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A 9 3 18 3 1 feed-forward neural network (NN) model

trained using a resilient back-propagation algorithm and

early stopping technique is constructed to predict the

shear strength of deep reinforced concrete beams. The

input layer covering geometrical and material properties

of deep beams has nine neurons, and the corresponding

output is the shear strength. Training, validation and

testing of the developed neural network have been

achieved using a comprehensive database compiled from

362 simple and 71 continuous deep beam specimens.

The shear strength predictions of deep beams obtained

from the developed NN are in better agreement with

test results than those determined from strut-and-tie

models. The mean and standard deviation of the ratio

between predicted capacities using the NN and

measured shear capacities are 1.028 and 0.154,

respectively, for simple deep beams, and 1.0 and 0.122,

respectively, for continuous deep beams. In addition, the

trends ascertained from parametric study using the

developed NN have a consistent agreement with those

observed in other experimental and analytical

investigations.

NOTATION

Ac beam section area

Ah area of horizontal web reinforcement

As area of longitudinal bottom reinforcement

A9s area of longitudinal top reinforcement

Astr section area of concrete strut

Av area of vertical web reinforcement

Aw j area of the jth layer of reinforcement crossing a strut

a shear span

bw width of beam section

c cover of longitudinal bottom reinforcement

c9 cover of longitudinal top reinforcement

d effective depth of beam section

ds diameter of longitudinal reinforcement

dw distance from top surface of beam to intersection of

web reinforcement with the centreline of strut

f 9c concrete compressive strength

fy yield strength of longitudinal bottom reinforcement

f 9y yield strength of longitudinal top reinforcement

fyh yield strength of horizontal web reinforcement

fyv yield strength of vertical web reinforcement

fyw yield strength of web reinforcement crossing a strut

h overall depth of beam section

jd distance between the centre of top and bottom nodes

lo maximum spacing of web reinforcement for beams with

web reinforcement and strut length for beams without

web reinforcement

lp width of loading or support plate

ls strut length

N total number of training subset

n modular ratio of steel reinforcement to concrete

pi original values of data set

(pi)n normalised values of data set

(pi)max maximum value of the parameter under normalisation

(pi)min minimum value of the parameter under normalisation

sh spacing of horizontal web reinforcement

sv spacing of vertical web reinforcement

sw j spacing of the jth layer of reinforcement crossing a

strut

Ti target output of the data i

Vn shear strength

ws width of concrete strut

wt depth of bottom node

w9t depth of top node

� the ratio of the end support reaction to the applied load

in continuous deep beams

ªcs ratio of predicted and measured shear capacities

ªcs,m average of ªcs
ªcs,s standard deviation of ªcs
(Łr) j angle between reinforcing bar j and the axis of

concrete strut

Łs angle between concrete strut and longitudinal axis of

beam

Łw angle of web reinforcement to longitudinal axis of

beam

ºn normalised shear strength Vn

bw h
ffiffiffiffi
f 9c

p
� �

�e effectiveness factor of concrete

rh horizontal web reinforcement ratio Ah

bw sh

� �
rs longitudinal bottom reinforcement ratio As

bwd

� �
r9s longitudinal top reinforcement ratio A9s

bwd

� �
rv vertical web reinforcement ratio Av

bw sv

� �
�b longitudinal bottom reinforcement index

rs fy
f 9c

� �
�h horizontal web reinforcement index

rh fyh
f 9c

� �
�t longitudinal top reinforcement index

r9s f 9y
f 9c

� �
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�v vertical web reinforcement index
rv fyv
f 9c

� �

1. INTRODUCTION

Reinforced concrete deep beams, generally defined as beams

having shear span-to-overall depth ratio not exceeding 2.0, are

common structural members having useful applications as load

distribution elements such as transfer girders, pile caps and

foundation walls in tall buildings. They are classified as

discontinuity regions (D-regions) having a non-linear strain

distribution over the cross-section depth owing to a smaller

shear span-to-overall depth ratio (< 2.0) and extraordinarily

high concentric loads.1 As a result, shear deformations are not

negligible. In addition, the coexistence of high shear and high

moment within interior shear spans of continuous deep beams

leads to a significant reduction of effective strength of concrete

struts directly carrying the applied loads to supports.2–4 The

conventional elastic solution or shear hypotheses developed for

slender beams would therefore be inadequate for the evaluation

of the structural behaviour of deep beams.

Several investigations on predicting shear strength of deep

beams can be classified as empirical formulae based on test

results of simply supported deep beams,5–9 strut-and-tie

models,1,10–13 mechanism analysis14,15 using upper-bound

theorem of plasticity theory and non-linear finite element

analyses.16,17 Ashour2 and Rogowsky et al.3 showed that

empirical formulae, such as ACI 318-999 (unchanged since ACI

318-83) and Construction Industry Research and Information

Association (CIRIA) Guide 2,8 failed to evaluate the shear

transfer capacities of horizontal web reinforcement and

concrete struts of continuous deep beams tested. The strut-and-

tie model is a powerful analytical tool, which can easily

represent the load-transfer mechanism of deep beams, but it is

difficult to determine the real dimension of concrete struts and

shear transfer mechanism of vertical and horizontal web

reinforcement as pointed out by Marti.18 Mechanism analysis

can provide logical shear transfer mechanism of vertical and

horizontal web reinforcement, but shear transfer capacity of

concrete is varied according to the effectiveness factor of

concrete, which depends on the material characteristics and

geometrical dimensions of concrete members.18,19 Non-linear

finite element analyses, which are usually carried out as a

complementary tool to verify experimental work, give detailed

solutions. According to Wang et al.15 and Ashin,16 however,

they require a lot of time, input parameters and calibration to

be useful in practical design.

Artificial neural network (NN) techniques can be employed as a

useful tool to precisely predict structural performance of

concrete members if many reliable test results are provided as

shown by several researches.20–22 Goh20 and Sanad and Saka21

showed that shear strength of deep beams can be better

predicted by multi-layered feed-forward NNs than other

existing formulae. It should, however, be noted that NNs are

hardly capable of giving extrapolation for parameters outside

the network training set as they can learn and generalise

through only previous patterns.23,24 It is therefore important to

provide NNs with more test data to find acceptable solutions to

different situations.

In the present study, multi-layered feed-forward NNs trained

with the back-propagation algorithm are developed to model

the non-linear relationship between shear strength of deep

beams and different influencing parameters. An extensive

database of simple and continuous deep beams tested by

different researchers is used to train, generalise and verify the

developed NN. Statistical distributions of predictions obtained

from the trained NN are compared with those determined from

strut-and-tie models proposed by ACI 318-05,1 Siao10 and Tan

and Cheng.12 Also, a parametric study is carried out to ensure

whether training and validation subsets in the developed NN

were suitably built.

2. NEURAL NETWORK MODELLING

2.1. Network architecture for back-propagation

A typical multi-layered feed-forward NN without input delay

commonly consists of input layer, one or more hidden layers

and output layer as shown in Fig. 1, where p indicates the

input vector, iw and lw give the weight matrices for input and

hidden layers, respectively, b represents the bias vector and n

is the net input passed to the transfer function f to obtain the

neuron’s output vector y. Input data of input layer given from

outside feed into hidden layers connecting input and output

layers in a forward direction, and then useful characteristics of

input data are extracted and remembered in hidden layers to

predict the output. Finally NN predictions are produced

through the output layer. Each processing element would have

many inputs, but it can send out only one output.

Among the available techniques to train a network, back-

propagation is generally known to be the most powerful and

widely used for NN applications.21,22 To obtain some desired

outputs, weights, which represent connection strength between

neurons, and biases are adjusted using a number of training

inputs and the corresponding target values. The network error,

difference between calculated and expected target patterns in a

multi-layered feed-forward network, is then back propagated

from the output layer to the input layer to update the network

weights and biases. The adjusting process of neuron weights

and biases is carried out until the network error arrives at a

specific level of accuracy.

2.2. Generalisation

One of the problems that occur during NN training is the so-

called overfitting23 as the network has memorised the training

features, but it has not learned to generalise new patterns.

According to Shi,25 training data evenly distributed over the
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Fig. 1. Architecture of 9 3 18 3 1 network
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entire space enable the NN successfully to achieve the desired

behaviour and the network error for new input data can be also

small. One of the most effective methods to improve

generalisation of NNs is early stopping.23,25 In this technique,

the available data are divided into three subsets: training,

validation and test subsets. The training set is used for

computing the gradient and updating the network weights and

biases to diminish the training error. When the error on the

validation set, which is monitored during the training process,

increases for a specified number of iterations, the training is

stopped, and then the network weights and biases at the

minimum validation error are returned. The test set error is

not used during the training, but it is used for verification of

the NNs.

2.3. Experimental database

A total of 362 simple and 71 continuous deep beam specimens

failed in shear compiled from different sources in the literature

is used to train and generalise the developed NNs. In the

database, 74 simple4,26 and 44 continuous2,4,27 deep beams

were tested by the authors and the others compiled from

published literatures: de Paiva and Siess,5 Ramakrishna and

Ananthanarayana,6 Kani,28 Kong et al.,29 Manuel et al.,30

Smith and Vantsiotis,31 Furuuchi et al.,32 Hayashikawa et al.,33

Walraven and Lehwalter,34 Sato et al.,35 Tan et al.,36–40 Lee

and Kim,41 and Oh and Shin42 for simple deep beams, and

Rogowsky et al.3 and Asin16 for continuous deep beams. Some

test specimens had no web reinforcement, whereas others were

reinforced with vertical and horizontal web reinforcement: the

number of simple and continuous deep beams in the database

is 81 and 15, respectively, for beams without web

reinforcement, 104 and 26, respectively, for beams with only

vertical web reinforcement, 45 and 15, respectively, for beams

with only horizontal web reinforcement, and 132 and 15,

respectively, for beams with orthogonal web reinforcement.

Prestressing enhances the shear capacity of deep beams.43 Test

results on prestressed concrete beams are, however, scarce;

prestressed concrete deep beams are therefore not included in

the database. The database ascertained that the shear strength

of deep beams was influenced by geometrical conditions such

as section width, bw, and depth, h, longitudinal top,

r9s ¼ A9s=bwd, and bottom, rs ¼ As=bwd reinforcement ratios,

vertical, rv ¼ Av=bwsv, and horizontal rh ¼ Ah=bwsh web

reinforcement ratios, and shear span-to-overall depth ratio,

a=h, and material properties such as concrete compressive

strength, f 9c, and yield strength, fy, of reinforcing bars, where

A9s and As are area of longitudinal top and bottom

reinforcement, respectively, d is effective section depth, Av and

sv area and spacing of vertical web reinforcement, respectively,

Ah and sh are area and spacing of horizontal web

reinforcement, respectively and a is shear span for continuous

deep beams, as shown in Fig. 2

The main variables above were rearranged in the database to

improve efficiency of NN training. As the influence of the

amount and yield strength of longitudinal and web reinforcing

bars on the shear strength of deep beams depends on concrete

strength,10 longitudinal top �t ¼ r9s f 9y= f 9c and bottom

�b ¼ rs fy= f 9c reinforcement indices, and vertical

�v ¼ rv fyv= f 9c and horizontal �h ¼ rh fyh= f 9c web
reinforcement indices were used as inputs in NNs, together

with bw, h, f 9c, a=h, and supporting system as shown in Table

1, where f 9y, fy, fyv and fyh represent yield strength of

longitudinal top and bottom reinforcement and vertical and

horizontal web reinforcement, respectively. The number of

spans of deep beams (i.e. simple or continuous deep beam) was

also represented in the input layer by a neuron having a

numerical value of either 1 or 2 for simple and two-span deep

beams, respectively. Shear strength, Vn, at failed shear span,

was the only output of the NNs developed.

In the database, the shear span-to-overall depth ratio of simple

and continuous deep beams ranged from 0.25 to 2.0 and from

0.5 to 2.0, respectively, the overall section depth is between

300 and 1750 mm for simple deep beams and between 400 and

1000 mm for continuous deep beams, and longitudinal bottom

reinforcement index ranged between 0.04 and 0.53 for simple

deep beams and between 0.05 and 0.19 for continuous deep

beams. The test specimens in the database were made of

concrete having a low compressive strength of 18.0 MPa and

25.0 MPa for simple and continuous deep beams, respectively,

and a high compressive strength of 89.4 MPa and 68.2 MPa for

simple and continuous deep beams, respectively. Test

specimens having smaller concrete strength, width and depth

than the lower limits stated above were excluded from the

database used in the current investigation for practicality

purposes.

It is recommended when using back-propagation algorithm in

MATLAB version 6.044 that the data set is divided into three

sets—training, validation and testing sets—to overcome the

overfitting problem as explained above. The training data set

comprises half of all data entries, and the remaining data

entries are equally divided between the validation and testing

sets. Little research has been conducted on the training data

selection for NNs using back propagation. Jenkins45,46

successfully used the hypercube concept for selecting training

patterns of four design parameters for reinforced concrete deep

beams. It is not, however, possible to adopt this technique in

the current analysis as the database was collected from

different sources where intervals between discrete values are

not uniform and may constitute clusters. In addition, as the

number of design variables considered is nine, it would require

a very high number of training data; even if only the cube

corners are selected. The technique below is therefore followed

to partition the database for training, validation and testing

purposes. The test specimens in the database were arranged in
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Fig. 2. Symbolic identification for deep beams in the neural
network model
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an ascending order with respect to the shear span-to-depth

ratio as one of the most influential parameters on shear

strength of deep beams. In every four specimens, the first and

the third deep beams were then chosen for training subset, and

the second and fourth specimens were selected for validation

and test subsets, respectively. The distribution of each

parameter across its range in the training subset is manually

examined to ensure that it covers the range of input

parameters. If the range of input in the training subset fails to

cover the entire distribution of the database, the rows in the

database were rearranged until input of training subset could

cover the entire distribution of the database range as shown in

Table 1 and Fig. 3.

2.4. Building of neural network

The NN toolbox available in MATLAB Version 6.044 was used

for building of the current NN model. Ashour and Alqedra22

showed that NN algorithms in MATLAB Version 6.0 can be

conveniently implemented and used to model large-scale

problems. In a multi-layered NN having a back-propagation

algorithm, the combination of non-linear and linear transform

functions can be trained to approximate any function

arbitrarily well.44 In the present NNs, tan-sigmoid transform

function was employed in the hidden layers as it is generally

known to be more suitable for multi-layer networks developed

for non-linear applications than log-sig function that generates

outputs between 0 and 1,44 and linear transform function was

adopted in the output layer. As upper and lower bounds of the

tan-sigmoid function output are +1 and �1, respectively, input

and target in database were normalised using equation (1)

below so that they fall in the interval [�1, 1]. NNs can also

have better efficiency with the normalisation of original

data23,24

(pi)n ¼ 2(pi � (p)min)

(p)max � (p)min
� 11

where (pi)n and pi are normalised and original values of data

set, and (p)min and (p)max represent minimum and maximum

values of the parameter under normalisation, respectively.

Also, after training and simulation, outputs having the same

units as the original database can be obtained by rearranging

equation (1) as follows

pi ¼
[(pi)n þ 1][(p)max � (p)min]

2
þ (p)min2

Overfittings in training and outputs of NNs are commonly

influenced by the number of hidden layers and neurons in each

hidden layer. A trial and error approach was therefore carried

out to choose an adequate number of hidden layers and

number of neurons in each hidden layer as given in Table 2. In

addition, NN performance is significantly dependent on initial

conditions23 such as initial weights and biases, back-

propagation algorithms, and learning rate. In NNs presented in

Table 2, the following features were applied

(a) initial weights and biases were randomly assigned by

MATLAB version 6.0

(b) resilient back-propagation algorithm was used for back-

propagation as a slower convergence is more effective in

early stopping to generalise NN24

(c) the learning rate and momentum factor were 0.4 and 0.2,

respectively as proved to achieve more successful training

of NN21

(d ) mean square error (MSE) was used to monitor the network

performance, where MSE ¼ 1
N

PN
i¼1(Ti � Ai)

2, N is total

number of training set, Ti and Ai are target and actual

output of specimen i, respectively

(e) the maximum number of iterations (epochs) was 300.

In the training process of the multi-layer feed-forward NNs

developed, the error between the prediction of the output layer

and expected shear strength of deep beams was then back-

propagated from the output layer to the input layer in which

the connection weights and biases were modified. The training

process was repeated until the maximum epochs was reached,

Input variables* Total data Training subset Validation subset Test subset

Min. Max. Min. Max. Min. Max. Min. Max.

bw: mm Simple 100 300 100 300 100 300 100 300
Continuous 120 200 120 200 120 200 120 200

h: mm Simple 300 1750 300 1750 300 1750 300 1750
Continuous 400 1000 400 1000 400 1000 425 1000

f 9c: MPa Simple 18.0 89.4 18.0 89.4 18.2 82.8 18.6 79.6
Continuous 25.0 68.2 25.0 68.2 26.5 68.2 29.4 68.2

a=h Simple 0.25 2.0 0.25 2.0 0.25 2.0 0.25 2.0
Continuous 0.5 2.0 0.5 2.0 0.5 2.0 0.5 2.0

�b Simple 0.04 0.53 0.04 0.53 0.05 0.495 0.073 0.497
Continuous 0.05 0.19 0.05 0.19 0.061 0.175 0.05 0.19

�t Simple — — — — — — — —
Continuous 0.05 0.19 0.05 0.19 0.054 0.175 0.054 0.19

�v Simple 0.0 0.298 0.0 0.298 0.0 0.275 0.0 0.284
Continuous 0.0 0.1 0.0 0.1 0.0 0.08 0.0 0.075

�h Simple 0.0 1.836 0.0 1.836 0.0 1.763 0.0 1.49
Continuous 0.0 0.118 0.0 0.118 0.0 0.089 0.0 0.09

Note: *Simple and continuous deep beams were identified in the input layer as a numeral 1 and 2, respectively

Table 1. Range of input variables in the database used to generalise the NN
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the performance was minimised to the required target, MSE

was less than 0.000 1, the performance gradient falls below a

minimum value, or the validation set error starts to rise for a

number of iterations.

Statistical comparisons between outputs and targets for total

points of database according to the number of hidden layers

and the number of neurons in each hidden layer are given in

Table 2. Each statistical value in Table 2 is an average
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calculated from 30 different trials, as different random initial

weights and biases are employed in each trial. Although the

mean and standard deviation of the ratio of predicted and

measured shear capacities of deep beams presented in Table 2

by different NN architectures were similar, the 9 3 18 3 1

network is the most successful, achieving the closest

predictions (the mean of the ratio between the prediction to

experimental shear strengths is 1.01) and the least standard

deviation of 0.193. In addition, overfitting seldom occurred in

the 9 3 18 3 1 network. The 9 3 18 3 1 neural network shown

in Fig. 1 with initial weights and biases therefore achieved the

highest coefficient of determination of all 30 trials was finally

selected for predicting shear strength of deep beams.

3. COMPARISONS WITH STRUT-AND-TIE MODELS

Several researchers10,12 showed that strut-and-tie models can

be effectively used to predict shear strength of reinforced

concrete deep beams. ACI 318-051 and Eurocode 213 also

recommend the use of strut-and-tie models for designing deep

beams. Fig. 4 shows schematic strut-and-tie models of simple

and continuous deep beams based on ACI 318-05 and Tan and

Cheng.12 Also, formulae suggested by ACI 318-05,1 Siao,10 and

Tan and Cheng12 to predict shear strength of deep beams using

strut-and-tie models are summarised in Table 3. These

formulae showed that shear strength predicted by strut-and-tie

models is greatly dependent on the width and inclination of

compressive struts, the effective strength of concrete and

amount of web reinforcement. No shear transfer mechanism of

web reinforcement was specified in ACI 318-05, whereas shear

transfer capacity of web reinforcement in the models by Siao

and Tan and Cheng models is influenced by the inclination of

struts. In addition, effectiveness factor of concrete in

ACI 318-05 is 0.6 or 0.75, depending on the amount of web

reinforcement and independent of concrete strength and shear

span-to-overall depth ratio, whereas no effectiveness factor is

used in the other two models as shear transfer capacity of

concrete in Siao’s model was determined from regression

analysis of test results and Tan and Cheng’s model used the

modified Mohr–Coulomb failure criterion at the bottom nodal

zone. Among the three models, size effect was only considered

in Tan and Cheng’s model, represented by the factor ł as given

in Table 3.

Table 4 gives the mean and standard deviation of the ratio

between predicted and measured shear capacities,

ªcs ¼ (Vn)Pre:=(Vn)Exp:, of simple and continuous deep beams

with different web reinforcement arrangement. Also, the

distributions of ªcs for all specimens in the database against

shear span-to-overall depth ratio are shown in Fig. 5; Fig. 5(a)

for strut-and-tie model of ACI 318-05, Fig. 5(b) for Siao’s

formula, Fig. 5(c) for Tan and Cheng’s model and Fig. 5(d) for

9 3 18 3 1 NN. For ACI 318-05’s model, a better mean and

standard deviation is shown in beams without or with

orthogonal web reinforcement than those with only vertical or

horizontal web reinforcement as given in Table 4. The largest

standard deviation of all four models is demonstrated by Siao’s

formula. Predictions obtained from Tan and Cheng’s model

overestimate the shear strength of continuous deep beams with

only horizontal web reinforcement; namely, the mean ªcs for
continuous deep beams with only horizontal web

reinforcement is 1.121. For all three strut-and-tie models,

predictions become highly unconservative with the increase of

shear span-to-overall depth ratio and higher ªcs,m and ªcs,s are
observed in continuous deep beams than in simple deep beams

as shown in Table 4 and Fig. 5. On the other hand, predictions

obtained from the 9 3 18 3 1 NN are in better agreement with

test results regardless of shear span-to-overall depth ratio and

configuration of web reinforcement, even in continuous deep

beams; ªcs,m and ªcs,s are 1.028 and 0.154, respectively, for

simple deep beams, and 1.0 and 0.122, respectively, for

continuous deep beams.

4. PARAMETRIC STUDY

The developed 9 3 18 3 1 NN was utilised to examine the

effect of different influencing parameters on shear strength of

simple deep beams, namely, the effect of longitudinal bottom

reinforcement, size effect, relative effectiveness of vertical and

horizontal web reinforcement, and shear span-to-overall depth

ratio on the shear strength of deep beams. The trend of

continuous deep beam shear strength predicted by the

developed NN for different parameters was not as smooth as

that for simply supported deep beams as the test results in the

database for continuous deep beams were relatively small; it is

therefore not presented here. The trends predicted from this

parametric study can also ensure that training and validation

subsets in the developed NN were suitably built.

4.1. Effect of longitudinal reinforcement ratio

The influence of longitudinal bottom reinforcement index,

�b ¼ (rs fy= f 9c), on the normalised shear strength,

ºn ¼ Vn=(bwh
ffiffiffiffiffi
f 9c

p
), of simple deep beams without web

reinforcement for three different shear span-to-overall depth

ratios is shown in Fig. 6. The normalised shear strength

obtained from the NN increases with the increase of �b up to a

certain limit beyond which ºn remains constant. This limit of

�b decreases with the decrease of shear span-to-overall depth

ratio. This trend was experimentally observed by Tan et al.,40

and analytically proved by Ashour.14

4.2. Relative effectiveness of vertical and horizontal web

reinforcement

Figure 7 shows the variation of ºn of simple deep beams with

only vertical or horizontal web reinforcement against shear

span-to-overall depth ratio. Vertical, �v, and horizontal, �h,

web reinforcement indices are changed from 0.0 to 0.09 with

interval of 0.03. Shear strength ºn of deep beams decreases

with the increase of shear span-to-overall depth ratio a=h up

to a certain limit (a=h¼1.5), beyond which the variation of ºn

Network structures* Mean
(ªcs,m)

Standard
deviation
(ªcs,s)

Coefficient of
determination

(R2)

9 3 93 1 1.020 0.210 0.910
9 3 183 1 1.010 0.193 0.937
9 3 273 1 1.019 0.205 0.925
9 3 183 9 3 1 1.030 0.220 0.904
9 3 183 9 3 9 3 1 1.023 0.210 0.904

*The first and the last numbers indicate the numbers of
neurons in input and output layers, respectively, and the
others refer to the number of neurons in hidden layers.

Table 2. Comparison of outputs and targets according to
different network structures
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would be negligible as observed by other experimental

investigations.31,36 Also, the influence of vertical web

reinforcement on the shear strength of deep beams is

dependent on the shear span-to-overall depth ratio as pointed

out by several researchers.3,4,36 The larger the shear span-to-

overall depth ratio, the higher the influence of �v on the shear

strength of deep beams; namely, when shear span-to-overall

depth ratio is more than 0.75, shear strength of deep beams

increases with the increase of �v, but that of deep beams

having a smaller shear span-to-overall depth ratio is nearly

independent of �v. On the other hand, the influence of �h on

the shear strength enhancement of deep beams is independent

of shear span-to-overall depth ratio. It is also observed that the

critical shear span-to-overall depth ratio, where both vertical

and horizontal web reinforcements are equally effective, is

around 0.65, indicating that a higher shear strength exhibited

by beams with only horizontal web reinforcement than beams

with only vertical web reinforcement when shear span-to-

overall depth ratio is less than this critical threshold.

4.3. Effect of overall depth of deep beams

The influence of section overall depth, h, on the ºn is presented

in Fig. 8. It is clearly observed that the normalised shear

strength of simple deep beams decreases with the increase of h,

but no meaningful size effect appears in deep beams having h

above 1000 mm. The decreasing rate of ºn against the increase

of h is more notable in beams having a smaller shear span-to-

overall depth ratio a=h as the transverse tensile strain in

concrete struts increases with the decrease of a=h. It is also

pointed out by Tan and Cheng12 that the smaller a=h, the

higher the size effect as it is greatly influenced by strut action

carrying very high compressive forces as predicted by the

trained NN in Fig. 8.
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parameters is given in Notation
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5. CONCLUSIONS

An optimum multi-layered feed-forward NN model, consisting

of an input layer of nine neurons, a hidden layer of 18 neurons

and an output layer of one neuron, was constructed to predict

the shear strength of deep beams. The developed neural

network employed a resilient back-propagation algorithm and

early stopping technique to improve generalisation of the NN.

Training, validation and test subsets of the NN had 50%, 25%,

and 25%, respectively, of the database with a total of 362

simple and 71 continuous deep beam specimens. Based on the

statistical comparisons and parametric study, the following

conclusions may be drawn.

Researcher Shear capacity of deep beams (Vn)

ACI 318-051 Vn ¼ ve f 9cbwws sin Łs;
where ve ¼ 0:75 for beams having orthogonal web reinforcement ratio

with
P Aw j

bwsw j
sin(Łr) j > 0:003 and otherwise 0.6;

tan Łs ¼ jd=a;
jd ¼ h� c� w9t=2 for simple beams;
jd ¼ h� c� c9 for continuous beams;

ws ¼
2:25wt cos Łs þ [( lp)E þ ( lp)p] sin Łs

2
for simple beams;

ws ¼
(wt þ 2c9) cos Łs þ [0:5( lp)I þ (1� �)( lp)p] sin Łs

2
for continuous beams.

Siao10 Vn ¼ 1:05
ffiffiffiffiffi
f 9c

p
[1þ n(rh sin

2 Łþ rv cos
2 Ł)]bwd

where tanŁ ¼ h=a.

Tan and Cheng12 Vn ¼
1

(sin 2Łs= f tAc)þ (1=ł f 9cAstr sin Łs)

where f t ¼
2As fy sin Łs
Ac= sin Łs

þ
P 2Aw fyw sin(Łs þ Łw)

Ac= sin Łs

dw
d
þ 0:5

ffiffiffiffiffi
f 9c

p
;

ł ¼ � � �; � ¼ 0:8þ 0:4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ( ls � ws)=50

p ;

� ¼ 0:5þ
ffiffiffiffiffiffiffi
kds
l0

r
< 1:2; k ¼

ffiffiffi
�

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fy

0:5
ffiffiffiffiffi
f 9c

p
s

.

Note : Definitions of different parameters used in the above formulas are given in the notation.

Table 3. Summary of shear strength prediction formulas using strut-and-tie model

Statistical values Deep beam Models W/O W/V W/H W/VH Total

ªcs,m Simple NN 1.042 1.007 1.045 1.044 1.028
ACI 318-051 0.971 0.821 0.835 0.980 0.914
Siao10 1.460 1.169 1.318 1.228 1.274
Tan and Cheng12 0.925 0.864 0.902 0.852 0.878

Continuous NN 1.028 1.030 0.970 0.988 1.000
ACI 318-051 1.244 0.817 1.118 0.984 1.000
Siao10 1.813 1.555 1.926 1.496 1.675
Tan and Cheng12 1.034 0.813 1.121 0.843 0.931

ªcs,s Simple NN 0.193 0.155 0.136 0.142 0.154
ACI 318-051 0.405 0.385 0.346 0.311 0.366
Siao10 0.672 0.499 0.495 0.384 0.516
Tan and Cheng12 0.272 0.309 0.253 0.151 0.246

Continuous NN 0.098 0.100 0.182 0.105 0.122
ACI 318-051 0.399 0.216 0.422 0.207 0.348
Siao10 0.793 0.372 0.748 0.426 0.594
Tan and Cheng12 0.235 0.158 0.354 0.124 0.255

Note : ªcs,m and ªcs,s indicate the mean and standard deviation for the factor ªcs, respectively.
W/O, W/V, W/H and W/VH refer to deep beams without, with only vertical, with only horizontal and with orthogonal web
reinforcement, respectively

Table 4. Statistical comparisons of predictions by different methods
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(a) The predictions obtained from the NN are in much better

agreement with test results than those determined from

strut-and-tie models proposed by ACI 318-05,1 Siao10 and

Tan and Cheng.12 The mean and standard deviation of the

ratio between predicted using the NN and experimentally

measured shear capacities are 1.028 and 0.154,

respectively, for simple deep beams, and 1.0 and 0.122,

respectively, for continuous deep beams. The developed

neural network should, however, be used for predicting

shear strength of deep beams within the range of different

parameters in the database.

(b) The normalised shear strength obtained from the NN

increases with the increase of longitudinal bottom

reinforcement index up to a certain limit beyond which it

remains constant. The limiting point decreases with the

decrease in shear span-to-overall depth ratio.
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(c) Shear strength of deep beams decreases with the increase

of shear span-to-overall depth ratio up to shear span-to-

overall depth ratio of 1.5, beyond which the variation of

normalised shear strength would be negligible.

(d ) The critical shear span-to-overall depth ratio, where both

vertical and horizontal web reinforcements are equally

effective, is around 0.65; namely, a higher shear strength

developed in beams with only horizontal web

reinforcement than beams with only vertical web

reinforcement when shear span-to-overall depth ratio is

less than this critical threshold.

(e) The normalised shear strength of deep beams decreases

with the increase of overall section depth, but no

meaningful size effect appears in deep beams having

overall section depth above 1000 mm.
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