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Abstract

When a pair of independent series is highly persistent, there is a spurious regression bias in
a regression between these series, closely related to the classic studies of Granger and Newbold
(1974). Although this is well known to occur with independent I(/) processes, this paper pro-
vides theoretical and numerical evidence that the phenomenon of spurious regression also arises
in regressions between stationary AR(p) processes with structural breaks, which occur at different
points in time, in the means and the trends. The intuition behind this is that structural breaks can
increase the persistence levels in the processes (e.g., Granger and Hyung (2004)), which then leads
to spurious regressions. These phenomena occur for general distributions and serial dependence
of the innovation terms.
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1 Introduction

Simulation studies of Granger and Newbold [1974] warned $parious relations
may be found between the levels of trending time series tieaactuallyindepen-

dent Later, Phillips [1986, 1998] provide an elegant asymptéiamework that

vindicates the simulation results. Applied economistob®e increasingly aware
of this problem. For instance, Ferson, Sarkissian, andr§ati03] find that many
predictive stock return regressions in the literatureedasn individual predicting
variables, may be spurious.

It has been known for some time that the spurious regressiom®t hold
only for independent random walks, but also for other p&sisprocesses, such
as high-order integrated processes (see, e.g., Marmab[18Mong others), frac-
tionally integrated processes (see, e.g., Tsay and Chu®g[,1®@mong others)(1)
processes with infinite variance errors (see Tsay [1998}),mositively autocorre-
lated processes on long moving averages (see Granger, Hymehgeon [2001]).

The goal of the current paper is to investigate the possi#ence of spu-
rious relations in a pair of stationary, invertibdR(p)processes witlweakly depen-
dentinnovations and structural breaks, which occur at diffepaints in time, in
the means and the trends. This problem has an aestheticl amolealso practical
implications. We have shown that the strength of these tgpspurious relation-
ship is rather severe for the type of processes under ouy;stul that the rates
of convergence for the OLS statistics to the correspondmdihg values do not
depend on the starting values and the break locations ofritierlying processes.

Our analytical framework, although simplified in a numberaxpects (such
as only one break point is considered per se), proves tilactaladdressing the
main issues of spurious regressions. Nevertheless, wepatstde a sketch of
theoretical results for the case of many break points. Idithehe plan of this
paper is as follows: Sectidhdeals with structural breaks in means; Sec8aleals
with structural breaks in trends; Sectidprovides some simulation evidences; and
Section5 concludes this paper. Last but not least, results of teahfl@vor but
essential for the paper are collected in the appendiceg ainth of the paper.

2 SpuriousRegression: Structural Breaksin Mean

The data generating processes (DGPs) foritwdependenstationary time series
are defined as follows:

We shall note at this point that the terminology ‘stationasyused to merely mean that the
roots of lag polynomials lie outside the unit circle.

Published by The Berkeley Electronic Press, 2011
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AlL)X = C(X)l{t>[n(x)]}+ut,
B(LY, = C(y)l{t>[Tr(y>]}+Vt, (2.1)

where intercepts;™ andcl), are the break levels o andY;, respectivelyA(L)
andB(L) are lag polynomials with their roots outside the unit ciralé) andt®)
are the break points of; and;, respectively; and innovation termg,andyv, are
contemporaneousipdependenand fulfill Assumption 1 (below).

Let.% and.Z' denote theg-fields generated, respectively, g, Vs), —o <
s<t, and(us,Vs),t <s< . Given a positive integek, we set

a(k) = sup{’P(Aﬂ B) - P(AP(B)|: Ac # andB e ywk} .

This is Rosenblatt’s [1956] mixing coefficient. The statipnprocess is
said to bea-mixing or strongly mixing ifa (k) — 0 ask — co.

Assumption 1. The innovation terms(us,\t), are strictly stationary with zero
means such that[fig|2" )] < e and E[|vp|2"+?)] < o for some integer, 1> 1, and

a positive generic constand, The mixing coefficient satisfiegk) = & (kfﬁ*) ,
wheree is a positive generic constant.

Assumption 1 includes a wide variety of possible data-geimey mecha-
nisms. For example, both the ARMA process and the dyfrocess can become
strongly mixing under some regularity conditions (see., €&grodetskii [1977] and
Withers [1981]). The mixing condition in this assumptiorse@stially controls the
extent of permissible temporal dependence in the proceks elation to the prob-
ability of outlier occurrences.

Eq. (2.1) can be rewritten as

X = A_1<L)C(X)1{t>[TT(X)]}+A_1(L)utv

Let us define the following inverse lag operatos:(L) = A~1(L) and B*(L)
B~1(L). An application of the Beveridge-Nelson (BN) decompositiéii(L) =
A" (1) +A°(L)(1-L)andB*(L) =B*(1) +B°(L)(1—L), yields

AL = A" (1)u+Ay

B*(L)Vt = B*(l)Vt —I—A\ftk,

whereu = A°(L)u andy; = B°(L)w with A° andB® having their roots outside the
unit circle.

http://www.bepress.com/snde/vol15/iss1/artl
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Now, let us consider the following regression equation:
= §+ B+ ik,
wherey, [§ andw; are the OLS estimators, defined as
B o= Y1 —X)
31 (% —X)2
V = V_ B¥7
W = Yt—y—BX.

Lemma 1. Suppose thatX,Y;) are generated by Eq(2.1). The innovations,
and v, are independent and satisfy Assumption 1. Then, as=Teo,

T %y 22 A (1B (L)Y (17 maxt™, r<y>)) 2.2)
t=1
Ly
.
T % 2 1-1)A (1) (2.3)
t=1 >
T
TilZYt as (1- T)B*(1)c) (2.4)
t=1 >
ET: 2
X . 2
G as APW{0FH0R (1T (2.5)
T 1)O-UAU*
Lo
i 2
Y; . 2
G as BHY{0f+0f. + (21—} 26)
T +2B*(1) Oyav-
L
T _ _
Y —-Y) (Vi s—Y " 2
t:s+1( t—Y)(M-s—Y) as B*2(1) {C(Y) ¥ (1_ T(Y)) + Oyove 27
T +0Angv§} +B(1) (GvoAv; + UvsAvg;)
Li¥s
_Z (% —X) (X-s—X) A*2(1) c¥2700 (1 — 7 + Oy
t=s+1 25 . (2.8)
T +0AugAu;} +A"(1) (Uquug + CfusAug>
fxoxs
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T - =
t:%1(\4 —Y)(%-s—X) v AD)BA(1)C¥Y) {1_ max(T®, 1)
as (2.9)
T ,(1,T(X>)(1,T(y>)}
fyo)%

t=s+1 a.s,
_ Ko (2.10)
where
o2 = lim T-130 & 0f = _lim T2, (Ap)?;
U T e =1 iy g =1 S
. 1T : i -1 2
Ounu = TILnooT Lo A oy = TILnooT p2EL:
. 1T 2. i 15T :
O = Nim T35 (B%)°; O = _lim T15750  wAV;
N T ——00 1 T
T -1 . — |k - )
Ovovs = TIILLJT DotesiiViVtos Onvsavg = T'anT D t=st 1 A AV g;
INT -1 T . o— | -1 T .
Ovovy = Tlian Z%t:thAVt*_s, Overvy = TILnooT Zt:Ts+1Vt73AV*’
Ouous = TIanT_lzt:Hl Ut Ut —s; Opygau; = T'ﬂwT_l D t=sp1 AUAU g

T -1\ T . — i -1\ T
Gquu;—T“mwT Dt—sr1 WA g UusAug—TlﬂwT D t—st1 Ut oAU

Moreover, Egs.(2.2)(2.10) hold irrespective of the initial conditions as-
signed to X and Y.

Proof. The proof is presented in Appendix. ]
The limiting behaviors of regression statistics are statddeorem 1 below.

Theorem 1. Suppose that the conditions of Lemma 1 are satisfied. Thén;as,

s as Lxy— LK
= 72 TR 2
B .iﬂxz —.,g)% B

f/% fy —fﬁfx = fy;
{ng - gyz} +$§2{$X2 —gf}
-
—wﬁ{gxy — gxgy} = ggz;
A B %5 _
B T N2 A 21-1/2’
§<T—1 S (% — X)2> L L — L5}

http://www.bepress.com/snde/vol15/iss1/artl
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\1/2
(Tilz;rzl(xt B X)z) as, % {g 2 —32}1/2
2% 4 X X .
(rsioe)” A A
2;_1 WeWk s as Liovs + gbggxoxs — Zfﬁfyoxs
SO W2 Lt L]+ LB~ 25K~ 2L By + 2525 2

Til/ztf, =

[RS)

f\S:

Proof. The proof is presented in Appendix. O

Remark 1. Theorem 1 is a close-to-trivial but quite enlightening ca$espuri-
ous regression. The OLS coefficiefif,does not tend to zero, as it is expected to
when twoindependent.g.p. are regressed on each other. Moreover, the t statis-
tics diverge at the rate of; g (T1/2), implicating that the null hypothesis of zero
B always fails to be rejected. The serial correlation coeffitseof the regression
residuals converge almost surely to a non-zero constangiwisinot the case for
regression of two independent processes. In general, dflesfd results differ from
the conventional theory of regression with stationary pesess.

It is worth noting that the main results hold only for the caseevehstruc-
tural breaks occur at different points in time. In other warilshe break point is at
the same time the spurious regression effect disappears.

Corollary 1. Suppose, there are no structural breaks in means. Theh-aso,

:

T XY =2 WA (1)B (1)
T

T*lzxt 22 YA (1)

1ZYt 25 VB (1).
Moreover, suppose that Nas a structural break but,Yoes not. Then, a6 — o,

.
T XY 2 W (a-r¥)A(1)B* (1)

1
.

T % = (1-1™)cWAr(1)
t=1

—

Ty % 2 B(1)cY.
t=1

The above limiting behaviors impﬁ/a:"c& 0 (i.e., no spurious regression).

Published by The Berkeley Electronic Press, 2011
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3 SpuriousRegression: Structural Breaksin Trend

We shall consider the following d.g.p.:

ALX = ¢+t (6= [TT9)) L ooy +
BLY = ¥4 uWtspl (t_[TTw)])1{t>m(y>]}+vt, (3.1)

where lag polynomialsi(L) andB(L), have their roots lying outside the unit circle;
c® andcl are the intercepts of; andY;, respectively;u® and uf‘) are, respec-
tively, the permanent trend and the transitory trend, tegufrom a break, of the
processX; uY) and uiy) are, respectively, the permanent trend and the transitory
trend, resulting from a break, of the procegsand innovationsy; andv), are
independent and satisfies Assumption 1.

A BN decomposition of the inverse lag operaté§L) andB*(L), as de-

fined in Section 2, yields

X = AL+ p (AT (Dt +A(1))

+ pl {B*(l)(t iy

whereu = A*(1)u +Auf andv; = B*(1)w +AV;.
Next, we formulate the following OLS regression:

Yo = P+ ot + BX + Vi,

where
7 T Y% Sit] Xl
B] SiX o YUXE YItX|  [CIXv| (3.2)
Rl LYgt Yate  Xatt] o Lt

To facilitate the asymptotic argument for the OLS statsstiwe shall first state
Lemma 2 (below). (Also to avoid any unnecessary confusianshall note here
that notations,%,, are specific to Section 3 and independentfin other sec-
tions.)

Lemma 2. Suppose thatX,Y;) is generated by E(3.1). The innovations,and
Vi, are independent and satisfy Assumption 1. Then, as-Teo,

http://www.bepress.com/snde/vol15/iss1/artl
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1 1
A*(l){/.l(x) / sdst pl? / (s— T(X))ds}
0 X

Zx

2
092 [ 2ds+ pu” [1 (s— 1) ds

) 1 s(s— 1) ds}

~~

P2

1 1
A*(l){u(x) Lds+ /()s(s— r(x)) ds}
TX

1 1
B*(l){u(y)/ sds+u§y>/ (s—r<y>)ds}
0 T

Ly

A*(l)B*(l){ My [1ds
+U1XU1)
+pl uﬁ)fr s(s—t¥)ds

fmax(r(X ), 1) (S Tl )) (S_ T(y)) ds

[h s(s— 1 ))ds}

Ly

1 1
B*(1) {HW)/ Sds+ uiy)/ s(s— T(y)) ds}
0 )

~~

Ly

2
(y>2f0152ds+ uiy) frlw) (s— TW))zds

W [ s(s— 1) ds} :

L
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Moreover, Egs.(3.3)(3.11) hold irrespective of the initial conditions assigned to
Xo and Y.

Proof. The proof is presented in Appendix. O
Let’s define
1 A 4 A
o = gx .,?Xz ﬁx and% = gxy ,
4L hx L Ly

where the elements of the matrices are defined in Lemma 2.
The limiting behavior of regression statistics are state@iheorem 2.

Theorem 2. Suppose that the conditions of Lemma 2 are satisfied. Thé@nh;-as
(00]

T %
B |2 v ls= .,%B (3.12)
Y %,
T2 as L2+ Df%zzz —|—$EZ.,?X2 =245, K — 24, Ay — Zfﬁfxy (3.13)
122545, b+ 24585, Lx + 24585, 4 '
Lg
£
TV, 2 L 3.14
)23 "%Cf’yl ( )
L
12, as B
T, 2 7 (3.15)
_ s Ly
TV, = gf (3.16)

where

Loy = L5l My

_ 1/2 -1

(Iy denotes a vector in which the i-th element is one and the olkerents are

Zeros.) . ,
N Z (xt —Y)z as 2
R2_1321:>$E2{$Y} (3.17)

S1%—=Y)?

http://www.bepress.com/snde/vol15/iss1/artl
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b 1 (1 — Zgﬁ)fxy — Zgylgy + Zgylfﬁﬂ + nylfﬁfx 3.18
5T 2y \ + L2 B - 28 Gy + Lt + 22,55, B - G18)
Proof. The proof is presented in Appendix. n

Remark 2. The heuristics for the results in Theorem 2 is rather sudci8mce the
limiting behaviors of the OLS estimates are dominated byrémel components, the
OLS estimates do not converge to zero, as one expects wheoespiis regressed

on anotherunrelatedprocess, unless all the trends are canceled out. Also due to
the presence of breaks in the trends, the OLS statisticsresegn sum of squared
errors,S, and t statistics — diverge at the rate@f s (T 1/2), suggesting that the null
hypotheses of zero regression coefficients always fail tejeeted in this case. In
addition, the serial correlation coefficients of the regriem residuals and the R
coefficient converge almost surely to non-zero constantshws not the case in
the conventional theory of regression for stationary pesss.

Corollary 2. Suppose thatphas a structural break butYdoes not. Then,
L = pYB ()4
1 1
Ay = A(1)B(1) (u<X>u<y>.ztz+u§X>u<y> (/ s2ds—r<X>/ sds)>
(%) (X

Ly = pYB(1)%
L = uV’B1) L.

Theorem 2 still holds.

4  Simulations

The validity of our theorems for approximating the disttibas of the OLS statis-
tics in small samples can be legitimately questioned. Te gome idea of the
significance of our theoretical results, we shall providessimulation studies. In
the sequel, we run the following two regressions:

Yo = Y+ BX +W (4.1)
Yi = i+ Yot + BX + W, (4.2)

whereX; andY; are generated b&R(1)processes with structural breaks in the mean
and in the trend, as defined in Eq. (2.1) and Eqg. (3.1) resdgti

Published by The Berkeley Electronic Press, 2011
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Structural Break in Mean
First, we generate artificial data from

X = @()Qfl+c(X)1{t>[Tr(X)]}+ut:
Yo = @Y1+l oy + v (4.3)

where we set™ = 0.4, 1) = 0.8, ax = 1.0, ay = 2.0, ¢x = 0.8, and¢, = 0.75.

In this simulation, for simplicity we shall assume that theqessesy andv; are
independent white noised his is, unfortunately, because simulations for general
weakly dependent innovations are quite complicated toempint. The processes
in Eq. (4.3) are initialized by, = 10 andYp = 10. In order to evaluate the con-
vergence rates of the OLS estimatgsand B, theirt-statisticst, andtg, and the
serial correlation coefficients, to the corresponding limits, we generate samples
{Xt,Yt}tT:l of sizeT from 1,000 to 5000, 000.

Table 1: Simulations: Structural Breaks in Means

This table presents the simulation results for the OLSsttesi convergence under a structural break
in the mean. First, twindependent AR(1processes, defined in Eq. (4.3), are simulated, given
Tx=04,17,=038,ay=10,ay =20, ¢ =038, @ = 0.75,% = 10, andyp = 10. Then the OLS
coefficients, their t-statistics, and the serial correladi of regression residuals are estimated from
these simulated data. Limiting values are computed fronoifidma 1. This procedure is repeated
1,000 times to generate standard errors of the mean of ¢eiraad their 95% confidence bounds.
Standard errors are given in parentheses.

Vol. 15 [2011], No. 1, Article 1

T y B ty fs fs, s=1
1000 0.484633 0.37306Q 0.101586 0.330414 0.935153
' (7.76310°%) (2.15810°°) (1.63210°%) (2.03910°%) (1.99710°%)
10.000 0.503534 0.364988 0.105044 0.321041 0.942552
' (2.39210°%) (6.64310°%) (5.035107%) (6.266107%) (6.001107°)
50.000 0.506336 0.364193 0.105572 0.320185 0.943115
' (1.07410°9) (2.95710°%) (2.25910°%) (2.77310°%) (2.60210°°)
100.000 0.505706 0.364738 0.105434 0.320596 0.943121
' (7.32810°%) (2.07710°%) (1.54910°%) (1.92610°%) (1.82510°°)
200.000 0.506516 0.364592 0.105626 0.320566 0.943150Q
' (5.59210°%) (1.52810°%) (1.17610°%) (1.41210°%) (1.27210°°)
500.000 0.506062 0.364675 0.105514 0.320572 0.943178
' (3.34410°% (9.348107°) (7.07410°°) (8.69110°°) (8.240107°)
1,000 000 0.506276 0.364507 0.105554 0.320415 0.943182
bt (2.45310°%) (6.725107°) (5.147107°) (6.30810°°) (5.74310°°)
2 000.000 0.506574 0.364501 0.105625 0.320435 0.943186
Rt (1.79710°%) (4.96010°°) (3.81010°°) (4.55010°°) (4.14810°°)
5.000.000 0.506203 0.364515 0.105540 0.320436 0.943183
e (1.07410°%) (2.93110°°) (2.25510°°) (2.73410°°) (2.54210°°)

\L/gjnfj'é 0.506329 0.364557 0.105564 0.320468 0.943194

http://www.bepress.com/snde/vol15/iss1/artl
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The simulated means of the OLS statistics, the correspgnruhmting val-
ues, and the 95% confidence bounds are presented in Table Rigae 1. It is
noteworthy that the simulated means of the OLS statistiagiyapproach the cor-
responding limits foil roughly equal to 1,000 observations.

Figure 1. Convergence of Estimators: Structural Breaks inrdea

This figure shows the plots of the mean OLS statistics (blaek land their 95% confidence bounds
(red lines) of the regression = y+ B% +WwW. The processeg and x are independenAR(1)
processes, defined in Eq. (4.3), with= 0.4, 7y = 0.8, ax = 1.0, ay = 2.0, ¢ = 0.8, ¢, = 0.75,

Xo = 10, andyp = 10. As the number of observationE, increases, the OLS statistics converge to
their limiting values (dashed line), based on Theorem 1.
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Structural Break in Trend

To illustrate the case with structural breaks in the trem@sgenerate artificial data
from

X = @X—1+c®+utt Uix) (t—[T T(X)]>1{t>[TT(X)]} + U,

Y= @Yr+ay+ b TR ry) + v, (4.4)

where we setry = 0.4, Ty = 0.8, ax = 1.0, ay = 2.0, ¢ = 0.8, @, = 0.75, Ly =

0.2, ¥ = 0.1, puy = 0.3, uYY = 0.05, with u, andv; are, as earlieindependent
white noises Using initial valuesXo = 10 andYp = 10, we run the regression in
Eq. (4.2) using the simulated data and estimate the OLStstati We repeat the
simulation 1,000 times to compute the means and the 95% emudbounds of
the OLS coefficient$s, y» and, their t-statistics, the serial correlation coefficient
of the residuals, and the determination coefficight The simulation results are
presented in Table 2 and Figure 2. As one can see, the simulagans of the OLS
coefficients, except foyy, become rather stable dsreaches 1,000 observations.
However, it is worth mentioning at this point that the digaecies between the
true slope coefficients and their OLS estimates, as seegimés 1 and 2, are rather
wide due to a large graphic scaling being used, not becaese tliscrepancies are
really high.

Finally, we also performed some sensitivity analyses tekltee robustness
of the previous results with respect to different paransetatues (cf. Table 3). We
implemented these analyses by choosing different stavahges for processe§
andY;. The results are in line with those presented earlier — coeffi estimates
and the values of their t-statistics approach to their epoading limit values.

Table 4 presents simulation results for a variety of breaktppry andty.
Precisely, we used some big valuesfpandty. Although the limits of the OLS es-
timates depend on break locations, the convergence raessentially unaffected.

5 Discussion and Conclusion

Although the specification we adopt in this paper may omits@otential features
of the data, such as ARCH effects, we find that using this fatdypdardAR(p)
framework allows us to successfully address the questidmether spurious re-
gressions occur in the presence of structural breaks. Imsugn the thrust of the
present paper has been to show evidences of spurious liegessthe presence of
structural breaks in the means and the trend&Rfp) processes by analyzing the
limiting properties of the standard OLS statistics.

http://www.bepress.com/snde/vol15/iss1/artl
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Table 2: Simulations: Structural Breaks in Trends

This table presents the simulation results for the OLSsttedi convergence under structural breaks in the trendt, Fivoindependent AR)
processes, defined in Eq. (4.4), are simulated, giyen0.4, 7y = 0.8, ay = 1.0, ay = 2.0, ¢4 = 0.8, ¢, = 0.75, y = 0.2, tixp = 0.1, iy = 0.3,

Hyp = 0.05, xo = 10, andyg = 10. Then the regression coefficients, their t-statisticgl the serial correlations of regression residuals are
estimated from these simulated data. Limiting values ampeted from Theorem 2. This procedure is repeated 1,00Gttmgenerate the
standard errors of the mean of OLS statistics and their 958fidence bounds. Standard errors are presented in paresthes

T " P B f, t, i 2 fs,s=1
1.000 0.00696617 1.056422 0.123978 0.394673 4.442476 0.691611 0.0181748 0.986649
' (1.14107°°) (1.5910°%) (1.21010%) | (7.02910%) | (2.93810°%) | (8.21510°%) (3.55107°%) | (3.069107)
10.000 0.00309036 1.054361 0.125696 0.176181 4.473360 0.708730 0.0187166 0.999308
' (3.831077) (5.2210°°) (3.92110°% | (2.238107°) | (9.925107°) | (2.736107°) (1.1610°%) | (2.4881077)
50 000 0.00275121 1.054134 0.125878 0.156599 4.466557 0.708934 0.0187752 0.999881
' (3.40107°9) (4.57.10°7) (3.43810°7) | (1.97210°% | (9.09010°% | (2.45910°°) (1.0210°7) | (9.72010°9)
100000 0.00270894 1.054104 0.125902 0.154157 4.465557 0.708941 0.0187828 0.999942
' (1.2310°9) (1.6910°7) (1.27210°7) | (7.08810°7) | (3.08310°% | (8.56010 ) (3.7910°8) | (2.5371079)
200000 0.00268780 1.054089 0.125914 0.152937 4.465054 0.708946 0.0187866 0.999971
' (4.24107°9) (5.6210°%) (4.22610°8) | (2.45110°7) | (1.11910°% | (2.90510°7) (1.2610°8) | (2.46710°19)
500.000 0.00267512 1.054080 0.125921 0.152205 4.464749 0.708948 0.0187889 0.999989
' (1.111079) (1.4410°%) (1.08210°8) | (6.36410°%) | (2.77810°7) | (7.30310°%) (3.23107% | (9.92010° 1Y)
1.000.000 0.00267089 1.054077 0.125924 0.151961 4.464648 0.708949 0.0187897 0.999994
e (3.9010°10) (5.81:10°°) (4.03710°°) | (2.24110°%) | (9.87310°% | (2.69610°%) (1.20107°%) | (2.52310°1Y)
2 000.000 0.00266878 1.054076 0.125925 0.151839 4.464597 0.708949 0.0187901 0.999997
g (1.3410°10) (1.9410°9) (1.40210°°) | (7.727107°) | (3.61110°%) | (9.356107°) | (4.1510710) | (6.04010°1?
Limit Value 0.00266667 1.054070 0.125926 0.151717 4.464550 0.708949 0.0187905 1.00000
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Figure 2: Convergence of Estimators: Structural Breaks indse

This figure shows the plots of the mean OLS statistics (black line) and their 8bfitlence
bounds (red line) of the regressign= y+ BX +W;. The processeg andx; are independent
AR(1) processes, as defined in Eq. (4.4), with= 0.4, 1y = 0.8, ay = 1.0, ay = 2.0,

@ =08, @ =075, uy =0.2, uyp = 0.1, py = 0.3, pyp = 0.05, Xo = 10, andyp = 10.

As the number of observations, increases, the OLS statistics converge to their limiting
values (dashed line), computed from Theorem 2.

0.007 - 1057
8l A
/ 12
0.008
0.005 \
0.004
Ghda
0.002 1054 7
Iy ® o & 1y o o
RS @QQ %QQQ cPQQ QPQQ & & F & Qéﬁ’
5 - & P
01286 0.4
01255 1 \ RE
03
T
0124 o || || cccoedio e
01235 : S 0:1 : T
$ 9 5] & o o o © S I
& .@@ ‘,}oé’ QCPQ @Q ﬁ Qe@b & G Sl Sl & QQS‘P
~ - o & b = S
4.475 071
4485 s N 0.705
4.445 0.655
/ s t;
2 Il'j
4435 . . . . 068 : : :
o ) ) S o S o I ) o
& & & & P QQGQ @f? & & I 53 &
¥ 5 < M o & ¢ o L o o &
¥ ¥ ~ o e L a P P
S
1.001
0.0187 P
/ 0536
0.0185
QT o ettt i
T o
2 <
R I's
0.0181 . T : : 0986 ;
& °§Q @QQ e & QcPQQ @Qe @Qe & 00@
b @ N A 3 & & B

http://www.bepress.com/snde/vol15/iss1/artl



Chu and Kozhan: Spurious Regressions with Structural Breaks

This table presents the simulation results for the OLSsttesi convergence under a structural break in mean withréffit starting values. Panel
A contains simulation results for the regression with dtread breaks in the mean coefficients of #hR(1)processes. Twmdependent AR(1)
processes, defined in Eq. (4.3), are simulated, given 0.4, 1y = 0.8, ax = 1.0, ay = 2.0, ¢ = 0.8, @ = 0.75. Number of observations in
each simulated time series is 5,000,000. Panel B contamdaiion results for the regression with structural braaksends. Twandependent
AR(1) processes, defined in Eq. (4.4), are simulated, givea 0.4, Ty = 0.8, ay = 1.0, ay = 2.0, ¢ = 0.8, ¢, = 0.75, tuy = 0.2, pxp = 0.1,
py = 0.3, pyp = 0.05. Number of observations in each simulated time serie®B02000. In both cases, the OLS coefficients, their tsttes,
and the serial correlations of regression residuals amaai®d from these simulated data. These procedures arateelk 000 times to generate
standard errors of the mean of estimates and their 95% cocBdeounds. Standard errors are given in parentheses.

Table 3: Sensitivity Analysis: Starting Values

Panel A: Structural Break in Mean

Panel B: Structural Break in Trend

B Vv f f, fss=1 " % B ty [ ts R2 fss=1
X = 1| 0506452 | 0.364529 | 0.105597 | 0.320451 | 0.943189 | 0.00266751 | 1.054074 | 0.125925 | 0.151765 | 4.464566 | 0.708948 | 0.0187903 | 0.999998
Yo=1 (1.1210% | (3.0210°°) | (2.3610°°) | (2.8310°°) | (2.6110°%) | (1.3310 1% | (1.4310°°% | (1.5610°) | (6.8710°% | (3.0610°%) | (8.1410°9 | (3.9910 19 | (5.0910 1%
X = 1| 0506833 | 0.364390 | 0.105681 | 0.320373 | 0.943176 | 0.00266877 | 1.054075 | 0.125924 | 0.151838 | 4.464596 | 0.708948 | 0.0187900 | 0.999997
Yo=100 | (1.12107%) | (3.04107°) | (2.3410°) | (2.85107°) | (2.6310°°) | (1.3910°1% | (1.3810°°) | (1.4110°°) | (8.1410°°) | (3.4610°8) | (9.70107%) | (4.2310°19) | (6.1410°1?)
X = 100 | 0.506237 | 0.364523 | 0.105533 | 0.320399 | 0.943070 | 0.00266878 | 1.054075 | 0.125924 | 0.151838 | 4.464596 | 0.708948 | 0.0187900 | 0.999997
Yo=1 (1.0710%) | (2.97107°) | (2.2310°°) | (2.8210°°) | (2.6910°%) | (1.3410°10) | (1.9010°9%) | (1.3710°°) | (7.6910°9) | (3.7210 %) | (9.2110°9%) | (4.0610 19 | (6.1210 13
Xo = 100 | 0.505982 | 0.364694 | 0.105502 | 0.320634 | 0.943140 | 0.00266878 | 1.054075 | 0.125924 | 0.151838 | 4.464596 | 0.708948 | 0.0187900 | 0.999997
Yo=100 | (1.1110°%) | (3.0210°%) | (2.3410°°) | (1.2810°°) | (2.5910°°%) | (1.3110°%% | (1.1510°% | (1.3610°°) | (7.51.10°°) | (3.3910°°) | (9.2310°°) | (4.0410°19) | (5.9810 19
'\-,;ﬂ”:}é 0.506329 0.364557 0.105564 0.320468 0943194 | 0.00266667 1.054070 0.125926 0.151717 4.464550 0.708949 0.0187905 1.00000
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Table 4: Sensitivity Analysis: Structural Break Points

This table presents the simulation results for the OLS statistics convergedee arstructural break in mean with different
breaking point. Panel A contains simulation results for the regression witlotstal breaks in the mean coefficients of the
AR(1) processes. Twandependent AR(1processes, defined in Eq. (4.3), are simulated, giver= 1.0, ay = 2.0, ¢ = 0.8,

@ = 0.75, X0 = 10 andyp = 10. Number of observations in each simulated time series is 5,000,000. Paogiténs simu-
lation results for the regression with structural breaks in trends. ifdependent ARL) processes, defined in Eq. (4.4), are
simulated, givenary = 1.0, ay = 2.0, ¢ = 0.8, ¢, = 0.75, iy = 0.2, pxp = 0.1, py = 0.3, pyp = 0.05, xg = 10 andyp = 10.
Number of observations in each simulated time series is 2,000,000. In both, ¢theeOLS coefficients, their t-statistics,
and the serial correlations of regression residuals are estimated frem shmulated data. These procedures are repeated 1,000
times to generate standard errors of the mean of estimates and their 95%coafidunds. Standard errors are given in parentheses.

Panel A: Structural Break in Mean Panel B: Structural Break in Trend

v B f, i fs,s=1 " % B t, f, i R2 fs5=1
1, = 005, | 5043801 | 0.453884 | 0.725273 | 0.336147 | 0.905105 | 0.00426491 | 0.037291 0.906930 0.354447 0.048341 1.759291 0.947216 0.999999
1y =0.1 (2.01:10%) | (4.15107°) | (3.5210°°) | (3.46107°) | (5.6210°%) | (5.7810°10) | (3.7010°%) | (2.4810°° | (5.0010°%) | (4.8210°%) | (9.3210°%) | (5.1710°%) | (4.0410°13)
Lim.Value 5.043780 0.453940 0.725296 0.336208 0.905112 0.00426316 0.037256 0.906954 0.354288 0.0482933 1.75924 0.947266 1.00000
T« = 005, | 0560310 | 0.050442 | 0.076428 | 0.035436 | 0.928703 | 0.00089686 | 1.026891 0.119427 0.037078 0.662192 0.115243 0.021972 0.999993
7y =0.9 (2.4510%) | (4.9710% | (3.3310°°) | (3.4910°°) | (2.8610°°) | (5.9010 1% | (3.8810°°% | (2.5910°°%) | (2.4410°% | (2.9610°%) | (2.5210°% | (9.5610°°) | (1.9210°1})
Lim.value 0.560420 0.050437 0.076434 0.035431 0.928712 0.00089473 1.026880 0.119434 0.036988 0.662142 0.115242 0.021974 1.00000
1w = 095 | 7.187114 | 0.050352 | 2.515653 | 0.035371 | 0.928695 | -0.0160562 1.274526 0.119440 -2.542369 1.225199 0.115240 0.007390 0.999999
T, =01 (6.1410°5) | (4.7810°°) | (5.1910°°) | (3.3610°°) | (2.8510 %) | (9.0710 1) | (2.4510°%) | (2.4510°9 | (4.1910°) | (3.7610°8) | (2.3610°8) | (3.0310°% | (0.7810 13
Lim.Value 7.187390 0.050437 2515740 0.035431 0.928712 -0.0160582 1.274530 0.119434 -2.542680 1.225290 0.115242 0.007390 1.00000
1w = 095 | 0.686579 | 0.453898 | 0.253382 | 0.336183 | 0.905103 | -0.0007212 0.295334 0.906977 -0.229584 0.570736 1.759187 0.570086 0.999997
1, =0.9 (6.5710°%) | (4.2010°°) | (2.4910°) | (3.5010°°) | (5.61:10°°) | (1.3810°10) | (2.4710°8) | (2.4610°8) | (4.55108) | (5.5510°8) | (9.7510°% | (3.1010°8) | (2.8810°11)
Lim.value 0.686515 0.453940 0.253353 0.336208 0.905112 -0.0007229 0.295358 0.906954 -0.230137 0.570813 1.759240 0570058 1.00000
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Appendices. Proofs

Proofs of Theorems 1 and 2 are based on the following lemma:

Lemma 3. Suppose that the stationary process= (U, ) is strongly mixing such
thata (k) = & (k‘ri*l‘s> forsomer>1ande > 0. Letni =9(&;,&_1.---,&i_7)

be a measurable function, for some fintte If E |r]t|r+5 < o for some generic
constantd > 0, then

le{nt Elm]} 2 0.

t=1+1

Proof. Theorem 14.1 in Davidson [2002] asserts that the proagsss alsoa-
mixing of size-5. The lemma immediately follows from an application of Mcle’s
[1975] SLLN for mixingales. n

Proof of Lemma 1l

First, we shall verify Eq. (2.2). We shall note at the outéett roman numbers,
used to indicate mathematical expressions, are specifacto @juation of Lemma

1.
T [Tr(x>] [Tr(y)]
ZlTXth _ ( Z Z Z ) XY

[Tt®¥]+1  [TtW]+1
1)
= 711 Z A (Du + Ay (B (D)v +AV)

[TT )]

+ T8 Y (A)EY +u) +Au) (B (v +AY)
[Tr()]+1

+ 711 Z (A* +ut)+Aut)( (1)(c(y)+vt)+A\f{)
[TT]+1

= |+l +I1I.

An application of Hlder’s inequality yields, for every and's, E[|uvs| "] <

E[Jug[2"+9]E[|vo|2"+9)] < oo, where the last inequality is due to Assumption 1.

Since(A*( )ut+Aut)( *(D)w+Av) is some Ilnearfunctlon af; andé,_;, Lemma
3yieldsl 22 0. Similarly, we can show that 22 0. Next, the last term

17
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.
= Tt Y A@B @)WY + T2 Z A (1 (vt +A4v)
[TT(H+1 [Tt¥]+1
+ T Z B*(1 (1w +Auy)
[TT]+1

converges toA*(1)B*(1)c¥c) (1 — 1)) because the last two terms converge to

zero by applying Lemma 3.
Egs. (2.3) and (2.4) can be easily proved by using Lemma 3., Wevshall
prove Eq. (2.5). Some preliminary algebra yields

T T
TR =T 1Z{A*2 e 1t > [Tr) + AL + 22

+ 2A%(1)cM1{t > [TT™]bu + 2A"(1)Ag 1{t > [TT(X>]}+2A*(1)utAu[*}
= I+I+1H4+IV+V+VI

One can verify that = A*2(1)clim e T-1ST, 1t > [TT]} = A2(1)c¥ (1
). An application of Lemma 3 yield$ == A*?(1)a?; Il 22 02 .; IV 23 0;

V 2% 0; andVI 22 2A*(1)oua. Hence, Eq. (2.5) follows. Eq. (2.6) can be
similarly proved. To prove Eq. (2.7), let us rewrite

,
12 Y-Y) (Ms—Y) =T > %Y s—YT" (ZMZ% )

t=s+1 s+1 s+1

Some algebra yields

T T
T3 WY = B*2(1)C<y)2T*121{t>[Tr(x>]}1{t—s>[Tr(X)}}
t=s+1 s+1

T T
+ BT wvs+T 1) AGAY

s+1 s+l

+ B { 1thA\f{s+T th SAV*}

s+1

+ B (1)cY {T‘lz B (L +T ) B*(L)vts}
s+1 s+1

= T+ 4H+IV 4V,
One can verify that = B*2(1)c¥)*(1— t¥); in view of Lemma 3, under As-
sumption 1)1 =2 B*2(1) Gypye; 111 = Opyeave; IV == B*(1)[Gyeav: + GueaV); and

V 22 0. Moreover, in view of Eq. (2.4), we obtain
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T T
v (T—lZYt +T—1ZYts> 25 201 1) B
st+1 s+1

Hence Eq. (2.7) follows. Eq. (2.8) can be similarly provea. pfove Eqg. (2.9),

note that

T T
TEY M-Y)(Xs—X) =T 1) X M-XxY=I-1l.

t=s+1

One can show that

t=s+1

T

I = A OB (DT 1t —s> [Tr¥])at > [T¥))

.
+ B OYT Y 1t > [TrYDA (Lus

t=s+1

t=s+1

T
+ AT At —s> [TtY)B (Lw = 1.1+1.2+1.3,

t=s+1

One can verify that.1 = A*(1)B*(1)c®c (1 — 1¥); in view of Lemma 3,
under Assumption 1,2 22 0 andl.3 22 0. Moreover, Egs. (2.3) and (2.4) yield

22 (1 1%)(1— )WV A*(1)B*(2).

Hence, Eqg. (2.9) follows. Eq. (2.10) can be similarly praved

Proof of Theorem 1

The OLS statistics are given by

B

R <)

~1/2
T tB

—-1/2
T /tV

TISIX%-XY.

: 5.1
TV X o
Y - BX; (5.2)
T ~ T
TN =Y =BT 1) (% —X)% (5.3)
1 1
B
— (5.4)
/S\<T712-{(Xt —Y)Z) 1/2
o An1/2
y (T2 (6 -%)%)
B 72 (5.5)
(T12%)
L USRS 56)

LS
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where
T T T
T2y Wls = T1) W71 1) (%+Yy)
t=s+1 t=s+1 t=s+1
N T
— BT (MXes+YisX)
t=s+1
N T N T
+ OBYTTE Y X+ %)+ +BT Y XXes
t=s+1 t=s+1
and

T T
T_lz\ﬁtz — T_let2+V+B2T_1ZX12
t=1 t=1

T T T
— T Y Y- 2BT Y X+ 28T Y X

t=1 t=1 t=1

Using the formulaT 157 (& —£)2=T- 1Y, &2 %" and

T T T

- - v 7\ L VT T —s_

TEY s = THY -V VTS (ot Yg) -V
t=s+1 t=s+1 t=s+1

:
T X = T (%-Y)(%s—X)+XY

t=s+1 t=s+1

=

:
T XMs = T3 (X=X (Ms—Y)+X

t=s+1 t=s+1

Lemma 1 yields the main results.

Proof of Lemma 2

First, we shall prove Eqg. (3.3). We shall note at the outsat tbman numbers,
used to indicate mathematical expressions, are specifacto @juation of Lemma

! T
T_szt = T_l (A*(l)c(x> +IJ(X)AO(1)> +”(X>A*(1)T—22t

t=1 t=1
T

+ A T2 (- Tt > [Tt
tjl g

+ oA @T 2y s T+ T2 A (L
t=1 t=1

= I+ +H+1IV+V.
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One can see that

| = 0;

1= pu® fosds
III:N1 A (1 (1) [0 ds
IV —20

and an application of Lemma 3 yieltfs= 0,5 (T 1).
To prove Eq. (3.4), we shall note that

T T
TR = WA @) TN
t=1
(N ) 32( Te0]) a4t > [T

+ 2A%(1 3Ztt—Tr )a{t > [Tr™]}

_|_

+ T*3ZA*Z(L)u$+ﬁ(T*1)=|+||+|||+|v.
t=1
One can verify that
| — (™A *(1)}2f0 szds
Il — {uA%(1) } fT ¥)2ds
= 2A2(1)u 0 f,x (s 7 ))ds

In view of Lemma 3, under Assumptionly) = 0,5 (T‘Z). Some algebra manipu-

lations yields Eq. (3.4).

Let us prove Eq. (3.9). (Egs. (3.5), (3.6), (3.7), (3.8)1(3.and (3.11) can
be similarly proved.) To avoid any cumbersome mathemagikpiession, we shall
summarize only the terms of ordéf(1) as follows:

3Z><th = T 32[{ (Lt+ A (@) (t-[TT]) 2 (6> [T]) }

{uW)B*(l)t +uBr(1) (t - [TrW)]) 1 (t > [TrWJ]) }1

T

+ T3 ALB(LDuw+o(T H=1+1l.
t=1

One can verify that — [} {u(X)A*(l)s+ udAx(1) (s— r(X>) 1{s> r<X>}}

{u< 1B (1)s+ pYB*(1 )( )1{s> i }}dsandll 23 0in view of Lemma 3. Some
algebra manipulations yields Eq. (2.9).
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Proof of Theorem 2

Eqg. (3.2) is equivalent to

1 0 0
= o T11 0
0 0 T-1

T il %1

B
Vo

T ZTM Z;It
1L X S X Dot
Sit Stk Yt

T-1 0 07) '[T2 0 07 7[ SIv
0 T2 0 0 T3 0 | |31 XY
0 0 T2 0 0 T3] | STty
1 T2YIX T2yl [ TR
= T2NI% TP TN |TREiXy| .
TEYE TONge TOXe] [T
Moreover, we have
var() _ TN TIst)”
T = (T szlex( T*321X12 T*3ZITtxt LAY
[ T25 0t T3 % T3y t2]
) 1 T2y TANIt]
Tvar(B) = {T 2} T*ZZITXt T7321X12 T*3ZITtXt L2
[ T2Yt T3Y % T3y, t%]

-1

(1 TN T2yt
Tvar(e) = {T %M [T2X1%  T3X %2 T34 L
(TN TN TN
.
Do We—sW T T T
e = T—3{ DNV s+B% ) XK s—B Y (XVNstX %)
t=1+s t=1+s t=1+s
T T N T
— By (MustE-9%) -1 Y h+Y ) +BY  (X+X o)
1+s t=1+s 1+s
. T T
+ VzBZ((ts)><¢+t><ts)+91922(2ts)+wf}:
1+s 1+s

T T T T T
TS = T) W= TS{ SV HBEY XARTHBY P-2h D ¥
1 1 1 1 1

T T T T T
- zvzztvt—ZEZX[YI+2V1V22t+2f?vlz><t+2vzﬁzt><(}.
1 1 1 1 1
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By applying Lemma 2, one can immediately derive the limitsnafividual terms
in the above equations. Theorem 2 has been proved.
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