its decomposition for FINLAND 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 1.00000 1.00000 1.00000 Eff iciency 0.99923 1.00000 0.99961 

1970-71 0.99233 0.99535 0.98772 Efficiency Change 1.00001 1.00000 1.00000 

1971-72 1.00773 1.00000 1.00773 Malmquist Index 0.99935 1.00399 1.00155 

1972-73 0.99996 0.99811 0.99806 Technical Change 0.99935 1.00399 1.00154 

1973-74 1.00004 1.00000 1.00004 - 

1974-75 1.00000 1.00000 1.00000 
I. uzýj 14 

1975-76 1.00000 1.00000 1.00000 0,99641 

1976-77 1.00000 1.00000 1.00000 
0.96367 

1977-78 1.00000 1.00000 1.00000 

1978-79 1.00000 1.00000 1.00000 0.93094 

1979-80 1.00000 1.00000 1.00000 0.89820 

1980-81 1.00000 1.00000 1.00000 

1981-82 1.00000 1.00000 1.00000 
0.86547 

1982-83 1.00000 1.00000 1.00000 0.83273 

1983-84 1.00000 1.00000 1.00000 0.80000 
1984-85 1.00000 1.00713 1.00713 

1985-86 1.00000 1,01074 1.01074 
(D C 

.a co "0 E cr (V u _I_- 
1986-87 1.00000 1.01597 1.01597 LU 
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Year 
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eff iciency Year 

Dynamic 
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1969 1.00000 1979 1.00000 

1970 1.00000 1980 1.00000 

1971 0.99233 1981 1.00000 

1972 1.00000 1982 1.00000 

1973 0.99996 1983 1.00000 

1974 1.00000 1984 1.00000 

1975 1.00000 1985 1.00000 

1976 1.00000 1986 1.00000 

1977 1.00000 1987 1.00000 

1978 1.00000 1988 1.00000 
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Summary of dynamic efficiency, productivity and its decomposition for FRANCE 

Efficiency Technical Malmquist Average Average Average 

Change Change Index 69-78 79-88 69-88 

1969-70 0.92970 0.87474 0.81325 Eff iciency 0.89096 0.96180 0.92638 
1970-71 1.01728 0.80572 0.81965 Efficiency Change 1.00668 1.00110 1.00404 
1971-72 1.02287 0.96875 0.99090 Malmquist Index 0.94219 0.99459 0.96701 
1972-73 1.01676 0.97509 0.99144 Technical Change 0.93535 0.99288 0.96260 

1973-74 1.03728 0.95518 0.99079 F. -- 
1974-75 1.02099 0.93918 0.95889 1 Ueýl 114 

1975-76 1.02490 0.95255 0.97626 099641 

1976-77 1.06923 0.95888 1.02526 
0.96367 

1977-78 0.94006 0.93009 0.87433 

1978-79 0.98773 0.99336 0.98117 0.93094 

1979-80 1.07698 1.07262 1.155 19 0.89820 

1980-81 0.91670 0.98076 0.89907 

1981-82 1.09086 0.97934 1.06833 
0.86547 

1982-83 1.00000 0.90785 0.90785 0.83273 

1983-84 1.00000 0.97613 0.97613 0.80GOO 
1984-85 0.93414 099050 0.92526 0 " Z, 
1985-86 1.07050 1.00085 1.07141 

Z: C, 3. 
a) C. cr a) 

E 

U CD, 
c: c: 

1986-87 0.91810 1.00662 0.92417 LU 
c co ui 2 

a) 

- E3 Average 69-78 0 Average 79-88 0 Average 69-88 
1987-88 1.00261 1.02127 1.02393 1 

Decomposition of Productivity Index to Technical Change and 

1 20000 
Efficiency Change 

1 15000 

1 10000 
1 05000 

1 00000 

0.95000 

090000 

085000 

080000 

Ci) CY) C» (7) m 

0 Efficiency Change 

Year 
Dynamic 
efficiency Year 

Dynamic 
eff iciency 

1969 0.87601 1979 0.92852 

1970 0.81442 1980 1.00000 

1971 0.82850 1981 0.91670 

1972 0.84745 1982 1.00000 

1973 0.86165 1983 1.00000 

1974 0.89377 1984 1.00000 

1975 0.91253 1985 0.93414 

1976 0.93525 1986 1.00000 

1977 1.00000 1987 0.91810 

1978 0.94006 1988 0.92049 

tl- co CY) Cl Cý co LO to rý co 
llý C9 C9 OP C9 a? C9 C? C9 

r- co a) C) cli Cl) ur) r- r- rý r- CC) co 01) CC) CC) OD CC) CY) a) a) CT) 0) 0) 0) CY) a) 0) CF) CY) 

Technical Change a Malmqufst Index 

A comparison of efficiency with least efficient country 

1.05 
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0.75 
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Summary of dynamic efficiency, productivity and its decomposition for GERMANY 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 1.05661 1.00000 1.05661 Eff iciency 0.99464 0.99917 0.99690 

1970-71 1.00000 1.00000 1.00000 Efficiency Change 1.00566 0.99907 1.00254 

1971-72 1.00000 1.00000 1.00000 Malmquist Index 1.00566 0.99907 1,00254 

1972-73 1 
ý00000 

1.00000 1.00000 Technical Change 1.00000 1.00000 1.00000 

1973-74 1.00000 1.00000 1.00000 

1974-75 1 MOM 1.00000 1.00000 1 UZýl 14 

1975-76 1.00000 1.00000 1.00000 0.99641 

1976-77 1.00000 1.00000 1.00000 
- 0.96367 

1977-78 1.00000 1.00000 1.00000 

1978-79 1.00000 1.00000 1.00000 0.93094 

1979-80 1.00000 1.00000 1.00000 0.89820 

1980-81 1.00000 1.00000 1.00000 

1981-82 1.00000 1.00000 1.90000 
0.86547 

1982-83 1.00000 1.000 00 1.00000 0.83273 

1983-84 1.00000 1.00000 1.00000 0.80000 
CU 1984-85 1.00000 1.00000 1.00000 0QC, C, CDD Dx 

cr a) cc 
1985-86 1.00000 1.00000 1.00000 

.0-E 
-0 -r- co 

=U co a) 0 
1986-87 1.00000 1.00000 1.00000 ui LU 2 

0 Average 69-78 M Average 79-88 13 Average 69-88 
1987-88 0.99166 1.00000 0.99166 

1 10000 

1 05000 

1 00000 

095000 

090000 

085000 

080000 

Decomposition of Productivity Index to Technical Change and 
Efficiency Change 

CD N Cl) -IT U-) (o r- co a) Cý co Lr) (D r- co ap a? ap 1ý c? cp c? ap c? 
0) c (\j cl) Lr) ýo fl- co m cD clj cl) (D r- 
(AD r- ;z t- r- r- rý rý r- r- r- co CC) co co 00 co co 
(3) 0) 0) CY) a) C) 0) a) cr) al C) m (M CY) 0) C) a) 0) C) 

* Efficiency Change N Technical Change b Malmquist Index 

A comparison of efficiency with least efficient country 

Year 
Dynamic 
efficiency Year 

Dynamic 
eff iciency 

1969 0.94642 1979 1.00000 

1970 1.00000 1980 1.00000 

1971 1.00000 1981 1.00000 

1972 1.00000 1982 1.00000 

1973 1.00000 1 983 1.00000 

1974 1.00000 1984 1.00000 

1975 1.00000 1985 1.00000 

1976 1.00000 1986 1.00000 

1977 1.00000 1987 1.00000 

1978 1.00000 1988 0.99166 

1.05 

1 

0.95 

0.9 

0.85 
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Summary of dynamic efficiency, productivity and its decomposition for GREECE 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 0.84342 1.00000 0.84342 Eff iciency Oý94939 0.92886 0.93912 

1970-71 1.05079 1.12036 1.17726 Eff iciency Change 0.99609 0.99380 0.99501 

1971-72 1.05787 0.95126 1.00631 Malmquist Index 1.00213 0.98512 0.99408 
1972-73 1.06662 0.96205 1.02614 Technical Change 1.00600 0.99108 0.99893 
1973-74 0.99677 0.97416 0.97101 - -- 
1974-75 0.97249 1.00000 0.97249 I. veýj 14 

1975-76 0.99006 1.00646 0.99646 0.99641 

1976-77 0.99414 0.98254 0.97678 
0,96367 

1977-78 0.99237 1.04532 1.03734 

1978-79 0.99635 1.01785 1.01414 0.93094 

1979-80 0.99865 1.05576 1.05434 0.89820 

1980-81 0.99070 0.98090 0.97178 

1981-82 0.99455 0.97355 0.96824 
0.86547 

1982-83 1.07731 1.00000 1.07731 0.83273 

1983-84 0.92153 0.97986 0.90297 080000 
1984-85 0.99932 0.99728 0.99660 71 

1985-86 0.99288 0.91528 0.90876 
Cb 

5 cu E c uJ - 

1986-87 0.98245 1.01168 0.99392 ui ui 2 
- CD 

El Average 69-78 0 Average 79-88 0 Average 69-88 
1987-88 0.98684 1.00539 0.99215 

L 

Decomposition of Productivity Index to Technical Change and 
1 20000 
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1 00000 
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090000 
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080000 

LTTICiency unange 
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T 21 

Cl) "I LO (D 

C\j Co -ýr U') 

4i Efficiency Change 

r- co 0) 0 

1ý1 rý C? 
rý co 0) 

a) CY) 0) 

m Technical Change 

LO QD rl- co ýo C? C? C? C? C? CP C) C\j C1) "r r) (D r1- 
co ý-o co co CIO co co co 

Malmquist Index 

A comparison of efficiency with least efficient country 

Year 
Dynamic 
efficiency Year 

Dynamic 
efficiency 

1969 1.00000 1979 0.94335 

1970 0.84342 1980 0.94208 

1971 0.88626 1981 0.93332 

1972 0.93754 1982 0.92823 

1973 1.00000 1983 1.00000 

1974 0.99677 1984 0.92153 

1975 0.96935 1985 0.92090 

1976 0.95971 1986 0.91435 

1977 0.95409 1987 0.89830 

1978 0.94681 1988 0.88648 
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Summary of dynamic efficiency, productivity and its decomposition for IRELAND 

Efficiency 
Change 

Technical 
Change 

Malmquist 
Index 

Average 
69-78 

Average 
79-88 

Average 
69-88 

1969-70 0.82177 0.88099 0.72397 Eff iciency 0.90480 0.94745 0.92612 

1970-71 1.02236 0.95127 0.97254 Efficiency Change 1.00074 0.98840 0.99490 

1971-72 1.01137 0.96388 0.97483 Malmquist Index 0.94360 0.97394 0.95797 

1972-73 1.02274 0.84929 0.86861 Technical Change 0.94045 0,98538 0.96173 

1973-74 1.01459 0.88119 0.89404 - -- 
1974-75 1.00939 0.85082 0.85881 1. UCJ 1 14 

1975-76 1.12363 1.07840 1.21172 &99641 

1976-77 0.93812 0.97242 0.91224 
0.96367 

1977-78 1.02073 0.94760 0.96724 

1978-79 1.02270 1.02861 1.05196 0.93094 

1979-80 0.99597 1.01704 1.01294 0.89820 

1980-81 1.00292 0.99304 0.99593 

1981-82 0.99862 0.97749 0.97615 
0.86547 

1982-83 0.98540 0.95866 0.94466 0.83273 

1983-84 0.98511 0.97059 0.95614 
- 0.80000 

1984-85 0.98251 0.98032 0.96318 
x 

M U OD 

1985-86 0.98284 0.98476 0.96786 
c (D 

U C.? cu 
-E 

'D c: 

E c: 
-c CU u Ic 

1986-87 1.01126 0.98694 0.99805 ui Lij 
0 Average 69-78 0 Average 79-88 0 Average 69-88 

1987-88 0.95099 0.99954 0.95056 

1 2500C 

1.2000C 

1 1500C 

1 1000C 

1,0500C 

1 0000C 

0 9500C 

0ý900oc 

0,8500C 

0.80000 

Year 
Dynamic 
efficiency Year 

Dynamic 
eff iciency 

1969 1.00000 1979 0.97930 

1970 0.82177 1980 0.97535 

1971 0.84015 1981 0.97820 

1972 0.84969 1982 0.97685 

1973 0.86902 1983 0.96259 

1974 OM170 1984 0.94825 

1975 0.88997 1985 0.93167 

1976 1.00000 1986 0.91568 

1977 0.93812 1987 0.92599 

1978 0.95756 1988 0.88061 

A comparison of efficiency with least efficient country 
1.05 

1 

0.95 - 

0.9 - or 

0.85 

0.8 - 

0.751 
UI) (0 F- 00 a) 0 C\j n 00 oo Cý, C\, ' r- r- rý r, - rZ r- co CO CO Z cc) CO .0 CO C) 

0 Eff iciency -N - Minimum efficiency 
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Summary of dynamic efficiency, productivity and its decomposition for ITALY 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 0.88630 0.89095 0.78965 Efficiency 0.87844 0.93185 0.90515 

1970-71 1.03093 0.95380 0.98330 Eff iciency Change 1.00554 1.00036 1.00308 

1971-72 1.02174 1.18556 1.21134 Malmquist Index 0.98112 1.00722 0.99348 

1972-73 1.02339 0.82978 0.84918 Technical Change 0.97501 1.00703 0.99018 

1973-74 1.03571 0.96901 1.00362 

1974-75 1.01252 1.09049 1.10415 I. uzýj 14 

1975-76 1.02344 0.88114 0.90180 0.99641 

1976-77 1.01611 0.96508 0.98063 
0.96367 

1977-78 1.07853 0.97993 1.05689 

1978-79 0.92668 1.00434 0.93070 093094 

1979-80 1.00932 1.07476 1.08477 0.89820 

1980-81 0.99419 0.98434 0.97861 

1981-82 0.99202 0.97107 0,96332 
0.86547 

1982-83 1.08405 0.96709 1.04838 0.83273 

1983-84 0.91992 1.00000 0.91992 
1 0.80000 

1984-85 0.99881 0.99155 0.99037 0U (D 
or (1) c: c 

1985-86 1.00127 1.04993 1.05126 Yy cu E -0 zM 
Li 

cu (D 

1986-87 1.00220 1.00571 1.00792 wL2 

1987-88 1.00148 1.01887 1.02038 0 Average 69-78 0 Average 79-88 0 Average 69-88 

l 25000 
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ý20000 
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Decomposition of Productivity Index to Technical Change and 
Efficiency Change 
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ID r- r, rl- r- r, r- r- rl- cc) 

ýo 
co cc) oo m co cD 

cr) 0) (3) Cy) 0) C) 0) 0) m (3) 0) 0) 0) a) 0) (3) cl C) a) 

Efficiency Change N Technical Change 6 Malmquisl Index 

FA 
comparison of efficiency with least efficient country 

Dynamic Dynamic 1.05 
Year eff iciency Year efficiency 

1 
1969 0.88988 1979 0.92668 

1970 0.78870 1980 0.93532 0.95 - 

1971 0.81309 1981 0.92988 0.9 -- 
1972 0.83077 1982 0.92247 

1973 0.85019 1983 1.00000 0ý85 - 

1974 0.88056 1984 0.91992 0.8 - 
1975 0.89158 1985 0.91882 

0.75 4-- 
1(47R 0 Q19AQ I CIRR Q1 QQQ M 

1977 0.92719 1987 0.92201 
1978 1.00000 1988 0.92338 
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Summary of dynamic efficiency, productivity and its decomposition for JAPAN 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 1.00000 1.00000 1.00000 Eff iciency 1.00000 1.00000 1.00000 

1970-71 1.00000 1.00000 1.00000 Efficiency Change 1.00000 1.00000 1.00000 

1971-72 1.00000 1.00000 1.00000 Malmquist Index 1.00000 1.00000 1.00000 

1972-73 1.00000 1.00000 1.00000 Technical Change 1.00000 1.00000 1.00000 

1973-74 1.00000 1.00000 1.00000 

1974-75 1.00000 1.00000 1.00000 I. uzýl 14 

1975-76 1.00000 1.00000 1.00000 0.99641 

1976-77 1.00000 1.00000 1.00000 
0.96367 

1977-78 1.00000 1.00000 1.00000 

1978-79 1.00000 1.00000 1.00000 0-93094 

1979-80 1.00000 1.00000 1.00000 0.89820 

1980-81 1.00000 1.00000 1.00000 

1981-82 1.00000 1.00000 1.00000 
0.86547 

1982-83 1.00000 1.00000 1.00000 0.83273 

1983-84 1.00000 1.00000 1.00000 0.80000 
1984-85 1.00000 1.00000 1.00000 C , y CID 

1985-86 1.00000 1.00000 1.00000 
c a) c 

7 

a) C 
D. 
cr (1) 

E '0 c 
cc 

1986-87 1.00000 1.00000 1.00000 Lu u 7i 
0 Average 69-78 0 Average 79-88 0 Average 69-88 

1987-88 1.00000 1.00000 1.00000 

1 ý05000 

1.00000 

0.95000 

0.90000 

Oý85000 

080000 

Decomposition of Productivity Index to Technical Change and 
Efficiency Change 

C) 
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ý31 Ln 

c\j m 'IT LI) 
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co CF) CD 

(D fl- co 0) 
P- r- fl- r- 
C) 0) a) 0) 

Technical Change 

C14 M 'IT Ln (D r- co 
I? c? c? c? cp op c? 

c3 c\j co 'IT Ln (D r- co oo oo co co co co T 0) 

IN Malmquist Index 

A comparison of efficiency with least efficient country 

Year 
Dynamic 
efficiency Year 

Dynamic 
eff iciency 

1969 1.00000 1979 1.00000 

1970 1.00000 1980 1.00000 

1971 1.00000 1981 1.00000 

1972 1.00000 1982 1.00000 

1973 1.00000 1983 1.00000 

1974 1.00000 1984 1.00000 

1975 1.00000 1985 1.00000 

1976 1.00000 1986 1.00000 

1977 1.00000 1987 1.00000 

1978 1.00000 1988 1.00000 

1.05 

1 

0ý95 

0.9 

0.85 

0.8 

0.75 

w AL 

or 

or it 

(3) 0 CJ M -e U') UD r, 10 0' (D Z--e u) (0 r- Co 
rý CO OD OD CO OD OD co aD 
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Summary of dynamic efficiency, productivity and its decomposition for NORWAY 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 1.00000 1.00000 1.00000 Efficiency 1.00000 0.98209 0.99104 

1970-71 1.00000 1.00000 1.00000 Efficiency Change 1.00000 0.99154 0.99599 

1971-72 1.00000 1.00000 1.00000 Malmquist Index 1.00000 0.99592 0.99807 

1972-73 1.00000 1.00000 1.00000 Technical Change 1.00000 1.00449 1.00213 

1973-74 1.00000 1.00000 1.00000 

1974-75 1.00000 1.00000 1.00000 1 UZZI 114 

1975-76 1.00000 1.00000 1.00000 0,99641 

1976-77 1.00000 1.00000 1.00000 
0.96367 

1977-78 1.00000 1.00000 1.00000 

1978-79 1.00000 1.00000 1.00000 0.93094 

1979-80 1.00000 1.00000 1.00000 089820 

1980-81 1.00000 1.00000 1.00000 

1981-82 1.00000 1.00000 1.00000 
0.86547 

1982-83 1.00000 1.00000 1.00000 0.83273 

1983-84 1.00000 1.00778 1.00778 0,80000 

1984-85 0.98265 1.00702 0.98954 
Cc CD 5x C) co 
(1) q) c (T (1) cc 

1985-86 0,98597 0.98256 0.96877 U ýy (o 
-E 

-0 j- M c 
M C) 

1986-87 0.97372 1.04307 1.01565 ui w :5 

1987-88 0.98156 1.00000 0.98156 0 Average 69-78 E Average 79-88 13 Average 69-88 

1 10000 
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095000 

090000 
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080000 

Decomposition of Productivity Index to Technical Change and 
Efficiency Change 
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0) CY) (3) 0) m c» 

6 Malmquist Index 

A comparison of efficiency with least efficient country 

Year 
Dynamic 
eff iciency Year 

Dynamic 
eff iciency 

1969 1.00000 1979 1.00000 

1970 1.00000 1980 1.00000 

1971 1.00000 1981 1.00000 

1972 1.00000 1982 1.00000 

1973 1.00000 1983 1.00000 

1974 1,00000 1984 1.00000 

1975 1.00000 1985 0.98265 

1976 1.00000 1986 0.96886 

1977 1.00000 1987 0.94339 

1978 1.00000 1988 0.92599 

1 os 

1 

0.95 

0.9 

Oý85 
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Ar 
Alk it- 
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Summary of dynamic efficiency, productivity and its decomposition for SPAIN 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 1.06217 0.92934 0.98712 Eff iciency 0.95767 0.96097 0.95932 

1970-71 0.89083 1.09092 0.97183 Efficiency Change 1.00205 1.00416 1.00305 

1971-72 1.00661 0.97130 0.97772 Malmquist Index 0.98076 0.99579 0.98788 

1972-73 1.02081 1.08888 1.11153 Technical Change 0.98024 0.99278 0.98618 

1973-74 1.04649 0.94284 0.98667 - 
1974-75 1.02567 0.93853 0.96262 1. U, ý tf 1 14 

1975-76 1.01778 0.95756 0.97459 0.99641 

1976-77 0.99187 0.96580 0.957 95 
- 0.96367 

1977-78 1.00820 0.96447 0.97237 

1978-79 0.95010 0.95273 0.90519 0.93094 

1979-80 1.05252 0.92590 0.97452 0.89820 

1980-81 0.91593 1.06648 0.97682 

1981-82 1.04425 1.00000 1.04425____ 
0.86547 

1982-83 0.98011 0.98328 0.96372 0,83273 

1983-84 0.99685 0.98250 0.97940 0.80000 
1984-85 1,07012 0.99670 1.06659 (D CU a) 

1985-86 0.94136 1.01058 0.95132 
c C: 0) Q) C C, (D 

cu ý? E 'CO Cmc 

(. ) CD cc 

lc: (13 

1986-87 1.06229 0.98647 1.04791 m i 

:2 
. 0 Average 69-78 M Average 79-88 DAverage 69-88 

1987-88 0.97398 0.98314 0 . 95756 

1,15000 

1 10000 

1 05000 

1.00000 

0,95000 

090000 

085000 

080000 

Decomposition of Productivity Index to Technical Change and 
Efficiency Change 
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0) 

(\j Cl) ýT LO (D 

LO 

CY) ILI a) 

0 Efficiency Change 

Year 
Dynamic 
eff iciency Year 

Dynamic 
eff iciency 

1969 0.94146 1979 0.95010 

1970 1.00000 1980 1.00000 

1971 0.89083 1981 0.91593 

1972 0.89672 1982 0.95646 

1973 0.91538 1983 0.93743 

1974 0.95794 1984 0.93448 

1975 0.98253 1985 1.00000 

1976 1.00000 1986 0.94136 

1977 0.99187 1987 1.00000 

1978 1.00000 1988 0.97398 

CO 0) C) CO -IT LO ID 
rý cp 

7D 
ap ap OP op Q? 

(0 r-- ab (3) C) Oj M 'IT Lr) 
fl- r, rl- r- ap oD cc) ap co 
a) F) T a) ýi) ý? T 
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A comparison of efficiency with least efficient country 
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Summary of dynamic efficiency, productivity and its decomposition for SWEDEN 

Efficiency Technical Malmquist Average Average Average 
Change Change Index 69-78 79-88 69-88 

1969-70 0.97735 0.87034 0.85063 Eff iciency 0.88921 0.95957 0.92439 

1970-71 0.98804 1.02448 1.01224 Efficiency Change 1.01514 1.00125 1,00856 

1971-72 0.98840 1.02999 1.01805 Malmquist Index 1.00005 0.98719 0.99396 

1972-73 0.99935 1.01802 1.01736 Technical Change 0.98576 0.98532 0.98555 

1973-74 1.02406 0.98755 1.01131 

1974-75 1.02597 1.14282 1.17251 
1, UZJ 14 

1975-76 1.13892 0.91729 1.04472 099641 

1976-77 1.00000 0.89505 0.89505 
0.96367 

1977-78 0.90788 1.00000 0.90788 

1978-79 1.10146 0.97210 1.07073 093094 

1979-80 0.92282 0.97840 0.90288 089820 

1980-81 0.97804 0.89478 0.87512 

1981-82 1.00734 1.00000 1.00734 
0.86547 

1982-83 1.09990 1.00841 1.10915 0.83273 

1983-84 0.93324 0.98973 0.92365 0.80000 

1984-85 1.03201 0.99167 1.02341 (D 

1985-86 1.00961 0.97312 0.98248 
OD 
c CT (D 
co _0 

C: 
L) C: " c 
z to 
0C 

1986-87 1.02065 1.03175 1.05305 ui w a) L) 

13 Average 69-78 0 Average 79-88 13 Average 69-88 
1987-88 1.00761 1.00000 1.00761 

Decomposition of Productivity Index to Technical Change and 
Efficiencv Chanae 
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Summary of dynamic efficiency, productivity and its decomposition for U. K. 
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Summary of dynamic efficiency, productivity and its decomposition for U. S. A. 
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Appendix C: The assessment of Higher 

Education Institutions 

Table 1: Average static DEA over three academic years 1995-96,1996-97 and 1997-98 

and the rank of institutions 

Institution Average static DEA over three 

academic years 1995-96, 

1996-97 and 1997-98 

Institutions' rank 

Anglia Polytechnic University 54.10 68 

Aston University 54.05 69 

Birkbeck College 65.30 35 

Bolton Institute of HE 67.59 31 

Bournemouth University 64.61 37 

Brunel University 57.16 58 

Cardiff University 44.53 92 

Cheltenham and Gloucester CHE 63.04 44 

Chester College of HE 69.05 28 

Coventry University 48.88 81 joint 

Cranfield University 100.00 1 joint 

De Montfort University 54.31 67 

Edinburgh College of Art 37.84 98 

Glasgow Caledonian University 35.39 100 

Harper Adams University College 29.24 102 

Heriot-Watt University 61.63 48 

Imperial College 73.90 20 

Institute of Education 100.00 1 joint 

Keele University 100.00 1 joint 

King Alfred's College, Winchester 60.19 50 

Kingston University 57.25 57 

Lancaster University 70.55 26 

Leeds Metropolitan University 47.29 87 joint 

Liverpool ohn Moores University 66.15 34 

London Business School 100.00 1 joint 

London Sch of Economics & Political Sci 81.70 14 

Loughborough University 63.57 42 

Napier University 29.92 101 

North East Wales Institute 52.68 74 
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Nottingham Trent University 48.75 84 
Oxford Brookes University 76.25 17 
Queen Margaret College 47.64 86 
Royal Holloway, University of London 45.78 90 
Sheffield Hallam University 42.28 95 
South Bank University 39.22 97 
St George's Hospital Medical School 74.63 19 
St Mary's College 50.77 77 
Staffordshire University 43.21 93 joint 
The London Institute 99.65 6 
The Queen's University of Belfast 68.55 29 
UMIST 94.90 7 
University College London 100.00 1 joint 
University College Northampton 63.93 39 
University of Aberdeen 55.66 63 
University of Bath 49.76 79 
University of Birmingham 69.92 27 
University of Bradford 55.86 61 
University of Brighton 36.39 99 
University of Bristol 59.28 51 
University of Cambridge 89.66 10 

University of Central England in Birmingham 62.46 46 

University of Central Lancashire 59.06 53 

University of Derby 62.16 47 

University of Dundee 51.48 75 

University of Durham 55.77 62 

University of East Anglia 72.30 23 

University of East London 43.21 93 joint 

University of Edinburgh 53.38 72 

University of Essex 82.82 12 

University of Exeter 57.56 56 

University of Glasgow 48.02 85 

University of Greenwich 67.15 32 

University of Hertfordshire 63.77 41 

University of Huddersfield 63.83 40 

University of Hull 64.62 36 

University of Kent at Canterbury 68.14 30 

University of Leeds 67.05 33 

University of Leicester 76.97 16 

University of Lincolnshire and Humberside 58.57 55 

University of Liverpool 53.04 73 

University of London 90.50 9 

University of Manchester 51.43 76 

University of Newcastle upon Tyne 55.47 64 

University of North London 59.25 52 
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University of Northumbria at Newcastle 64.17 38 
University of Nottingham 71.79 24 
University of Oxford 93.20 8 
University of Paisley 41.27 96 
University of Plymouth 45.73 91 
University of Portsmouth 53.60 71 
University of Reading 81.77 13 
University of Salford 50.02 78 
University of Sheffield 63.19 43 
University of Southampton 62.80 45 
University of St Andrews 46.95 89 
University of Stirling 48.79 83 
University of Strathclyde 61.60 49 
University of Sunderland 54.52 66 
University of Surrey 71.66 25 
University of Sussex 83.34 11 
University of Teesside 75.90 18 
University of Ulster 54.55 65 
University of Wales Institute, Cardiff 55.91 60 
University of Wales, Aberystwyth 48.88 81 joint 
University of Wales, Bangor 53.92 70 
University of Wales, Lampeter 47.29 87 joint 

University of Wales, Swansea 72.75 22 

University of Warwick 72.79 21 

University of West of England, Bristol 49.04 80 

University of Westminster 58.70 54 

University of Wolverhampton 77.87 15 

University of York 57.09 59 
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Table 2: Table of dynamic efficiency and the rank of each institution 

Institution Dynamic efficiency score Institutions' Rank 
Anglia Polytechnic University 60.02 63 

Aston University 64.68 51 

Birkbeck College 70.42 40 

Bolton Institute of HE 89.41 11 
Bournemouth University 79.41 24 

Brunel University 55.66 74 
Cardiff University 45.74 96 

Cheltenham and Gloucester CHE 72.67 34 joint 

Chester College of HE 76.97 27 

Coventry University 51.39 86 

Cranfield University 100 1 joint 

De Montfort University 75.31 31 

Edinburgh College of Art 40.46 99 

Glasgow Caledonian University 36.87 100 

Harper Adams University College 35.68 101 

Heriot-Watt University 68.12 45 

Imperial College 83.25 20 

Institute of Education 100 1 joint 

Keele University 100 1 joint 

King Alfred's College, Winchester 71.57 39 

Kingston University 60.58 62 

Lancaster University 68.63 43 

Leeds Metropolitan University 55.16 75 

Liverpool John Moores University 77.29 26 

London Business School 100 1 joint 

London Sch of Economics & Political Sci 100 1 joint 

Loughborough University 63.51 52 

Napier University 33.89 102 

North East Wales Institute 62.99 54 

Nottingham Trent University 50.82 90 

Oxford Brookes University 84.81 18 

Queen Margaret College 54.74 77 

Royal Holloway, University of London 58.65 67 

Sheffield Hallam University 44.58 97 

South Bank University 46.16 94 

St George's Hospital Medical School 79.21 25 

St Mary's College 50.95 88 

Staffordshire University 50.84 89 

The London Institute 100 1 joint 
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The Queen's University of Belfast 80.41 22 
UMIST 93.3 9 
University College London 100 1 joint 
University College Northampton 80.66 21 
University of Aberdeen 53.68 80 
University of Bath 52.55 82 joint 
University of Birmingham 62.16 56 
University of Bradford 51.87 85 
University of Brighton 41.09 98 
University of Bristol 66.66 49 
University of Cambridge 86.17 14 
University of Central England in Birmingham 61.59 59 
University of Central Lancashire 68.19 44 
University of Derby 63.43 53 
University of Dundee 57.3 70 
University of Durham 52.55 82 joint 
University of East Anglia 64.89 50 
University of East London 58.46 68 
University of Edinburgh 52.42 84 
University of Essex 88 12 
University of Exeter 61.97 57 
University of Glasgow 55.07 76 
University of Greenwich 80.08 23 

University of Hertfordshire 84.91 17 
University of Huddersfield 74.19 32 

University of Hull 67.29 47 

University of Kent at Canterbury 71.6 38 

University of Leeds 72.67 34 joint 

University of Leicester 76.93 28 

University of Lincolnshire and Humberside 68.07 46 

University of Liverpool 59.01 66 

University of London 100 1 joint 

University of Manchester 52.91 81 

University of Newcastle upon Tyne 59.19 64 

University of North London 71.75 37 

University of Northumbria at Newcastle 72.68 33 

University of Nottingham 84.31 19 

University of Oxford 76.52 29 

University of Paisley 57.08 71 

University of Plymouth 49.73 91 

University of Portsmouth 60.64 61 

University of Reading 70.32 41 

University of Salford 56.42 72 

University of Sheffield 75.47 30 

University of Southampton 67.05 48 
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University of St Andrews 51.18 87 

University of Stirling 47.66 93 

University of Strathclyde 62.22 55 

University of Sunderland 59.09 65 

University of Surrey 69.94 42 

University of Sussex 85.36 16 

University of Teesside 90.84 10 

University of Ulster 54.37 79 

University of Wales Institute, Cardiff 56.11 73 

University of Wales, Aberystwyth 46.1 95 

University of Wales, Bangor 61.2 60 

University of Wales, Lampeter 49 92 

University of Wales, Swansea 85.59 15 

University of Warwick 72.07 36 

University of West of England, Bristol 54.47 78 

University of Westminster 57.55 69 

University of Wolverhampton 87.1 13 

University of York 61.7 58 
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Table 3: Average of Pis over three academic years 1995-1996,1996-1997 and 1997-1998 

Institution UGs/ 

CAP 

PGs/ 

CAP 

PhDs 

/CAP 

RGC/ 

CAP 

UGs/ 

REC 

PGs/ 

REC 

PhDs 

/REC 

RGC/ 

REC 

Anglia Polytechnic University 1.43 0.70 0.04 0.07 1.56 0.77 0.05 0.07 

Aston University 1.21 1.76 2.07 0.95 0.67 0.96 1.24 0.54 

Birkbeck College 1.45 1.59 1.13 0.69 1.25 1.22 0.87 0.51 

Bolton Institute of HE 2.27 1.95 0.29 0.10 1.38 1.19 0.17 0.05 

Bournemouth University 2.45 0.98 0.06 0.13 1.75 0.70 0.04 0.09 

Brunel University 0.85 1.34 1.04 0.61 0.86 1.37 1.03 0.62 

Cardiff University 0.55 0.72 0.58 0.66 0.70 0.91 0.72 0.83 

Cheltenham and Gloucester CHE 1.74 0.94 0.08 0.16 1.53 0.80 0.09 0.14 

Chester College of HE 2.67 
. 
0.91 0.04 0.07 1.20 0.41 0.03 0.03 

Coventry University 1.53 0.74 0.21 0.12 1.32 0.63 0.19 0.11 

Cranfield University 0.17 3.16 2.14 4.74 0.16 2.85 1.97 4.31 

De Montfort University 0.97 0.32 0.02 0.13 1.65 0.53 0.03 0.21 

Edinburgh College of Art 0.47 0.68 0.11 0.14 0.73 1.09 0.21 0.22 

Glasgow Caledonian University 0.85 0.71 0.18 0.14 0.85 0.72 0.17 0.14 

Harper Adams University College 0.68 0.04 0.19 0.21 0.91 0.05 0.26 0.29 

Heriot-Watt University 0.33 0.94 0.51 0.63 0.68 1.97 1.06 1.30 

Imperial College 0.21 0.47 1.39 2.77 0.23 0.52 1.55 3.09 

Institute of Education 0.20 5.23 1.25 0.98 0.20 5.08 1.23 0.93 

Keele University 2.95 2.56 1.46 1.50 2.27 1.93 1.11 1 1.13 

King Alfred's College, Winchester 1.94 0.33 0.06 0.01 1.81 0.32 0.07 0.01 

Kingston University 1.55 1.69 0.10 0.07 1.20 1.30 0.08 0.06 

Lancaster University 1.17 1.31 1.29 0.89 1.23 1.40 1.37 0.94 

Leeds Metropolitan University 1.41 0.76 0.04 0.08 1.30 0.69 0.04 0.07 

Liverpool ohn Moores University 2.54 1.05 0.35 0.24 1 1.20 0.50 0.17 0.11 

London Business School 0.00 6.25 1.53 3.52 0.00 5.48 1.33 3.09 

London Sch of Economics & Political 

Sci 

0.99 5.93 2.37 2.20 0.56 2.94 1.21 1.27 

Loughborough University 1.15 1.25 1 1.74 1.49 0.90 1 0.99 1.33 1.16 

Napier University 0.62 0.34 0.02 0.09 0.84 0.42 0.03 0.12 

North East Wales Institute 2.16 0.40 0.10 0.21 1.37 0.25 0.06 0.13 

Nottingham Trent University 1.66 0.64 0.07 0.15 1.35 0.50 0.06 0.12 

Oxford Brookes University 2.04 1.91 0.34 0.27 1.61 1.52 0.30 0.21 
_ 

Queen Margaret College 1.90 0.21 0.09 0.47 1.16 0.13 0.06 0.29 

Royal Holloway, University of London 1.27 0.88 1.17 
- 

1.13 0.87 0.57 0.76 0.76 
[Sheffield 

Hallam University 1.28 0.85 
1 

0.09 
j 

0.24 1.08 0.74 0.08 
1 

0.20 
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South Bank University 0.81 0.89 0.18 0.21 0.86 0.95 0.19 0.22 

St George's Hospital Medical School 0.31 0.29 0.76 3.75 0.23 0.21 0.55 2.73 

St Mary's College 1.23 1.18 0.00 0.01 1.17 1.08 0.00 0.01 

Staffordshire University 1.06 0.45 0.03 0.22 1.24 0.54 0.05 0.25 

The London Institute 3.75 0.98 0.02 0.02 3.21 0.83 0.02 0.01 

The Queen's University of Belfast 2.04 1.77 1.70 1.21 1.25 1.12 1.07 0.77 

UMIST 1.09 2.35 5.84 2.84 0.54 1.08 2.75 1.41 

University College London 1.29 1.49 3.59 3.73 1.13 1.25 3.15 2.66 

University College Northampton 2.42 0.60 0.07 0.05 1.73 0.44 0.06 0.04 

University of Aberdeen 0.62 0.53 1.13 0.91 0.80 0.69 1.50 1.19 

University of Bath 0.30 0.55 0.83 0.72 0.53 0.97 1.47 1.27 

University of Birmingham 0.68 1.32 1.82 1.58 0.68 1.31 1.87 1.58 

University of Bradford 1.05 1.21 1.56 0.76 0.88 1.01 1.31 0.64 

University of Brighton 1.27 0.45 0.12 0.18 1.06 0.38 0.10 0.15 

University of Bristol 0.65 1 0.98 1.88 1.86 0.59 0.86 1.67 1.70 

University of Cambridge 0.95 0.87 3.05 2.81 0.88 0.82 2.86 2.63 

University of Central England in 

Birmingham 

1.47 2.26 0.06 0.08 1.07 1.68 0.04 0.06 

University of Central Lancashire 2.07 0.65 0.43 0.09 1.52 0.49 0.31 0.06 

University of Derby 1.90 0.92 0.02 0.13 1.67 0.81 0.02 0.12 

University of Dundee 0.40 0.42 0.55 0.95 0.70 0.72 0.95 1.64 

University of Durham 0.87 1.22 1.54 1.17 0.75 1.06 1.33 1.00 

University of East Anglia 0.94 1.29 1.68 1.02 1.02 1.40 1.82 1.10 

University of East London 1.61 1.09 0.09 0.12 0.98 0.64 0.04 0.07 

University of Edinburgh 0.47 0.43 1.21 1.29 0.59 0.54 1.53 1.62 

University of Essex 1.61 2.38 2.92 1.63 1.07 1.59 1.91 1.08 

University of Exeter 1.22 2.21 1.42 0.96 0.80 1.44 0.91 0.63 

University of Glasgow 0.57 0.09 0.33 0.84 0.95 0.16 0.56 1.41 

University of Greenwich 1.90 2.18 0.17 0.76 1.25 1 1.43 0.11 0.50 

University of Hertfordshire 1.94 1.25 0.48 0.26 1.58 1.01 0.38 0.21 

University of Huddersfield 1.93 1.63 0.28 0.13 1.47 1.24 0.21 0.10 

University of Hull 0.93 2.06 1.17 0.68 0.86 1.82 1.06 0.63 

University of Kent at Canterbury 0.90 1.18 1.13 0.90 1.11 1 1.44 1.39 1.10 

University of Leeds 1.10 1.04 1.99 1.69 0.98 0.93 1.75 1.51 

University of Leicester 0.65 1.91 1.10 1.41 0.81 2.37 1.36 1.74 

University of Lincolnshire and 

Humberside 

2.38 0.46 0.06 0.06 1.52 0.30 

I 

0.04 0.04 

University of Liverpool 0.74 0.99 1.81 1.74 0.57 0.76 1.35 1.33 

University of London 0.34 2.38 3.29 6.08 0.13 0.95 1.26 2.32 

University of Manchester 0.54 0.80 1.30 1.30 0.59 1 0.89 1.45 1.44 

University of Newcastle upon Tyne 0.75 1.05 1-. 19 1.58 0.73 1.02_ 1.12 1.51 

University of North London 1.81 1.18 1.44 0.10 0.89 0.56 0.62 
1 

0.05 
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University of Northumbria at 

Newcastle 

1 
`ý T 

1.38 0.07 0.12 1.54 1.43 0.07 0.14 

_University 
of Nottingham 1.09 0.99 1.96 1.84 1.07 0.92 1.82 1.72 

University of Oxford 0.46 0.40 2.34 2.74 0.53 0.46 2.69 3.14 

University of Paisley 0.69 0.39 0.13 0.09 1.12 0.64 0.20 0.13 

University of Plymouth 1.28 0.59 0.51 0.26 1.22 0.55 0.48 0.25 

University of Portsmouth 1.49 0.54 0.17 0.20 1.51 0.57 0.19 0.20 

University of Reading 1.20 1.77 2.31 1.21 1.06 1.58 2.04 1.07 

University of Salford 0.99 0.76 0.55 0.39 1.16 0.89 0.64 0.45 

University of Sheffield 1.07 1.47 2.20 2.19 0.73 1.02 1.47 1.53 

University of Southampton 0.73 0.79 1.41 1.96 0.70 0.77 1.38 1.87 

University of St Andrews 0.46 0.21 0.79 0.69 0.81 0.37 1.33 1.23 

University of Stirling 0.61 1.14 0.67 0.49 0.73 1.33 0.80 0.57 

University of Strathclyde 0.60 1 1.84 1.01 0.69 0.68 2.01 1.11 0.77 

University of Sunderland 1.67 0.74 0.09 0.14 1.46 0.62 0.08 0.13 

University of Surrey 0.50 1.12 1.13 0.95 0.79 1.78 1.81 1.49 

University of Sussex 1.93 1.30 2.16 1.35 1.62 1.10 1.81 1.15 

University of Teesside 2.59 1.65 0.24 0.13 1.61 0.98 0.14 0.08 

University of Ulster 0.95 1.71 0.42 
_ 

0.29 0.94 1.71 0.42 0.29 

University of Wales Institute, Cardiff 1.36 1.00 0.01 0.04 1.46 1.07 0.02 0.05 

University of Wales, Aberystwyth 0.81 1.16 0.95 0.66 0.76 1.10 0.91 0.62 

University of Wales, Bangor 1.23 0.97 0.78 0.76 1.20 0.93 0.71 0.74 

University of Wales, Lampeter 1.64 0.23 0.93 0.19 0.99 0.15 0.59 0.12 

University of Wales, Swansea 2.04 1.94 2.64 1.23 0.93 0.92 1.28 0.60 

University of Warwick 0.87 2.95 1.63 1.63 0.65 1 2.22 1.25 1.23 

University of West of England, Bristol 1.45 1.26 0.10 0.23 1.12 1.00 0.08 0.18 

University of Westminster 1.16 1.88 0.15 0.14 1.05 1.76 0.13 0.14 

University of Wolverhampton 2.66 1.15 0.20 1 0.06 2.01 0.86 0.16 0.05 

University of York 0.70 0.94 0.42 
1 

1.97 0.70 0.92 0.45 1.97 
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Table 4: Overall rank of Pis 

Institution UGs/ 

CAP 

PGs/ 

CAP 

PhDs 

CAP 

RGC/ 

CAP 

UGs/ 

REC 

PGs/ 

REC 

PhDs 

REC 

RGC/ 

REC 

Anglia Polytechnic University 37 76 94 95 13 66 89 87 

Aston University 48 22 13 38 87 48 34 53 

Birkbeck College 35 27 40 49 27 30 47 54 

Bolton Institute of HE 10 14 64 86 22 31 72 93 

Bournemouth University 7 57 92 82 5 71 92 85 

Brunel University 70 31 43 54 64 24 43 49 

Cardiff University 87 74 52 51 80 56 50 41 

Cheltenham and Gloucester CHE 24 59 85 72 15 64 78 71 

Chester College of HE 3 63 95 94 36 92 97 99 

Coventry University 31 72 67 83 25 76 68 83 

Cranfield University 101 4 12 2 100 4 6 1 

De Montfort University 61 96 100 80 8 84 98 65 

Edinburgh College of Art 91 77 77 76 79 35 65 63 

Glasgow Caledonian University 69 75 71 74 67 70 70 72 

Harper Adams University College 79 102 69 67 58 102 63 59 

Heriot-Watt University 96 61 55 53 86 8 41 25 

Imperial College 99 85 30 8 97 85 15 4 

Institute of Education 100 3 33 34 99 2 35 40 

Keele University 2 6 26 22 2 9 38 33 

King Alfred's College, Winchester 17 95 91 102 4 95 83 102 

Kingston University 30 24 78 93 33 27 82 92 

Lancaster University 50 33 32 41 31 23 23 39 

Leeds Metropolitan University 38 
_71 

93 92 26 73 95 89 

Liverpool ohn Moores University 6 
. 
50 61 62 35 87 71 82 

London Business School 102 1 25 5 102 1 29 3 

London Sch of Economics & 

Political Sci 

60 2 7 10 93 3 36 26 

Loughborough University 52 38 19 23 59 45 26 31 

Napier University 82 
_ 

94 97 89 68 91 96 80 

North East Wales Institute 11 91 80 68 23 97 85 76 

Nottingham Trent University 26 79 87 73 24 86 86 79 

Oxford Brookes University 14 17 62 59 11 17 62 64 

Queen Margaret College 20 99 84_ 56 39 101 87 57 

Royal Holloway, University of 
London 

44 65 36 32 63 79 49 44 
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Sheffield Hallam University 41 67 81 63 44 68 81 67 

_South 
Bank University 71 64 70 66 66 50 67 62 

St George's Hospital Medical 

School 

97 97 50 3 98 98 56 5 

St Mary's College 45 43 102 101 37 36 102 101 

Staffordshire University 57 87 96 65 30 83 90 60 

The London Institute 1 55 98 100 1 61 99 100 

The Queen's University of Belfast 13 21 20 29 28 32 40 42 

UMIST 54 9 1 6 94 37 3 23 

University College London 40 28 2 4 40 28 1 6 

University College Northampton 8 80 88 98 6 90 88 98 

University of Aberdeen 83 84 39 39 71 72 17 30 

University of Bath 98 82 47 46 96 
. 
47 18 27 

University of Birmingham 78 32 17 21 84 26 8 16 

University of Bradford 58 40 23 44 61 42 30 46 

University of Brighton 43 88 76 71 48 93 77 70 

University of Bristol 80 56 16 14 89 59 14 13 

University of Cambridge 63 66 4 7 62 62 2 7 

University of Central England in 

Birmingham 

33 10 90 91 47 14 91 91 

University of Central Lancashire 12 1 78 58 88 17 1 88 61 90 

University of Derby 22 62 99 79 7 63 100 81 

University of Dundee 94 90 53 36 83 69 44 14 

University of Durham 68 39 24 31 75 39 28 38 

University of East Anglia 64 35 21 33 51 22 10 34 

University of East London 28 48 83 85 53 74 93 88 

University of Edinburgh 90 89 34 27 91 82 16 15 

University of Essex 29 8 5 19 46 15 7 36 

University of Exeter 47 11 28 35 72 18 45 47 

University of Glasgow 86 101 63 42 55 99 55 22 

University of Greenwich 21 12 73 43 29 20 76 55 

University of Hertfordshire 16 37 57 61 12 43 60 66 

University of Huddersfield 19 26 65 78 19 29 64 84 

University of Hull 65 13 37 50 65 10 42 48 

University of Kent at Canterbury 66 42 38 40 43 19 21 35 

University of Leeds 53 51 14 17 54 52 13 18 

University of Leicester 81 16 42 24 69 5 24 11 

University of Lincolnshire and 

Humberside 

9 86 89 97 16 96 94 97 

University of Liverpool 74 53 18 16 92 67 25 24 

University of London 95 7 3 1 101 49 32 8 

University of Manchester 88 68 31 26 90 57 20 21 
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University of Newcastle upon Tyne 73 49 35 20 78 41 37 19 

University of North London 23 41 27 87 60 80 53 94 

University of Northumbria at 

Newcastle 

34 30 86 84 14 21 84 73 

University of Nottingham 55 54 15 15 45 53 9 12 

University of Oxford 92 92 8 9 95 89 4 2 

University of Paisley 77 93 
_ 

75 90 41 75 66 75 

University of Plymouth 42 81 56 60 32 81 57 61 

University of Portsmouth 32 83 72 69 18 78 69 68 

University of Reading 49 20 9 30 49 16 5 37 

University of Salford 59 70 54 57 38 58 52 56 

University of Sheffield 56 29 10 11 77 40 19 17 

University of Southampton 75 69 29 13 81 65 22 10 

University of St Andrews 93 100 48 48 70 94 27 29 

University of Stirling 84 46 51 55 76 25 48 52 

University of Strathclyde 85 19 44 47 85 7 39 43 

University of Sunderland 25 73 82 77 1 21 77 80 77 

University of Surrey 89 47 41 37 73 11 11 20 

University of Sussex 18 34 11 25 9 34 12 32 

University of Teesside 5 25 66 81 10 46 74 86 

University of Ulster 62 23 59 58 1 56 13 59 58 

University of Wales InstitUte, Cardiff 39 52 101 99 20 38 101 96 

University of Wales, Aberystwyth 72 44 45 52 74 33 46 50 

University of Wales, Bangor 46 
_58 

49 45 34 51 51 45 

University of Wales, Lampeter 27 98 46 70 52 100 54 78 

University of Wales, Swansea 15 15 6 28 57 55 31 51 

University of Warwick 67 5 22 18 88 6 33 28 

University of West of England, 

Bristol 

36 36 79 64 42 44 79 69 

University of Westminster 51 18 74 75 1 50 12 75 74 

University of Wolverhampton 4 45 68 96 3 60 73 95 

University of York 76 60 60. 12 82 54 58 9 
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Table 5: Overall rank of Pis 

Institution Mean Rank Rank of Mean 

Rank 

Favourite Rank Rank Favourite 

Rank 

Anglia Polytechnic University 70 89 13 49 

Aston University 43 32 13 49 

Birkbeck College 39 26 27 82 

Bolton Institute of HE 49 45 10 35 

Bournemouth University 61 70 5 17 

Brunei University 47 40 24 75 

Cardiff University 61 70 41 95 

Cheltenham and Gloucester CHE 59 66 15 57 

Chester College of HE 72 96 3 12 

Coventry University 63 74 25 79 

Cranfield University 29 8 1 1 

De Montfort University 74 99 8 28 

Edinburgh College of Art 70 90 35 91 

Glasgow Caledonian University 71 93 67 101 

Harper Adams University College 75 101 58 100 

Heriot-Watt University 53 52 8 28 

Imperial College 53 51 4 15 

Institute of Education 43 34 2 7 

Keele University 17 1 2 7 

King Alfred's College, Winchester 74 98 4 15 

Kingston University 57 62 24 75 

Lancaster University 34 16 23 72 

Leeds Metropolitan University 72 95 26 81 

Liverpool ohn Moores University 57 61 6 23 

London Business School 34 14 1 1 

London Sch of Economics & 

Political Sci 

30 9 2 7 

Loughborough University 37 21 19 63 

Napier University 87 102 68 102 

North East Wales Institute 66 83 11 41 

Nottinqham Trent University 68 84 24 75 

Oxford Brookes University 38 25 11 41 

Queen Margaret College 68 85 20 67 

Royal Holloway, University of 

London 

52 49 32 87 
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Sheffield Hallam University 64 76 41 95 

South Bank University 65 80 50 99 

St George's Hospital Medical 

School 

63 73 3 12 

St Mary's College 71 92 36 92 

Staffordshire University 71 93 30 86 

The London Institute 64 79 1 1 

The Queen's University of Belfast 28 6 13 49 

UMIST 28 7 1 1 

University College London 19 2 1 1 

University College Northampton 70 88 6 23 

University of Aberdeen 54 55 17 60 

University of Bath 58 63 18 61 

University of Birmingham 35 20 8 28 

University of Bradford 43 33 23 72 

University of Brighton 71 91 43 98 

University of Bristol 43 30 13 49 

University of Cambridge 34 19 2 7 

University of Central England in 

Birmingham 

58 65 10 35 

University of Central Lancashire 62 72 12 45 

University of Derby 64 78 7 26 

University of Dundee 60 68 14 55 

University of Durham 43 31 24 75 

University of East Anglia 34 15 10 35 

University of East London 69 87 28 85 

University of Edinburgh 56 57 15 57 

University of Essex 21 3 5 17 

University of Exeter 38 23 11 41 

University of Glasgow 65 81 22 71 

University of Greenwich 41 27 12 45 

University of Hertfordshire 44 35 12 45 

University of Huddersfield 48 42 19 63 

University of Hull 41 29 10 35 

University of Kent at Canterbury 38 24 19 63 

University of Leeds 34 16 13 49 

University of Leicester 34 16 5 17 

University of Lincolnshire and 

Humberside 

73 97 9 31 

University of Liverpool 46 38 16 59 

University of London 37 22 1 1 

University of Manchester 50 47 20 67 
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University of Newcastle upon Tyne 44 35 19 63 

University of North London 58 64 23 72 

University of Northumbria at 

Newcastle 

53 53 14 55 

University of Nottingham 32 10 9 31 

University of Oxford 49 44 2 7 

University of Paisley 74 99 41 95 

University of Plymouth 59 67 32 87 

University of Portsmouth 61 69 18 61 

University of Reading 27 5 5 17 

University of Salford 56 57 38 94 

University of Sheffield 32 12 10 35 

University of Southampton 46 37 10 35 

University of St Andrews 64 75 27 82 

University of Stirling 55 56 25 79 

University of Strathclyde 46 38 7 26 

University of Sunderland 64 76 21 70 

University of Surrey 41 27 11 41 

University of Sussex 22 4 9 31 

University of Teesside 49 46 5 17 

University of Ulster 49 43 13 49 

University of Wales Institute, Cardiff 68 86 20 67 

University of Wales, Aberystwyth 52 50 33 89 

University of Wales, Bangor 47 41 34 90 

University of Wales, Lam eter 66 82 27 82 

University of Wales, Swansea 32 10 6 23 

University of Warwick 33 13 5 17 

University of West of England, 

Bristol 

56 60 36 92 

University of Westminster 54 54 12 45 

University of Wolverhampton 56 57 3 12 

University of York 51 48 9 31 
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Table 6: Dynamic Efficiency and peer 

Peers to non efficient institutions 

Institution Cranfi 

eld 

Unive 

rsity 

The 

Lond 

on 

Institu 

te 

Keele 

Unive 

rsity 

Institu 

te of 

Educa 

tion 

Lond 

on 

Busin 

ess 

Scho 

01 

Lond 

on 

Sch 

of 

Econ 

ornics 

Politic 

al Sci 

Unive 

rsity 

Colle 

ge 

Lond 

on 

Unive 

rsity 

of 

Lond 

on 

Anglia Polytechnic University y y 

Aston University y y y y 

Birkbeck College y 

Bolton Institute of HE y y 

Bournemouth University y y 

Brunel University y y y y 

Cardiff University y y y 

Cheltenham and Gloucester CHE y 

Chester College of HE Y y 

Coventry University y y 

Cranfield University y 

De Montfort University y y 

Edinburgh College of Art Y y Y 

Glasgow Caledonian University y y y 

Harper Adams University College y y y 

Heriot-Watt University y y y 

Imperial College Y I 

Institute of Education y 

Keele University y 

King Alfred's College, Winchester y y 

Kingston University y y 

Lancaster University y y y Y 

Leeds Metropolitan University y y 

Liverpool ohn Moores University y y 

London Business School y 

London Sch of Economics & Political y 
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Sci 

Loughborough University Y Y Y Y Y 

Napier University Y Y Y 
North East Wales Institute Y Y 
Nottingham Trent University Y Y 
Oxford Brookes University Y Y 

_ 
Queen Margaret College Y Y 

7 

Royal Holloway, University of London Y Y Y Y Y 

Sheffield Hallam University Y Y 
South Bank University Y Y Y 

St George's Hospital Medical School Y Y 

St Mary's College Y Y 

Staffordshire University Y Y 

The London Institute Y 

The Queen's University of Belfast Y Y Y Y 

UMIST Y Y Y Y Y 

University College London Y 

University College Northampton Y Y 

University of Aberdeen Y Y 

University of Bath Y Y 

University of Birmingham Y Y 

University of Bradford Y Y Y 

University of Brighton Y Y Y 

University of Bristol Y Y Y 

University of Cambridge Y Y Y 

University of Central England in 

Birmingham 

Y Y 

University of Central Lancashire Y Y Y 

University of Derby Y Y 

University of Dundee Y Y YI 

University of Durham Y Y Y Y 

University of East Anglia Y Y Y Y 

University of East London Y Y 

University of Edinburgh Y Y Y Y 

University of Essex Y Y Y Y 

University of Exeter Y Y Y Y Y 

University of Glasgow Y Y Y Y 

University of Greenwich Y Y 

University of Hertfordshire Y Y 

University of Huddersfield Y Y 

L 
University of Hull Y Y Y- 
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University of Kent at Canterbury Y Y 
University of Leeds Y Y Y 
University of Leicester Y Y Y Y 
University of Lincolnshire and 
Humberside 

Y Y 

University of Liverpool Y Y Y Y 

University of London Y 

University of Manchester Y Y 

University of Newcastle upon Tyne Y Y Y Y 

University of North London Y Y 

University of Northumbria at 
Newcastle 

Y Y 

University o Nottingham Y Y Y Y 

University of Oxford Y 

University of Paisley Y Y 

University of Plymouth Y Y Y Y 

University of Portsmouth Y Y 

University of Reading Y Y Y Y 

University of Salford Y Y 

University of Sheffield Y Y Y 

University of Southampton Y Y 

University of St Andrews Y Y Y Y 

University of Stirling Y Y Y 

University of Strathclyde Y Y 

University of Sunderland Y 

University of Surrey Y Y Y 

University of Sussex Y Y Y 

University of Teesside Y Y 

University of Ulster Y Y 

University of Wales Institute, Cardiff Y Y Y 

University of Wales, Aberystwyth Y Y Y Y 

University of Wales, Bangor Y Y Y Y 

University of Wales, Lampeter Y Y 

University of Wales, Swansea Y Y Y I Y 

University of Warwick Y Y 

University of West of England, Bristol Y Y 

University of Westminster Y Y 
__ 

University of Wolverhampton Y Y 

A York Y Y 
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Table 7: Table of dynamic eff iciency and the rank of each institution (variable returns 

to scale 

Institution Dynamic efficiency 

score (VRS) 

Institutions' Rank 

Anglia Polytechnic University 60.13 69 
Aston University 70.43 46 
Birkbeck College 72.88 40 
Bolton Institute of HE 97.13 12 
Bournemouth University 83.01 27 
Brunei University 55.79 79 
Cardiff University 45.74 98 
Cheltenham and Gloucester CHE 78.39 31 
Chester College of HE 100.00 1 joint 
Coventry University 51.64 90 
Cranfield University 100.00 1 joint 
De Montfort University 75.31 37 
Edinburgh College of Art 62.86 59 
Glasgow Caledonian University 37.41 101 
Harper Adams University College 63.73 57 
Heriot-Watt University 68.12 51 
Imperial College 83.25 26 

Institute of Education 100.00 1 joint 

Keele University 100.00 1 joint 

King Alfred's College, Winchester 92.35 14 

Kingston University 60.80 66 

Lancaster University 68.63 50 

Leeds Metropolitan University 55.16 80 

Liverpool John Moores University 77.29 33 

London Business School 100.00 1 joint 

London Sch of Economics & Political Sci 100.00 1 joint 

Loughborough University 63.51 58 

Napier University 35.55 102 

North East Wales Institute 78.70 30 

Nottingham Trent University 50.83 93 

Oxford Brookes University 84.81 24 

Queen Margaret College 100.00 1 joint 

Royal Holloway, University of London 58.89 74 

Sheffield Hallam University 44.58 99 

South Bank University 46.16 96 

St George's Hospital Medical School 86.23 19 

St Mary's College 77.87 32 

Staffordshire University 51.53 91 
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The London Institute 100.00 1 joint 
The Queen's University of Belfast 80.41 28 
UMIST 94.07 13 
University College London 100.00 1 joint 
University College Northampton 87.47 17 
University of Aberdeen 53.68 84 
University of Bath 52.77 86 
University of Birmingham 62.16 62 
University of Bradford 51.87 89 
University of Brighton 41.80 100 
University of Bristol 66.66 55 
University of Cambridge 86.17 20 
University of Central England in Birmingham 62.23 60 
University of Central Lancashire 69.12 49 
University of Derby 66.85 54 
University of Dundee 57.30 77 
University of Durham 52.55 87 

University of East Anglia 64.89 56 

University of East London 60.65 67 

University of Edinburgh 52.42 88 

University of Essex 88.43 16 

University of Exeter 61.97 63 

University of Glasgow 55.07 81 

University of Greenwich 80.08 29 

University of Hertfordshire 84.91 23 

University of Huddersfield 74.19 39 

University of Hull 67.38 52 

University of Kent at Canterbury 71.66 44 

University of Leeds 72.67 42 

University of Leicester 76.93 34 

University of Lincolnshire and Humberside 70.99 45 

University of Liverpool 59-01 73 

University of London 100.00 1 joint 

University of Manchester 52.91 85 

University of Newcastle upon Tyne 59.19 70 

University of North London 74.96 38 

University of Northumbria at Newcastle 72.68 41 

University of Nottingham 84.31 25 

University of Oxford 76.52 35 

University of Paisley 59.06 72 

University of Plymouth 49.75 94 

University of Portsmouth 60.64 68 

University of Reading 70.32 47 

University of Salford 56.42 78 

University of Sheffield 75.48 36 
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University of Southampton 67.05 53 

University of St Andrews 51.18 92 

University of Stirling 47.66 95 

University of Strathclyde 62.22 61 

University of Sunderland 59-09 71 

University of Surrey 69.94 48 

University of Sussex 85.36 22 

University of Teesside 91.61 15 

University of Ulster 54.40 83 

University of Wales Institute, Cardiff 57.61 75 

University of Wales, Aberystwyth 46.10 97 

University of Wales, Bangor 61.20 65 

University of Wales, Lampeter 97.58 11 

University of Wales, Swansea 85.60 21 

University of Warwick 72.07 43 

University of West of England, Bristol 54.47 82 

University of Westminster 57.55 76 

University of Wolverhampton 87.10 18 

University of York 61.70 64 
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