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Abstract

When a pair of independent series is highly persistent, there is a spurious regression bias in
a regression between these series, closely related to the classic studies of Granger and Newbold
(1974). Although this is well known to occur with independent I(1) processes, this paper pro-
vides theoretical and numerical evidence that the phenomenon of spurious regression also arises
in regressions between stationary AR(p) processes with structural breaks, which occur at different
points in time, in the means and the trends. The intuition behind this is that structural breaks can
increase the persistence levels in the processes (e.g., Granger and Hyung (2004)), which then leads
to spurious regressions. These phenomena occur for general distributions and serial dependence
of the innovation terms.
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1 Introduction

Simulation studies of Granger and Newbold [1974] warned that spurious relations
may be found between the levels of trending time series that are actuallyindepen-
dent. Later, Phillips [1986, 1998] provide an elegant asymptotic framework that
vindicates the simulation results. Applied economists become increasingly aware
of this problem. For instance, Ferson, Sarkissian, and Simin [2003] find that many
predictive stock return regressions in the literature, based on individual predicting
variables, may be spurious.

It has been known for some time that the spurious regressionsdo not hold
only for independent random walks, but also for other persistent processes, such
as high-order integrated processes (see, e.g., Marmol [1995], among others), frac-
tionally integrated processes (see, e.g., Tsay and Chung [1999], among others),I(1)
processes with infinite variance errors (see Tsay [1999]), and positively autocorre-
lated processes on long moving averages (see Granger, Hyung, and Jeon [2001]).

The goal of the current paper is to investigate the possible existence of spu-
rious relations in a pair of stationary, invertibleAR(p)processes withweakly depen-
dent innovations and structural breaks, which occur at different points in time, in
the means and the trends. This problem has an aesthetic appeal and also practical
implications. We have shown that the strength of these typesof spurious relation-
ship is rather severe for the type of processes under our study; and that the rates
of convergence for the OLS statistics to the corresponding limiting values do not
depend on the starting values and the break locations of the underlying processes.

Our analytical framework, although simplified in a number ofrespects (such
as only one break point is considered per se), proves tractable in addressing the
main issues of spurious regressions. Nevertheless, we alsoprovide a sketch of
theoretical results for the case of many break points. Hitherto, the plan of this
paper is as follows: Section2 deals with structural breaks in means; Section3 deals
with structural breaks in trends; Section4 provides some simulation evidences; and
Section5 concludes this paper. Last but not least, results of technical flavor but
essential for the paper are collected in the appendices at the end of the paper.

2 Spurious Regression: Structural Breaks in Mean

The data generating processes (DGPs) for twoindependentstationary1 time series
are defined as follows:

1We shall note at this point that the terminology ‘stationary’ is used to merely mean that the
roots of lag polynomials lie outside the unit circle.
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A(L)Xt = c(x)1{t>[Tτ(x)]} +ut ,

B(L)Yt = c(y)1{t>[Tτ(y)]} +vt , (2.1)

where intercepts,c(x) andc(y), are the break levels ofXt andYt , respectively;A(L)
andB(L) are lag polynomials with their roots outside the unit circle; τ(x) andτ(y)

are the break points ofXt andYt , respectively; and innovation terms,ut andvt , are
contemporaneouslyindependentand fulfill Assumption 1 (below).

LetFt andF t denote theσ -fields generated, respectively, by(us,vs),−∞ <
s≤ t, and(us,vs), t ≤ s< ∞. Given a positive integer,k, we set

α(k) = sup
{∣∣∣P(A

⋂
B)−P(A)P(B)

∣∣∣ : A∈ Ft andB∈ F
t+k
}

.

This is Rosenblatt’s [1956] mixing coefficient. The stationary process is
said to beα-mixing or strongly mixing ifα(k) −→ 0 ask−→ ∞.

Assumption 1. The innovation terms,(ut ,vt), are strictly stationary with zero
means such that E[|u0|

2(r+δ )] < ∞ and E[|v0|
2(r+δ )] < ∞ for some integer, r> 1, and

a positive generic constant,δ . The mixing coefficient satisfiesα(k) = O

(
k−

r
r−1−ε

)
,

whereε is a positive generic constant.

Assumption 1 includes a wide variety of possible data-generating mecha-
nisms. For example, both the ARMA process and the MA(∞) process can become
strongly mixing under some regularity conditions (see, e.g., Gorodetskii [1977] and
Withers [1981]). The mixing condition in this assumption essentially controls the
extent of permissible temporal dependence in the process inthe relation to the prob-
ability of outlier occurrences.

Eq. (2.1) can be rewritten as

Xt = A−1(L)c(x)1{t>[Tτ(x)]} +A−1(L)ut ,

Yt = B−1(L)c(y)1{t>[Tτ(y)]} +B−1(L)vt .

Let us define the following inverse lag operators:A∗(L) = A−1(L) andB∗(L) =
B−1(L). An application of the Beveridge-Nelson (BN) decomposition,A∗(L) =
A∗(1)+A⋄(L)(1−L) andB∗(L) = B∗(1)+B⋄(L)(1−L), yields

A∗(L)ut = A∗(1)ut +∆u∗t
B∗(L)vt = B∗(1)vt +∆v∗t ,

whereu∗t = A⋄(L)ut andv∗t = B⋄(L)vt with A⋄ andB⋄ having their roots outside the
unit circle.

2 Studies in Nonlinear Dynamics & Econometrics Vol. 15 [2011], No. 1, Article 1

http://www.bepress.com/snde/vol15/iss1/art1



Now, let us consider the following regression equation:

Yt = γ̂ + β̂Xt + ŵt ,

whereγ̂, β̂ andŵt are the OLS estimators, defined as

β̂ =

∑T
1 Yt(Xt −X)

∑T
1 (Xt −X)2

,

γ̂ = Y− β̂X,

ŵt = Yt − γ̂ − β̂Xt .

Lemma 1. Suppose that(Xt ,Yt) are generated by Eq.(2.1). The innovations, ut
and vt , are independent and satisfy Assumption 1. Then, as T−→ ∞,

T−1
T∑

t=1

XtYt
a.s.
=⇒ A∗(1)B∗(1)c(x)c(y)

(
1−max(τ(x),τ(y))

)

︸ ︷︷ ︸
LXY

(2.2)

T−1
T∑

t=1

Xt
a.s.
=⇒ (1− τ(x))A∗(1)c(x)

︸ ︷︷ ︸
LX

(2.3)

T−1
T∑

t=1

Yt
a.s.
=⇒ (1− τ(y))B∗(1)c(y)

︸ ︷︷ ︸
LY

(2.4)

T∑
t=1

X2
t

T
a.s.
=⇒

A∗2(1)
{

σ2
u +σ2

∆u∗ +(1− τ(x))c(x)2
}

+2A∗(1)σu∆u∗︸ ︷︷ ︸
LX2

(2.5)

T∑
t=1

Y2
t

T
a.s.
=⇒

B∗2(1)
{

σ2
v +σ2

∆v∗ +(1− τ(y))c(y)2
}

+2B∗(1)σv∆v∗︸ ︷︷ ︸
LY2

(2.6)

T∑
t=s+1

(Yt −Y)(Yt−s−Y)

T
a.s.
=⇒

B∗2(1)
{

c(y)2τ(y)
(

1− τ(y)
)

+σv0vs

+σ∆v∗0∆v∗s

}
+B∗(1)

(
σv0∆v∗s +σvs∆v∗0

)

︸ ︷︷ ︸
LY0Ys

(2.7)

T∑
t=s+1

(Xt −X)(Xt−s−X)

T
a.s.
=⇒

A∗2(1)
{

c(x)2τ(x)
(

1− τ(x)
)

+σu0us

+σ∆u∗0∆u∗s

}
+A∗(1)

(
σu0∆u∗s +σus∆u∗0

)

︸ ︷︷ ︸
LX0Xs

(2.8)
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T∑
t=s+1

(Yt −Y)(Xt−s−X)

T
a.s.
=⇒

A∗(1)B∗(1)c(x)c(y)
{

1−max(τ(x),τ(y))

− (1− τ(x))(1− τ(y))
}

︸ ︷︷ ︸
LY0Xs

(2.9)

T∑
t=s+1

(Yt−s−Y)(Xt −X)

T
a.s.
=⇒ LY0Xs, (2.10)

where

σ2
u = lim

T−→∞
T−1∑T

t=1u2
t ; σ2

∆u∗ = lim
T−→∞

T−1∑T
t=1(∆u∗t )

2 ;

σu∆u∗ = lim
T−→∞

T−1∑T
t=1ut∆u∗t ; σ2

v = lim
T−→∞

T−1∑T
t=1v2

t ;

σ2
∆v∗ = lim

T−→∞
T−1∑T

t=1(∆v∗t )
2 ; σv∆v∗ = lim

T−→∞
T−1∑T

t=1vt∆v∗t ;

σv0vs = lim
T−→∞

T−1∑T
t=s+1vtvt−s; σ∆v∗0∆v∗s = lim

T−→∞
T−1∑T

t=s+1 ∆v∗t ∆v∗t−s;

σv0∆v∗s = lim
T−→∞

T−1∑T
t=s+1vt∆v∗t−s; σvs∆v∗0

= lim
T−→∞

T−1∑T
t=s+1vt−s∆v∗t ;

σu0us = lim
T−→∞

T−1∑T
t=s+1utut−s; σ∆u∗0∆u∗s = lim

T−→∞
T−1∑T

t=s+1 ∆u∗t ∆u∗t−s;

σu0∆u∗s = lim
T−→∞

T−1∑T
t=s+1ut∆u∗t−s; σus∆u∗0

= lim
T−→∞

T−1∑T
t=s+1ut−s∆u∗t .

Moreover, Eqs.(2.2)-(2.10) hold irrespective of the initial conditions as-
signed to X0 and Y0.

Proof. The proof is presented in Appendix.

The limiting behaviors of regression statistics are statedin Theorem 1 below.

Theorem 1. Suppose that the conditions of Lemma 1 are satisfied. Then, asT → ∞,

β̂ a.s.
=⇒

LXY−LXLY

LX2 −L 2
X

= Lbβ ;

γ̂ a.s.
=⇒ LY −Lbβ LX = Lbγ ;

ŝ2 = T−1
T∑

1

{
(Yt −Y)− β̂ (Xt −X)

}2 a.s.
=⇒

{LY2 −L 2
Y}+L 2bβ {LX2 −L 2

X}

−2Lbβ{LXY−LXLY} = Lbs2;

T−1/2tβ̂ =
β̂

ŝ
(

T−1
∑T

t=1(Xt −X)2
)−1/2

a.s.
=⇒

Lbβ
L

1/2bs2 {LX2 −L 2
X}

−1/2
;
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T−1/2tγ̂ =
γ̂
ŝ

(
T−1∑T

t=1(Xt −X)2
)1/2

(
T−1

∑T
t=1X2

t

)1/2
a.s.
=⇒

Lbγ
L

1/2bs2

{LX2 −L 2
X}

1/2

L
1/2
X2

;

r̂s =

∑T
s+1 ŵtŵt−s∑T

1 ŵ2
t

a.s.
=⇒

LY0Ys +L 2bβ LX0Xs −2Lbβ LY0Xs

LY2 +L 2bγ +L 2bβ LX2 −2LbγLY −2Lbβ LXY +2LbγLbβ LX
.

Proof. The proof is presented in Appendix.

Remark 1. Theorem 1 is a close-to-trivial but quite enlightening caseof spuri-
ous regression. The OLS coefficient,β̂ , does not tend to zero, as it is expected to
when twoindependentd.g.p. are regressed on each other. Moreover, the t statis-
tics diverge at the rate ofOa.s.(T1/2), implicating that the null hypothesis of zero
β always fails to be rejected. The serial correlation coefficients of the regression
residuals converge almost surely to a non-zero constant, which is not the case for
regression of two independent processes. In general, all of these results differ from
the conventional theory of regression with stationary processes.

It is worth noting that the main results hold only for the case where struc-
tural breaks occur at different points in time. In other words, if the break point is at
the same time the spurious regression effect disappears.

Corollary 1. Suppose, there are no structural breaks in means. Then, asT → ∞,

T−1
T∑

t=1

XtYt
a.s.
=⇒ c(x)c(y)A∗(1)B∗(1)

T−1
T∑

t=1

Xt
a.s.
=⇒ c(x)A∗(1)

T−1
T∑

t=1

Yt
a.s.
=⇒ c(y)B∗(1).

Moreover, suppose that Xt has a structural break but Yt does not. Then, asT → ∞,

T−1
T∑

t=1

XtYt
a.s.
=⇒ c(x)c(y)(1− τ(x))A∗(1)B∗(1)

T−1
T∑

t=1

Xt
a.s.
=⇒ (1− τ(x))c(x)A∗(1)

T−1
T∑

t=1

Yt
a.s.
=⇒ B∗(1)c(y).

The above limiting behaviors implŷβ a.s.
=⇒ 0 (i.e., no spurious regression).
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3 Spurious Regression: Structural Breaks in Trend

We shall consider the following d.g.p.:

A(L)Xt = c(x) + µ(x)t + µ(x)
1

(
t − [Tτ(x)]

)
1{t>[Tτ(x)]} +ut ,

B(L)Yt = c(y) + µ(y)t + µ(y)
1

(
t − [Tτ(y)]

)
1{t>[Tτ(y)]} +vt , (3.1)

where lag polynomials,A(L) andB(L), have their roots lying outside the unit circle;

c(x) andc(y) are the intercepts ofXt andYt , respectively;µ(x) andµ(x)
1 are, respec-

tively, the permanent trend and the transitory trend, resulting from a break, of the
processXt ; µ(y) andµ(y)

1 are, respectively, the permanent trend and the transitory
trend, resulting from a break, of the processYt ; and innovations,ut andvt), are
independent and satisfies Assumption 1.

A BN decomposition of the inverse lag operatorsA∗(L) andB∗(L), as de-
fined in Section 2, yields

Xt = A∗(1)c(x) + µ(x) (A∗(1)t +A⋄(1))

+ µ(x)
1

{
A∗(1)(t − [Tτ(x)])+A⋄(1)

}
1{t>[Tτ(x)]} +A∗(L)ut and

Yt = B∗(1)c(y) + µ(y) (B∗(1)t +B⋄(1))

+ µ(y)
1

{
B∗(1)(t − [Tτ(y)])+B⋄(1)

}
1{t>[Tτ(y)]} +B∗(L)vt ,

whereut = A∗(1)ut +∆u∗t andvt = B∗(1)vt +∆v∗t .
Next, we formulate the following OLS regression:

Yt = γ̂1 + γ̂2t + β̂Xt + ŵt ,

where 


γ̂1

β̂
γ̂2



=




T

∑T
1 Xt

∑T
1 t∑T

1 Xt
∑T

1 X2
t

∑T
1 tXt∑T

1 t
∑T

1 tXt
∑T

1 t2





−1



∑T
1 Yt∑T

1 XtYt∑T
1 tYt



 . (3.2)

To facilitate the asymptotic argument for the OLS statistics, we shall first state
Lemma 2 (below). (Also to avoid any unnecessary confusion, we shall note here
that notations,L•, are specific to Section 3 and independent ofL• in other sec-
tions.)

Lemma 2. Suppose that(Xt ,Yt) is generated by Eq.(3.1). The innovations, ut and
vt , are independent and satisfy Assumption 1. Then, as T−→ ∞,
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T−2
T∑

1

Xt
a.s.
=⇒ A∗(1)

{
µ(x)

∫ 1

0
sds+ µ(x)

1

∫ 1

τ(x)
(s− τ(x))ds

}

︸ ︷︷ ︸
LX

(3.3)

T−3
T∑

1

X2
t

a.s.
=⇒

A∗2(1)

{
µ(x)2∫ 1

0 s2ds+ µ(x)
1

2∫ 1
τ(x)

(
s− τ(x)

)2
ds

+ 2µ(x)µ(x)
1

∫ 1
τ(x) s

(
s− τ(x)

)
ds
}

︸ ︷︷ ︸
LX2

(3.4)

T−2
T∑

1

t =⇒

∫ 1

0
sds

︸ ︷︷ ︸
Lt

(3.5)

T−3
T∑

1

tXt
a.s.
=⇒ A∗(1)

{
µ(x)

∫ 1

0
s2ds+ µ(x)

1

∫ 1

τ(x)
s
(

s− τ(x)
)

ds

}

︸ ︷︷ ︸
LtX

(3.6)

T−3
T∑

1

t2 =⇒

∫ 1

0
s2ds

︸ ︷︷ ︸
Lt2

(3.7)

T−2
T∑

1

Yt
a.s.
=⇒ B∗(1)

{
µ(y)

∫ 1

0
sds+ µ(y)

1

∫ 1

τ(y)
(s− τ(y))ds

}

︸ ︷︷ ︸
LY

(3.8)

T−3
T∑

1

XtYt
a.s.
=⇒

A∗(1)B∗(1)
{

µ(x)µ(y)
∫ 1

0 s2ds

+µ(x)
1 µ(y)

1

∫ 1
max(τ(x),τ(y))

(
s− τ(x)

)(
s− τ(y)

)
ds

+µ(x)µ(y)
1

∫ 1
τ(y) s

(
s− τ(y)

)
ds

+µ(y)µ(x)
1

∫ 1
τ(x) s

(
s− τ(x)

)
ds
}

︸ ︷︷ ︸
LXY

(3.9)

T−2
T∑

1

tYt
a.s.
=⇒ B∗(1)

{
µ(y)

∫ 1

0
s2ds+ µ(y)

1

∫ 1

τ(y)
s
(

s− τ(y)
)

ds

}

︸ ︷︷ ︸
LtY

(3.10)

T−2
T∑

1

Y2
t

a.s.
=⇒

B∗2(1)
{

µ(y)2∫ 1
0 s2ds+ µ(y)

1

2∫ 1
τ(y)

(
s− τ(y)

)2
ds

+ 2µ(y)µ(y)
1

∫ 1
τ(y) s

(
s− τ(y)

)
ds
}

.
︸ ︷︷ ︸

LY2

(3.11)
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Moreover, Eqs.(3.3)-(3.11)hold irrespective of the initial conditions assigned to
X0 and Y0.

Proof. The proof is presented in Appendix.

Let’s define

A =




1 LX Lt

LX LX2 LtX

Lt LtX Lt2



 andB =




LY

LXY

LtY



 ,

where the elements of the matrices are defined in Lemma 2.
The limiting behavior of regression statistics are stated in Theorem 2.

Theorem 2. Suppose that the conditions of Lemma 2 are satisfied. Then, asT −→
∞, 


T−1γ̂1

β̂
γ̂2



 a.s.
=⇒ A

−1
B =




Lbγ1

Lbβ
Lbγ2



 (3.12)

T−2ŝ2 a.s.
=⇒

LY2 +Lbγ2
2
Lt2 +Lbβ 2

LX2 −2Lbγ1
LY −2Lbγ2

LtY −2Lbβ LXY

+2Lbγ1
Lbγ2

Lt +2Lbβ Lbγ1
LX +2Lbβ Lbγ2

LtX;
︸ ︷︷ ︸

Lbs2 (3.13)

T−1/2tγ̂1

a.s.
=⇒

Lbγ1

Lσbγ1

(3.14)

T−1/2tβ̂
a.s.
=⇒

Lbβ
Lσbβ (3.15)

T−1/2tγ̂2

a.s.
=⇒

Lbγ2

Lσbγ2

(3.16)

where

Lσbγ1
= L

1/2bs2 I(1)A
−1

I
′

(1)

Lσbβ = L
1/2bs2 I(2)A

−1
I
′

(2)

Lσbγ2
= L

1/2bs2 I(3)A
−1

I
′

(3)

(I(i) denotes a vector in which the i-th element is one and the other elements are
zeros.)

R2 = β̂ 2
∑T

1 (Xt −X)2

∑T
1 (Yt −Y)2

a.s.
=⇒ L

2bβ {LX

LY

}2

(3.17)
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r̂s =
1

Lbs2

(
(1−2Lbβ )LXY−2Lbγ1

LY +2Lbγ1
Lbγ2

Lt +2Lbγ1
Lbβ LX

+L 2bβ LX2 −2Lbγ2
LtY +L 2bγ2

Lt2 +2Lbβ Lbγ2
LtX

)
. (3.18)

Proof. The proof is presented in Appendix.

Remark 2. The heuristics for the results in Theorem 2 is rather succinct. Since the
limiting behaviors of the OLS estimates are dominated by thetrend components, the
OLS estimates do not converge to zero, as one expects when a process is regressed
on anotherunrelatedprocess, unless all the trends are canceled out. Also due to
the presence of breaks in the trends, the OLS statistics – regression sum of squared
errors,ŝ, and t statistics – diverge at the rate ofOa.s.(T1/2), suggesting that the null
hypotheses of zero regression coefficients always fail to be rejected in this case. In
addition, the serial correlation coefficients of the regression residuals and the R2

coefficient converge almost surely to non-zero constants, which is not the case in
the conventional theory of regression for stationary processes.

Corollary 2. Suppose that Xt has a structural break but Yt does not. Then,

LY = µ(y)B∗(1)Lt

LXY = A∗(1)B∗(1)

(
µ(x)µ(y)

Lt2 + µ(x)
1 µ(y)

(∫ 1

τ(x)
s2ds− τ(x)

∫ 1

τ(x)
sds

))

LtY = µ(y)B∗(1)Lt2

LY2 = µ(y)2
B∗2(1)Lt2.

Theorem 2 still holds.

4 Simulations

The validity of our theorems for approximating the distributions of the OLS statis-
tics in small samples can be legitimately questioned. To give some idea of the
significance of our theoretical results, we shall provide some simulation studies. In
the sequel, we run the following two regressions:

Yt = γ +βXt +wt (4.1)

Yt = γ1 + γ2t +βXt +wt , (4.2)

whereXt andYt are generated byAR(1)processes with structural breaks in the mean
and in the trend, as defined in Eq. (2.1) and Eq. (3.1) respectively.
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Structural Break in Mean

First, we generate artificial data from

Xt = φxXt−1 +c(x)1{t>[Tτ(x)]} +ut ,

Yt = φyYt−1 +c(y)1{t>[Tτ(y)]} +vt , (4.3)

where we setτ(x) = 0.4, τ(y) = 0.8, αx = 1.0, αy = 2.0, φx = 0.8, andφy = 0.75.
In this simulation, for simplicity we shall assume that the processesut andvt are
independent white noises. This is, unfortunately, because simulations for general
weakly dependent innovations are quite complicated to implement. The processes
in Eq. (4.3) are initialized byX0 = 10 andY0 = 10. In order to evaluate the con-
vergence rates of the OLS estimates,γ̂ and β̂ , their t-statistics,tγ andtβ , and the
serial correlation coefficient,̂rs, to the corresponding limits, we generate samples
{Xt ,Yt}

T
t=1 of sizeT from 1,000 to 5,000,000.

Table 1: Simulations: Structural Breaks in Means

This table presents the simulation results for the OLS statistics convergence under a structural break
in the mean. First, twoindependent AR(1)processes, defined in Eq. (4.3), are simulated, given
τx = 0.4, τy = 0.8, αx = 1.0, αy = 2.0, φx = 0.8, φy = 0.75, x0 = 10, andy0 = 10. Then the OLS
coefficients, their t-statistics, and the serial correlations of regression residuals are estimated from
these simulated data. Limiting values are computed from Theorem 1. This procedure is repeated
1,000 times to generate standard errors of the mean of estimates and their 95% confidence bounds.
Standard errors are given in parentheses.

T γ̂ β̂ t̂γ t̂β r̂s, s= 1

1,000 0.484633
(7.763·10−3)

0.373060
(2.158·10−3)

0.101586
(1.632·10−3)

0.330414
(2.039·10−3)

0.935153
(1.997·10−4)

10,000 0.503534
(2.391·10−3)

0.364988
(6.643·10−4)

0.105044
(5.035·10−4)

0.321041
(6.266·10−4)

0.942552
(6.001·10−5)

50,000 0.506336
(1.074·10−3)

0.364193
(2.957·10−4)

0.105572
(2.259·10−4)

0.320185
(2.773·10−4)

0.943115
(2.602·10−5)

100,000 0.505706
(7.328·10−4)

0.364738
(2.077·10−4)

0.105434
(1.549·10−4)

0.320596
(1.926·10−4)

0.943121
(1.825·10−5)

200,000 0.506516
(5.592·10−4)

0.364592
(1.528·10−4)

0.105626
(1.176·10−4)

0.320566
(1.412·10−4)

0.943150
(1.272·10−6)

500,000 0.506062
(3.344·10−4)

0.364675
(9.348·10−5)

0.105514
(7.074·10−5)

0.320572
(8.691·10−5)

0.943178
(8.240·10−6)

1,000,000 0.506276
(2.453·10−4)

0.364507
(6.725·10−5)

0.105554
(5.147·10−5)

0.320415
(6.308·10−5)

0.943182
(5.743·10−6)

2,000,000 0.506574
(1.797·10−4)

0.364501
(4.960·10−5)

0.105625
(3.810·10−5)

0.320435
(4.550·10−5)

0.943186
(4.148·10−6)

5,000,000 0.506203
(1.074·10−4)

0.364515
(2.931·10−5)

0.105540
(2.255·10−5)

0.320436
(2.734·10−5)

0.943183
(2.542·10−6)

Limit
Value 0.506329 0.364557 0.105564 0.320468 0.943194
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The simulated means of the OLS statistics, the corresponding limiting val-
ues, and the 95% confidence bounds are presented in Table 1 andFigure 1. It is
noteworthy that the simulated means of the OLS statistics merely approach the cor-
responding limits forT roughly equal to 1,000 observations.

Figure 1: Convergence of Estimators: Structural Breaks in Means

This figure shows the plots of the mean OLS statistics (black line) and their 95% confidence bounds
(red lines) of the regressionyt = γ + βxt + wt . The processesyt and xt are independentAR(1)
processes, defined in Eq. (4.3), withτx = 0.4, τy = 0.8, αx = 1.0, αy = 2.0, φx = 0.8, φy = 0.75,
x0 = 10, andy0 = 10. As the number of observations,T, increases, the OLS statistics converge to
their limiting values (dashed line), based on Theorem 1.
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Structural Break in Trend

To illustrate the case with structural breaks in the trends,we generate artificial data
from

Xt = φxXt−1 +c(x) + µ(x)t + µ(x)
1 (t − [Tτ(x)])1{t>[Tτ(x)]} +ut ,

Yt = φyYt−1 +αy + µyt + µ(y)
1 (t − [Tτy])1{t>[Tτy]} +vt , (4.4)

where we setτx = 0.4, τy = 0.8, αx = 1.0, αy = 2.0, φx = 0.8, φy = 0.75, µx =

0.2, µ(x)
1 = 0.1, µy = 0.3, µ(y)

1 = 0.05, with ut andvt are, as earlier,independent
white noises. Using initial values,X0 = 10 andY0 = 10, we run the regression in
Eq. (4.2) using the simulated data and estimate the OLS statistics. We repeat the
simulation 1,000 times to compute the means and the 95% confidence bounds of
the OLS coefficientŝγ1, γ̂2 andβ̂ , their t-statistics, the serial correlation coefficient
of the residuals, and the determination coefficientR2. The simulation results are
presented in Table 2 and Figure 2. As one can see, the simulated means of the OLS
coefficients, except for̂γ1, become rather stable asT reaches 1,000 observations.
However, it is worth mentioning at this point that the discrepancies between the
true slope coefficients and their OLS estimates, as seen in Figures 1 and 2, are rather
wide due to a large graphic scaling being used, not because these discrepancies are
really high.

Finally, we also performed some sensitivity analyses to check the robustness
of the previous results with respect to different parameters values (cf. Table 3). We
implemented these analyses by choosing different startingvalues for processesXt

andYt . The results are in line with those presented earlier – coefficient estimates
and the values of their t-statistics approach to their corresponding limit values.

Table 4 presents simulation results for a variety of break points, τx andτy.
Precisely, we used some big values forτx andτy. Although the limits of the OLS es-
timates depend on break locations, the convergence rates are essentially unaffected.

5 Discussion and Conclusion

Although the specification we adopt in this paper may omit some potential features
of the data, such as ARCH effects, we find that using this fairly standardAR(p)
framework allows us to successfully address the questions whether spurious re-
gressions occur in the presence of structural breaks. In summary, the thrust of the
present paper has been to show evidences of spurious regressions in the presence of
structural breaks in the means and the trends ofAR(p)processes by analyzing the
limiting properties of the standard OLS statistics.
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Table 2: Simulations: Structural Breaks in Trends

This table presents the simulation results for the OLS statistics convergence under structural breaks in the trend. First, two independent AR(1)
processes, defined in Eq. (4.4), are simulated, givenτx = 0.4, τy = 0.8, αx = 1.0, αy = 2.0, φx = 0.8, φy = 0.75, µx = 0.2, µx,b = 0.1, µy = 0.3,
µy,b = 0.05, x0 = 10, andy0 = 10. Then the regression coefficients, their t-statistics, and the serial correlations of regression residuals are
estimated from these simulated data. Limiting values are computed from Theorem 2. This procedure is repeated 1,000 times to generate the
standard errors of the mean of OLS statistics and their 95% confidence bounds. Standard errors are presented in parentheses.

T γ̂1 γ̂2 β̂ t̂γ1 t̂γ2 t̂β R̂2 r̂s, s= 1

1,000 0.00696617
(1.14·10−5)

1.056422
(1.59·10−4)

0.123978
(1.210·10−4)

0.394673
(7.029·10−4)

4.442476
(2.938·10−3)

0.691611
(8.215·10−4)

0.0181748
(3.55·10−5)

0.986649
(3.069·10−5)

10,000 0.00309036
(3.83·10−7)

1.054361
(5.22·10−6)

0.125696
(3.921·10−6)

0.176181
(2.238·10−5)

4.473360
(9.925·10−5)

0.708730
(2.736·10−5)

0.0187166
(1.16·10−6)

0.999308
(2.488·10−7)

50,000 0.00275121
(3.40·10−8)

1.054134
(4.57·10−7)

0.125878
(3.438·10−7)

0.156599
(1.972·10−6)

4.466557
(9.090·10−6)

0.708934
(2.459·10−6)

0.0187752
(1.02·10−7)

0.999881
(9.720·10−9)

100,000 0.00270894
(1.23·10−8)

1.054104
(1.69·10−7)

0.125902
(1.271·10−7)

0.154157
(7.088·10−7)

4.465557
(3.083·10−6)

0.708941
(8.560·10−7)

0.0187828
(3.79·10−8)

0.999942
(2.537·10−9)

200,000 0.00268780
(4.24·10−9)

1.054089
(5.62·10−8)

0.125914
(4.226·10−8)

0.152937
(2.451·10−7)

4.465054
(1.119·10−6)

0.708946
(2.905·10−7)

0.0187866
(1.26·10−8)

0.999971
(2.467·10−10)

500,000 0.00267512
(1.11·10−9)

1.054080
(1.44·10−8)

0.125921
(1.082·10−8)

0.152205
(6.364·10−8)

4.464749
(2.778·10−7)

0.708948
(7.303·10−8)

0.0187889
(3.23·10−9)

0.999989
(9.920·10−11)

1,000,000 0.00267089
(3.90·10−10)

1.054077
(5.81·10−9)

0.125924
(4.037·10−9)

0.151961
(2.241·10−8)

4.464648
(9.873·10−8)

0.708949
(2.696·10−8)

0.0187897
(1.20·10−9)

0.999994
(2.523·10−11)

2,000,000 0.00266878
(1.34·10−10)

1.054076
(1.94·10−9)

0.125925
(1.402·10−9)

0.151839
(7.727·10−9)

4.464597
(3.611·10−8)

0.708949
(9.356·10−9)

0.0187901
(4.15·10−10)

0.999997
(6.040·10−12)

Limit Value 0.00266667 1.054070 0.125926 0.151717 4.464550 0.708949 0.0187905 1.00000
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Figure 2: Convergence of Estimators: Structural Breaks in Trends

This figure shows the plots of the mean OLS statistics (black line) and their 95% confidence
bounds (red line) of the regressionyt = γ +βxt +wt . The processesyt andxt are independent
AR(1) processes, as defined in Eq. (4.4), withτx = 0.4, τy = 0.8, αx = 1.0, αy = 2.0,
φx = 0.8, φy = 0.75, µx = 0.2, µx,b = 0.1, µy = 0.3, µy,b = 0.05, x0 = 10, andy0 = 10.
As the number of observations,T, increases, the OLS statistics converge to their limiting
values (dashed line), computed from Theorem 2.
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Table 3: Sensitivity Analysis: Starting Values

This table presents the simulation results for the OLS statistics convergence under a structural break in mean with different starting values. Panel
A contains simulation results for the regression with structural breaks in the mean coefficients of theAR(1)processes. Twoindependent AR(1)
processes, defined in Eq. (4.3), are simulated, givenτx = 0.4, τy = 0.8, αx = 1.0, αy = 2.0, φx = 0.8, φy = 0.75. Number of observations in
each simulated time series is 5,000,000. Panel B contains simulation results for the regression with structural breaksin trends. Twoindependent
AR(1) processes, defined in Eq. (4.4), are simulated, givenτx = 0.4, τy = 0.8, αx = 1.0, αy = 2.0, φx = 0.8, φy = 0.75, µx = 0.2, µx,b = 0.1,
µy = 0.3, µy,b = 0.05. Number of observations in each simulated time series is 2,000,000. In both cases, the OLS coefficients, their t-statistics,
and the serial correlations of regression residuals are estimated from these simulated data. These procedures are repeated 1,000 times to generate
standard errors of the mean of estimates and their 95% confidence bounds. Standard errors are given in parentheses.

Panel A: Structural Break in Mean Panel B: Structural Break in Trend
β̂ γ̂ t̂β t̂γ r̂s, s= 1 γ̂1 γ̂2 β̂ t̂γ1 t̂γ2 t̂β R̂2 r̂s, s= 1

x0 = 1
y0 = 1

0.506452
(1.12·10−4)

0.364529
(3.02·10−5)

0.105597
(2.36·10−5)

0.320451
(2.83·10−5)

0.943189
(2.61·10−6)

0.00266751
(1.33·10−10)

1.054074
(1.43·10−9)

0.125925
(1.56·10−9)

0.151765
(6.87·10−9)

4.464566
(3.06·10−8)

0.708948
(8.14·10−9)

0.0187903
(3.99·10−10)

0.999998
(5.09·10−12)

x0 = 1
y0 = 100

0.506833
(1.12·10−4)

0.364390
(3.04·10−5)

0.105681
(2.34·10−5)

0.320373
(2.85·10−5)

0.943176
(2.63·10−6)

0.00266877
(1.39·10−10)

1.054075
(1.38·10−9)

0.125924
(1.41·10−9)

0.151838
(8.14·10−9)

4.464596
(3.46·10−8)

0.708948
(9.70·10−9)

0.0187900
(4.23·10−10)

0.999997
(6.14·10−12)

x0 = 100
y0 = 1

0.506237
(1.07·10−4)

0.364523
(2.97·10−5)

0.105533
(2.23·10−5)

0.320399
(2.82·10−5)

0.943070
(2.69·10−6)

0.00266878
(1.34·10−10)

1.054075
(1.90·10−9)

0.125924
(1.37·10−9)

0.151838
(7.69·10−9)

4.464596
(3.72·10−6)

0.708948
(9.21·10−9)

0.0187900
(4.06·10−10)

0.999997
(6.12·10−12)

x0 = 100
y0 = 100

0.505982
(1.11·10−4)

0.364694
(3.02·10−5)

0.105502
(2.34·10−5)

0.320634
(1.28·10−5)

0.943140
(2.59·10−6)

0.00266878
(1.31·10−10)

1.054075
(1.15·10−9)

0.125924
(1.36·10−9)

0.151838
(7.51·10−9)

4.464596
(3.39·10−6)

0.708948
(9.23·10−9)

0.0187900
(4.04·10−10)

0.999997
(5.98·10−12)

Limit
Value 0.506329 0.364557 0.105564 0.320468 0.943194 0.00266667 1.054070 0.125926 0.151717 4.464550 0.708949 0.0187905 1.00000
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Table 4: Sensitivity Analysis: Structural Break Points

This table presents the simulation results for the OLS statistics convergence under a structural break in mean with different
breaking point. Panel A contains simulation results for the regression with structural breaks in the mean coefficients of the
AR(1) processes. Twoindependent AR(1)processes, defined in Eq. (4.3), are simulated, givenαx = 1.0, αy = 2.0, φx = 0.8,
φy = 0.75, x0 = 10 andy0 = 10. Number of observations in each simulated time series is 5,000,000. Panel Bcontains simu-
lation results for the regression with structural breaks in trends. Twoindependent AR(1) processes, defined in Eq. (4.4), are
simulated, givenαx = 1.0, αy = 2.0, φx = 0.8, φy = 0.75, µx = 0.2, µx,b = 0.1, µy = 0.3, µy,b = 0.05, x0 = 10 andy0 = 10.
Number of observations in each simulated time series is 2,000,000. In both cases, the OLS coefficients, their t-statistics,
and the serial correlations of regression residuals are estimated from these simulated data. These procedures are repeated 1,000
times to generate standard errors of the mean of estimates and their 95% confidence bounds. Standard errors are given in parentheses.

Panel A: Structural Break in Mean Panel B: Structural Break in Trend
γ̂ β̂ t̂γ t̂β r̂s, s= 1 γ̂1 γ̂2 β̂ t̂γ1 t̂γ2 t̂β R̂2 r̂s, s= 1

τx = 0.05,
τy = 0.1

5.043801
(2.01·10−4)

0.453884
(4.15·10−5)

0.725273
(3.52·10−5)

0.336147
(3.46·10−5)

0.905105
(5.62·10−6)

0.00426491
(5.78·10−10)

0.037291
(3.70·10−8)

0.906930
(2.48·10−8)

0.354447
(5.00·10−8)

0.048341
(4.82·10−8)

1.759291
(9.32·10−8)

0.947216
(5.17·10−8)

0.999999
(4.04·10−12)

Lim.Value 5.043780 0.453940 0.725296 0.336208 0.905112 0.00426316 0.037256 0.906954 0.354288 0.0482933 1.75924 0.947266 1.00000

τx = 0.05,
τy = 0.9

0.560310
(2.45·10−4)

0.050442
(4.97·10−4)

0.076428
(3.33·10−5)

0.035436
(3.49·10−5)

0.928703
(2.86·10−6)

0.00089686
(5.90·10−10)

1.026891
(3.88·10−9)

0.119427
(2.59·10−9)

0.037078
(2.44·10−8)

0.662192
(2.96·10−8)

0.115243
(2.52·10−9)

0.021972
(9.56·10−9)

0.999993
(1.92·10−11)

Lim.Value 0.560420 0.050437 0.076434 0.035431 0.928712 0.00089473 1.026880 0.119434 0.036988 0.662142 0.115242 0.021974 1.00000

τx = 0.95,
τy = 0.1

7.187114
(6.14·10−5)

0.050352
(4.78·10−5)

2.515653
(5.19·10−5)

0.035371
(3.36·10−5)

0.928695
(2.85·10−6)

-0.0160562
(9.07·10−11)

1.274526
(2.45·10−8)

0.119440
(2.45·10−9)

-2.542369
(4.19·10−8)

1.225199
(3.76·10−8)

0.115240
(2.36·10−8)

0.007390
(3.03·10−9)

0.999999
(0.78·10−12)

Lim.Value 7.187390 0.050437 2.515740 0.035431 0.928712 -0.0160582 1.274530 0.119434 -2.542680 1.225290 0.115242 0.007390 1.00000

τx = 0.95,
τy = 0.9

0.686579
(6.57·10−5)

0.453898
(4.20·10−5)

0.253382
(2.49·10−5)

0.336183
(3.50·10−5)

0.905103
(5.61·10−6)

-0.0007212
(1.38·10−10)

0.295334
(2.47·10−8)

0.906977
(2.46·10−8)

-0.229584
(4.55·10−8)

0.570736
(5.55·10−8)

1.759187
(9.75·10−9)

0.570086
(3.10·10−8)

0.999997
(2.88·10−11)

Lim.Value 0.686515 0.453940 0.253353 0.336208 0.905112 -0.0007229 0.295358 0.906954 -0.230137 0.570813 1.759240 0.570058 1.00000
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Appendices: Proofs

Proofs of Theorems 1 and 2 are based on the following lemma:

Lemma 3. Suppose that the stationary processξξξ t = (ut ,vt) is strongly mixing such

thatα(k) = O

(
k−

r
r−1−ε

)
for some r> 1 andε > 0. Letηt = g(ξξξ t ,ξξξ t−1, . . . ,ξξξ t−τ)

be a measurable function, for some finiteτ. If E |ηt |
r+δ < ∞ for some generic

constant,δ > 0, then

T−1
T∑

t=τ+1

{ηt −E[ηt ]}
a.s.
=⇒ 0.

Proof. Theorem 14.1 in Davidson [2002] asserts that the process,ηt , is alsoα-
mixing of size r

r −1. The lemma immediately follows from an application of McLeish’s
[1975] SLLN for mixingales.

Proof of Lemma 1

First, we shall verify Eq. (2.2). We shall note at the outset that roman numbers,
used to indicate mathematical expressions, are specific to each equation of Lemma
1.

∑T
1 XtYt

T
= T−1




[Tτ(x)]∑

1

+

[Tτ(y)]∑

[Tτ(x)]+1

+

T∑

[Tτ(y)]+1



XtYt

= T−1
[Tτ(x)]∑

1

(A∗(1)ut +∆u∗t )(B
∗(1)vt +∆v∗t )

+ T−1
[Tτ(y)]∑

[Tτ(x)]+1

(A∗(1)(c(x) +ut)+∆u∗t )(B
∗(1)vt +∆v∗t )

+ T−1
T∑

[Tτ(y)]+1

(
A∗(1)(c(x) +ut)+∆u∗t

)(
B∗(1)(c(y) +vt)+∆v∗t

)

= I + II + III .

An application of Ḧolder’s inequality yields, for everyt and s, E[|utvs|
r+δ ] ≤

E[|u0|
2(r+δ )]E[|v0|

2(r+δ )] < ∞, where the last inequality is due to Assumption 1.
Since(A∗(1)ut +∆u∗t )(B

∗(1)vt +∆v∗t ) is some linear function ofξξξ t andξξξ t−1, Lemma

3 yieldsI
a.s.
=⇒ 0. Similarly, we can show thatII

a.s.
=⇒ 0. Next, the last term
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III = T−1
T∑

[Tτ(y)]+1

A∗(1)B∗(1)c(x)c(y) +T−1
T∑

[Tτ(y)]+1

A∗(1)c(x) (B∗(1)vt +∆v∗t )

+ T−1
T∑

[Tτ(y)]+1

B∗(1)c(y) (A∗(1)ut +∆u∗t )

converges toA∗(1)B∗(1)c(x)c(y)(1− τ(y)) because the last two terms converge to
zero by applying Lemma 3.

Eqs. (2.3) and (2.4) can be easily proved by using Lemma 3. Now, we shall
prove Eq. (2.5). Some preliminary algebra yields

T−1
T∑

t=1

X2
t = T−1

T∑

t=1

{
A∗2(1)c(x)2

1{t > [Tτ(x)]}+A∗2(1)u2
t +∆2u∗t

+ 2A∗2(1)c(x)1{t > [Tτ(x)]}ut +2A∗(1)∆u∗t 1{t > [Tτ(x)]}+2A∗(1)ut∆u∗t
}

= I + II + III + IV +V +VI.

One can verify thatI =⇒A∗2(1)c(x)2
limT−→∞ T−1∑T

t=11{t > [Tτ(x)]}= A∗2(1)c(x)2
(1−

τ(x)). An application of Lemma 3 yieldsII
a.s.
=⇒ A∗2(1)σ2

u ; III
a.s.
=⇒ σ2

∆u∗; IV
a.s.
=⇒ 0;

V
a.s.
=⇒ 0; andVI

a.s.
=⇒ 2A∗(1)σu∆u∗ . Hence, Eq. (2.5) follows. Eq. (2.6) can be

similarly proved. To prove Eq. (2.7), let us rewrite

T−1
T∑

t=s+1

(
Yt −Y

)(
Yt−s−Y

)
= T−1

T∑

s+1

YtYt−s−YT−1

(
T∑

s+1

Yt +

T∑

s+1

Yt−s

)
+Y

2
.

Some algebra yields

T−1
T∑

t=s+1

YtYt−s = B∗2(1)c(y)2
T−1

T∑

s+1

1{t > [Tτ(x)]}1{t −s> [Tτ(x)]}

+ B∗2(1)T−1
T∑

s+1

vtvt−s+T−1
T∑

s+1

∆v∗t ∆v∗t−s

+ B∗(1)

{
T−1

T∑

s+1

vt∆v∗t−s+T−1
T∑

s+1

vt−s∆v∗t

}

+ B∗(1)c(y)

{
T−1

T∑

s+1

B∗(L)vt +T−1
T∑

s+1

B∗(L)vt−s

}

= I + II + III + IV +V.

One can verify thatI =⇒ B∗2(1)c(y)2
(1− τ(y)); in view of Lemma 3, under As-

sumption 1,II
a.s.
=⇒B∗2(1)σv0vs; III

a.s.
=⇒ σ∆v∗0∆v∗s; IV

a.s.
=⇒B∗(1)[σv0∆v∗s +σvs∆v∗0]; and

V
a.s.
=⇒ 0. Moreover, in view of Eq. (2.4), we obtain
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Y

(
T−1

T∑

s+1

Yt +T−1
T∑

s+1

Yt−s

)
a.s.
=⇒ 2(1− τ(y))

2
B∗2(1)c(y)2

.

Hence Eq. (2.7) follows. Eq. (2.8) can be similarly proved. To prove Eq. (2.9),
note that

T−1
T∑

t=s+1

(
Yt −Y

)(
Xt−s−X

)
= T−1

T∑

t=s+1

Xt−sYt −X×Y = I − II .

One can show that

I = A∗(1)B∗(1)c(x)c(y)T−1
T∑

t=s+1

1(t −s> [Tτ(x)])1(t > [Tτ(y)])

+ B∗(1)c(y)T−1
T∑

t=s+1

1(t > [Tτ(y)])A∗(L)ut−s

+ A∗(1)c(x)T−1
T∑

t=s+1

1(t −s> [Tτ(x)])B∗(L)vt = I .1+ I .2+ I .3.

One can verify thatI .1 =⇒ A∗(1)B∗(1)c(x)c(y)(1− τ(y)); in view of Lemma 3,
under Assumption 1,I .2

a.s.
=⇒ 0 andI .3

a.s.
=⇒ 0. Moreover, Eqs. (2.3) and (2.4) yield

II
a.s.
=⇒ (1− τ(x))(1− τ(y))c(x)c(y)A∗(1)B∗(1).

Hence, Eq. (2.9) follows. Eq. (2.10) can be similarly proved.

Proof of Theorem 1

The OLS statistics are given by

β̂ =
T−1∑T

1 XtYt −X Y

T−1
∑T

1 X2
t −X

2 ; (5.1)

γ̂ = Y− β̂X; (5.2)

ŝ2 = T−1
T∑

1

(Yt −Y)2− β̂ 2T−1
T∑

1

(Xt −X)2; (5.3)

T−1/2tbβ =
β̂

ŝ
(

T−1
∑T

1 (Xt −X)2
)−1/2

; (5.4)

T−1/2tbγ =
γ̂
ŝ

(
T−1∑T

1

(
Xt −X

)2
)1/2

(
T−1

∑T
1 X2

t

)1/2
; (5.5)

r̂s =
T−1∑T

t=1+sŵtŵt−s

T−1
∑T

1 ŵ2
t

; (5.6)
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T−1
T∑

t=s+1

ŵtŵt−s = T−1
T∑

t=s+1

YtYt−s− γ̂T−1
T∑

t=s+1

(Yt +Yt−s)

− β̂T−1
T∑

t=s+1

(YtXt−s+Yt−sXt)

+ β̂ γ̂T−1
T∑

t=s+1

(Xt +Xt−s)+ γ̂2 + β̂ 2T−1
T∑

t=s+1

XtXt−s;

and

T−1
T∑

t=1

ŵ2
t = T−1

T∑

t=1

Y2
t + γ̂ + β̂ 2T−1

T∑

t=1

X2
t

− 2γ̂T−1
T∑

t=1

Yt −2β̂T−1
T∑

t=1

XtYt +2γ̂ β̂T−1
T∑

t=1

Xt .

Using the formula:T−1∑T
t=1(ξt −ξ )2 = T−1∑T

t=1ξ 2
t −ξ

2
and

T−1
T∑

t=s+1

YtYt−s = T−1
T∑

t=s+1

(Yt −Y)(Yt−s−Y)+YT−1
T∑

t=s+1

(Yt +Yt−s)+
T −s

T
Y

2

T−1
T∑

t=s+1

Xt−sYt = T−1
T∑

t=s+1

(Yt −Y)(Xt−s−X)+X Y

T−1
T∑

t=s+1

XtYt−s = T−1
T∑

t=s+1

(Xt −X)(Yt−s−Y)+X Y.

Lemma 1 yields the main results.

Proof of Lemma 2

First, we shall prove Eq. (3.3). We shall note at the outset that roman numbers,
used to indicate mathematical expressions, are specific to each equation of Lemma
2.

T−2
T∑

t=1

Xt = T−1
(

A∗(1)c(x) + µ(x)A⋄(1)
)

+ µ(x)A∗(1)T−2
T∑

t=1

t

+ µ(x)
1 A∗(1)T−2

T∑

t=1

(t − [Tτ(x)])1{t > [Tτ(x)]}

+ µ(x)
1 A⋄(1)T−2

T∑

t=1

1{t > [Tτ(x)]}+T−2
T∑

t=1

A∗(L)ut

= I + II + III + IV +V.

where
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One can see that
I =⇒ 0;
II =⇒ µ(x)A∗(1)

∫ 1
0 sds;

III =⇒ µ(x)
1 A∗(1)

∫ 1
τ(x)(s− τ(x))ds;

IV −→ 0

and an application of Lemma 3 yieldsV = oa.s.(T−1).
To prove Eq. (3.4), we shall note that

T−3
T∑

t=1

X2
t = {µ(x)A∗(1)}

2
T−3

T∑

t=1

t2

+
(
{µ(x)

1 A∗(1)}
)2

T−3
T∑

t=1

(
t − [Tτ(x)]

)2
1{t > [Tτ(x)]}

+ 2A∗2(1)µ(x)µ(x)
1 T−3

T∑

t=1

t(t − [Tτ(x)])1{t > [Tτ(x)]}

+ T−3
T∑

t=1

A∗2(L)u2
t +O

(
T−1)= I + II + III + IV.

One can verify that

I =⇒{µ(x)A∗(1)}
2∫ 1

0 s2ds;

II =⇒{µ(x)
1 A∗(1)}

2∫ 1
τ(x)(s− τ(x))2ds;

III =⇒ 2A∗2(1)µ(x)µ(x)
1

∫ 1
τ(x) s

(
s− τ(x)

)
ds.

In view of Lemma 3, under Assumption 1,IV = oa.s.(T−2). Some algebra manipu-
lations yields Eq. (3.4).

Let us prove Eq. (3.9). (Eqs. (3.5), (3.6), (3.7), (3.8), (3.10) and (3.11) can
be similarly proved.) To avoid any cumbersome mathematicalexpression, we shall
summarize only the terms of orderO(1) as follows:

T−3
T∑

t=1

XtYt = T−3
T∑

t=1

[{
µ(x)A∗(1)t + µ(x)

1 A∗(1)
(

t − [Tτ(x)]
)

1
(

t > [Tτ(x)]
)}

{
µ(y)B∗(1)t + µ(x)

1 B∗(1)
(

t − [Tτ(y)]
)

1
(

t > [Tτ(y)]
)}]

+ T−3
T∑

t=1

A∗(L)B∗(L)utvt +O(T−1) = I + II .

One can verify thatI =⇒
∫ 1

0

{
µ(x)A∗(1)s+ µ(x)

1 A∗(1)
(

s− τ(x)
)

1{s> τ(x)}
}

{
µ(y)B∗(1)s+ µ(y)

1 B∗(1)
(

s− τ(y)
)

1{s> τ(y)}
}

dsandII
a.s.
=⇒ 0 in view of Lemma 3. Some

algebra manipulations yields Eq. (2.9).
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Proof of Theorem 2

Eq. (3.2) is equivalent to



T−1γ̂1

β̂
γ̂2



 =




T 0 0
0 1 0
0 0 1








γ̂1

β̂
γ̂2





=









1 0 0
0 T−1 0
0 0 T−1








T

∑T
1 Xt

∑T
1 t∑T

1 Xt
∑T

1 X2
t

∑T
1 tXt∑T

1 t
∑T

1 tXt
∑T

1 t2








T−1 0 0

0 T−2 0
0 0 T−2










−1


T−2 0 0

0 T−3 0
0 0 T−3









∑T
1 Yt∑T

1 XtYt∑T
1 tYt





=




1 T−2∑T

1 Xt T−2∑T
1 t

T−2∑T
1 Xt T−3∑T

1 X2
t T−3∑T

1 tXt

T−2∑T
1 t T−3∑T

1 tXt T−3∑T
1 t2




−1


T−2∑T

1 Yt

T−3∑T
1 XtYt

T−3∑T
1 tYt



 .

Moreover, we have

var(γ̂1)

T
= {T−2ŝ2}I(1)




1 T−2∑T

1 Xt T−2∑T
1 t

T−2∑T
1 Xt T−3∑T

1 X2
t T−3∑T

1 txt

T−2∑T
1 t T−3∑T

1 tXt T−3∑T
1 t2




−1

I
′

(1);

Tvar(β̂ ) = {T−2ŝ2}I(2)




1 T−2∑T

1 Xt T−2∑T
1 t

T−2∑T
1 Xt T−3∑T

1 X2
t T−3∑T

1 txt

T−2∑T
1 t T−3∑T

1 tXt T−3∑T
1 t2




−1

I
′

(2);

Tvar(γ̂2) = {T−2ŝ2}I(3)




1 T−2∑T

1 Xt T−2∑T
1 t

T−2∑T
1 Xt T−3∑T

1 X2
t T−3∑T

1 tXt

T−2∑T
1 t T−3∑T

1 tXt T−3∑T
1 t2




−1

I
′

(3);

T∑
t=1+s

ŵt−sŵt

T3 = T−3

{
T∑

t=1+s

YtYt−s+ β̂ 2
T∑

t=1+s

XtXt−s− β̂
T∑

t=1+s

(XtYt−s+Xt−sYt)

− γ̂2

T∑

1+s

(tYt+s+(t −s)Yt)− γ̂1

T∑

t=1+s

(Yt +Yt−s)+ γ̂1β̂
T∑

1+s

(Xt +Xt−s)

+ γ̂2β̂
T∑

1+s

((t −s)Xt + tXt−s)+ γ̂1γ̂2

T∑

1+s

(2t −s)+T γ̂2
1

}
;

T−2ŝ2 = T−3
T∑

1

ŵ2
t = T−3

{
T∑

1

Y2
t + β̂ 2

T∑

1

X2
t + γ̂2

1T + γ̂2
2

T∑

1

t2−2γ̂1

T∑

1

Yt

− 2γ̂2

T∑

1

tYt −2β̂
T∑

1

XtYt +2γ̂1γ̂2

T∑

1

t +2β̂ γ̂1

T∑

1

Xt +2γ̂2β̂
T∑

1

tXt

}
.
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By applying Lemma 2, one can immediately derive the limits of individual terms
in the above equations. Theorem 2 has been proved.
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