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Abstract

Background: Genome-wide association studies have found type 2 diabetes-associated variants in the HNF1B gene to exhibit
reciprocal associations with prostate cancer risk. We aimed to identify whether these variants may have an effect on cancer
risk in general versus a specific effect on prostate cancer only.

Methodology/Principal Findings: In a collaborative analysis, we collected data from GWAS of cancer phenotypes for the
frequently reported variants of HNF1B, rs4430796 and rs7501939, which are in linkage disequilibrium (r2 = 0.76, HapMap
CEU). Overall, the analysis included 16 datasets on rs4430796 with 19,640 cancer cases and 21,929 controls; and 21 datasets
on rs7501939 with 26,923 cases and 49,085 controls. Malignancies other than prostate cancer included colorectal, breast,
lung and pancreatic cancers, and melanoma. Meta-analysis showed large between-dataset heterogeneity that was driven by
different effects in prostate cancer and other cancers. The per-T2D-risk-allele odds ratios (95% confidence intervals) for
rs4430796 were 0.79 (0.76, 0.83)] per G allele for prostate cancer (p,10215 for both); and 1.03 (0.99, 1.07) for all other
cancers. Similarly for rs7501939 the per-T2D-risk-allele odds ratios (95% confidence intervals) were 0.80 (0.77, 0.83) per T
allele for prostate cancer (p,10215 for both); and 1.00 (0.97, 1.04) for all other cancers. No malignancy other than prostate
cancer had a nominally statistically significant association.

Conclusions/Significance: The examined HNF1B variants have a highly specific effect on prostate cancer risk with no
apparent association with any of the other studied cancer types.
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Introduction

A large number of epidemiological studies have suggested

correlations between type 2 diabetes (T2D) and various can-

cers[1,2,3]. Most evidence suggests an inverse correlation between

T2D and prostate cancer[4,5,6] although not all studies agree on

this[7]. Several studies also suggest positive correlations between

other cancers and T2D[1,2,3]. It is unclear whether these

correlations, if true, represent casual relationships and whether they

may also reflect some shared genetic background. Recently, with the

advent of genome-wide association studies (GWAS), a large number

of genetic variants have been identified that confer susceptibility to

T2D or specific types of cancer[8]. An interesting observation has

been that specific variants in the HNF1B gene (formerly TCF2) have

been demonstrated to be associated both with the risk of prostate

cancer[9,10,11] and the risk of T2D[9,12] with the effects being in

the opposite direction for these two phenotypes.

HNF1B was previously known to be mutated in individuals with

maturity-onset diabetes of the young type 5 (MODY 5)[13], but a

biological explanation of the impact of the identified common

variation on T2D and prostate cancer risk remains elusive. The

identified genetic effects are small in magnitude even for prostate

cancer and T2D, representing odds ratios [ORs] per allele in the

range of 1.2 [9,11] and 0.9 [9,12], respectively. Therefore, small

effects for other cancer types would not be readily detectable,

unless very large studies were performed or data were combined

from several studies.

A definitive answer on whether HNF1B variants modulate also

the risk of other malignancies, or show specificity for prostate

cancer, requires large sample sizes. Here we present the results of a

large collaborative meta-analysis of HNF1B, rs4430796 and

rs7501939, which have the most consistent associations with both

prostate cancer and T2D. Relevant data were collected on the two

variants from GWAS on cancer phenotypes in Caucasian

populations in order to examine whether they have an effect on

cancer risk in general, on few specific cancers, or only on prostate

cancer.

Results

Database of contributed information
All the originally contacted investigators of cancer-related GWA

studies agreed to participate in this collaborative analysis, with the

exception of the investigators of 3 GWA studies [14,15,16] (1 on

breast cancer, 1 on colorectal cancer and 1 on neuroblastoma), 1 of

which had no data on the requested variants, as they had used a

Affymetrix platform[15]. Investigators who agreed to participate in

the collaborative analysis contributed data on 13 datasets for

rs4430796 and 19 datasets for rs7501939 [11,17,18,19,

20,21,22,23,24,25,26,27,28,29,30,31,32,33]. For 5 datasets, data

were available only for the latter polymorphism either because the

polymorphism was not available on the platform used or the SNP

failed quality control criteria.

The contributing teams and datasets are shown in Table 1 with

data on the number of cases and controls for each polymorphism

and for each type of cancer. Datasets from the Framingham

cohort contained imputed data for both polymorphisms since an

Affymetrix platform had been used, rs4430796 data from the

M.D. Anderson Cancer Center was imputed since this SNP had

not been directly genotyped, and melanoma data from AMFS and

Q-MEGA contained counts from pooling experiments, otherwise

all other datasets had direct genotyping on individual participants.

Detailed demographic and other characteristics of the study

populations can be found in the respective primary publications of

these GWA studies [14,15,16,17,18,20,21,22,23,24,25,26,27,28,

29,30,31,32,34].

Overall, the collaborative analysis included data on rs4430796

for 19,640 cancer cases and 21,929 controls; for prostate cancer

there were 11,145 cases and 9,650 controls, while for all other

cancers there were 8,495 cases and 12,279 controls. The collected

data on rs7501939 included 26,923 cases and 49,085 controls; for

prostate cancer there were 12,898 cases and 40,371 controls,

while for the other cancers there were 14,025 cases and 43,893

controls. Malignancies other than prostate cancer in these

datasets included colorectal, breast, lung and pancreatic cancers,

and melanoma (Table 1). deCODE contributed data on 4

different cancers and had a common population control group for

all 4 of them. The Framingham Heart Study (FHS) contributed

data on 4 different cancers and had a common population

control group (subjects $65 years at the last contact who are not

nuclear family member of the cancer cases) for all 4 studies with

the exception of prostate and breast cancer which used male and

female only controls respectively. The common control groups

for deCODE and FHS are only counted once in the total sample

sizes above.

The meta-analysis of all datasets (Table 2, Figure 1) showed a

per T2D risk allele association with both rs4430796 (G allele OR

0.91 [95% CI: 0.88, 0.94] p = 3610210) and rs7501939 (T allele

HNF1B Variants and Cancer Risk
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OR 0.91 [95% CI: 0.88, 0.94] p = 5v10210) according to fixed

effects calculations, while by random effects calculations there was

nominal significance (OR 0.94 [95% CI: 0.88, 1.00], p = 0.033 for

rs4430796 and 0.93 [95% CI: 0.86, 1.01], p = 0.07 for rs7501939).

The reason for this diversity is that there was very large between-

study heterogeneity in the effect sizes (I2 of 82% [95% CI: 73-

89%] and 80% [95% CI: 70-86%], respectively, for the two

polymorphisms; Q-test p-value ,0.001 for both polymorphisms),

and this makes the fixed effects calculations less reliable. Results

were qualitatively similar when we increased the variance in

deCODE, FHS, and IARC estimates to account for the

overlapping control group (not shown).

The heterogeneity was largely driven by the diversity in the

effect sizes between prostate cancer and all other cancers. A meta-

analysis limited to prostate cancer datasets gave consistent

associations with both rs4430796 (OR per copy of T2D risk allele

(A) 0.79 [95% CI: 0.76, 0.83], p,10215 by fixed effects and 0.79

[95% CI: 0.74, 0.84] p = 10213 by random effects), and rs7501939

(OR per copy of T2D risk allele (T) 0.80 [95% CI: 0.77, 0.83]

p,10215 by fixed effects and 0.79 [95% CI: 0.74, 0.85],

p = 2610211 by random effects) (Table 2). There was some

residual between-study heterogeneity even within the prostate

cancer datasets (I2 of 42% [95%CI: 0–79%] and 56% [95% CI:

0–82%], respectively, for the two polymorphisms; Q-test p-value

0.037 and 0.14, respectively), although the heterogeneity pertained

only to the exact magnitude of the genetic effects and a nominally

statistically significant association was seen in each of the datasets

except for the Framingham study where the number of prostate

cancer cases was more limited.

Conversely, the results for all other cancers suggested no

significant association and results were consistent across studies.

The summary OR was 1.03 and 1.00 for the two polymorphisms

respectively (p = 0.14 and 0.81 by fixed effects) and the 95% CIs

excluded ORs deviating more than 7% from the null (OR = 1.00)

for rs4430796 and more than 4% from the null for rs7501939

(Table 2). The Q-test p-value was 0.99 and 0.45 for the two

polymorphisms respectively and random effects estimates were

thus identical to fixed effects estimates.

There was also no convincing evidence for an association

between either of the two polymorphisms and any of the other

cancers (besides prostate cancer), when each cancer type was

evaluated separately. Point estimates were in the opposite direction

(odds ratio 1.03–1.05) for pancreatic and lung cancer, but were not

nominally statistically significant (Table 2). The difference between

the prostate cancer and other cancers’ effect estimates was beyond

chance (p,0.05) for both polymorphisms.

Table 1. Characteristics of datasets included in the collaborative meta-analysis.

Study Centre Cancer Genotyping platform(s)
rs4430796
#cases

rs4430796
#controls

rs7501939
#cases

rs7501939
#controls

*ARCTIC colorectal[23] Sequenom homogenous
MassExtend (in house)

1,079 1,089 1,075 1,087

*AMFS melanoma[17,24] Illumina 550K (pooled) 490 p 427 p 490 p 427 p

Cambridge breast [33] Perlegen 387 363 387 363

*CGEMS prostate[11,25] Illumina 550K 4,960 5,021 4,869 4,930

*CAPS prostate[26] Sequenom (in house) 2,874 1,708 2,865 1,707

*CORGI colorectal[27] Illumina 550K n/a n/a 900 908

deCODE breast[28] Illumina 300K n/a n/a 1,815 30,742

deCODE colorectal[29] Illumina 300K n/a n/a 988 30,742

deCODE lung[29,30] Illumina 300K n/a n/a 651 30,742

deCODE prostate[9,31,32] Illumina 300K n/a n/a 1619 30,742

*FHS breast[34] Affymetrix 500K and MIPS 50K
combined

182i 852 i 182 i 852 i

*FHS colorectal[34] Affymetrix 500K and MIPS 50K
combined

108 i 1,498 i 108 i 1,498 i

*FHS lung[34] Affymetrix 500K and MIPS 50K
combined

90 i 1,498 i 90 i 1,498 i

*FHS prostate[34] Affymetrix 500K and MIPS 50K
combined

190 i 646 i 190 i 646 i

*IARC lung[20,21] Illumina 300K 641 2,435 1,797 2,378

*JHH prostate[26] Sequenom (in house) 1,512 478 1,521 479

*MDACC lung[22] Illumina 317K 1,152 i 1,137 i 1,152 1,137

*PANSCAN pancreatic Stage 1[19,48] Illumina 550K and 610K 1,754 1,796 1,757 1,796

*PANSCAN pancreatic Stage 2[19,48] Illumina 550K and 610K 1,748 1,818 1,769 1,841

*Q-MEGA melanoma[24] Illumina 550K (pooled) 864p 864 p 864 p 864 p

*UKGPCS prostate[18] Illumina 550K 1,609 1,797 1,834 1,867

Unless otherwise indicated all data is from direct genotyping. *ARCTIC (Assessment of Risk for Colorectal Tumors in Canada), AMFS (Australian Melanoma Family Study),
CGEMS (Cancer Genetics Markers of Susceptibility), CAPS (Cancer of the Prostate in Sweden), CORGI (Colorectal Tumour Gene Identification), FHS (Framingham Heart
Study), IARC (International Agency for Research on Cancer), JHH (Johns Hopkins Hospital), MDACC (M.D. Anderson Cancer Center, Texas), PANSCAN (Pancreatic Cancer
Cohort Consortium), Q-MEGA (Queensland study of Melanoma: Environment and Genetic Associations), UKGPCS (UK Genetic Prostate Cancer Study). n/a: no available
data; i: imputed; p: pooled.
doi:10.1371/journal.pone.0010858.t001
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Discussion

The current collaborative analysis documents that both

rs4430796 and rs7501939 have robust support for association

with prostate cancer, while we did not observe any convincing

evidence for an association of any of the other cancers examined

with either polymorphism. When data from all other cancers,

excluding prostate cancer, were combined the summary effects

had 95% CIs that excluded even subtle associations. Apart from

prostate cancer, when other datasets for each individual cancer

type was combined, the 95% CIs consistently excluded associa-

tions with modest effects. This would suggest that the effects

mediated by these polymorphisms are specific to T2D and prostate

cancer and they do not involve any other cancer types.

The HNF1B gene encodes a transcription factor and it was

initially identified as a MODY gene[13]. Subsequent studies have

suggested that mutations in this gene may also be related to renal

disease[35] and chromophobe renal cell carcinoma[36]. No

GWAS evaluating kidney cancer were included in our analysis,

and no kidney cancer GWAS has been published to-date. The

expression profile of the gene shows a tissue-specific pattern. It is

essential for embryonic survival and is expressed in the gut, kidney,

liver, lung, pancreas, prostate, thymus and genital tract [37,38]. It

could be speculated that the lack of association with some cancers

studied here may be due to the low or absent expression of this

gene in those tissues (for example breast cancer). We did not have

data on liver cancer, thymoma or genital tract cancer, but data on

lung, pancreatic, and colorectal cancer showed no association,

with point estimates very near to the null.

The two variants that we assessed are not necessarily the

functional culprits. GWA studies typically derive markers of

phenotypes that are probably linked with the functional genetic

variation[39]. However, identifying the functional variants is

difficult. Even if they could be identified, it is unlikely that

substantially large genetic effects for other cancers would exist, if

the tagging variants have so consistently null effects. Another

caveat is that we only examined populations of Caucasian

descent. This reduces the heterogeneity that could be due to

different LD patterns in populations of different ancestry.

However, it would be worthwhile to investigate the associations

of the HNF1B variants for T2D, prostate cancer, and other

cancers, also in non-Caucasian populations. Preliminary data

suggest that both of the examined variants had consistent

associations with T2D in Caucasian, Asian (Hong Kong), and

West African ancestry participants[9], while the association of

rs4430796 with prostate cancer risk was found to be even

stronger in the Japanese than in Caucasian populations[40].

Moreover, it would be useful to dissect associations with specific

disease subsets. Even within the analyzed Caucasian-descent

populations, we observed some modest between-study heteroge-

neity in the strength of the association between the HNF1B

variants and prostate cancer. This may be due to different

associations in different sub-phenotypes. For example, some data

suggest that the rs4430796 A allele may primarily increase the

risk for early-onset (,50 years) prostate cancer rather than later-

onset disease[41].

In conclusion, while the two examined HNF1B variants

conclusively have pleiotropic effects on both T2D and prostate

cancer, the pleiotropy apparently does not extend to other cancer

types. Genetic effects may offer a way to dissect comorbidity

between specific cancers and metabolic phenotypes. Besides

HNF1B, other gene loci have started appearing where variants

are identified that modulate susceptibility to both T2D and some

malignancy, e.g. prostate cancer for the JAZF1 locus gene [11,42]

and melanoma for the CDKN2A locus [43], although different,

unlinked variants are implicated in the susceptibility to the

malignancy and T2D, respectively. The elucidation of correlated

pleiotropic effects on diverse phenotypes will require very large

studies, given the generally subtle effects involved. Collaborative

efforts between multiple teams, as in the current study, may offer a

suitable approach to answer such questions.

Methods

Eligible GWA investigations and data
We used the NHGRI catalogue of published GWA studies[44],

a comprehensive database of GWA investigations to identify GWA

studies on cancer phenotypes published as of May 20, 2008. We

also performed additional PubMed searches to identify whether

any additional GWA studies on cancer phenotypes had been

published until then. We focused on solid cancers, excluding

hematologic malignancies. Given that these GWAS did not

include any studies on pancreatic cancer (of special interest, given

the association with T2D), we also identified GWAS on pancreatic

cancer that had not been published by that time, so as to ensure

their inclusion.

Table 2. Summary of results for association between rs4430796 and rs7501939 and diverse cancer types.

rs4430796 rs4430796 rs4430796 rs7501939 rs7501939 rs7501939

Cancer type
Studies (cases,
controls) OR (95% CI) I2 (95% CI)

Studies (cases,
controls) OR (95% CI) I2 (95% CI)

All cancers 16 (19,640, 21,929)* 0.91 (0.88, 0.94) 82 (73, 89) 21 (26,923, 49,085)* 0.92 (0.90, 0.95) 80 (70, 86)

Prostate 5 (11,145, 9,650) 0.79 (0.76, 0.83) 42 (0, 79) 6 (12,898, 40,371) 0.80 (0.77, 0.83) 56 (0, 82)

All Others 11 (8,495, 12,279)* 1.03 (0.99, 1.07) 0 (0, 60) 15 (14,025, 43,893)* 1.00 (0.97, 1.04) 0 (0, 54)

Breast 2 (569, 1,215) 1.00 (0.84, 1.20) n/a 3 (2,384, 31,957) 0.97 (0.91, 1.04) 0 (0, 90)

Lung 3 (1,883, 5,070) 1.05 (0.98, 1.13) 0 (0, 90) 4 (3,690, 35,755) 1.03 (0.96, 1.10) 0 (0, 85)

Colorectal 2 (1,187, 2,587) 1.01 (0.90, 1.14) n/a 4 (3,071, 34,235) 1.01 (0.94, 1.08) 0 (0, 85)

Melanoma 2 (1,354, 1,291) 0.98 (0.87, 1.01) n/a 2 (1,354, 1,291) 1.01 (0.90, 1.13) n/a

Pancreatic 2 (3,502, 3,614) 1.04 (0.98, 1.11) n/a 2 (3,526, 3,637) 1.03 (0.97, 1.10) n/a

OR: odds ratio, CI: confidence interval, n/a: not applicable (heterogeneity I2 confidence intervals are not calculated when there are only 2 studies). Odds ratios are based
on fixed effects calculations. When point estimates or confidence intervals differ by over 1% in random effects calculations, random effects results are mentioned in the
text. * the common control groups of deCODE and FHS are counted only once.
doi:10.1371/journal.pone.0010858.t002
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Figure 1. Association of rs4430796 and rs7501939 with diverse cancer types. Panel A shows results for rs4430796 and panel B shows
results for rs7501939. Each study is shown by its odds ratio and 95% confidence intervals). Prostate cancer studies appear on the top and other cancer
studies follow in alphabetical order. For the abbreviations of the names of the studies see Table 1. The summary diamond at the bottom corresponds
to the fixed effects summary. Weight indicates the relative proportion of the total evidence found in each study (the weight is inversely proportional
to the variance).
doi:10.1371/journal.pone.0010858.g001
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We communicated with the corresponding and principal

investigators of all of these studies to request their participation

in the collaborative meta-analysis. The investigators of these

studies were asked to contribute relevant data on genotype

frequencies in cancer cases and non-cancer controls for the

HNF1B variants, rs4430796 and rs7501939. The risk alleles for

prostate cancer are A and C for rs4430796 and rs7501939

respectively. The risk alleles for T2D are G and T for rs4430796

and rs7501939 respectively. The two SNPs have modestly high

LD in Caucasians, but low LD in Africans (r2 = 0.77 and 0.22 in

CEU and YRI, respectively). Investigators were requested to

provide all GWA data that they had obtained for evaluation of any

cancer phenotype, including any additional unpublished datasets.

Additional genotyping for the two specific variants was encour-

aged, when a GWA platform had been used that did not directly

genotype these polymorphisms (e.g. Affymetrix or Perlegen rather

than Illumina). When a study had data on more than one cancer

type, data were requested to be provided separately for each

cancer type. Investigators were asked to provide also information

and clarifications about the design of their studies, and to ensure

that population stratification and cryptic relatedness had been

appropriately addressed and appropriate quality controls were

available for the genotyping. All GWAS investigations that

contributed data on these SNPs used stringent QC standards (as

described in detail in their original publications) and the two SNPs

fulfilled these standards. Approval from local institutional review

boards and steering committees was obtained, as deemed

necessary for each study by its investigators. The contributed data

were checked for completeness and with logical queries and any

missing or unclear information was clarified through communi-

cation with the contributing investigators.

Meta-analysis
For each SNP, we performed meta-analyses including the data

from all eligible cancer studies (regardless of the specific cancer

phenotype addressed) and also subgroup meta-analyses, with each

subgroup limited to studies addressing a specific cancer phenotype.

A separate analysis compared the results of the association for

prostate cancer versus the association for all other cancers

combined.

All analyses followed the per allele (log-additive) model of

inheritance with effect sizes expressed in the odds ratio (OR) scale

using both fixed and random effects models[45]. Heterogeneity

testing used the Q statistic (considered statistically significant at

p,0.10), and the I2 metric[46] and its 95% CIs [47]. Analyses

excluding data from studies with pooled genotyping gave similar

results (not shown).

Based on the accumulated total sample size and given the minor

allele frequencies of these two polymorphisms in HapMap CEU

(47% for rs4430796 A allele and 47% for rs7501939 T allele), the

meta-analysis had 95% or higher power to detect an association of

OR = 1.10 at alpha = 0.05 with each of the two polymorphisms for

overall cancer risk, prostate cancer risk, or other cancer risk.

Reported p-values are two-tailed. Analyses were performed in

STATA 10.0 (College Station, Texas).
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