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We derive the closed system of averaged magnetohydrodynamic (MHD) equations for
general oscillating flows. The used small parameter of our asymptotic theory is the
dimensionless inverse frequency, and the leading term for a velocity field is chosen
to be purely oscillating. The employed mathematical approach combines the two-
timing method and the notion of a distinguished limit. The properties of commutators
are used to simplify calculations. The derived averaged equations are similar to the
original MHD equations, but surprisingly (instead of the commonly expected Reynolds
stresses) a drift velocity plays a part of an additional advection velocity. In the
special case of a vanishing magnetic field h ≡ 0, the averaged equations produce
the Craik–Leibovich equations for Langmuir circulations (which can be called ‘vortex
dynamo’). We suggest that, since the mathematical structure of the full averaged
equations for h 6= 0 is similar to those for h ≡ 0, these full equations could lead to a
possible mechanism of MHD dynamo, such as the generation of the magnetic field of
the Earth.

Key words: dynamo theory, general fluid mechanics, magnetohydrodynamics

1. Introduction

The magnetohydrodynamic (MHD) dynamo theory represents a flourishing research
area, based on mean-field electrodynamics and/or on multi-scale (or homogenization)
theory (see Moffatt 1978, 1983; Frisch 1985; Roberts & Soward 1992; Childress
& Gilbert 1995; Zheligovsky 2009; Hughes & Proctor 2010). These theories are
aimed at deriving the averaged governing equations and obtaining their solutions
that describe the growth of a magnetic field. In this paper we also derive the
averaged MHD equations; however, the considered class of flows that oscillate
in time (oscillatory flows) has been almost overlooked in the previous studies.
There is no unique definition of an oscillatory flow. We suggest that such a flow
contains velocity oscillations with frequency higher than the inverse characteristic
times of all other coexisting motions. It can be expressed as σ ≫ 1, where σ is
the dimensionless frequency of oscillation. To derive the averaged equations, we
employ the two-timing method (see e.g. Nayfeh 1973; Kevorkian & Cole 1996).
We present it as an elementary, systematic and justifiable procedure that follows
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Vladimirov (2005, 2008, 2010) and Yudovich (2006). This procedure is complemented

by novel material on the distinguished limit, which allows one to find and justify

a proper slow time scale. The derived equations are similar to the original MHD

equations, but surprisingly (instead of the commonly expected Reynolds stresses) a

drift velocity (or just a drift) plays a part of an additional advection velocity. In the

special case of a vanishing magnetic field, the averaged equations produce the well-

known Craik–Leibovich equations for Langmuir circulations (see Craik & Leibovich

1976; Leibovich 1983; Craik 1985; Thorpe 2004). The aim of our short presentation

of this special case is to attract attention to the close resemblance between the

averaged equations with non-zero magnetic field and the Craik–Leibovich equations.

The results we obtained partially overlap with those by Vladimirov (2010, 2011)

and Herreman & Lesaffre (2011). The additional incentive for our research is to

make all the calculations and derivations elementary and free of any physical and

mathematical assumptions (except for the most common ones, such as the existence of

differentiable solutions). We use only the Eulerian description and Eulerian averaging

operation, since they are the most transparent and allow us to avoid additional steps

and difficulties; for example, the Eulerian description does not have any difficulties in

the cases of chaotic trajectories. Such a deliberately chosen simple framework could

allow one to build further physical models based on highly reliable foundations. The

first step in this direction has already been done: Herreman & Lesaffre (2011) have

shown the existence of the kinematic Stokes drift dynamo.

In § 2 the notation used is introduced and the list of the main definitions (the

averaging operation, etc.) is presented. Section 3 is devoted to the general formulation

of the problem, its two-timing dimensionless version, and the distinguished limit

arguments. The chosen small parameter represents the dimensionless inverse frequency

ε ≡ 1/σ . In the chosen class of oscillatory flows, the zero-order terms for both mean

velocity and mean magnetic field vanish, u0 ≡ 0, h0 ≡ 0. The consideration of the

distinguished limit leads to a slow time variable s that is connected to physical time t

as s = t/ε. In § 4 we study the equations for the first four successive approximations,

which lead to the MHD drift equations. This study shows that (in the considered

class of flows) the first two terms (of zero and first order) of the oscillating part of

the velocity must be potential. The MHD drift equations describe the evolution of

the first-order mean vorticity (and the related mean velocity) and the first-order mean

magnetic field; in order to derive these equations, we consider the zero-, first-, second-

and third-order equations. We also show that the drift velocity that appears in the

MHD drift equations coincides with the Stokes drift. In § 5 we consider the special

case of pure hydrodynamics (with zero magnetic field) and show that the MHD drift

equations give the Craik–Leibovich equations. The well-known isomorphism between

rotating flows and stratified flows (for translationally invariant motions) leads us to

the equivalence between the instability that causes Langmuir circulations and Taylor’s

instability of an inversely stratified equilibrium. The aim of this example is to attract

attention to its possible generalizations for MHD flows. Section 6 contains an extensive

discussion of our studies as well as their connection to the known results.

2. Functions and notation

The variables x = (x1, x2, x3), t, s and τ serve as dimensionless Cartesian

coordinates, physical time, slow time and fast time, respectively. The used definitions,

notation and properties are listed below.
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(i) A dimensionless function f = f (x, s, τ ) belongs to the class O(1) if f = O(1) and
all partial x, s and τ derivatives of f (required for our consideration) are also
O(1). In this paper, all small parameters appear as explicit multipliers, while all
functions always belong to the O(1) class.

(ii) The class H of hat functions (or oscillating functions with non-zero mean) is
defined as

f̂ ∈ H : f̂ (x, s, τ ) = f̂ (x, s, τ + 2π), (2.1)

where the τ dependence is always 2π-periodic; the dependences on x and s are
not specified.

(iii) The subscripts t, τ and s denote the related partial derivatives.

(iv) For an arbitrary f̂ ∈ H the averaging operation is

〈 f̂ 〉 ≡
1

2π

∫ τ0+2π

τ0

f̂ (x, s, τ ) dτ, ∀ τ0, (2.2)

where during the τ integration we keep s = const. and 〈 f̂ 〉 does not depend
on τ0.

(v) The class T of tilde functions (or purely oscillating functions, or fluctuations) is
such that

f̃ ∈ T : f̃ (x, s, τ ) = f̃ (x, s, τ + 2π), with 〈 f̃ 〉 = 0, (2.3)

and they represent a special case of hat functions with zero average.

(vi) The class B of bar functions (or mean functions) is defined as

f ∈ B : f τ ≡ 0, f (x, s) = 〈 f (x, s)〉. (2.4)

(vii) We introduce the tilde integral (or the fluctuating part of an integral of a

fluctuating function) f̃ τ as

f̃ τ ≡

∫ τ

0

f̃ (x, s, η) dη −
1

2π

∫ 2π

0

(∫ µ

0

f̃ (x, s, η) dη

)
dµ. (2.5)

The tilde integration is inverse to the τ differentiation ( f̃ τ )τ = ( f̃τ )
τ

= f̃ ; the
proof is omitted. The τ derivative of a tilde function always represents a tilde
function. However, the τ integration of a tilde function can produce a hat

function. (For example, let us take φ̃ = φ0 sin τ , where φ0 is an arbitrary bar

function. One can see that 〈φ̃ 〉 ≡ 0. However, 〈
∫ τ

0
φ̃(x, s, ρ) dρ〉 = φ0 6= 0, unless

φ0 ≡ 0.) Formula (2.5) keeps the result of integration inside the T class.

(viii) The unique solution of a partial differential equation (PDE) inside the tilde class,

f̃τ ≡ ∂ f̃ /∂τ = 0 ⇒ f̃ ≡ 0, (2.6)

follows from (2.5). One can also see that f̂τ = f̃τ and 〈̂fτ 〉 = 〈̃fτ 〉 = 0.

(ix) The commutator of two vector fields f and g is

[ f , g] ≡ (g ·∇)f − ( f ·∇)g = ∇ × ( f × g), (2.7)

where the last part of the equality is valid only for solenoidal fields f and g.
The commutator is antisymmetric and satisfies Jacobi’s identity for any vector
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fields f , g and h:

[ f , g] = −[g, f ], [ f , [g,h]] + [h, [ f , g]] + [g, [h, f ]] = 0. (2.8)

As the average operation (2.2) is proportional to integration over τ , integration
by parts yields

〈[ f̃ , g̃τ ]〉 = −〈[ f̃τ , g̃]〉 = −〈[ f̃τ , ĝ]〉, 〈[ f̃ , g̃τ ]〉 = −〈[ f̃ τ , g̃]〉 = −〈[ f̃ τ , ĝ]〉. (2.9)

(x) For any tilde function f̃ and bar function g, conditions (2.8) and (2.9) give

〈[ f̃ , [g, f̃ τ ]]〉 = [g,V ], where V ≡ 〈[ f̃ , f̃ τ ]〉/2. (2.10)

3. Two-timing problem and distinguished limits

The governing equation for MHD dynamics of a homogeneous inviscid
incompressible fluid with velocity field u∗, magnetic field h∗, vorticity ω

∗ ≡ curl ∗u∗

and current j∗ ≡ curl ∗h∗ is taken in the vorticity form as

∂ω
∗/∂t∗ + [ω∗,u∗]

∗
− [ j∗,h∗]

∗
= 0, in D

∗, (3.1a)

∂h∗/∂t∗ + [h∗,u∗]
∗
= 0, div ∗u∗ = 0, div ∗h∗ = 0, (3.1b)

where asterisks mark dimensional variables and operations, t∗ is time, x∗ = (x∗
1, x∗

2, x∗
3)

are Cartesian coordinates, and [ · , · ]∗ stands for the dimensional commutator (2.7). In
this paper we deal with the transformations of equations, and hence the form of the
flow domain D∗ and particular boundary conditions can be specified at later stages.

We accept that the considered class of (unknown) oscillatory solutions u∗,h∗

possesses characteristic scales of velocity U, magnetic field H, length L and high
frequency σ ∗,

U, H, L, σ ∗ ≫ 1/T, T ≡ L/U, (3.2)

where T is a dependent time scale. In the chosen system of units, the dimensions of U

and H coincide; we choose them to be of the same order U = H. The dimensionless
variables and frequency are

x ≡ x∗/L, t ≡ t/T, u ≡ u∗/U, h ≡ h∗/U, σ ≡ σ ∗T ≫ 1. (3.3)

We assume that the flow has its own intrinsic slow time scale Tslow (which can be
different from T) and consider solutions of (3.1) in the form of hat functions (2.1):

u∗ = Uû(x, s, τ ), h∗ = Uĥ(x, s, τ ), with τ ≡ σ t, s ≡ Ωt, Ω ≡ T/Tslow. (3.4)

Then the use of the chain rule and transformation to dimensionless variables give
(

∂

∂τ
+

Ω

σ

∂

∂s

)
ω̂ +

1

σ
[ω̂, û] −

1

σ
[ ĵ, ĥ] = 0, (3.5a)

(
∂

∂τ
+

Ω

σ

∂

∂s

)
ĥ +

1

σ
[ĥ, û] = 0, div ĥ = 0, div û = 0. (3.5b)

In order to keep variable s ‘slow’ in comparison with τ , we have to accept that
Ω/σ ≪ 1. Then (3.5) contains two independent small parameters:

ε ≡
1

Tσ ∗
=

1

σ
, ε1 ≡

1

Tslowσ ∗
≡

Ω

σ
. (3.6)
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Here we must make an auxiliary (but technically essential) assumption: after the use of
the chain rule (3.5), variables s and τ are considered to be mutually independent:

τ, s are independent variables. (3.7)

(From the mathematical viewpoint, increasing the number of independent variables in
a PDE represents a very radical step, which leads to an entirely new PDE. This step
can be partially justified a posteriori by estimations of the error (or the residual) of
the obtained solution (rewritten back to the original variable t) substituted into the
original equation (3.1).) In a rigorous asymptotic procedure with σ → ∞, one has to
consider asymptotic paths on the (ε, ε1) plane such that (ε, ε1) → (0, 0). Each of these
paths can be prescribed by a particular function Ω(σ). One may expect that there are
infinitely many different solutions of (3.5) corresponding to different Ω(σ). However,
a unique path Ω = Ωd(σ ) can be established; it is called a distinguished limit.
Definitions of the distinguished limit vary in different books and papers (see Nayfeh
1973; Kevorkian & Cole 1996). We accept here the definition that uses a function
Ω(σ) = σ α (with a constant α < 1). The value of α = αd gives the distinguished limit
when: (i) the solution for α = αd is given by a valid asymptotic procedure; (ii) all
solutions for αd < α < 1 contain terms secular in s; and (iii) for any α < αd the
system of equations for successive approximations contains internal contradictions and
it is unsolvable (unless a velocity field degenerates). (The nature of secular terms can
be easily understood. For instance, if a true solution is proportional to sin Ωdt, but
one mistakenly takes t = Ωs with Ω > Ωd, then the true solution is proportional to
sin(Ωds/Ω) with a small parameter Ωd/Ω; the decomposition with respect to this
small parameter produces the required secular terms in s.) In the considered class of
flows (defined in (3.11) below), it can be proven that the distinguished limit solution is
given by αd = −1:

Ωd(σ ) = 1/σ, τ = σ t, s = t/σ. (3.8)

In this paper, we will show that the first three successive approximations (with s

from (3.8)) do produce a valid asymptotic solution, and hence the above requirement
(i) is fulfilled. The proof of (ii) and (iii) is similar to that considered in Vladimirov
(2010, 2011); the proof is beyond the style and scope of the present paper and is
omitted.

Hence the governing equations are

ω̂τ + ε[ω̂, û] − ε[ ĵ, ĥ] + ε2
ω̂s = 0, (3.9a)

ĥτ + ε[ĥ, û] + ε2ĥs = 0, div û = 0, div ĥ = 0, (3.9b)

where ε ≡ 1/σ → 0. Let us look for the solutions of (3.9) in the form of regular series

(ĥ, û) =

∞∑

k=0

εk(ĥk, ûk), ĥk, ûk ∈ H ∩ O(1), k = 0, 1, 2, . . . . (3.10)

In this paper we study a class of flows with

u0 ≡ 0, h0 ≡ 0, (3.11)

which is natural from a physical viewpoint if one considers, say, how the secondary
vorticity develops on the background of wave motion.
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4. Successive approximations and MHD drift equation

The substitution of (3.10) and (3.11) into (3.9) produces the equations of successive

approximations. The zero-order equations are ω̂0τ = ω̃0τ = 0 and ĥ0τ = h̃0τ = 0. Their

unique solution (2.6) is ω̃0 ≡ 0 and h̃0 ≡ 0. Taking into account (3.11) we can write

ω̂0 ≡ 0, ĥ0 ≡ 0, (4.1)

which means that the zero-order flow is potential, purely oscillating, and the zero-
order magnetic field vanishes. This leads to the similar first-order approximation of

(3.9)–(4.1), ω̂1τ = 0, ĥ1τ = 0, which have the unique solution

ω̃1 ≡ 0, h̃1 ≡ 0, ω1 = ? , h1 = ? , (4.2)

where mean functions remain undetermined. The second-order equations that take into

account (3.11), (4.1) and (4.2) are ω̃2τ +[ω1, ũ0] = 0 and h̃2τ +[h1, ũ0] = 0, which after
tilde integration (2.5) yield

ω̃2 = [ũτ
0, ω1], h̃2 = [ũτ

0,h1], ω2 = ? , h2 = ? . (4.3)

The third-order equations that take into account (3.11), (4.1) and (4.2) are

ω̃3τ + ω1s + [ω̂2, ũ0] + [ω1, û1] − [ j1,h1] = 0, (4.4a)

h̃3τ + h1s + [ĥ2, ũ0] + [h1, û1] = 0. (4.4b)

The bar part (2.2) (or the averaged part) of this system is

ω1s + [ω1,u1] − [ j1,h1] + 〈[ω̃2, ũ0]〉 = 0, (4.5a)

h1s + [h1,u1] + 〈[h̃2, ũ0]〉 = 0, (4.5b)

which can be transformed with the use of (4.3) and (2.10) into the final form

ω1s + [ω1,u1 + V 0] − [ j1,h1] = 0, (4.6)

h1s + [h1,u1 + V 0] = 0, (4.7)

where the drift velocity is

V 0 ≡ 〈[ũ0, ũ
τ
0]〉/2. (4.8)

If one uses (4.6) as a closed mathematical model, then all the subscripts and bars can
be deleted:

ωs + [ω,u + V ] − [ j,h] = 0, j = curl h, (4.9a)

hs + [h,u + V ] = 0, div u = 0, div h = 0, (4.9b)

with V ≡ V 0, where the equation for the zero-order oscillating velocity ũ0 is absent.
There are only two restrictions: ũ0 is incompressible and potential. Hence the drift
velocity V represents a function that is ‘external’ to the equations. We call (4.9) the
MHD drift equations. This system of equations looks similar to the original one (3.1).
One might think that (4.9) describes ‘just’ an additional advection of vorticity and a
magnetic field. However, the fact that the averaged vorticity is additionally transported
by the drift is highly non-trivial; in particular, it contains the possibility of Langmuir
circulations (which can also be called ‘vortex dynamo’), which we consider below.

Eulerian drift (4.8) differs from a classical (Lagrangian) one, and therefore we
first demonstrate the match of (4.8) with the Stokes drift. Let the velocity field be
ũ0 = p sin τ + q cos τ , with arbitrary functions p(x, s) and q(x, s). The calculations give



MHD drift equations: from Langmuir circulations to MHD dynamo? 57

the drift velocity (4.8) as V 0 = [p, q]/2. The dimensional exact solution for a plane
potential harmonic travelling wave is

û∗
0 = Uũ0, ũ0 = exp(k∗z∗)

(
cos(k∗x∗ − τ)

sin(k∗x∗ − τ)

)
, (4.10)

where (x∗, z∗) are Cartesian coordinates and k∗ ≡ 1/L is a wavenumber. (In Stokes
(1847), Lamb (1932) and Debnath (1994) one can see that U = k∗g∗a∗/σ ∗ where a∗

and g∗ are dimensional spatial wave amplitude and gravity; however these physical
details are excessive for our analysis.) The dimensionless velocity field (4.10) is

ũ0 = ez

(
cos(x − τ)

sin(x − τ)

)
, p = Aez

(
sin x

−cos x

)
, q = Aez

(
cos x

sin x

)
, (4.11)

where all fields are unbounded as z → ∞, but that is not essential for our purposes.
The calculations yield the dimensionless and dimensional form of a drift velocity

V 0 = e2z

(
1

0

)
, V

∗

0 =
U2k∗

σ ∗
e2k∗z∗

(
1

0

)
, (4.12)

which coincides with the classical expression for a drift velocity given by Stokes

(1847), Lamb (1932) and Debnath (1994). To obtain V
∗

0 from V 0, one should take into

account the difference between t and s = t/σ . The point is that V 0 appears in (4.9),
which describes the averaged fluid motion in terms of s, not t.

5. Averaged Euler’s equations and Langmuir circulations

For h ≡ 0 the MHD drift equations (4.9) are reduced to the averaged Euler’s
equations (or the Craik–Leibovich equations):

ωs + [ω,u + V ] = 0, div u = 0. (5.1)

In order to show the link with Langmuir circulations, we note that the first of (5.1) can
be integrated in space as us+(u·∇)u+ω×V = −∇p, where p is modified pressure. Let
the zero-order flow (4.1) represent a travelling plane potential gravity wave (4.11) with
the drift velocity (4.12). Let Cartesian coordinates (x, y, z) be such that V = (U, 0, 0),
U = e2z and u = (u, v, w), where all the components are x-independent (translationally
invariant) and the x, z variables coincide with those in (4.11). Then the component
form of (5.1) can be rewritten (see Vladimirov 1985a,b) as

vs + vvy + wvz = −Py − ρΦy, ws + vwy + wwz = −Pz − ρΦz, (5.2a)

vy + wz = 0, ρs + uρx + vρy = 0, (5.2b)

where ρ ≡ u, Φ ≡ U = e2z and P is the new modified pressure. One can see that
(5.2) is mathematically equivalent to the system of equations for an incompressible
stratified fluid, written in Boussinesq’s approximation. The effective ‘gravity field’
g = −∇Φ = (0, 0, −2e2z) is non-homogeneous, which makes the analogy with a
‘standard’ stratified fluid non-complete. Nevertheless, one can see that any increasing
function ρ(z) ≡ u(z) (taken from the shear flow (u, v, w) = (u(z), 0, 0)) produces
‘Taylor’s instability of an inversely stratified equilibrium’. This leads to the growth
of longitudinal vortices and can be connected to Langmuir circulations (see Craik &
Leibovich 1976; Leibovich 1983; Craik 1985; Thorpe 2004).
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6. Discussion

Our approach (based on the two-timing method, time average and distinguished
limit) is different from the mainstream of classical MHD dynamo theory, which is
based on mean-field electrodynamics (see Moffatt 1978, 1983; Roberts & Soward
1992; Hughes & Proctor 2010) and/or the multi-scale (homogenization) theory (see
Moffatt 1978; Frisch 1985; Zheligovsky 2009). Therefore, we hope that solving the
MHD drift equations can bring qualitatively new results.

The notion of a drift is intensely used in this paper. It is known that a drift velocity
can appear from Lagrangian, Eulerian, or hybrid (Euler–Lagrange) considerations. In
our study, we use Eulerian drift, which appears after Eulerian averaging of the
governing PDEs, without directly addressing the motion of particles (see Craik &
Leibovich 1976; Craik 1985; Riley 2001; Vladimirov 2010, 2011; Ilin & Morgulis
2011). Lagrangian drift appears as the average motion of Lagrangian particles and its
theory is based on the averaging of ordinary differential equations or their solutions
(see Stokes 1847; Lamb 1932; Longuet-Higgins 1953; Batchelor 1967); the hybrid
drift coincides with the Lagrangian one (see Andrews & McIntyre 1978; Craik 1985;
Soward & Roberts 2010; Vladimirov 2010). It is also known that Lagrangian and
Eulerian drifts are not identical to each other, but the leading term V 0 (4.8) is the
same (see Vladimirov 2010).

The consideration of this paper is based on the assumption that the enforced
frequency σ ∗ (3.3) of oscillations is higher than all intrinsic frequencies; σ ∗ appears
in our theory via the prescribed zero-order term ũ0, which is potential due to the
choice of the class of flows with the vanishing zero-order mean velocity (3.11). We
emphasize that the zero-order velocity represents the only potential term, while the
resulting model (4.9) describes the first-order vorticity dynamics. The oscillatory zero-
order velocity ũ0 can be caused by different factors. For example, it can be produced
by the prescribed oscillations of boundaries or appear in the full viscous theory due
to the matching of an external flow with a boundary-layer solution. The latter option
often appears in applications (see Riley 2001; Vladimirov 2008; Ilin & Morgulis
2011).

The s-independent version of (4.6) was first discovered in the studies of Langmuir
circulations by Craik & Leibovich (1976), who used the asymptotic procedure based
on the smallness of an amplitude. Craik & Leibovich (1976) did not use the
distinguished limit, since they considered only steady flows. However, since our
equation is the same mathematically, we call (4.6) the Craik–Leibovich equation,
as it is accepted in the theory of Langmuir circulations. Two different s-independent
versions of (4.6) were obtained in the steady streaming problems by Riley (2001) and
Ilin & Morgulis (2011), who employed different (from ours) and more cumbersome
methods. This equation can also be obtained as a special case from the general
Lagrange–Euler (hybrid) consideration of Soward & Roberts (2010).

In the previous remark, we emphasized the difference between the high-frequency
asymptotic solutions and small-amplitude asymptotic solutions. The relations between
these classes of solutions were studied in Vladimirov (2011); in particular, for purely
periodic non-modulated solutions, these classes are isomorphic (any solutions from one
class can be transformed into a solution from another class).

The averaged kinematic equation (4.7) was obtained independently by Vladimirov
(2010, formula (8.69)) and by Herreman & Lesaffre (2011). There are four
differences between these results to be mentioned here: (i) the former paper employs
only standard asymptotic methods, while the latter uses deep physical analysis,
physical constructions and suggestions; (ii) these papers consider different functional
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classes/forms of solutions and, as a consequence, different definitions of averaging

operations; (iii) in Vladimirov (2010) the zero-, first- and third-order approximations

of the averaged equations have been calculated, while Herreman & Lesaffre (2011)

have obtained only the zero-order term; and (iv) the former paper aimed to obtain

the averaged equation and to describe and justify the asymptotic procedure, while the

latter paper also shows the existence of the Stokes drift dynamo.

In both Vladimirov (2010) and Herreman & Lesaffre (2011) the leading term of

a magnetic field is of zero order, while in this paper it is of first order. This

important difference appears due to the choice of the class of flows (3.11); if the

restrictions (3.11) are abolished, then the final model is different from (4.9), as derived

in Vladimirov (2011).

The mathematical justification of (4.6) by the estimation of the error in the original

equation (3.1) can be performed in a way similar to Vladimirov (2010, 2011). Such

a justification is not complete mathematically, since it produces only the errors

(residuals) of the exact equations and requires more calculations to obtain the errors of

the solutions.

One can also derive the higher approximations of the averaged equation (4.6) as

was done in Vladimirov (2010, 2011). They are especially useful for the study of

motions with V 0 ≡ 0 (see Vladimirov 2010). In this case one can show that Langmuir

circulations can still be generated by a similar mechanism.

Viscosity and diffusivity can be routinely incorporated in (4.6) and (4.7) as the right-

hand side terms ν∇2
ω1 and κ∇2h1. In fact, this has already been done for Langmuir

circulations (see Craik & Leibovich 1976; Leibovich 1983). However, some additional

small parameters might appear in the list (3.6), and therefore the distinguished limit

should be studied independently from (3.8).

In this paper, we consider periodic (in fast time variable τ ) functions. The studies

of oscillations that are non-periodic in τ might represent the next stage of research. In

fact, such a generalization has already been done for Langmuir circulations (see Craik

& Leibovich 1976; Leibovich 1983; Craik 1985).

The consideration of translationally invariant MHD motions in (4.9) can use the

isomorphism between MHD flows and stratified flows, established by Vladimirov,

Moffatt & Ilin (1996). In particular, one can consider models generalizing Langmuir

circulations of § 5.

If the boundary ∂D of the flow domain D is finite and oscillating with time, then

the Eulerian average (2.2) works only if x ∈ D at any instant. If at some instant

x 6∈ D , then the theory can be based on the ‘Taylor’s series projection’ of the boundary

condition on a mean position of boundary ∂D . Such a consideration requires the

smallness of the amplitude a∗/L of oscillatory displacements of fluid particles. One

can see that a∗ ∼ u∗/σ ∗ and hence a∗/L ∼ 1/σ ≡ ε (3.6). Therefore, the consideration

of a flow domain with oscillating walls does not contain any new small parameter, and

the distinguished limit (3.8) will stay the same.

One can make the conjecture that, since (4.6) for h ≡ 0 describes a mechanism of

Langmuir circulations (or ‘vortex dynamo’), and the mathematical structures of the

averaged equations for h ≡ 0 and h 6= 0 (4.9) are similar, then the equations with h 6= 0

could also lead to instability and a new mechanism of MHD dynamo. The recent

demonstration of the existence of the kinematic Stokes drift dynamo by Herreman &

Lesaffre (2011) can be regarded as an additional argument to support this conjecture.
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