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1 Introduction

This technical report describes one technique for implementing n-calculus style actions in a pro-
gramming language. It first attempts to clarify the nature of actions, then gives requirements a
primitive in a programming language must satisfy if it is to be used as the basis for the implemen-
tation of actions. Finally an example is given of how actions may be implemented in Ada.

2 Understanding Actions

One of the most mysterious aspects of the m-calculus is exactly what an action represents. We
understand that when an action and its complement are offered, a synchronous reaction occurs
between two agents which then evolve to new states. But what exactly are these actions?

The key to understanding actions is to question the ownership of an action. In the context of
this discussion, ownership is determined by who controls the use of an action. To clarify, an action
may be defined locally within an agent, which defines its scope and lifetime, however that agent
does not control how the action is used, nor which of the agents that has the action in scope may
use it. The example below perhaps clarifies this:

Server = new put,get Gatekeeper|Buffer|Processor

The bound actions put and get are restricted to the agents Gatekeeper, Buffer and Processor but
there are no controls about which, if any, of these agents may use them. Also, since actions may be
passed as parameters it is possible that agents other than those named may also use these actions.

So who owns an action? The simple answer is: itself. No agent owns an action, it is shared
among potentially many agents. For once, this is in accord with everyday notions of actions such
as playing chess: two players (agents) may play a game of chess, but neither owns “chess”. To take
the analogy further, internet chess servers! allow players who do not know each other to perform
the “chess” action; alternatively two players may share a private game.

Now that ownership has been understood, the nature of actions is clearer: actions are atomic
events that cause agents to synchronise then evolve — and of course this is obvious when re-reading
the primary source [2] where the starting point of the development is classical automata theory.

3 Choosing the Correct Programming Language Primitive

Given the understanding of actions gained above, it is now possible to list the requirements for a
programming language primitive for implementing actions:
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e it should encapsulate instructions to implement the action;

e those instructions must be executed atomically;

e it must permit synchronisation of agents;

e any two agents may synchronise via any action that is in scope;

e it must be possible to restrict the scope of actions, yet also allow scope extrusion;
e it must be possible for actions to be created and destroyed dynamically.

Actions are commonly described as a channels (e.g. [5, page 5]) and this has influenced how they
are implemented (e.g. [3, 6]). However an action is more flexible than channels provided by many
programming languages (e.g. [1]), particularly with respect to scope and lifetime, as well as allow-
ing synchronisation between agents without either knowing the identity of the other.

A more flexible approach to implementing actions is to use subprograms (such as method
calls in an object) as described in [4], however the actions in this approach are burdened with
extra responsibilities, such as detecting when they are being used inappropriately, which are not
their concern. Furthermore, encapsulating those subprograms in a language primitive that can
have instances created and destroyed as required and permits references to instances to be passed
as parameters allows the requirements above to be satisfied — provided the language supports
concurrency control primitives.

A class in an object oriented programming language would be satisfactory, with the ubiquitous
semaphore used to provide synchronisation and atomicity. In the same way that the m-calculus
distinguishes between actions and their complements, the class would provide methods denoted
Put and Get, allowing values to be transferred between agents®. Semaphores would be used to
enforce synchronisation: an agent cannot take a value before it has been provided; an agent should
wait until the value it has provided has been taken. This “lowest common denominator” approach
ensures that actions may be implemented in any language that provides classes and has access
to semaphores — modest requirements that are satisfied by many languages. However, as seen
below, if a language has richer features then these may be used instead. For example, actions may
be implemented in Java using guarded blocks within synchronised methods.

4 Implementation in Ada

Ada provides language primitives that greatly ease the construction of concurrent programs. Of
particular interest is the protected object, a language primitive related to the monitor which guar-
antees mutual exclusion when the data it encapsulates is updated. It also provides condition syn-
chronisation by the use of barriers, and a requeuing mechanism to allow a task to release mutually
exclusive access to a protected object while it waits for a condition to become true. Protected ob-
jects have an “internal progress first” rule, meaning that tasks which have been suspended while
executing within an object will be resumed before a new task is allowed to enter that object. In ad-
dition Ada permits (encourages) subprogram definitions to be overloaded, allowing subprograms
with different parameter profiles but using the same name to be written — this allows an action
to be used both for synchronisation (no parameters) and for data exchange. While Ada does not
allow access types (pointers) as parameters to entries, with some sleight of hand it is possible to
pass references to actions as parameters.
The implementation proceeds as follows:

2This scheme allows data to be both output and input by each agent, and also allows a value to be agreed between
the agents — useful in applications such as cryptographic key agreement.
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1. Define a protected type with entries Put and Get overloaded for each parameter profile used
in the specification and local variables to store the parameters for each action;

2. For each Put entry, define a private entry Wait_Put_i to allow the calling task to be suspended
until the value it has deposited has been taken;

3. Each triple (Put, Get, Wait_Put_i) of overloaded entries has an associated boolean variable
Enter_i used in their entry barriers to ensure that the calling task will proceed only when the
appropriate condition has been met;

4. A task calling a Put entry will only proceed when there is no previously deposited value to
be taken, and after a copy of the value has been stored the calling task opens the barrier to
allow that value to be taken and is requeued until it is taken.

5. A task calling a Get entry will only proceed when the value it requires has been deposited -
i.e. the barrier is initially closed — and before completing the entry it will open the barrier to
allow the task which deposited the value it has taken to proceed;

It is convenient to combine all possible Put and Get entries in a single protected type so that there
is a single type Action, instances of which can be created as required — the fact that some instances
contain entries that are never called is of no concern.

It may appear odd that it is possible to use a single boolean variable for three barriers since two
barriers must be open at once. However, due to the internal progress first rule, it is correct to allow
the barriers for Put and Wait_Put_i to be open at the same time since a task waiting at Wait_Put_i will
proceed before the first task waiting at Put is allowed access to the protected object.

The sleight of hand mentioned above requires that references to protected objects are trans-
lated to raw memory addresses when they are passed as parameters, then translated back to a
reference before being used. Ada’s generic System.Address_To_Access_Conversions package is used for
this purpose and subprograms to perform the translation are provided. While this is not an ideal
solution, it does at least have the virtue that the details of the translation procedure are hidden.

This procedure is best illustrated with an example. Isn't it great

Client Z new reply port; (12).porty.Client
porty(reply).reply.Client
dej _—
Server; = porti(q).port;.Server;
Server; = porty(reply).reply.Server,
Machine 2 new porty, port, Client| Client| Servery | Server;
The specification for the protected type follows — note the different versions of the Put and

Get entries and the associated private entries and boolean variables. The numerical suffix on the

private declarations indicates associations between variables and entries — the first pair of Put and
Get entries is associated with the suffix 0 and so on.

with System.Address_To_Access_Conversions;
use System;
package Actions is

protected type Name is

entry Put;
entry Get;



entry Put(q : Natural);

entry Get(q : out Natural);

entry Put(reply : Address);

entry Get(reply : out Address);
private

My_q : Natural;

My _reply : Address;

entry Wait_Put_0;

entry Wait_Put_1;

entry Wait_Put_2;

Enter_0, Enter_1, Enter_2 : Boolean := True;
end Name;

package Address_.To_Name is
new System.Address_To_Access_Conversions(Name);

subtype Action is Address_.To_Name.Object_Pointer;

function Translate(Nick : Address) return Action;
function Translate(Nick : Action) return Address;
end Actions;

The protected type is implemented as follows. Notice how the boolean variables are modified
by each operation to allow the other partner in the synchronisation to proceed.

package body Actions is
protected body Name is
entry Wait_Put_0 when Enter_0 is
begin
null;

end Wait_Put_0;

entry Put when Enter_0 is

begin
Enter_.0 := False;
requeue Wait_Put_0;
end Put;

entry Get when not Enter_0 is
begin

Enter_0 := True;
end Get;

entry Wait_Put_.1 when Enter_1 is
begin

null;
end Wait_Put_1;

entry Put(q : Natural) when Enter_1 is

begin
Enter_.1 := False;
My.q = q;
requeue Wait_Put_1;
end Put;



entry Get(q : out Natural) when not Enter_1 is

begin
Enter_.1 := True;
q := My.q;

end Get;

entry Wait_Put_2 when Enter_2 is
begin

null;
end Wait_Put_2;

entry Put(reply : Address) when Enter_2 is

begin
My _reply := reply;
Enter_.2 := False;
requeue Wait_Put_2;
end Put;

entry Get(reply : out Address) when not Enter_2 is

begin
reply := My_reply;
Enter_.2 := True;
end Get;
end Name:

function Translate(Nick : Address) return Action is
begin

return Address_To_Name.To_Pointer(Nick);
end Translate;

function Translate(Nick : Action) return Address is
begin

return Address_To_Name.To_Address(Nick);
end Translate;

end Actions;

Finally an implementation of the Machine above is given, showing the declaration of the ac-
tions and the clumsy translations required when passing actions as parameters. The use of a local
block in the Client task is to illustrate the dynamic creation and destruction of actions. Also note
that the non-deterministic choice in the Client agent has been replaced by a deterministic choice
in the Client task (and the unbounded looping has been replaced by a finite number of iterations
in all tasks).

with System, Actions;
use System, Actions;
procedure Machine is

portl, port2 : Action := new Actions.Name;

task type Client;

task Serverl;

task Server2;

Clientl, Client2 : Client;



task body Client is

begin
for | in 1..10 loop
declare
reply : aliased Action := new Actions.Name;
begin
if | mod 2 = 0 then
portl . Put(12);
portl . Get;
else
port2.Put(Translate(reply));
reply . Get;
end if;
end;
end loop;
end Client;

task body Serverl is
Q : Natural;
begin
for | in 1..10 loop
portl.Get(Q);
portl.Put;
end loop;
end Serverl;

task body Server2 is

reply : aliased Action;
Alias : Address;
begin

for | in 1..10 loop
port2.Get(Alias);
reply := Translate(Alias);
reply .Put;
end loop;
end Server2;

begin
null;
end Machine;

5 Analysis and Conclusions

As is to be expected, much of the non-determinism of the m-calculus specification has been elim-
inated in the implementation. The obvious replacement of non-deterministic choice is one exam-
ple. Another example is when several agents are trying to perform the same action, such as port;
in the example above: the choice of which agents react is non-deterministic, meaning that any
agent may suffer starvation. In the implementation there is a strict FIFO ordering of requests and
starvation does not occur.

As it stands, this work does not address the significant complexities that arise from the non-
deterministic choice operator. The issue was evaded in the implementation of the Client by im-
plementing a deterministic choice, but this is not always possible or desirable. For example a



common idiom is for a server to offer a range of actions, each associated with a different service,
and to serve clients on demand. The usual implementation of this in Ada is for the server to own
a number of entries and offer them in a selective accept statement. This solutions goes against
the principle that actions are not owned by agents, so is not applicable. Although more work is
required, it is likely that such situations will require a busy-waiting solution, which is inelegant3.
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3Not to mention inefficient!!



