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ABSTRACT

Context. Gamma-ray burst (GRB) afterglows are excellent and sensitive probes of gas and dust in star-forming galaxies at all epochs.
It has been posited that dust in the early Universe must be different from dust at lower redshifts. To date two reports in the literature
directly support this contention, one of which is based on the spectral shape of the afterglow spectrum of GRB 050904 at z = 6.295.
Aims. Here we reinvestigate the afterglow of GRB 050904 to understand cosmic dust at high redshift. We address the claimed evidence
for unusual (supernova-origin) dust in its host galaxy by simultaneously examining the X-ray and optical/near-infrared spectrophoto-
metric data of the afterglow.
Methods. We derived the intrinsic spectral energy distribution (SED) of the afterglow at three different epochs, 0.47, 1.25, and 3.4 days
after the burst. We reduced again the Swift X-ray data, the 1.25 days FORS2 z-Gunn photometric data, the spectroscopic and z′-band
photometric data at ∼3 days from the Subaru telescope, as well as the critical UKIRT Z-band photometry at 0.47 days, upon which
the claim of dust detection largely relies.
Results. We find no evidence of dust extinction in the SED at any time. We computed flux densities at λrest = 1250 Å directly from the
observed counts at all epochs. In the earliest epoch, 0.47 days, where the claim of dust is strongest, the Z-band suppression is found to
be weaker (0.3 ± 0.2 mag) than previously reported and statistically insignificant (<1.5σ). Furthermore, we find that the photometry
of this band is unstable and difficult to calibrate.
Conclusions. From the afterglow SED we demonstrate that there is no evidence of dust extinction in GRB 050904 – the SED at all
times can be reproduced without dust, and at 1.25 days in particular, significant extinction can be excluded, with A(3000 Å) < 0.27 mag
at 95% confidence using the supernova-type extinction curve. We conclude that there is no evidence of any extinction in the afterglow
of GRB 050904 and that the presence of supernova-origin dust in the host of GRB 050904 must be viewed skeptically.
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1. Introduction

Gamma-ray bursts (GRBs) can be detected up to the onset of
reionization (e.g. Tanvir et al. 2009; Salvaterra et al. 2009) due
to their brightness in the first few hours after the explosion
(Lamb & Reichart 2000). GRBs are transient sources followed
by long lasting afterglows, emitting energy intensely across the
full range of the electromagnetic spectrum. GRB afterglows are
effective and informative probes for the detailed study of cosmic
dust at high redshifts due to their simple power-law spectra, high
luminosities and locations in star-forming environments.

Interstellar dust has a crucial significance in the appearance
and evolution of star formation in the early Universe. It is still
under debate whether interstellar dust properties have evolved
as a function of redshift. At high redshift (z > 5–6) it has
been suggested that dust might originate in sources other than
the evolved asymptotic giant branch stars that are the dominant
source of dust production in the local Universe (Gehrz 1989;
Dwek et al. 2007). Previous studies reported that dust in cos-
mological objects at z > 6 is predominantly produced in the
ejecta of core-collapse supernovae (SNe), rather than the evolved
stars which are missing on short timescales (Todini & Ferrara
2001; Morgan & Edmunds 2003; Nozawa et al. 2003; Dwek
et al. 2007; Marchenko 2006; Hirashita et al. 2005). Recently,
however, Valiante et al. (2009) calculated that the most massive

asymptotic giant branch (AGB) stars could produce dust on time
scales short enough to dominate dust production by z ∼ 6.
Observationally, Maiolino et al. (2004) found an unusual ex-
tinction curve in the most distant known broad absorption line
quasar (BAL QSO) at redshift z = 6.2, consistent with what
could be expected from dust produced in core-collapse SNe.

The progenitors of long-duration GRBs are known to be
short-lived massive stars (Galama et al. 1998; Hjorth et al.
2003b; Stanek et al. 2003; Malesani et al. 2004). GRB 050904 at
z = 6.295 was a long duration GRB. It was extremely luminous
and is the third most distant known GRB to date. GRB 050904
was detected by Swift on 2005 September 4 at t0 = 01:51:44 UT
(Cummings et al. 2005). Substantial multi-wavelength follow-
up was carried out simultaneously for GRB 050904 with sev-
eral ground based facilities. Previous analysis of the rest-frame
UV afterglow found no evidence of dust (Tagliaferri et al. 2005;
Haislip et al. 2006; Kann et al. 2007; Gou et al. 2007). Later
Stratta et al. (2007) re-examined the afterglow SED at different
epochs and claimed the detection of dust absorptiontion with an
extinction curve consistent with that used to explain the spec-
trum of the highest redshift BAL QSO, but inconsistent with the
dust typical of the local Universe.

The claim of detection of SN-origin dust in GRB 050904
is of fundamental importance to the question of the origin of
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dust in the early Universe, a very vexed problem for high red-
shift sub-mm galaxies (see, e.g. the discussion in Michałowski
et al. 2010). It was the first only direct observational evidence
of dust from SNe in a high redshift star-forming environment.
In this paper we review the relevant data to test whether dust is
required by these observations and if so, what kind of dust is
needed. The outline of the paper is as follows: In Sect. 2 we de-
scribe the detailed multi-band spectral analysis of the afterglow
of GRB 050904 at different epochs. In Sect. 3 we present results
from the SED of the afterglow. In Sect. 4 we discuss possible
scenarios. In Sect. 5 we provide our conclusions.

2. Multi-wavelength observations of the afterglow
2.1. X-ray analysis

Swift’s X-ray Telescope (XRT) localized the afterglow of
GRB 050904. The XRT data (in the 0.3–10.0 keV energy range)
were extracted and reduced using the HEAsoft software (ver-
sion 6.4). We computed the X-ray spectra at three epochs,
specifically 0.47, 1.25 and 3.4 days post-burst, chosen as the
epochs with the best spectroscopic and photometric optical/near-
infrared coverage. X-ray spectra at three epochs were created in
a standard way using the most recent calibration files.

For our analysis, it is important to obtain an accurate esti-
mate of the absolute flux for these X-ray spectra. The X-ray
lightcurve is extremely variable, exhibiting long lasting flaring
activity (Watson et al. 2006b; Cusumano et al. 2006; Gendre
et al. 2006). The flares suggest two separate components, which
may be due to a number of causes, possibly activity of the GRB
central engine (e.g. Burrows et al. 2007). At late times the X-ray
count rate is very low (see Fig. 2), therefore, we aim to get an
accurate estimation of the flux which includes the uncertainty
due to the flares. We fitted the afterglow lightcurve by assum-
ing a smoothly broken power-law (Beuermann et al. 1999) to
get an approximate overall X-ray lightcurve. The fit to the after-
glow lightcurve results in at most a 30–40% scatter around this
fit at all epochs. We then normalized the X-ray spectra to the
lightcurve fit at the relevant SED epoch. The procedure results
in X-ray spectra with the best estimate of the slope and flux at
the relevant SED epoch, and with an additional overall 30–40%
uncertainty on their absolute flux levels.

2.2. Near-IR and optical imaging

Several telescopes obtained photometric observations of the af-
terglow in the optical and near-infrared bands (Tagliaferri et al.
2005; Haislip et al. 2006; Price et al. 2006). For a comprehensive
investigation of the SED, we gathered optical and near-infrared
photometry at three epochs. Stratta et al. (2007) suggested un-
usual dust particularly on the basis of the Z-band observation
at ∼0.5 days, taken by the UK Infrared Telescope (UKIRT)
equipped with WFCAM. Therefore, we re-reduced these Z-band
data obtained at t0 + 0.47 days. The object has low signal to
noise. Our best estimate of the magnitude comes from point-
spread function (PSF)-matched photometry, carried out using the
DAOphot package within IRAF. For consistency we also car-
ried out aperture photometry (with Gaia and IRAF/PHOT), and
found the afterglow Z-band magnitude to be strongly sensitive to
the chosen sky extraction annulus, being in some cases brighter
by ∼half a magnitude, although with large errors. This uncer-
tainty is worth noting.

At 1.25 days z-band photometry was obtained with the 8.2 m
ESO Very Large Telescope (VLT) by using the FOcal Reducer
and low dispersion Spectrograph 2 (FORS2) z-Gunn filter. The

object is detected with high signal to noise and using aperture
photometry we could significantly reduce the error reported by
Tagliaferri et al. (2005), which was likely mostly due to calibra-
tion issues.

At 3.3 days after the burst, z′-band photometry was carried
out with the 8.2 m Subaru telescope (Iye et al. 2004) using the
Faint Object Camera and Spectrograph (FOCAS; Kashikawa
et al. 2002). We re-analysed the photometric data using aper-
ture photometry. We compared our FOCAS z′ result with the
Gemini South GMOS z′ value at 3.16 days obtained by Haislip
et al. (2006). Correcting for the time difference between the two
observations using a broken power-law with α1 = 0.72+0.15

−0.20,
α2 = 2.4 ± 0.4, tb = 2.6 ± 1.0 days (Tagliaferri et al. 2005), we
found these photometric measurements to be consistent within
the statistical uncertainties.

Other photometric data were taken from the literature
(Haislip et al. 2006; Tagliaferri et al. 2005) when available at
a time close to our nominal SED epochs (J-band at 0.49 days).
All H and Ks data as well as J at 1.25 and 3.4 days were de-
rived from the best-fit lightcurves of Haislip et al. (2006) and
Tagliaferri et al. (2005). At 1.25 days we used the Y-band pho-
tometry from the lightcurve computed in this band (Haislip et al.
2006).

We corrected the observed magnitudes for extinction in the
Milky Way (MW) using the Schlegel et al. (1998) maps with
RV = 3.1 and E(B − V) = 0.081 mag along the line of sight of
the burst. Potential systematic uncertainties in the Galactic ex-
tinction correction have no significant effect on our results. The
independent analysis of Dutra et al. (2003) confirms the Schlegel
et al. (1998) maps for low E(B − V). For the z-bands consid-
ered here, even assuming a 30% uncertainty in the Galactic value
would correspond to an extinction uncertainty of 0.03 mag which
is smaller than the statistical uncertainties we find for the extinc-
tion in the host galaxy (see Table 1). Effects in the J, H, and Ks
bands will be smaller still. An under-estimate of the Galactic ex-
tinction would lead to a smaller host galaxy extinction than we
find in the current analysis.

The z-Gunn, FOCAS z′, GMOS z′ and Sloan Digital Sky
Survey (SDSS1; Fukugita et al. 1996) z filters have almost the
same profile across the whole band and extend much redder than
the UKIRT Z filter. It should be noted that since the Lyα absorp-
tion occurs in these bands, the filter wavelength coverage affects
the observed magnitude significantly (see Sect. 3.2). Unless ex-
plicitly mentioned, in the rest of the paper we use the term “z-
band" to denote all of the three z filters, i.e. UKIRT Z, FORS2
z-Gunn and FOCAS z′.

2.3. Grism spectroscopy

The optical spectrum of the afterglow was obtained with FOCAS
at the Subaru telescope and the spectroscopic data were re-
trieved from the SMOKA science archive facility2 (Baba et al.
2002). The afterglow was observed on 7 September 2005 for
4.0 h. The exposure mid-time was 12:05 UT, corresponding
to 3.4 days after the burst trigger (Kawai et al. 2006; Totani
et al. 2006). The spectra were flux calibrated using the spec-
trophotometric standard star BD+28D4211 obtained on the same
night. Individual spectra were combined following standard data
reduction techniques using IRAF. The spectrum exhibits no flux
below ∼8900 Å, consistent with a break due to Lyα absorption
at redshift z ∼ 6.3 and the Lyα forest. The spectrum shows a

1 http://www.sdss.org/
2 http://smoka.nao.ac.jp/
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flat continuum at the red wavelength end, revealing a series of
metal absorption lines arising from different atomic species at
z = 6.295, and an intervening C iv system at z = 4.84 (Kawai
et al. 2006). The observed spectrum was corrected for Galactic
extinction by assuming the Cardelli et al. (1989) extinction curve
and as explained in Sect. 2.2 above.

We implemented Voigt profile fitting to the 3.4 day Subaru
spectrum using the FITLYMAN package in MIDAS (Fontana
& Ballester 1995). We measure a hydrogen column density of
log NH i (cm−2) = 21.62 ± 0.02, consistent with the value re-
ported by Totani et al. (2006). It should be noted that z′-band
photometry and spectroscopy of the afterglow were obtained
with FOCAS at 3.3 and 3.4 days, respectively.

3. SED analysis

Stratta et al. (2007) studied the optical-UV rest-frame SED of the
afterglow of GRB 050904 at 0.5, 1 and 3 day epochs and found a
deficit in the z-band at 0.5 and 1 days, and (less significantly) at
3 days, compared to the JHK power-law extrapolation, claiming
that dust reddening could explain the flux deficit. This required
a SN-type extinction curve.

3.1. Afterglow compound SED

Knowledge of the SED can address the z-band flux suppression
issue, therefore, we computed the near-infrared to X-ray SED
of GRB 050904 at three epochs, i.e. 0.47, 1.25 and 3.4 days. To
facilitate comparison of the z-band flux, the SED at all epochs
was normalized to the H-band flux, using the smoothly broken
power-law presented by Tagliaferri et al. (2005). The normalized
near-infrared photometry is generally consistent, but the X-ray
spectra are much brighter at 0.47 and 1.25 days due to the in-
tense afterglow flaring activity at these times. The consistency of
the X-ray flux with the NIR SED extrapolation suggests that the
X-ray afterglow at 3.4 days was relatively unaffected by flares.
The composite SED of the afterglow of GRB 050904 at three
different epochs is shown in Fig. 2.

3.2. Comparing the z-band filter responses

Since the z-band photometry is strongly affected by the Lyα ab-
sorption, we performed spectro-photometric analysis by utiliz-
ing the total effective filter transmission functions including de-
tector responses (Fig. 1). We use the following method that al-
lows for a clean comparison of the different z-band magnitudes
of the afterglow, taken at 0.47, 1.25, and 3.4 days after the burst,
with the filters UKIRT Z, VLT z-Gunn, and Subaru z′, respec-
tively. The method essentially constructs the SEDs of stars in the
field and uses these to make a direct comparison of the afterglow
magnitudes at each epoch.

First, in each afterglow image we select several non-
saturated reference stars with known SDSS and Two Micron
All Sky Survey (2MASS3; Skrutskie et al. 2006) magnitudes.
Using the 2MASS J-band, and the SDSS z and i, we construct a
rudimentary SED for each reference star, where we convert the
magnitudes to flux densities (in erg s−1 cm−2 Å−1) at the central
wavelength of the SDSS and 2MASS filters. We connect these
flux densities with a linear interpolation, and integrate the refer-
ence star SED convolved with the filter response curve relevant
to that image, retrieving the band-integrated flux in erg s−1 cm−2.
Second, from the image we measure the counts for the reference

3 http://www.ipac.caltech.edu/2mass/

Fig. 1. Filter transmission curves of SDSS z, FOCAS z′, FORS2 z-Gunn
and UKIRT Z. The grey curve corresponds to the median-filtered optical
spectrum at 3.4 days (arbitrarily normalized). The vertical triple black
dot-dashed line represents the wavelength (1250 Å) where we computed
the flux density (see Sect. 3.2).

Fig. 2. Near-infrared to X-ray spectral energy distribution of the after-
glow of GRB 050904 at 0.47 (red triangles), 1.25 (blue squares) and
3.4 days (black circles) after the burst. The SED at 0.47 and 1.25 days
is scaled to the H-band at 3.4 days. The solid grey curve represents the
median-filtered optical spectrum at t0 + 3.4 days. The black dashed line
corresponds to a power-law fit to the near-infrared to the X-ray data at
3.4 days with a spectral index β = 1.25 ± 0.05. The grey shaded area
represents the 1σ uncertainty on the power-law.

stars using aperture or PSF photometry, determining the conver-
sion factor between counts and flux. Using this factor, we eventu-
ally compute the (band-integrated) afterglow flux from its mea-
sured counts. We used several comparison stars to evaluate the
accuracy of the procedure. At 0.47, 1.25, and 3.3 days, we find a
scatter of 0.02, 0.04, and 0.02 mag using 8, 10, and 5 reference
stars, respectively. The small scatter confirms the robustness of
our method.

In the deep FORS2 and FOCAS z-band images, the bright-
est stars are heavily saturated, and suitable reference stars are
lacking since the fainter stars have large uncertainties in the
SDSS and 2MASS catalogues. Therefore, we calibrated a set
of faint stars using the UKIRT J and z-band images, based on
the 2MASS and SDSS catalogs. For the z band, due to the dif-
ference in the UKIRT and SDSS filters, appropriate color terms
were taken into account, achieving a photometric accuracy of
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Table 1. Best fit parameters of the SED at different epochs.

Days Model β A(3000 Å) AV
a

(mag) (mag)
0.47 PL 1.28 ± 0.11 . . . . . .

PL+SN 1.22 ± 0.24 0.3 ± 0.22 . . .
PL+SMC 1.23 ± 0.08 0.1 ± 0.07 0.05 ± 0.04

1.25 PL 1.24 ± 0.09 . . . . . .
PL+SN 1.27 ± 0.2 0.05 ± 0.11 . . .

PL+SMC 1.17 ± 0.51 0.01 ± 0.04 0.01 ± 0.02
3.4 PL 1.25 ± 0.05 . . . . . .

PL+SN 1.23 ± 0.21 0.22 ± 0.24 . . .
PL+SMC 1.24 ± 0.07 0.056 ± 0.059 0.042 ± 0.044

Notes. (a) The SN-origin extinction curve has been only computed in
the range λrest = 1000 − 4000 Å, hence it is not possible to provide AV .

≈ 0.02 mag. Given the higher sensitivity of the SDSS in the
i band, suitable calibrators for the VLT and Subaru images were
available directly from the SDSS catalog. Note that our calibra-
tion is entirely based on the SDSS and 2MASS catalogs, there-
fore, our analysis is not dependent on the sky conditions when
the data have been acquired.

The third and final step is to convolve the relative afterglow
spectral shape (as measured from the Subaru spectrum that was
obtained at 3.4 days) with the three different z-band filter re-
sponse curves, where the spectrum is rescaled in absolute terms
to recover the band-integrated flux (in erg s−1 cm−2) determined
for each epoch (see above). We note that this method does not
rely on the absolute flux calibration of the Subaru spectrum; it
merely uses the photometry to rescale it, and therefore the errors
only include the errors in the aperture/PSF photometry, the er-
ror from the conversion factor, and the Subaru noise error when
convolving it with the filter response curves. After rescaling of
the spectrum, the afterglow flux density (in erg s−1 cm−2 Å−1)
can be compared at any pivot wavelength, after the H-band
normalization. At all epochs we computed the flux density at
λrest = 1250 Å, which was selected since it is close to the peak
of all the involved filter transmission curves (see Fig. 1), and is
separated from the metal absorption lines visible in the spectrum
(Kawai et al. 2006).

The single but important assumption in this method is that
the spectral shape of the afterglow is not changing from 0.47 to
3.4 days. This is in some sense the null hypothesis that we are
trying to test: dust destruction would produce a change in the rel-
ative spectral shape, and would therefore produce a change in the
z-band brightness relative to the H-band normalization. Other
effects, such as a variable H i column, or a change in the spec-
tral slope due to e.g. the cooling frequency crossing the z-band,
could also in principle cause such a change. However, if the re-
sulting afterglow z-band brightness (normalized to the H-band)
between 0.47 and 3.4 days does not show a significant change,
then this would provide strong support for the null hypothesis
that the spectral shape is not changing.

Following the above procedure, we find the afterglow to
have a flux density at 1250 Å of 14.7 ± 1.32, 9.41 ± 0.24 and
2.13 ± 0.22 μJy at 0.47, 1.25 and 3.3 days, respectively. We
find that the normalized 0.47 day UKIRT Z-band brightness is
0.27 ± 0.18 mag fainter than the FOCAS z′-band brightness at
3.3 days. At 1.25 days, the normalized FORS2 z-Gunn bright-
ness is brighter by 0.17 ± 0.15 mag compared to the FOCAS
z′-band brightness at 3.3 days. The uncertainties here also in-
clude the uncertainties in the normalization, i.e. the errors in the
H-band photometry (0.06 mag). Therefore, there is no evidence

for variability of the spectral shape around the z band. In partic-
ular, after taking into account the appropriate filter shapes and
color effects, there is no significant deficiency of flux in the z-
band flux at 0.47 days compared to later epochs (Haislip et al.
2006; Stratta et al. 2007).

4. Discussion

At 0.47 days post-burst, we find a flux deficit in the UKIRT
Z-band compared to the 3.3 days Subaru photometry that is only
significant at <1.5σ level. This low significance result, com-
bined with the difficulty in determining the Z-band magnitude
at 0.47 days alluded to in Sect. 2.2, suggests that a change in
the spectrum between 0.47 and 3.4 days does not have strong
observational support. If the effect were real then such a flux
deficit could be explained by: (i) dust extinction as suggested
by Stratta et al. (2007) with a SN-origin extinction curve, or (ii)
gas absorption. Previously Haislip et al. (2006) also suggested
that absorption due to molecular hydrogen could give rise to the
Z-band flux deficit at 0.47 days.

4.1. Dust in the GRB 050904 host galaxy

The claim of SN-type dust in GRB 050904 is important because
of the possibility of observing the evolution of cosmic dust at
high redshift. Stratta et al. (2007) suggested SN-type dust extinc-
tion in the host galaxy of GRB 050904 with an extinction curve
inferred for a BAL QSO at z = 6.2 (Maiolino et al. 2004). The
unusual extinction curve is rather flat at longer wavelengths and
steeply rises at λ < 1700 Å. The best-fit estimates of Stratta et al.
(2007) of the extinction at 3000 Å in the rest-frame, A(3000 Å),
were 0.89± 0.16, 1.33± 0.29, and 0.46± 0.28 mag at 0.5, 1, and
3 days, respectively.

It is clear from our broad-band SED at 3.4 days (see Fig. 2)
that the extrapolation of the near-infrared power-law is consis-
tent with a single power-law to the X-ray spectrum, i.e. consis-
tent with both the slope and flux level of the X-ray spectrum
at that time. We can also clearly see that there is no evidence
in the flux-calibrated optical/near-infrared spectrum at 3.4 days
for any extinction – the continuum just redward of the Lyα ab-
sorption is consistent with the single JHK power-law. Both facts
mean that there is no evidence for dust extinction at 3.4 days.
We fitted a dust-attenuated power-law using a dust model for the
Small Magellanic Cloud (SMC, RV = 2.93; Pei 1992) and the
SN-origin extinction model of Maiolino et al. (2004) to the 0.47,
1.25 and 3.4 day zYJHKs data (from the z-band, we compute
the flux density at λrest = 1250 Å). The best fit parameters are
reported in Table 1. With our revised z-band photometry, extinc-
tion at the level suggested by Stratta et al. (2007) can be ruled
out at all three epochs (see Fig. 3). In no case the computed ab-
sorption is significant at more than 1.5σ level.

Extinction-correcting the 1.25 day SED at the level fitted
by Stratta et al. (2007) makes its extrapolation overshoot the
X-ray spectrum, hinting that ∼1 mag of extinction at 3000 Å is
not required. More importantly, the Y-band photometry, with
a central wavelength of 1400 Å in the rest-frame, at 1.25 days
(Haislip et al. 2006), is consistent with the near-infrared power-
law extrapolation. Such consistency would not be expected in
the Stratta et al. (2007) dust hypothesis since A(1400 Å) is about
1.75 times the A(3000 Å) in the Maiolino et al. (2004) model,
and the Y-band photometry should therefore lie a factor of 2 be-
low a power-law extrapolation, while it does not (Fig. 3), though
its error is large. As it can be seen in the middle panel of Fig. 3,
the SED at 1 day follows a simple power-law and provides strong
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constraints on dust absorption. Again, it seems likely that not
only is there no evidence for SN-type extinction in GRB 050904
after 1.25 days, but that there is no evidence for any dust extinc-
tion at all at ∼1 day or later.

There are also strong arguments against a SN-origin dust
interpretation at 0.47 days. While dust reddening has been un-
equivocally observed in lower redshift GRBs (e.g. Kann et al.
2006; Fynbo et al. 2009; GRB 050401: Watson et al. 2006a;
GRB 991216: Vreeswijk et al. 2006; GRB 050408: Foley et al.
2006; de Ugarte Postigo et al. 2007; GRB 070802: Elíasdóttir
et al. 2009; GRB 080607: Prochaska et al. 2009), so far SN-
origin dust has never been seen before in any GRB host.
Moreover there is no compelling evidence of dust extinction in
any GRB beyond z = 5. A possible exception is GRB 071025
(which has a photometric redshift 4.4 < z < 5.2 Perley
et al. 2009), which shows indications of a significant dust
column. Notable are the two bursts at higher redshift than
GRB 050904, i.e. GRB 080913 at z = 6.7 (Greiner et al. 2009),
and GRB 090423 at z = 8.2 (Tanvir et al. 2009; Salvaterra et al.
2009), neither of which show any sign of extinction. Second,
given that dust can be excluded at t > 1 day, having non-zero ab-
sorption at t = 0.47 days would require time-varying dust extinc-
tion, which has never been observed in any burst. If due to dust
destruction, we would expect reddening variations to be associ-
ated with intense episodes of emission, while there is no optical
flaring or any significant feature in the restframe-UV lightcurve
in this period that could be responsible for such dust destruction
(see Haislip et al. 2006; Tagliaferri et al. 2005), and most dust
destruction scenarios sublimate dust on timescales of only a few
minutes after the burst at most (Perna et al. 2003; Fruchter et al.
2001). Stratta et al. (2007) suggested that varying extinction may
also indicate that the emitting region had become larger than the
obscuring cloud. While this cannot be excluded, such a geom-
etry requires some tuning of the cloud and fireball parameters.
The claim of dust in the host galaxy of GRB 050904, with an un-
usual extinction curve, relying principally on a smaller (0.3 mag)
and <2σ flux deficit in a photometric observation, is not the most
likely explanation. The most likely hypothesis is simply system-
atic uncertainties related to the Z-band calibration.

It is worth noting however that time-variable dust with an un-
usual extinction curve is not even the simplest explanation even
if the original analysis had been reliable. Given that we know
from the optical spectrum that a large quantity of gas is present
in the system, a variability in the gas column density at early
times is a less tortured hypothesis.

4.2. X-ray absorption

The X-ray spectral analysis suggests a high metal column den-
sity in the afterglow of GRB 050904 (Watson et al. 2006b;
Campana et al. 2007). Time-resolved X-ray spectroscopy reveals
that the column density of metals within the first few hours is
highly variable (Campana et al. 2007; Cusumano et al. 2006;
Gendre et al. 2006). Due to the rapid changes in the X-ray spec-
trum this apparently variable column may be an artifact of the
changing intrinsic spectrum resulting in a downturn at soft en-
ergies that disappears at later times (see Butler et al. 2006).
However, even if the change in the soft X-rays is really due to a
variable column density, i.e. due to increasing ionization of the
metals, this effect occurs at early times (�103 s) and cannot sup-
port the idea of dust destruction after 0.5 days. Indeed, a varying
metal column density at <1000 s argues against dust destruction
at 0.5 days. If the varying metal column density is a real effect,
destruction of any dust associated with the high metal column

Fig. 3. Near-infrared spectral energy distribution of the afterglow of
GRB 050904 at 0.47 (top panel), 1.25 (middle panel) and 3.4 days
(bottom panel) after the burst. The observed data are corrected for
Galactic extinction (Sect. 2.2). The corresponding bands are identified
in the bottom panel. The solid, dashed, and dotted lines represent the
best fit with a power-law, a power-law with SN dust, and a power-
law with SMC dust, respectively. At 1.25 days, the three lines almost
overlap.

should have been completed long before 0.5 days. As a more
general point, the optical and X-ray fluxes are at least one to two
orders of magnitude lower after 0.5 days than before 1000 s. It is
difficult to construct a scenario in which significant dust destruc-
tion occurs in the interval 0.5–3 days that did not occur before in
the absence of a huge flare in the UV–X-ray, something which is
not observed.

4.3. Gas-to-dust ratio

GRBs typically occur in host galaxies with high gas to dust
ratios (e.g. Jensen et al. 2001; Galama & Wijers 2001; Hjorth
et al. 2003a; Stratta et al. 2004; Elíasdóttir et al. 2009). The H i
column density of the host of GRB 050904 is very large while
AV is small. Using our limit on (SMC-type) dust at 1.25 days,
AV � 0.05 mag at 95% confidence, leads to a high gas-to-dust
ratio N(H i)/AV � 8.3 × 1022 cm−2 mag−1. The Galactic relation
between H i column density and dust reddening is N(H i)/AV =
4.93/RV × 1021 cm−2 mag−1 (Diplas & Savage 1994). Correcting
for metallicity at 3.4 days (Z = 0.1Z�; Kawai et al. 2006), this
implies an N(H i)/AV ratio limit 5 times the Galactic value. A
comparison with the SMC (Gordon et al. 2003), which has a
similar metallicity to the environment of GRB 050904, yields a
gas-to-dust ratio which is also more than 5–10 times larger in the
host of GRB 050904.

4.4. The origin of dust in the early Universe

In the local Universe, the major sources of interstellar dust are
AGB stars, the lower mass ranges of which require �1 Gyr to
evolve to produce dust (Dwek et al. 2007). It has been suggested
that for sources with large dust masses such as sub-mm galax-
ies, due to the short time available at z � 5, an alternative source
of dust is required and that core-collapse SNe could dominate
dust formation at these times (Todini & Ferrara 2001; Morgan
& Edmunds 2003; Nozawa et al. 2003; Dwek et al. 2007;
Marchenko 2006; Hirashita et al. 2005). However, more com-
plete theoretical models including dust destruction by supernova
shock or grain growth/destruction in the interstellar medium
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obtain yields that are �0.01 M� per SN (Bianchi & Schneider
2007), consistent with almost all observations of nearby SNe
(Wooden et al. 1993; Elmhamdi et al. 2003; Meikle et al. 2006;
Blair et al. 2007; Sakon et al. 2009). This is too little to produce
the quantities of dust observed at high redshift. Recently Valiante
et al. (2009) argued that on short timescales massive AGB stars
could form much of the dust, depending on the assumed initial
stellar metallicity and star formation history. The galaxy-SED
modelling of sub-mm–selected galaxies of Michałowski et al.
(2010) suggests dust-formation timescales of order tens of mil-
lions of years in a few cases at z � 4, which would clearly
preclude even high-mass AGB dust-formation. While intriguing,
these cases may be affected by active galactic nuclei (AGN) con-
tamination and must be treated cautiously.

Observationally, after our analysis here of the afterglow of
GRB 050904, the detection of a peculiar extinction curve in a
BAL QSO spectrum at z = 6.2 (Maiolino et al. 2004) remains
the only direct evidence for dominant SN-origin dust in the early
Universe (but see recent work by Perley et al. 2009). While
the observational analysis of Maiolino et al. (2004) is carefully
done, the relatively narrow wavelength coverage, the presence of
strong, broad absorption and emission lines that dominate over
the continuum at the blue end of the spectrum, and the use of
composite QSO spectra, leave the result awaiting further con-
firmation. Furthermore, it is difficult to exclude that the dust is
affected by the central AGN itself (Perna et al. 2003), so that the
extinction curve may not tell us a lot about the origin of that dust.

5. Conclusions

In this work we reinvestigated the afterglow of GRB 050904 at
0.47, 1.25 and 3.4 day epochs to understand stellar environments
and interstellar dust at high redshift. We find that the afterglow
SED can be reproduced at all epochs without any dust extinc-
tion. The previous finding of dust extinction requiring a SN-type
extinction curve by Stratta et al. (2007) relies mostly on a Z-
band photometric point at 0.47 days which we find has calibra-
tion difficulties and with our new accurate analysis technique
we find the flux deficit to be both smaller and less significant
than reported by previous studies. We can reasonably exclude
the presence of substantial quantities of any type of dust in this
GRB host galaxy at all epochs. We therefore conclude that there
is no significant evidence of dust extinction in the afterglow of
GRB050904.
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Note added post-submission: A recent paper by Perley
et al. (2009) reports significant SN-origin dust extinction in
GRB 071025 at z ∼ 5 (Perley et al. 2009). We note that Perley
et al. (2009) also independently attempted to model the dust pro-
file of GRB 050904 and found that the data are consistent with
no extinction at all.
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