The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Iterative Solution of Constrained Differential/Algebraic
Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/75825/

Monograph:

Owens, D.H. and Jones, R.P. (1976) Iterative Solution of Constrained Differential/Algebraic
Systems. Research Report. ACSE Report 52 . Department of Control Engineering,
University of Sheffield, Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ITERATIVE SOLUTION OF CONSTRAINED

DIFFERENTIAL/ALGEBRAIC SYSTEMS

by

D. H. OWENS, B.Sc.,A.R.C.S.,Ph.D.,A.F.I.M.A.
and

R. P. JONES, B.Sc.,M.Sc,Tech.,Grad.I.M.A.

Department of Control Engineering,
University of Sheffield,

Mappin Street,

Sheffield S1 3JD

Research Report No. 52

December 1976



1. INTRODUCTION

The dynamics of a large class of engineering systems can be
approximately described by coupled algebraic and differential equations
of the form (e.g. see appendix A.1)

x(t) = £(x(t),u(t),t), x(o) = X (1)

g(x(t),u(t) ,t) =0 (2)

A
where x€ R™, u€R", g : R™¢} x[0,T] >R™ and £ : R"<R x[0,T] - R,
e.g. the dynamics of a thermal nuclear reactor (Owens, 1973). A discrete

representation of such systems takes the form

x'"(k+1) = f'(x"(k),u"(K),k) , k =0,1,...,N-1 (")

g'(x'"(k),u'(k),k) =0 ,  k =0,1,...,N (2"

where, now, g':KnXRR —»Rm, f':Rnxif -»Rn, x'(k)E&n, B 5 0,1,00esN, and
u(k)G:FLZ, k =0,1,...,N. The algebraic equations (2) (and equivalently
(2')) are, typically, formed by neglecting fast stable time constants and
may also incorporate other algebraic constraints. An important feature
of such systems is that the equations may have no solution, a unique
solution or an infinite number of solutions each of which is not
necessarily isolated. The problem discussed in this paper is, given

state and control constraints of the form

x(Dea (), wneq® , t&fo,Tr , (3
in the continuous case, or

e ' &, uk €' (k) , k=0,1,...,8,
(3")
for the discrete case, find a solution pair (x,u) of (1)-(3) (or (1')-(3")
if one exists. It is assumed that any solution satisfying the equations
and constraints given above is acceptable as a solution to the

engineering problem. In general, it is not possible to achieve an



-2 -

analytic solution and so iterative techniques are required to generate
a sequence (xj,uj) tending to a limit (x,u), where (x,u) lies in the
solution set definmed by (1)-(3) (or (1")=(3")).

One method of solution is to embed the above problem in an optimal
control setting, i.e. to solve the system of equations (1)-(3)

(respectively (1')=(3")) whilst minimising the cost criterion

T
J(u) = £ L(x,u,t)dt (respectively, J'(ué,ui,...,u&_l) = P(xé,...,xﬁ,ué,...u&_l))
An approach along these lines has been suggested (Owens, 1973) where the
T
minimum of J(u) = f <g(x,u,t), Q(t)g(x,u,t)> dt, Q(t) > 0 for all t& [O,T],
o

is sought subject to the constraints (I) and (3). This approach is
somewhat artificial and numerical problems with the minimisa;ion algorithm
can arise, It is important to realise that the problem is not in itself
an optimal control problem, although optimisation techniques may help in
its solution.

This paper presents a method for the systematic iterative solution of
a linearised form of the above system (1)-(3)

x(t) = Ax(t) + Bu(t) g x(0) = x ‘ (4)

Eu(t) + Fx(t) = 0 (5)

A
o+
N
i |

H(t) & e (), x(v) €& e , 0 (6)

(and the equivalent linearised form of the discrete system (1')-(3")),
which has guaranteed convergence in a well-defined computational sense,

and requires only standard Riccati and minimisation routines for
implementation. The formulation is quite general and can also be

applied to linear, constrained algebraic problems, continuous problems with
integral constraints and, in fact, any problem where the solution set is
the intersection of two closed convex sets in a suitable real Hilbert

space.



2 PROBLEM FORMULATION

Let H be a real Hilbert space with KlC: H, KZC:'H two closed convex
sets representing the system constraints and consider the general problem

of finding a point y& Klﬂ Kz.

A sequence (yj)C: H is sought having
one of the following properties:-

(i) yj + y*, in the sense of the norm, for some y*& Klr\ K2
(ii) for each real number e >0, there exists an integer N such that

whenever j3N, max {inf Hyj—Z||, inf Hyj—ZH } < g,

< €
Z Kl Z K2

Property (i) represents the case of strong convergence where it is
possible to construct a sequence (yj) whose strong limit lies in Klr\ KZ'
This paper considers the case where convergence, in the strong sense, to
an element of Klr\ K2 cannot necessarily be guaranteed, although it is
possible to construct a sequence which will generate a point arbitrarily
close to both Kl and K2. This case is represented by property (ii) and
is an acceptable form of convergence in the engineering problem in the
sense that the system constraints are satisfied to an arbitrary accuracy.

Specific examples of the general problem defined above are:-

(1) The linear system defined by (4)-(6), with Qu, QX closed convex
sets, and H = LG[O,T] X LZE[O,T}, with associated norm

i 1
[Gwl = [ (a(Ox+u"R(D WAL}, Q(r)>0, R()>0 ¥ t & [0,1].
o

Here K1 = {(x(t),u(t))&e " : x(t) & Qx(t), u(t) & Qu(t), a.e., tg]:O,T]}, which

is a closed convex set, and

£ B(e-s)

K2 = {(x(t),u(t)) H : x(t) = eAtx(o) + f e Bu(s)ds and
o

Eu(t) + Fx(t) = 0} , which is a closed linear variety in H.
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(2) The problem of choosing u(t) such that x(t) satisfies

x(t) = ax(t) + bu(t) , =x(o) = X s x(T) = X

subject to the constraint |u(t)]| g 1‘# t& [0,T]. Noting that

: T
x(T) - exp(aT)xo = f exp(-at)bu(r)dt and defining H = LZEO,T], then
0
T
Kl ={u€H : f exp(-at)bu(t)dt = B ® exp(aT)xO} and
0
K, = {u€ H : lu(e) | < 1y te [0,T]}

(3) The problem of obtaining a solution of the linear algebraic
equation Ax = d, where d& \7\2, XE?\H, 2<n, satisfying the constraints

|xj—xj| < rj, 1¢j<q, for some q<n. Here, H =f{n,

K, ={x&H : Ax =d} and K, = {x& H : x.—;<. < r., lgi<ql.
1 . %% | <z, 1sicq

3 ITERATIVE SOLUTION VIA SEQUENTIAL PROJECTION

This Hilbert space formulation of the problem enables the simple
geometric ideas of orthogonal projection (see, for example, Luenberger,
1969) to be utilised in the development of an algorithm for its solution.
In this section an iterative scheme, based upon sequential application of
the Projection Theorem, is developed.

The general problem outlined in section 2 is first considered, the

results being presented in the following theorem.

Theorem 1 Let K. & H, K, H, be two closed convex sets in a real

1 2

Hilbert space H with Kll\ K2 nonempty. Define

K1 s ] odd

J K2 j even

Then, given the initial guess kOGE H, the sequence (kj), j =0,1,2,...,

given by
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|k, =k, .|| = inf |k-k,]|| izl (7)
i i1 ke, ir

with kjEE Kj’ jz1l, is uniquely defined for each koéé H and satisfies

ij+1 B kj ” . ”kJ - kj._1|| s iz2 (8)

Furthermore, for any x & Kl('\ KZ’

(9)

and, hence, for each e>0, there exists an integer N such that for j2N

inf ||k - kj|| 2 g A (10)

kEKj+1

Proof

Since Kj is a closed convex set in a Hilbert space, then, given
kj e Kj’ the Projection Theorem guarantees the existence of a well-defined
and unique kj+1GKj+1 such that |]kj+l—kj|| < ||x—kj|| for all XE:Kj

+1
proving uniqueness. Moreover, for any x eKj+l’ <x—kj+1,kj—kj+1> £ 0
and, in partlcular,' <kj-kj+1, kj+l_kj-—1> > 0 and, hence,
2 2 2
ij—kj_ln = ij—kj+1[| + ij+1—kj_1|| +2<kj—kj+1,kj+1—kj_1>

2
® ”kj—'kj_,_lll s

which verifies (8).

If =& K, 0 K,, then <X_kj+1’kj+1—kj> > 0 for all j, and so

2 2 2
L e P R P s

J+l’k

+1 j+1_kj

2

2
IR | L o8|

7 J+1 i
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An induction argument then gives

i=1
2 2 3 2
=k | = > [k ] +£§ I, q7k,
for all j, so that (in the limit)
2 s 2
|2k || = » Ik, 7k, I
=ity 221 1+l 2
as required. (10) now follows from this result.

Q.E.D.
Theorem 1 presents an iterative scheme satisfying the convergence
criterion, property (ii) of section 2, and, using equation (8), each
‘iteration 1s a better approximation to the solution of the problem.
This scheme, based on the basic geometrical concept of orthogonal
projection, is outlined in Figure 1.
Figure 2 describes the case where the tangent hyperplanes to K

1

and K, at the points ki and ki+ are nearly parallel and suggests that

2 1

in this case convergence will be slow. The question of whether the
scheme can be modified to incorporate some form of extrapolation parameter
to speed up convergence is investigated in the next theorem. Attention
is restricted to the case where K2 is a closed linear variety and a

modified scheme is outlined in Figure 3. Note that the result reduce

to theorem 1 if Ai =1, 1x1.

Theorem 2 Let ch: H be a closed convex set and KZ = a+M, ch: H, a
closed linear variety in a real Hilbert space H such that Kliﬁ K2 is
nonempty. (M< H is a closed subspace and a & H) . Then, given rlegliz,
a sequence {rl’kl’sl’rZ’kZ’SZ""} given by

||ki'ri|l = 1?f ”Y'riH s kiGE'Kl s (11)

yeK, ¢



w o
yeK
2
and
Bieg = T > WAESED (13)
with
2
“ki_ri”
”Si—ri|
is well-defined for each rle KZ' Furthermore,
le=xll % 5 3 e, ]| (15)
s = Bl I

and, hence, for each e>0 there is an integer N such that for j2N

inf ||y-r.|| < e (16)
yEKl J
Proof
Given riég K,, then since Ky is a closed convex set and K2 a closed
linear variety in a Hilbert space, the Projection Theorem guarantees the
existence and uniqueness of a ki and s satisfying (11) and (12),
respectively. Furthermore, <ri-ki, x—ki> € 0 for all x& Kl and ki—siJ;.M.
It is therefore only necessary to show that Ai, as given in (14), is well
defined, i.e. that ||s,-r.|| % > 0 and ||k,-r,|| 2 5 [ls,-r.|| 2. Tt is
i i i1 i1
assumed that ”ki_ri||2 > 0 since otherwise ki =r, and the algorithm
has converged. For this case, suppose that Hsi--riH2 20y 1.8+ s, = ..
Then, for all x & Kl’ <x-ki, ki-si> > 0 and, for all x& K2, <x-si,si—ki> =0
. 2 . ;
or, equivalently, <x—ki, ki_si> = Hllki_si” < 0 ie Kl‘n K2 is empty
contrary to assumption. Noting that

2
]

=3 lE=ay 2 + leme: )| ® + 2.~ 8.~7.5
1 1 1 L 1 1 1 1 1 1

]

12,

Hki—3i||2 * llsi"ri
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since Si—rie M and ki—si-L- M, and so, if the algorithm has not converged,
2 2
AR N

Now let x & Klﬂ K2 and consider

<Y. , .=T,,rL,=X> = )\,<8,-T,,r.=X> = )X,<s.-k,+k.-r,,r,—x>
i+]1 1771 1 1 171 1 1 1 1 1771

A.<k.-r,,r.-x>,
01 174

since r.-x &M and si—ki_l_ M. Then

<r. =T TR
1 1

A.<k,-r,,r.-k,+k.,-x>
i+l i 1. 10 & 1 &

-x |lk.-xL || 2 4 h.<k.-1, k,-x>
1 1 1 1 L 1 1

/S

2
- Ai ”ki_ri” ’

by the definition of ki' Also, for Ai satisfying (14), -

1 1

) Ik, -z, || * . )
)\i Hki_ri” = A s . ”Si"ri“ = ?\i “5]-_"1']-_“ = ||ri+1-riH

i 2
s, I

Hence, for x & Klﬁ K, and for any i,

2
[ I [P 2a ey gmrg 2+ 2, e o
o legxll 2+ g 2 - 2 e, 112
and, rearranging,
rgmxll ® 2 llrg,qmxll 200 legmr, 1| 2=l o, I 2o [l 11 2

s eyl 2 e ag llr 012

and, since Ai > 1,
2 2 2
Iyl 25 lrgpmsll 2+l
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An induction argument now gives,

2 A 2 ;
—x|[ + Z ij-rj|| , for all 1, and so

=X 2>. I,
eyl 25 b

i+l

—x|]2 2 .Z ij—rj||2 , as required. (16) now follows immediately.
QB

The iterative schemes presented in Theorems 1 and 2 will not, in

a general Hilbert space, converge to a solution in a finite number of

iterations. It can be shown, however, that, for the case where K. is

1

a closed hyperplane and K, a closed linear variety convergence can be

2
obtained in one iteration. In this case it is, in fact, possible to
obtain a minimum norm solution. These results are formalised in the

following theorem.

Theorem 3. Let K. = {x& H:<a,x-0> = 0,0&H, Hull > 1} be a closed

i
hyperplang in a Hilbert space H and define K2 as in Theorem 2. Given
r1€5 K2, then for kl and s, as defined in (11) and (12) of Theorem 2,
respectively,
2
“kl_r1'| i &
< B g e & K Ky
”Sl_rln

Furthermore, if |[r1|| < ||y|| for all y E;Kz, then ||r2H < ||x|| for
all x&< Klf\ K2.

Proof

By translation, and without loss of generality, it is assumed that

r. = 0 so that, from the definition of k <k1,x—k > = 0 for all x&K

1 1.2 1 1

and, hence, <k1,x—k1> = 0 is an alternative definition of Kl' Since,
i i 2

by const?uctlon, <51,k1—51> =0, it follows that <51,k1> & ”Sll| and

S0
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2
I, I Ik )
o s = T e = gl o
1

Kyatgleg¥ = hyy

which implies that r2&K1. By definition, rZEK2 and hence r2& Klf\Kz.

' 0
If y'&_K1 K2, then

2 2 2
el Ik, iyl i
R R AL TP S L
*1 i |
2
[l |l 5
AR R DUl
]
and, since sl-kl-l-Kz,
2 2
] A
YTILH,T,> ” H 2{<y,k1> ||k1|| I = W <y—k1,k1> o,
1 °1
by definition of kl' It now follows that
2 2 2 2 2 2
Il = Ny [ T+ [lxy Il “42<y=1,5m,> = ly=r, [l "+ [z, )l © 2 Iz, |

as required.

# Oj

In the general case with r

2 2 2
ly=r 1™ = fly=r,ll =+ ey, 17

and if ||11|| < ||v]| for alil y €K, it follows that rl.LM. Therefore,

since y-r, &M,

2 2 2 2 2 2
R [ E [ P [ PR T PR

2
|

2 2
£ I (60 | I | E N (R

as r —r1€: M.

2
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Comments

1. 1In general, the existence of a strong limit point to the sequence
generated in Theorems 2 and 3 has not been established. This is of
interest theoretically but is of little consequence from a practical
point of view since it has been demonstrated that the convergence property
(ii) of section 2 is satisfied. However, for the case where H is a
finite dimensional space, a proof along the following lines can be
obtained.

For any K,nK, and r, defined by Theorem 2, |]r1—x]F > Hri—x|F for

all i.  Furthermore HriH s||ri-xH +||x||$!|rl-xH +||x|| , for all i, and
so the sequence (ri) is bounded. Then, as H is a finite dimensional
space, (ri) is relatively compact and has at least one cluster value

r€iK1n Kz. If r and r are distinct cluster values of the sequence (ri)
then there are subsequences (r. ) and (r. ) of (r,) such that (r. ) =+ r
i i, i i
and (ri ) > r. Defining ¢ = §|1r—r|[, there exists an integer N such
2 i
that for k,2>N, . & B(r,e) and . & B(r,e), where B(x,e) is the open
k )
ball centred on x with radius ¢. Taking ik > il’ for some k,4>N, it

follows that [|r. —;H > |lr. -;H , since r, & B(r,e), r. GiB(;,e) and
i i i i
||z-r|| = 2e, contradicting the result that Hri+1—xH <|[r£—xH for all

xE&Kln K2 (see proof of Theorem 2). Then (ri) must have a unique cluster

value r and hence (ri) -+ rG&Kln'Kz.

2. IE K1 and K, are disjoint, the algorithm defined by Theorem 2

2
with Ai >»1 may exhibit wild oscillation, as illustrated in Figure 4.
With Ai = 1, however, the algorithm is well behaved and, intuitively,
converges to points rle.Kl,

the two sets. A proof of this observation for the case where H is finite

rzééK defining the minimum distance between

2
dimensional now follows.

Taking ki = 1 for all %, Theorem 2 gives |Wri+l_ki+ﬁ‘€ H ri+1~kJ|$ H ri—kJ|
< |&1—RJ| which implies that Bi = ||ri—kJ| has limit B and, since H is

finite dimensional, the sequence (ri_k_) has cluster values rEEKz, kEEKl
1
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with B = |[k-r[[>0, for each k,,r,, <k'-k,, k,~r;> > 0 for all k'€K,,
giving ||k-r|| = inf ||y-r|| and, by similar reasoning, [|k-z|| = inf ||k-y]| .

Then, for all k'eKl, r‘@Kz,

ke =x B = ||k =kskmrrr-r [ = ||tk [P ez |Be |2z [Pr2f<et -k, kor>
#fe Vol rer Yo, Tr %) B Hk—r|F+ Hk'—k|ﬁ+ Hr—r'lF+2< i M

2 .
= Hk-r]F+ ||k '=k+r-r" ||” » ||k-x|[" as required.
3. The introduction of an extrapolation parameter li>>1 can cause
numerical errors introduced into the calculation at each iteration to be
- 3 : ; . T s
magnified at successive iterationms. TFor, if errors £, » €; are

introduced at the i-th iteration in the calculation of r. and S5

respectively, then (14) gives

5 r s
€i41 " (1—)\]._) e; ¥ ?\isi
and, for Ai>1 and under worst—case conditions (i.e. gir = ~€i5),
T s S ; . .
|IEi+1“ = (2Ai—l)|lsi | >> Hei I if Ai>>1. In practice this problem

can be removed by setting Ai = 1 every few iterations to reset the
magnitude of the computational errors.

4. 1In general, the sequence (ri’ki) does not converge to a minimum
norm solution as a simple three dimensional example will testify. For
the case where K, is a closed hyperplane, a minimum norm solution is

1

obtained, however, (Theorem 3) and the algorithm converges in one iteration.

b4, EXAMPLES

1. Consider the system x(t) = u(t), x(o) =0, x(1) = 1, where u(t)
1 .-
is constrained to satisfy f tu(t)dt = 1. Defining H = LZLO,ll with
(o]



= i3 =
a T 2 1
|£]] =% [ £°(e)dt, fen , K, = {u€H : [ tu(t)dt = 1} and
0 o
1
K2 = {u&H : f u(t)dt = 1} , then K1 is a closed hyperplane and K2 a
0
closed linear variety in H. Application of Theorem 3 and Pontryagin's

Minimum Principle therefore gives:

- - 3 al 43
r,(t) =1 for all t [0,1], ky(t) =1+ pt and s (£) =+ 3t

= (3,03 - L oe T - A% =
Then A = (ZJ/(TED and so rz(t) =1 + 4{4 + 5t 1} 2+6t,

In this case, rZGEKlf\K and is of minimum norm, i.e. u = r, is also a

2 2

solution of the associated minimum energy problem.
2. Consider, now, the discrete form of the problem outlined in
equations (4)~(6) of section 2. Given a system described by equations

of the form

x(k+1) = ox(k) + Au(k) , x(o) = X, s k=0,1,...,N-1 , (17)
Eu(k) + Fx(k) = 0 , k =0,1,...,N (18)
= 2 _
where x(k)&R, u(k)€R”™, k = 0,1,...,N, and ann’ Anxz’ mek’ men (m<n)

are real matrices, a solution (x,u) of (17) and (18) is sought satisfying
the constants x(k)E:Qx, u(k)éﬁﬂu, k = 0,1,...,N, where QX and Qu are
two closed convex sets. In the example discussed here, x is unconstrained

{i.m, 2, =R™ and 2, is defined by

Qu - {uef{g ; u'mln ' max

s i=1,2,...,0} (19)

However, the ideas are trivially extended to include convex state
constraints.

The problem formulation is analogous to that outlined in example (1)
of section 2 and is not repeated here. The spaces are, of course, now

finite-dimensional and a suitable norm defined as



= 14 o
N
NP =3 T x00x® + uT(Ru()} , 50, R0 .
k=0

The results of Theorem 2 are employed:

For each 1, given ki = (xre£,uref)€: Kl’ Bs = (x,u)E':K2 is calculated

as min Hy—ki|I, S - O

y&'K2

N
min 4 ] {[x00-x"* 001 0 [x 00 -x"F 10 ]+ [ut " (1] R [0 -u"E (0]
(x,u) k=0

where (x,u) satisfies equations (17) and (18). This is a linear quadratic
optimal control problem and has solution

u(N-k) = -K(k)x(N-k) + g(k) , ki 2 Qv (20)

with x(k) given by equation (17). Expressions for the 'Riccati matrix'

K(k) and 'tracking vector' g(k) are given in appendix A2, An initial
estimate r, = (x,u) can be obtained setting erf =0, uref = 0,

Given r, = (erf,urEE)GEK » k., is calculated as min ||y-r.[}, i.e.

i 2 i . 1
yeky
- ref T ref ref T ref
min i Z {Lx(k)*x (k)] Qfx(k)-x (k)]+[u(k)—u (k)] R[u(k)-u (R)J}
(x,u) k=o

with u satisfying the constraint (19), which, if R is diagonal, has solution

max ref max

u, , for u, z u.
i i al
ref min ref max . ref

u, = u, , for u, £ u. < u, » 1L =1,...48, and x = x
i i i i i

min ref min

u. for ui < u.

Hence computation of ki simply involves 'clipping off' the components of
. where they violate the constraint set Qu.
. - s B .
r.,, is now generated by L . Ai(si ri), for suitable Ai,

IEPPR Hki“riHZ/ Hsi—ri|f and the iterative process repeated until numerical

convergence is obtained.
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A solution to equations (17) and (18) satisfying constraints of
the form (19) can therefore be generated by iterative application of
equations (17) and (20) and 'clipping off' the resulting control
trajectories where they violate the constraints. The 'Riccati matrix'
“ ref ref
K 1is independent of (x ,u ) and need only be calculated once whereas
the 'tracking vector' g has to be updated at each iteration. Two

numerical examples of the application of this algorithm are given below.

(a) 4-th order integrator plant. It is desired to find a solution (x,u)

of the algebraic/differential system

kl =X, xl(o) = =0.5 ,
kz = x3+u1 2 . XE(O) = 0.5 ,
ia = X4+u2 . x3(o) =05 4
ia =uy XA(O) = 0.5 ,
Xl + Xy + u1 i u2 + u3 = 0 ,
X, + %X, +u, —u, +u & 0 ;

defined on the time interval [0,1], subject to the constraint u, 3 O.

3
The time interval is divided into N steps of length h = 1/N and the problem
3,2 2 3,2
put into discrete form with ¢ = I + hA + hzé + ..., A =hI + %ﬁé + §§$—+

20 time steps were employed and the weighting matrices Q,R in the

norm were taken to be Q = I R=1_. The extrapolation factor Ai was

4° 3

set at Ai = Hki—ri|E/ Hsi—riiﬁ, throughout, and convergence to an accurate
solution in 8 iterations is shown in Table 1 in terms of variation in Ai
and distance between K1 and K2 with iteration. The initial and final
trajectories of u, are given in Figure 5, Figure 6 describing the .
corresponding plant outputs Xy

(b) Nuclear Reactor Control Problem. Large thermal nuclear power

reactors can exhibit unstable or underdamped oscillations in the power

distribution, with periods of 30-40 hours, due to the effects of the
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fission product poison xenon-135 (Owens, 1973). The dynamics of such
systems can be approximated by equations of the form
x(t) = Ax(t) + Bu(t) , x(0) =x_,

Eu(t) + Fx(t) =0 ,

2m m+n ;
where x(D)&R™, u(t)eR , L€ [O,T], and A2mx2m’ Bme(m+n)’ E(m+1)x(m+n)’

F are real matrices. x(t) represents the internal states inherent
(m+1) x2m
in the system, namely, xenon and its precursor iodine, and the power

distribution and control rod reactivity are lumped together in u(t).

A typical one-dimensional model has system matrices

A =
(~0.29%x10~% 0 0 o 0 0 0 0
-4 -3 -4
0.29x10 ' -0.119x10 0 0 0 0.195x10 0 0
0 0 ~0.29x10" % 0 0 0 0 0
0 0 0.29x10 % -0.991x10™ % 0 0 0 0.223x10
0 0 0 0 ~0.29%10" % 0 0 0
il -4 -4
0 0.195x10 0 0 0.29x10 @ -0.963x10 0 0
0 0 0 0 0 0 ~0.29x10 " 0
| 0 0 0 0.223x10™% 0 0 0.29x10% -0.954x10
(0.112x10> 0 0 0 0 0 0)
~0.902x10" % 0 0.503x10 > 0 0 0 0
0 0.112x10 0 0 0 0 0
0 ~0.852x10 0 0.762x10 > 0 0 0
B -3
0 0 0.112x10 0 0 0 0
-5 —4
0.503x10 0 -0.83x10 0 0 0 0
0 0 0 0.112x10"> 0 0 0
0 0.762x10 " 0 ~0.817x10 % 0 0 0

4

A
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E =
(-0.297x10 0 0.594x10 0 0.461x10" " 0.128x107F 0.128x10" 1)
il -5 -1 ]
0 -0.443x10 0 0.679x%10 0 0.156x10 ~-0.156x%10
0.594x10 " 0 <G Pl 0 ~0.802x10 % 0.62x10 % 0.62x10 2 | °
-5 ~3 =~ =7
0 0.679x10 0 ~0.125%10 0 -0.81x10 © 0.81x10
1.0 0 0.333 0 0 0 o |
F =
-3 =l "
(0 -0.102x10° o0 0 0 0.204x10 ' O 0
0 0 0 -0.815x10° % 0 0 0 0.233x10 "
0 0.204x10"% 0 0 0 -0.786x10"" o 0
0 0 0 0.233x10°% 0 0 0 -0.776x10"%
0 0 0 0 0 0 0 0

In this case u2(t) represents the dominant first spatial mode of oscillation,

u5(t) a bulk control action and uﬁ(t), u7(t) two trimming controllers. In
the absence of trimming controls Ug stz the mode uz(t) is unstable, and with
initial condition
x(o) = (1014, —1014, —1014, 1014, 0, 0, 0, O)T (21)
exhibits the transient shown in Figure 7, with peak magnitude max|u2(t)| = 5.39x1014
over a time interval of 40 hours. The practical problem consigered here is

the choice of trimming control action u6(t),u7(t) to ensure that the power
mode uz(t), resulting from initial conditions (21), is adequately damped and

satisfies the constraint
lu, () | € 0.4 x 1014 | 0 st g 40

which would obviously be a considerable improvement on the open loop behaviour.
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The problem was solved in discrete time as in example (a). In
order to offset the difference in magnitude in the power and control
components of u(t), the weighting matrices Q,R in the norm were taken to
be Q ='IB, R = diag(l,l,l,l,105,108,108). 20 time steps were employed
and the extrapolation factor was initially set at Ai = Hki—ri|F/ Hsi—rilﬁ
for each iteration i. In this case, an error growth, as predicted in

section 2, was observed and the algorithm broke down. A choice of

k
lk = 1 whenever TT.A. > 103, where £ was the previous iteration at which

=4
Ai was set to unity, had the effect of introducing an acceptable upper

bound on the growth in errors and the algorithm now converged rapidly.
To ensure the highest accuracy in the solution of the equationms, li was
also set to unity on the final (converged) iteration.

Table 2 shows the rate of convergence and variation in Xi with
iteration. The initial and final iterates for the power mode uz(t)
are given ianigure 8 and Figure 9 describes the final trimming control
trajectories u6(t),u7(t). For comparison purposes, the convergence rate
for the case where Ai was set to unity throughout, is indicated in Table 3.
It is noted that, for the case where extrapolation was employed, the
algorithm converged to an acceptable solution in 4 iterations, whereas,

with no extrapolation, convergence has not been achieved after 50 iterations.

5. CONCLUSIONS

An iterative scheme for the solution of constrained algebraic/
differential systems, based upon sequential application of optimisation
techniques, has been presented. The algorithm has been derived in a
Hilbert space setting and the formulation is quite general. Attention
has been restricted to linear systems and for this case a Riccati-type
solution is obﬁained. In this context, it i1s important to realise that

although optimisation procedures have been used in the solution of this
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problem, in general, the resulting solution is not optimal. The use of
an extrapolation factor has been incorporated in the algorithm and it

has been demonstrated, with the aid of a numerical example, that this can
have a highly significant improvement on the convergence rate, Since
this extrapolation parameter is always greater than unity, numerical
errors can propogate but the scheme is easily adapted to contain such an
error growth. Two illustrative control problems of moderate state
dimension have been investigated and accurate solutions to both problems
were obtained in a small number of iterations. Finally, it is noted that
the norms used for the solution of the problem are unspecified and hence,

intuitively, can be used to improve the conditioning of the algorithm.
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APPENDICES
Al. Consider a control problem governed by equations of the form
il = Q(xl,xz,t) (22)
kz = w(xl,xz,uc,t) (23)
where it is required to control the state x,.. If equation (23) is stable

2

and has a fast acting time constant it can be reduced to the algebraic
equation

w(xl’XZ’uC’t) = 0 (24)

Then, if %, and u, are lumped together as a pseudo 'control vector' u,

i.e. u = (xz,uc)T, and taking x = Xy equations (22) and (24) can be

rewritten as

x = f(x,u,t)
g(x,u,t) = 0
A2, The 'Riccati matrix' K and 'tracking vector' g of equation (20)

are given by. the following recurrence relations

R(k) = aTQ(k-1)A +R , v
S = alQk-Deo

hk) = Ru"Tk) - aTpk-1) ,

K = R s+ e e o) e oo sw]
gk) = R (Wh@)-R E [ERWE] B 0OhG)

B Lyswuall 3

K(o) = R E'|EREY| ¥,
g(o) = R—lET[ER-lET]—lEuref(N) + uref(N) ]
where
Q) = Q+ [o - aR@W]TQk-1) [6 - aR()] + KT (WRK(K) ,
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T
-7t g 4+ st AT (k-1) [6 - AR(K)]

pT (k)
T ref T
+p (k=1 [0 - aK(&K)] - |gk) - «"*F (-k) | "RR(K) ,
k=1,...,N-1 ,
and -

Q + K (0)RK(0) ,

Q(o)

pT(0)

T
-[g(o) - uIEf(N)]TRK(D) - xref(N)Q



ITERATION (i) A ”ki—s |
1 3.68 0.351
2 3.34 0.102
3 2.62 0.263x10™ 1+
4 9.67 0.5 3kx10™
5 2.46 0.972x10 >
6 2.50 0.160x10>
7 2.40 0.282x10" 4
8 2.30 0.219x10"°
Table 1
ITERATION (i) A Hki—siH
1 34.6 50.4
2 59.6 10.08
3 1.0 0.35x10"%
4 1.0 0.107x10"’
Table 2
ITERATION (i) A |[ki—siH
I 1 50.4
10 1 42.8
50 1 16.9

Table 3
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