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ABSTRACT

Aims. We consider the effects of the magnetic twist and plasma rotation on the propagation of torsional m = 0 perturbations of
cylindrical plasma structures (straight magnetic flux tubes) in the case when the wavelength is much longer than the cylinder diameter.
Methods. The second order thin flux tube approximation is used to derive dispersion relations and phase relations in linear long-
wavelength axisymmetric magnetohydrodynamic waves in uniformly twisted and rotating plasma structures.
Results. Asymptotic dispersion relations linking phase speeds with the plasma parameters are derived. When twist and rotation
are both present, the phase speed of torsional waves depends upon the direction of the wave propagation, and also the waves are
compressible. The phase relations show that in a torsional wave the density and azimuthal magnetic field perturbations are in phase
with the axial magnetic field perturbations and anti-phase with tube cross-section perturbations. In a zero-β non-rotating plasma
cylinder confined by the equilibrium twist, the density perturbation is found to be about 66 percent of the amplitude of the twist
perturbation in torsional waves.
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1. Introduction

A cylindrical plasma structure embedded in a plasma of different
properties is a popular model for several astrophysical objects,
in particular coronal loops, plumes and jets in the solar corona.
Such a structure is known to support a number of magnetohy-
drodynamic (MHD) modes of oscillation, which can be divided
into several classes according to their observational manifesta-
tion. In low-β plasmas, typical for the solar corona, the modes of
plasma cylinders are kink, sausage, longitudinal, ballooning and
torsional (e.g. Edwin & Roberts 1983; Nakariakov & Verwichte
2005). In the most refined form the properties of these modes are
seen in the case of the straight magnetic field, parallel to the axis
of the cylinder. The first four modes are compressible (modi-
fied slow or fast magnetoacoustic waves), while torsional modes
(also known as rotational modes) are the only truly incompress-
ible perturbations of the plasma (e.g., Van Doorsselaere et al.
2008) and propagate at the Alfvén speed, and hence should be
considered as Alfvén waves. Torsional modes are propagating
azimuthal (rotational) motions of the plasma, accompanied by
the perturbations of the azimuthal component of the magnetic
field. Also, torsional modes can be considered as an alternat-
ing electric current aligned with the axis of the cylinder. Strictly
speaking, in a plasma cylinder with a straight magnetic field,
torsional waves are not modes, as perturbations of neighbouring
magnetic surfaces are independent of each other and hence do
not constitute a collective phenomenon. However, if the Alfvén
speed is sufficiently uniform across the plasma structure and if
the perturbations of the neighbouring magnetic surfaces are ex-
cited in phase, torsional perturbations manifest themselves in
observations as a quasi-collective mode-like perturbation. Thus,

from the point of view of the interpretation of observed phe-
nomena the term “torsional modes” is in our opinion sufficiently
justified.

In solar coronal studies, torsional modes have attracted great
attention for several important reasons. Tapping (1983) consid-
ered this mode for the interpretation of high quality oscillations
of the microwave emission generated in flaring loops by the gy-
rosynchrotron mechanism. The modulation of the emission can
be produced by the change of the angle between the magnetic
field and the line of sight. Another possible interpretation of
quasi-periodic pulsations in solar flares, in terms of the oscil-
lations in an equivalent LCR-circuit (e.g. Khodachenko et al.
2009, and references therein), links the pulsations with the al-
ternating electric current in a flaring loop. The alternating field-
aligned current can be described in terms of torsional waves.
Hence, the development of the LCR-circuit model requires the
understanding of the torsional wave dynamics. Another pop-
ular research avenue is the role of torsional modes in coro-
nal heating and solar wind acceleration, based upon the abil-
ity of torsional waves to penetrate easily into the corona (e.g.
Ruderman 1999; Copil et al. 2008). In particular, Moriyasu et al.
(2004) and Antolin et al. (2008) paid special attention to non-
linear effects and shock formation. It was demonstrated numer-
ically that the observed spiky intensity profiles due to impul-
sive energy releases could be obtained from nonlinear torsional
waves. Recently, Fletcher & Hudson (2008) proposed that a
flare-generated large-scale torsional wave could be responsible
for the bulk acceleration of electrons to high energies. Copil
et al. (2008) suggested that propagating torsional waves could
produce localised heating in coronal plasma threads. Also, tor-
sional modes have been intensively studied in the context of
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the astrophysical jet collimation (e.g. Bisnovatyi-Kogan 2007),
where the periodic alternate magnetic twist provides the force
that counteracts the total pressure and the centrifugal forces.

Despite the huge interest in torsional modes, unequivocal ob-
servational evidence of their presence in solar coronal plasma
structures is absent due to intrinsic difficulties in their detection.
Promising methods of their detection are based upon the Doppler
shift of coronal emission lines and the modulation of the gy-
rosynchrotron emission. Unfortunately, the lack of spatial reso-
lution in solar coronal observations does not allow one to resolve
simultaneously the periodically varying red and blue Doppler
shifts in different parts of a plasma structure. Spatially unre-
solved torsional modes manifest themselves as periodic non-
thermal broadening. Zaqarashvili (2003) interpreted the varia-
tion of non-thermal broadening of the coronal “green” line along
a coronal loop, with the period about 6 min, as the global (stand-
ing) torsional mode. Grechnev et al. (2003) suggested that 6-s
oscillations of the hard X-ray and microwave emission in a solar
flare could be produced by a torsional oscillation of the flaring
loop. In the chromosphere, possible detection of torsional per-
turbations with the periods between 126 s and 700 s and an am-
plitude of 23 km s−1 was recently reported by Jess et al. (2009).

Theoretical investigation of torsional modes of magnetic
plasma structures has been concentrated on various aspects of
the wave propagation. In a non-rotating plasma cylinder with a
straight magnetic field, torsional perturbations which are inde-
pendent of the azimuthal angle (m = 0, where m is the azimuthal
wave number) propagate at the Alfvén speed inside the cylinder
and are incompressible and dispersionless (e.g. Edwin & Roberts
1983). Transverse non-uniformity of the Alfvén speed and/or
field-aligned steady flow profile leads to phase mixing of tor-
sional perturbations (e.g. Ryutova & Habbal 1995). The effects
of longitudinal variation of the Alfvén speed on the resonant fre-
quencies of standing torsional modes of corona loops has been
investigated by Zaqarashvili & Murawski (2007). However, ef-
fects of the magnetic field twisting and the plasma rotation on
the torsional modes are still not understood. There is still no di-
rect observational evidence of the magnetic twisting of coronal
plasma structures. On the other hand, this is often seen in nu-
merical simulations of magnetic flux emergence (e.g., see Hood
et al. 2009, for a recent discussion). In addition, rotation of coro-
nal plasma structures has been seen, e.g., in macrospicules (Pike
& Mason 1998) also known as solar tornados, and one can ex-
pect solar coronal hot jets to be rotating.

A useful tool for the analytical study of long-wavelength ax-
isymmetric (torsional and longitudinal, and, perhaps, sausage)
perturbations of magnetic flux tubes is the second order thin flux
tube approximation derived by Zhugzhda (1996). This approxi-
mation generalises the classical thin flux tube theory of Roberts
& Webb (1978), accounting for the flux tube rotation and twist,
and also the variation of its cross-section. In particular, it allows
to consider the effects of the long-wavelength dispersion, con-
nected with the presence of the characteristic spatial scale, the
tube diameter, on the wave propagation (Zhugzhda 1996). It has
been pointed out that in twisted magnetic flux tubes, the torsional
modes become compressible. Soliton solutions appearing be-
cause of the combination of weakly dispersive and weakly non-
linear corrections to the sausage wave propagation were found
in Zhugzhda & Nakariakov (1999). An intensive following-
up discussion (Zhugzhda & Goossens 2001; Zhugzhda 2002;
Ruderman 2005; Zhugzhda 2005) revealed the necessity to pay
attention to the induced perturbations in the external medium.
However, this is of course not necessary if the external medium

is a vacuum, and the plasma confinement is fulfilled by the in-
ternal magnetic twist.

The aim of this paper is to study long-wavelength (in com-
parison with the transverse size of the plasma cylinder) axisym-
metric torsional modes in twisted and rotating plasma struc-
tures surrounded by vacuum, developing the work of Zhugzhda
(1996) and Zhugzhda & Nakariakov (1999). The paper is organ-
ised as follows. In the next section we discuss the model and
the equilibrium. In Sect. 3 we consider the general dispersion
relation in several asymptotic cases. In Sect. 4 we derive phase
relations between the perturbed physical quantities and study the
compressibility of torsional waves. The results obtained are sum-
marised in Conclusions.

2. Model and equilibrium conditions

In this work, we consider a rotating straight cylinder of a uni-
form plasma (a straight magnetic flux tube) with a twisted mag-
netic field (see Fig. 1). A similar (while non-rotating) model was
used in the study of Erdélyi & Fedun (2007). Our governing set
of equations is in terms of the second order thin flux tube ap-
proximation of Zhugzhda (1996). In its derivation, the Taylor
expansion of the physical variables with respect to the radial co-
ordinate r was used

ρ ≈ ρ̃, p ≈ p̃ + p2r2, vr ≈ Vr, vϕ ≈ Ω r, vz ≈ u,

Br ≈ Br1r, Bϕ ≈ Jr, Bz ≈ B̃z, (1)

where Br, Bϕ and Bz are the radial, azimuthal and longitudinal
components of the magnetic field, vr, vϕ and vz are the radial,
azimuthal and longitudinal components of the velocity, ρ is the
mass density, p is the gas pressure, V is the radial derivative
of the velocity, J and Ω are the zeroth-order values of the cur-
rent density and vorticity, respectively. The quantities with the
overtilde are the zeroth order terms of the expansions and their
overtilde will be omitted here after. The linear dependences of
the twist and rotation on the radial coordinate correspond to the
uniform twist and rotation. Applying expansion (1) to the MHD
equations for a uniform medium, the set of second order thin flux
tube approximation equations is obtained

∂Ω

∂ t
+ u
∂Ω

∂ z
+ 2VΩ +

J
4πρ
∂ Bz

∂ z
− Bz

4πρ
∂ J
∂ z
= 0,

ρ

(
∂ u
∂ t
+ u
∂ u
∂ z

)
+
∂ p
∂ z
= 0,

∂ ρ

∂ t
+
∂(ρ u)
∂ z

+ 2ρV = 0,

∂ J
∂ t
+
∂(uJ)
∂ z
− Bz
∂Ω

∂ z
+ 2VJ = 0,

∂ Bz

∂ t
+ u
∂ Bz

∂ z
+ 2BzV = 0,(

∂

∂ t
+ u
∂

∂ z

)
p
ργ
= 0,

p +
B2

z

8π
− A

2π

[
ρ

(
∂V
∂ t
+ u
∂V
∂ z
+ V2 −Ω2

)
+

1
4π

⎛⎜⎜⎜⎜⎜⎝J2 − 1
4

(
∂ Bz

∂ z

)2

+
Bz

2
∂2Bz

∂ z2

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ = pext

T ,

BzA = const., (2)

where A = πR2 is the cross-sectional area of the tube of radius
R, and pext

T is the external total pressure. Note that in Eq. (2) the
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R
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z

Fig. 1. The sketch of the model geometry.

relation containing the internal and external pressure terms is ob-
tained by combining the radial component of the Euler equation
with the pressure balance condition (Zhugzhda 1996). Here the
external plasma is taken to be non-rotating and without the mag-
netic twist. The effect of the gravitational force is neglected. All
considered physical parameters are independent of the azimuthal
coordinate.

As it was stressed in Zhugzhda (1996), in the case of a
twisted and rotating magnetic flux tube the second order term
p2 in the radial Taylor expansion (1) needs to be taken into ac-
count because it depends on the first order magnetic twist J, and
could not then be neglected. This is also why we need to take
into account the second order approximation of the pressure bal-
ance at the tube boundary mentioned in Eq. (24) of Ferriz-Mas
et al. (1989).

The equilibrium pressure balance condition is

p0 +
B2

z0

8π
+

A0

2π

⎛⎜⎜⎜⎜⎝ρ0Ω
2
0 −

J2
0

4π

⎞⎟⎟⎟⎟⎠ = pext
T0 , (3)

where J0, Ω0, Bz0, and A0 are the equilibrium twist, rotation,
magnetic field in the z-direction and the cross-section of the
cylinder, respectively; and pext

T0 is the equilibrium external to-
tal pressure. The equilibrium cross-section is connected with the
equilibrium radius of the cylinder, R0, A0 = πR2

0. The twist of the
external magnetic field and the rotation of the external plasma
are neglected. In the case without rotation and twist, Eq. (3) re-
duces to the standard total pressure balance condition (Roberts
et al. 1984). It is interesting that in the absence of the external
total pressure, pext

T0 = 0, i.e. when the external medium is treated
as a vacuum without strong magnetic field, there is a possibility
for an equilibrium. In this case, the magnetic tension force con-
nected with the twist J0 can counteract the internal total pres-
sure and the centrifugal forces. Making use of the conservation
of magnetic flux Φ = BzA, we obtain the following relationship
between the equilibrium parameters:

Bz0A0 = Φ, J0A0 = Jtotal, Ω0A0 = const., (4)

where the last expression comes from the conservation of an-
gular momentum. Linearising the thin flux tube equations with
respect to the equilibrium we obtain:

∂Ω

∂ t
+ 2VΩ0 +

J0

4πρ0

∂ Bz

∂ z
− Bz0

4πρ0

∂ J
∂ z
= 0, (5)

ρ0
∂ u
∂ t
+
∂ p
∂ z
= 0, (6)

∂ρ

∂t
+ ρ0
∂u
∂z
+ 2ρ0V = 0, (7)

∂ J
∂ t
+ J0
∂ u
∂ z
− Bz0

∂Ω

∂ z
+ 2VJ0 = 0, (8)

∂ Bz

∂ t
+ 2Bz0V = 0, (9)

∂ p
∂ t
−C2

s
∂ ρ

∂ t
= 0, (10)

p +
2Bz0Bz

8π
− A0 ρ0

2π
∂V
∂ t
+

A0Ω
2
0ρ

2π
+
ρ0Ω

2
0A

2π

+
A0Ω0ρ0Ω

π
− J2

0 A

8π2
− A0J0 J

4π2
− A0Bz0

16π2

∂2Bz

∂ z2
= pext

T . (11)

In general, the set of Eqs. (5) should be supplemented by an
equation describing the perturbation of the external total pres-
sure pext

T and radial velocity. The external and internal solutions
are linked by the total pressure balance and the continuity of
the transverse displacement boundary conditions applied at the
cylinder boundary r = R0. However, in the following considera-
tion, we restrict our attention to the plasma structures embedded
in vacuum, and hence neglect the external pressure. Note that
this is not a good assumption for coronal loops, but can be used
for various jets, plumes and macrospicules.

3. Dispersion relations

Considering linear perturbations which are proportional to
exp(iω t + ikz), one gets the dispersion relation:

A0

4π(C2
A +C2

s )

[
ω6 +

(
2C2

Aα
2 − 4Ω2

0 − k2(2C2
A +C2

s )
)
ω4

+ 4Ω0kC2
Aαω

3 − 8Ω0k3C2
AC2

sαω

+
(
2(Ω2

0C2
s +C2

AC2
sα

2 −C4
Aα

2)k2 + k4C2
A(2C2

s +C2
A)

)
ω2

+ k4C2
AC2

s (2Ω2
0 + 2C2

Aα
2 − k2C2

A)
]

− (ω2 − k2C2
A)(ω2 − k2C2

T) = 0, (12)

where

α =
J0

Bz0
, C2

s = γ
p0

ρ0
, C2

T =
C2

AC2
s

C2
A + C2

s
· (13)

The axial Alfvén speed is determined by the longitudinal com-
ponent of the magnetic field, CA = Bz0/

√
4πρ0. This 6th or-

der polynomial equation describes torsional, longitudinal and
sausage perturbations in twisted and rotating magnetic flux tubes
(Zhugzhda 1996) in vacuum. In general, this equation does not
have exact analytical solutions. In the following, we consider
several useful limiting cases, which allow us to understand the
dispersive properties of the modes.

3.1. Case J0 = 0, Ω0 = 0

In the case of an untwisted (J0 = 0) and non-rotating (Ω0 = 0)
tube, the dispersion relation Eq. (12) reduces to

A0

4π
(ω2 −C2

Ak2)2(ω2 −C2
s k2)

−(C2
A +C2

s )(ω2 −C2
Ak2)(ω2 − C2

Tk2) = 0, (14)
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which describes three MHD modes. The familiar dispersion re-
lation of the torsional modes readily separates,

ω2 = C2
Ak2. (15)

The remaining biquadratic equation describes longitudinal and
sausage modes,

ω2 = C2
Tk2 +

A0

4π(C2
A +C2

s )
(ω2 −C2

Ak2)(ω2 −C2
s k2), (16)

where the terms proportional to the tube cross-section A0 are
weak dispersion corrections, and in the long-wavelength limit
the longitudinal scale of MHD perturbations is much bigger than
its transverse scale, A0k2 � 1. Assuming that ω2 ≈ C2

Tk2,
Eq. (16) becomes,

ω2 ≈ C2
Tk2

⎛⎜⎜⎜⎜⎝1 + A0

4π

C2
Tk2

C2
A + C2

s

⎞⎟⎟⎟⎟⎠ · (17)

Equation (17) coincides with Eq. (77) of Zhugzhda (1996) in
case of an untwisted and non rotating flux tube. In the zero-order
thin flux tube approximation (Roberts & Webb 1978), this ex-
pression simplifies to the familiar dispersion relation for slow
magnetoacoustic modes in the long-wavelength limit,

ω2 = C2
Tk2. (18)

Equation (17) describes the dispersive corrections connected
with the finite tube radius effects. In addition, in a general case
it is necessary to account for the dispersive effects connected
with the external medium (see Zhugzhda & Goossens 2001;
Zhugzhda 2002; Ruderman 2005; Zhugzhda 2005).

Another solution of Eq. (16) corresponds to sausage fast
magnetoacoustic perturbations. It can be easily seen in the zero-
beta limit, in which the dispersion relation reduces to

ω2 − C2
Ak2 −C2

A/(A0/4π) = 0. (19)

The last term of this equation is proportional to the recipro-
cal transverse wavelength in the situation when the rigid wall
boundary conditions are applied. Hence in this case we have the
dispersion relation that describes fast magnetoacoustic sausage
waves in a plasma cylinder with a rigid wall. In the case of the
soft boundary given by the balance of the total pressures inside
and outside the tube, which is more typical for astrophysical ap-
plications, behaviour of the long-wavelength sausage mode is
determined by the external medium (see, e.g. Pascoe et al. 2007).

3.2. Case J0 � 0, Ω0 = 0

The case of a non-rotating twisted tube has been discussed in
detail in Zhugzhda (1996); Zhugzhda & Nakariakov (1999). The
dispersion relation is

ω2 ≈ C2
±k2 ± A0

4π

(C2± −C2
A)2(C2± −C2

s )

C2
A

√
S

k4, (20)

where

C2
± = C2

A

C2
A + 2C2

s +K(C2
s −C2

A) ± √S
2(C2

A +C2
s ) − 2C2

AK
, (21)

and

S = C4
A + 2K(3C2

AC2
s + 4C4

s −C4
A)

+K2(C4
s − 6C2

s C2
A +C4

A),

K = J2
0 A0

2π B2
z0

=
A0α

2

2π
· (22)

The second term on the right hand side of Eq. (20) is the disper-
sive correction term. Equation (21) indicates the modification
of the propagation speeds of the longitudinal (with the negative
sign) and torsional (with the positive sign) waves by the equilib-
rium magnetic twist. Note that Eq. (20) indicates that the equi-
librium twist modifies the wave speeds even in the limit k = 0.
Also, mind a misprint in Eq. (19) of Zhugzhda & Nakariakov
(1999).

3.3. Case Ω0 � 0, J0 � 0, zero-β limit

Consider the equilibrium with both twist and rotation to be non-
zero (Ω0 � 0, J0 � 0). A useful simplification can be obtained in
the zero-β limit. In this case, dispersion relation (12) reduces to

(C2
A+2RC2

A−KC2
A)(ω−C(+)

+ k)(ω−C(−)
+ k) =

A0

4π
(ω2−C2

Ak2)2, (23)

where

C(±)
+ = CA

√KR ± √Q
1 + 2R − K , (24)

R = A0Ω
2
0

2πC2
A

(25)

and

Q = 1 − KR +K2 − 2K + 2R. (26)

Taking that the dispersion is weak, we obtain

ω ≈ C(±)
+ k ± A0

8π

(C2
+ −C2

A)2

√Q k3. (27)

Equation (27) generalises Eq. (81) of Zhugzhda (1996) (cor-
rected for a misprint). Thus, the equilibrium twist and rotation
modify the propagation speeds in the k = 0 limit.

Equation (27) shows that the torsional waves propagate in
opposite directions along the tube at different speeds. The dif-
ference in the speeds is governed by the term

√KRCA. This is
similar to the case of untwisted non-rotating tubes with equilib-
rium field-aligned steady flows, when the asymmetry is caused
by the Doppler shift (e.g. Nakariakov et al. 1996; Vasheghani
Farahani et al. 2009). In Eq. (27) the equilibrium steady flow is in
the direction perpendicular to the direction of the wave propaga-
tion, but locally the Alfvénic perturbations propagate along the
twisted magnetic field either downstream or upstream the flow.
Hence, in the considered case, the speed asymmetry is caused by
the Doppler shift, too.

3.3.1. Standing oscillations of an infinite tube

Consider the k = 0 limit. In this case, dispersion relation (12)
has two solutions, one is ω4 = 0, which corresponds to the lon-
gitudinal and torsional perturbations, and the other is

ω2 =
4π(C2

s + C2
A)

A0
− J2

0

2πρ0
+ 4Ω2

0, (28)

which is the sausage oscillation of a twisted and rotating mag-
netic cylinder in a vacuum. The frequency of the sausage oscilla-
tions depends upon the ratio of the fast magnetoacoustic speed to
the radius of the tube, as well as upon the twist and the rotation.

A sufficiently twisted magnetic flux tube is subject to in-
stability. Equation (28) describes the threshold of the sausage
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(m = 0) instability, ω2 = 0. In particular, in the zero-β non-
rotating plasma we readily get that the stability condition is
B2

z0 > B2
ϕ0/2, which coincides with the expression obtained by

other methods (e.g. Miyamoto 2005).

4. Compressibility of the torsional mode

In an untwisted, non-rotating tube, the equations describing lin-
ear perturbations of the twist and rotation, Eqs. (5, 8) and gov-
erning the torsional mode, are decoupled from the rest of the
linearised MHD equations. Thus, the torsional modes are incom-
pressible and can be considered as true Alfvén waves in contrast
with other modes. In the case of a twisted (J0 � 0) and rotating
(Ω0 � 0) tube, Eqs. (5) and (8) are not independent of the other
linear perturbations anymore. Thus, in this case, torsional pertur-
bations become compressible: they perturb the plasma density
and the absolute value of the magnetic field, induce longitudi-
nal flows and perturb the tube cross-sectional area. The latter
leads to the coupling of the torsional motions with the external
medium, if it is not a vacuum.

Consider the compressible perturbations in the torsional
modes of a twisted (J0 � 0) and rotating (Ω0 � 0) tube. We
assume that the perturbations of the twist in the torsional wave
are in the form

J = Ja exp i(ω t + kz), (29)

where Ja is the amplitude of the twist perturbation, ω and k are
related by Eq. (12).

Substituting expression (29) to Eqs. (5)–(10) we obtain the
following relations between the compressible variables with the
amplitude of the torsional wave:(
ρa

ρ0

)
= αρJa,

(
Va

Vphk

)
= −iαV Ja,

(
Bza

Bz0

)
= αBzJa,(

Aa

A0

)
= αAJa,

ua

CA
= αu Ja, (30)

where

αV =
1
2

⎛⎜⎜⎜⎜⎝1 − ⎛⎜⎜⎜⎜⎝C2
A

C2
+

⎞⎟⎟⎟⎟⎠ β⎞⎟⎟⎟⎟⎠αρ, αBz =

⎛⎜⎜⎜⎜⎝1 − ⎛⎜⎜⎜⎜⎝C2
A

C2
+

⎞⎟⎟⎟⎟⎠ β⎞⎟⎟⎟⎟⎠αρ,
αA = −

⎛⎜⎜⎜⎜⎝1 − ⎛⎜⎜⎜⎜⎝C2
A

C2
+

⎞⎟⎟⎟⎟⎠ β⎞⎟⎟⎟⎟⎠ αρ, αu =

(
CA

C+

)
βαρ,

and

αρ = Bz0

√
2π
A0

(√K − πCA

C+

√R
)

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩ρ0

⎛⎜⎜⎜⎜⎝1 − ⎛⎜⎜⎜⎜⎝C2
A

C2
+

⎞⎟⎟⎟⎟⎠ β⎞⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎣ 4π2C2

+

A0

((
C2
+/C

2
A

)
− β

) (β + R)

+

⎛⎜⎜⎜⎜⎝4π2C2
A

A0

⎞⎟⎟⎟⎟⎠ (1 +K) − π k2
(
C2
+ − C2

A

)
+

⎛⎜⎜⎜⎜⎜⎝4π2C2
A

√R
A0C+

⎞⎟⎟⎟⎟⎟⎠ (√RC+ − 2
√KCA

)⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
−1

,

where ua, ρa, Ba are amplitudes of perturbations of the
z-component of flow, density, and magnetic field, respectively,
Aa is the amplitude of the perturbation of the cross-section, Va is
the amplitude of the radial velocity; and Vph is the phase speed

of the torsional wave, given by Eq. (12). The coefficients αu,
αρ, αV , αB, and αA are parameters, which depend on the differ-
ence between the phase speed of the torsional wave Vph and the
longitudinal Alfvén speed CA. Clearly, in the untwisted and non-
rotating limit Vph = CA, and the torsional wave becomes incom-
pressible and independent of the external medium. We would
also like to point out that Va in Eq. (30) has the dimension s−1

(see Eq. (1)).
The induced compressibility is associated with the depar-

ture of the perturbation from magnetic surfaces, as Va is not
zero. Hence, in this case the torsional wave cannot be consid-
ered as the true Alfvén wave and is rather a fast magnetoacoustic
wave. More rigorously, in the case of a twisted and/or rotating
tube, Alfvén torsional modes are linearly coupled with essen-
tially compressible sausage and longitudinal modes.

Consider the compressibility of the torsional waves in the
zero-beta limit (β = 0). Expressions (30) become(
ρa

ρ0

)
= αρJa,

(
Va

Vphk

)
= −iαV Ja,

(
Bza

Bz0

)
= αBzJa,(

Aa

A0

)
= αAJa, ua = 0, (31)

where

αρ = Bz0

√
2π
A0

(√K − πCA

C+

√R
)

×
⎧⎪⎨⎪⎩ρ0

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝4π2C2
A

A0

⎞⎟⎟⎟⎟⎠ (1 +K) − π k2
(
C2
+ −C2

A

)
+

⎛⎜⎜⎜⎜⎜⎝4π2C2
A

√R
A0C+

⎞⎟⎟⎟⎟⎟⎠ (√RC+ −
√KCA

)⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
−1

, (32)

and

αBz = αρ, αA = −αρ, αV = αρ/2, (33)

with

C2
+ = C2

A

(
1 − 2R + 2

√RK
)
. (34)

For a non-rotating tube in the zero-β limit we obtain

αρ = Bz0

√
2π
A0

(√K)
×

⎧⎪⎨⎪⎩ρ0

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝4π2C2
A

A0

⎞⎟⎟⎟⎟⎠ (1 +K) − π k2
(
C2
+ − C2

A

)⎤⎥⎥⎥⎥⎦⎫⎪⎬⎪⎭−1

. (35)

Also, in this case the phase speed of the torsional mode reduces
to the Alfven speed CA (see Eq. (34)). Hence

αρ = Bz0

√
2πK
A0

⎧⎪⎨⎪⎩ρ0

⎡⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝4π2C2
A

A0

⎞⎟⎟⎟⎟⎠ (1 +K)

⎤⎥⎥⎥⎥⎦⎫⎪⎬⎪⎭−1

, (36)

or

αρ =
2J0A0

8π2ρ0C2
A + J2

0 A0
· (37)

The equilibrium condition (3) in case of zero-β and zero rotation
would give Bz0 = Bϕ0, so Eq. (36) can be simplified to αρ =
2R0/3Bz0, and the ratio of the density perturbation amplitude to
the equilibrium density is written as:

ρa

ρ0
=

2
3

Bϕa

Bz0
· (38)
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Fig. 2. Dependence of the compressibility parameter αρ which measures
(R0/Bz0), upon the dimensionless parameters representing the twist K
and rotation R, in the zero-β limit. The wave number is taken to be
(k = 0) and the z component of the equilibrium magnetic field is taken
to be (Bz0 = 1) with the Alfvén speed (CA = 1).

Equation (36) is consistent with the straight magnetic field limit:
when the twist J0 goes to zero, the torsional mode becomes in-
compressible. In Fig. 2 the parameters αρ is shown as a function
of the twist K and rotation R parameters.

According to (30), in the zero-β limit the torsional oscilla-
tions do not induce plasma flows along the tube. The induced
variations of the plasma density are in phase with the varia-
tions of the twist and the absolute value of the magnetic field,
and in anti-phase with the variations of the loop radius. These
phase relations should be taken into account in the estimation
of observational manifestation of torsional waves in twisted and
possibly rotating plasma structures, e.g. in the gyrosynchrotron
emission by the fashion similar to applied by Tapping (1983)
to torsional modes and Nakariakov & Melnikov (2006) to lon-
gitudinal modes of straight non-rotating flux tubes. Also, these
relations should be used in forward modelling of torsional waves
observed with spectrometers.

5. Conclusions

We considered torsional axisymmetric (m = 0) long wavelength
MHD modes of a cylindrical plasma structure with the use of
the second order thin flux tube approximation. The analysis was
restricted to the case when the effect of the external medium was
ignored. In this case, the equilibrium force balance is fulfilled
by the balance of the total pressure and the centrifugal forces
and the magnetic tension force. Such a model can describe var-
ious plasma structures in the corona of the Sun, e.g. coronal
jets and plumes, as well as segments of coronal loops and fil-
aments. A more general consideration accounting for the effect
of the external medium, which is definitely more cumbersome
and hence excluded from this paper, will be published elsewhere.
According to the Kruskal–Shafranov theory, a twisted plasma
column is unstable to sufficiently long wavelength kink (m = 1)
perturbations. However, in the case of jets, development of the
instability takes some time and hence it will be seen at some dis-
tance downstream from the origin of the jet. Hence, it is possible
to consider the propagation of torsional waves in jets which are
kink-unstable, provided the waves are excited somewhere near
the jet’s origin.

The general dispersion relation, linking frequencies of the
MHD modes with their wave numbers and parameters of the
medium (the Alfvén and sound speeds, rotation and twist) is a
sixth order polynomial. It describes all three MHD modes of
the m = 0 symmetry: the torsional, sausage fast magnetoacous-
tic and longitudinal (slow magnetoacoustic) modes. In the un-
twisted non-rotating flux tube, sausage and longitudinal modes
are dispersive, with the dispersion proportional to the ratio of
the equilibrium radius of the tube to the wavelength. We would
like to stress that in the untwisted limit the proper treatment
of these waves requires consideration of the external medium,
while in the twisted case considered here the equilibrium does
not necessarily require the presence of the external plasma. In
any case, both sausage and longitudinal modes are compressible
and hence magnetoacoustic. In the untwisted non-rotating case,
the torsional mode is dispersionless, and hence is the true Alfvén
wave.

Equilibrium twist and rotation of the tube modify the tor-
sional mode making it dispersive. Assuming the dispersion being
weak, we derived asymptotic dispersion relations for the phase
speeds of the modes. Interestingly, the phase speeds of the tor-
sional waves propagating in the opposite directions along the
tube have different absolute values, which is connected with the
local Doppler shift.

In twisted magnetic flux tubes torsional waves become com-
pressible, perturbing the plasma density, the absolute value of
the magnetic field, and the tube cross-section. The induced vari-
ations of the plasma density and the absolute value of the mag-
netic field are in phase with the variations of the twist in the
torsional wave, and in anti-phase with the variations of the loop
radius. The compressibility vanishes in the limit when the equi-
librium twist goes to zero, as it should be in the familiar case of
the straight magnetic field.

Using the observations by Cirtain et al. (2007) for hot coro-
nal jets, one could take the jet density and the magnetic field
(along the jet axis) at equilibrium as 3 × 108 cm−3 and 10 G
respectively, which gives the Alfvén speed about 1200 km s−1.
Also the sound speed could be estimated as 370 km s−1 at coro-
nal temperatures about 5 × 106 K. Having the values for the
Alfvén and the sound speeds, β is 0.16. Hence, the plasma can be
treated as low-β. According to Eq. (38), a torsional wave of the
relative amplitude 10 percent will be accompanied by a perturba-
tion of about 7 percent. Our results provide theoretical basis for
the search for torsional waves in coronal plasma structures, and,
in particular, for the forward modelling of the EUV, soft X-ray
and microwave observables.
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