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Abstract 

The response of beams resting on viscoelastically damped foundation under moving SDoF 

oscillators is scrutinized through a novel state-space formulation, in which a number of 

internal variables is introduced with the aim of representing the frequency-dependent 

behaviour of the viscoelastic foundation. A suitable single-step scheme is provided for the 

numerical integration of the equations of motion, and the Dimensional Analysis is applied 

in order to define the dimensionless combinations of the design parameters that rule the 

responses of beam and moving oscillator. The effects of boundary conditions, span length 

and number of modes of the beam, along with those of the mechanical properties of 

oscillator and foundation, are investigated in a new dimensionless form, and some 

interesting trends are highlighted. The inaccuracy associated with the use of effective 

values of stiffness and damping for the viscoelastic foundation, as usual in the present 

state-of-practice, is also quantified. 

 

Keywords: Dimensional Analysis. Modal Strain Energy (MSE) Method. Moving Oscillator. 

Standard Linear Solid (SLS) Model. State-Space Equation. Train-Track Interaction. 

Viscoelastic Foundation. 

 



3 

1 Introduction 

By virtue of the relevance in the analysis and design of railway tracks, the dynamic 

response of beams resting on elastic foundation and subjected to moving loads has been 

extensively investigated, and a number of experimental and numerical studies have been 

published in recent years (e.g. [1], [2] and the references provided therein). 

 The crudest approximation known to the literature is the so-called ‘moving force’ 

problem, in which the vehicle-track interaction in completely neglected, and the action of 

the vehicle is described as a concentrated force moving along the beam (e.g. [3], [4] and 

[5]). Also the case of beams on elastic foundation under moving loads has attracted 

engineers and researchers. Among the contributions published in the last decade, 

Thambiratnam and Zhuge [6] have used the Newmark integration scheme in order to 

scrutinize the effects of load speed, foundation stiffness and beam length on the dynamic 

amplification of the beam response. Felszeghy [7, 8] has analyzed the response to moving 

step loads by the Fourier transform method. Chen and Huang [9] have investigated the 

resonant velocity of infinite and finite railways subjected to harmonic loads. 

 More refined models are required when the phenomena of train-track interaction are 

dealt with. In particular, the solution of the so-called ‘moving oscillator’ problem, in which 

the vehicle is modelled as a SDoF oscillator of given mass, stiffness and damping, allows a 

qualitative evaluation of the interaction effects, which can be directly related to many 

engineering issues, e.g. damage in the track components and/or on the wheels. A reliable 

quantification of the train-track interaction necessitates, however, still more sophisticated 

approaches, in which each train vehicle is modelled as a MDoF system moving along the 

rail. In this way, for instance, the vibrations in a train crossing a railway bridge can be 

dependably predicted (e.g. [10] and [11]). 

 Despite the accuracy in modelling the train vehicles, however, the railway tracks are 

often handled with a very crude approximation, as elastic beams resting on a bed of elastic 

springs with a purely viscous damping. Actual tracks, on the contrary, exhibit a dynamic 

behaviour which may be much more complicated, with frequency-dependent stiffness and 

damping. As an example, this is the case of the track in the Milan subway, where a single 
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elastomeric pad is placed under the base-plate with the aim of mitigating the vibrations 

experienced by vehicles and track components [12]. In these situations the assumption of a 

mere viscous damping is inadequate, and more accurate rheological models should be 

considered in representing the viscoelastic behaviour of the foundation. 

 In the frequency domain the application of viscoelastic models is quite straightforward, 

and the mechanical impedance of a given track configuration can be easily evaluated once the 

properties of the elastomeric components are assigned. The vehicle-track interaction, however, 

lends itself to be effectively studied in the time domain. To do this, the equations governing 

the dynamic equilibrium of running vehicles and supporting track have to be coupled with the 

equations ruling the state variables of the viscoelastic components. 

 In this paper, the dynamic response of elastic beams resting on viscoelastically 

damped foundation to moving SDoF oscillators is coped with. The oscillator-beam-

foundation interaction is investigated via a novel state-space formulation, in which the 

state variables are: the relative displacement and the relative velocity of the moving 

oscillator; the modal displacements and the modal velocities of the beam-foundation sub-

system; the additional internal variables associated with the frequency-dependent response 

of the viscoelastic foundation. 

Once the governing state-space equation is established, an effective single-step 

scheme is provided for the numerical integration. The Dimensional Analysis is successively 

applied in order to highlight the dimensionless combinations of the design parameters that 

control the response of the system under consideration. In the numerical examples, finally, 

the effects of boundary conditions, span length and number of modes of the supporting 

beam, along with those of the mechanical properties of moving oscillator and viscoelastic 

foundation are scrutinized, and some interesting trends are discussed. 

 

2 Equations of motion 

Let us considerer the dynamic system shown in Figure 1, made of a SDoF oscillator 

moving along an elastic beam resting on viscoelastic foundation.  
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 The oscillator is made of a lumped mass, vm , connected at one point only to the 

beam through a linear suspension. The latter is idealized as a Kelvin-Voigt element, made 

of an elastic spring, vk , in parallel with a viscous dashpot, vc . The position of the oscillator 

along the beam at a generic time instant, t , is described by the time law v( )x x t= . 

 The beam is homogeneous, and extends from 0x =  to 
b

x L= . For the sake of 

simplicity, the Euler-Bernoulli model is assumed for the kinematics of the beam, although 

the extension to the Timoshenko model is quite easy. In addition to the span length, 
b

L , 

the mechanical parameters of the beam involved in the dynamic analysis are: the area, 
b

A , 

and the second moment, 
b

J , of the cross section; the mass density, 
b

ρ , and the Young 

modulus, 
b

E , of the material; the damping ratio, 
b
ζ , which is thought to be constant in all 

the modes of vibration of the beam. 

 The foundation is homogeneous too, and is represented in Figure 1 as a bed of springs, 

even if the response of these springs is assumed to be viscoelastic rather than purely elastic. 

The behaviour of the foundation, then, is fully defined by the dynamic stiffness, 
f
( )K ω , which 

is a complex-valued function of the circular frequency, ω  (e.g. [13] and [14]). 

 In a first stage, the moving oscillator and the elastic beam on viscoelastic 

foundation are handled as two non-interacting dynamic sub-systems, whose equations of 

motion are independently derived (Sections 2.1 and 2.2). In a second stage, the equilibrium 

and the compatibility conditions at the position of the moving oscillator are used in 

coupling the equations of motion (Sections 2.3 and 2.4), in so re-establishing the dynamic 

interaction among the two sub-systems. 

 

2.1 Vibration of the beam 

The motion of the beam in Figure 2a is governed by the partial differential equation: 

″″
b b b b b f

( , ) ( , ) ( , ) ( , ) ( ) ( , )A u x t E J u x t D x t f x t K u x tρ ω+ + = −  (1) 

where the over-dot and the prime stand for the partial derivatives with respect to the time, t , 

and to the abscissa, x , respectively; ( , )f x t  and ( , )u x t  describe the time-dependent fields of 

transverse loads and transverse displacements, respectively; and 
b
( , )D x t  is the term associated 
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with the viscous damping in the beam. It is worth noting that Eq. (1) has been conveniently 

written in the so-called ‘mixed’ time-frequency domain, in which the dependence on the 

vibration frequency of the beam-foundation sub-system (also referred in this study as the 

‘continuum’) is easily showed. Even if formally not rigorous, this way of writing the equations 

of motion allows to directly introduce the dynamic stiffness, which is the most popular 

experimental description of the viscoelastic components. 

 Once the motion of the beam is projected into the modal space, the field of the 

transverse displacements can be expressed as linear combination of the modal displacements:  

( , ) ( ) ( )i ii
u x t x q tφ= ∑  (2) 

where ( )i xφ  is the i -th modal shape of the continuum, and ( )iq t  is the associated modal 

displacement, which is ruled by the ordinary differential equation:  

b2
b 0

( ) 2 ( ) ( ) ( , ) ( )d ( )
L

i i i i i i iq t q t q t f x t x x F tζ ω ω φ+ + = −∫  (3) 

( )iF t  being the i -th modal force arising from the reaction of the viscoelastic foundation, 

f
( ) ( , )K u x tω , from which the purely elastic portion, 

f
(0) ( , )K u x t , is subtracted; that is:  

f f

b b

( ) (0)
( ) ( )i i

K K
F t q t

A
ω
ρ
−

=  (4) 

where the equilibrium modulus, 
f
(0)K , is the stiffness of the foundation under static loads.  

 Once the boundary conditions are assigned, the i -th modal shape, ( )i xφ , and the i -

th modal circular frequency, iω , appearing in Eqs. (2) and (3) can be evaluated as solution 

of the eigenproblem: 

b b f

b b b b

(0)
( ) ( ) ;i i i i i

E J K
x x

A A
φ α φ ω α

ρ ρ
′′′′ = = +  (5) 

with the usual ortho-normal condition:  

b

b b 0
( ) ( )d

L

i k ik
A x x xρ φ φ δ=∫  (6) 
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ik
δ  being the Kronecker delta. It is worth noting that, since beam and foundation are 

homogeneous, the modal shape ( )i xφ  and the eigenvalue iα  in the first of Eqs. (5) do not 

depend on the equilibrium modulus of the foundation; on the other hand, according to the 

second of Eqs. (5), the modal circular frequency iω  increases with 
f
(0)K .  

 Eqs. (3) and (5) have been derived by extending to the case of continuous structures 

with distributed viscoelastic damping the method recently proposed by Palmeri et al. [15] 

for the modal analysis of steel frames provided with viscoelastic dampers. The method 

allows to carry out the dynamic analysis of structures with viscoelastic damping in a 

‘consistent’ modal space, in which the actual rheological behaviour of the viscoelastic 

components is properly taken into account. Accordingly, the modal oscillators of a 

viscoelastically damped structure are SDoF dynamic systems featuring a damping which is 

viscoelastic rather than viscous. In Eq. (3), in particular, the modal force ( )iF t , given by 

Eq. (4), accounts for the effects of the frequency-dependent behaviour of the viscoelastic 

foundation on the i -th mode of vibration. When the viscoelastic components are 

distributed proportionally to mass and/or elastic stiffness of the structure, like in the 

beam-foundation sub-system considered in this study, the viscoelastic damping is ‘classic’. 

The modal oscillators, then, vibrate independently, and the modal equations are 

uncoupled. The mathematical conditions to perfectly uncouple the modal equations can be 

found in Reference [16], in which the well-know Caughey–O’Kelly condition [17] is 

generalized to the case of viscoelastic damping. 

 

2.2 Vibration of the oscillator 

The vertical vibration of the SDoF oscillator of Figure 2b, moving along the beam, is ruled by: 

v a v v v( ) ( ) ( )m v t c v t k v t m g+ + =  (7) 

where a( )v t  is the absolute vertical acceleration of the mass of the oscillator, vm ; ( )v t  and 

( )v t  are the relative vertical displacement and velocity between oscillator and beam, 

respectively; and g  is the intensity of the surrounding gravitational field. 
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When the oscillator is in contact with the beam ( v b
0 ( )x t L≤ ≤ ), the absolute 

acceleration a( )v t  is the sum of the relative acceleration, ( )v t , and of the acceleration of 

the beam at the contact point, given by 2 2
vd ( ( ), ) du x t t t ; otherwise absolute and relative 

accelerations coincide, i.e. a( ) ( )v t v t≡ . Eq. (7), then, can be rewritten as:  

2
2

v v v v v2

d( ) 2 ( ) ( ) ( ) ( ( ), )
d

v t v t v t g t u x t t
t

ζ ω ω+ + = −ϒ  (8) 

where v v vk mω =  and v v v v(2 )c mζ ω=  are the circular frequency and the viscous 

damping ratio of the moving oscillator; and v( )tϒ  is a window function, which gives 1 

when oscillator and beam are in contact, 0  otherwise:  

v v vb( ) ( ( )) ( ( ))t U x t U L x tϒ = −   

( )U x  being the unit step function; that is: ( ) 1U x =  when 0x ≥ , ( ) 0U x =  otherwise. 

 

2.3 Compatibility  

Eq. (8) satisfies the compatibility between the vibrations of supporting beam and moving 

oscillator, which is forced by the total acceleration of the continuum at the contact point. 

Since the latter moves along the beam according to the time law v( )x x t= , the total 

derivative in the r.h.s. of Eq. (8) brings:  

2
v v v

2
v v v v v v v v

( ) 2 ( ) ( )

( ) ( ( ), ) 2 ( ( ), ) ( ) ( ( ), ) ( ) ( ( ), ) ( )

v t v t v t g

t u x t t u x t t x t u x t t x t u x t t x t

ζ ω ω+ + =

⎡ ⎤′ ′′ ′−ϒ + + +⎢ ⎥⎣ ⎦
 (9) 

Then, substitution of Eq. (2) into Eq. (9) gives:  

{ }2
v v v v v v( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i ii

v t v t v t g M t q t C t q t K t q tζ ω ω+ + = − + +∑  (10) 

where the modal time-dependent coefficients v vv ( ) ( ( )) ( )i iM t x t tφ= ϒ , 

v ( )iC t = v v v2 ( ( )) ( ) ( )i x t x t tφ′ ϒ  and 2
v v v v vv ( ) [ ( ( )) ( ) ( ( )) ( )] ( )i i iK t x t x t x t x t tφ φ′′ ′= + ϒ  are the 

mass, the viscous damping and the elastic stiffness, respectively, with which the i -th mode 

of the beam-foundation sub-system is coupled with the moving oscillator. 
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2.4  Equilibrium 

In order to satisfy the equilibrium between continuum and oscillator, the field of the 

transverse loads on the beam in Eq. (3), ( , )f x t , is now expressed as the force in the 

suspension of the oscillator, localized at the contact point (see Fig. 2):  

v v v v( , ) ( ) ( ) ( ) ( ( ))f x t k v t c v t t x x tδ⎡ ⎤= + ϒ −⎢ ⎥⎣ ⎦  (11) 

where ( )xδ  is the Dirac delta function. Then, substitution of Eq. (11) into Eq. (3) gives:  

2
v v v v( ) 2 ( ) ( ) ( ) ( ) ( ) ( ( )) ( )i i i i i i i iq t q t q t t k v t c v t x t F tζ ω ω φ⎡ ⎤+ + = ϒ + −⎢ ⎥⎣ ⎦  (12) 

which shows that the moving oscillator forces the i -th mode of the continuum proportionally 

with v( ( ))i x tφ , which is the value of the i -th modal shape at the contact position. 

 

3 Modelling the viscoelastic foundation 

In the previous section the equations governing the coupled vibrations of moving oscillator 

and supporting beam on viscoelastic foundation are established, with the aim of simulating 

the dynamic interaction among train vehicles and railway track. A key aspect in this 

interaction proves to be the modelling of the track, where a central role is played by the 

elastomeric components, particularly in the case of non-ballasted tracks (e.g., Bruni and 

Collina [12] and references given therein). In this circumstance the use of a Kelvin-Voigt 

model, with equivalent values of elastic stiffness and viscous damping, cannot be 

considered fully adequate, since it is unable to reproduce the actual frequency-dependent 

behaviour of elastomeric components. 

 

3.1 Rheological models 

In the paper by Bruni and Collina [12], as an example, a non-ballasted track configuration, 

widely adopted in the Milan subway, has been experimentally and numerically investigated. In 

this configuration an additional viscoelastic damping is provided by a single elastomeric pad, 

which is placed under the base-plate (a sketch is displayed in Ref. [12]). It is found that simple 
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rheological models, given by the combinations of a few elementary components (elastic springs 

and viscous dashpots) allow to accurately reproduce the dynamic behaviour of the track. 

Accordingly, in the following the so-called Standard Linear Solid (SLS) model, depicted 

in Figure 3a, is considered in representing the viscoelastic behaviour of the foundation. This 

model depends on three parameters only, being made of the elastic spring 0K , which gives the 

equilibrium modulus, and of a single Maxwell element in parallel, which is characterized by 

the stiffness 1K  and the relaxation time 1 1 1C Kτ = . The combination rules for series and 

parallel chains allow evaluating the dynamic stiffness of the SLS model as:  

1
0 1

1

( )
j

K K K
τ ω

ω
τ ω

= +
−

 (13) 

j 1= −  being the imaginary unit. Of course, more refined models, e.g. involving more than 

one Maxwell element (e.g. [18]), could be required in the real life. However, the extension of 

the proposed approach is quite straightforward; moreover, the simple SLS model is able to 

capture the main features of a wide variety of elastomeric materials of practical application. 

Finally, one can also show that the SLS model is perfectly equivalent to the so-

called elementary Zener model, depicted in Figure 3b and suggested in Ref. [12], once the 

four parameters 1k , 2k , 3k  and 1c  are properly set. Notice that, even if effective, the Zener 

model results to be over-parameterized, i.e. one stiffness among 1k , 2k  and 3k  is 

redundant. The SLS model, then, should be preferred in practical applications. 

 

3.2 State equations 

In the mixed time-frequency domain, the force-displacement relationship for any linear 

viscoelastic model can be posed in the form (e.g. Refs. [13] and [14]): 

( ) ( ) ( )F t K U tω=   

where ( )U t  is the time history of the displacement measured at the free end of the model, 

and ( )F t  is the time history of the total force experienced by the model, including the 

purely elastic portion, 0(0) ( ) ( )K U t K U t= . When the latter is removed, one obtains:  
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0 0( ) ( ) ( ) ( ) ( )F t F t K U t K K U tω⎡ ⎤= − = −⎣ ⎦  (14) 

which is in the same form as in Eq. (4). 

 When a linear viscoelastic model is obtained as chain of springs and dashpots, the force 

( )F t  can be expressed as a linear combination of a certain number of state variables, ruled by 

linear equations. In the case of the SLS model, in particular, the state equations are well-

known to the literature (e.g. Palmeri et al. [18]), and can be posed in the form:  

1
1 1 1

1

( )
( ) ( ) ; ( ) ( )

t
F t K t t U t

λ
λ λ

τ
= = −  (15) 

where 1( )tλ  is an additional internal variable, measuring the strain in the spring 1K  of the 

single Maxwell element. It is worth noting that no approximations are introduced in this 

way, since Eqs. (15) give the exact reaction force experienced in the Maxwell element. 

 

4 State-space formalism 

In previous sections the equations governing the modal responses of the continuum (Eq. (12)), 

the vibration of the oscillator (Eq. (10)) and the response of the SLS viscoelastic model (Eqs. 

(15)) are established. Aim of this section is to couple these equations in a compact state-space 

form. Afterwards, an effective numerical scheme is provided which enables the dynamic 

responses of continuum and oscillator to be simultaneously evaluated in the time domain. 

 

4.1 Coupled equations of motion 

In a first stage Eqs. (12) and (10) can be posed in a matrix form, once the state arrays 
T

( ) ( ) ( )i i it q t q t⎡ ⎤= ⎢ ⎥⎣ ⎦z  for the i -th mode of the supporting beam-foundation sub-system and 
T

v( ) ( ) ( )t v t v t⎡ ⎤= ⎢ ⎥⎣ ⎦z  for the moving oscillator are defined. In doing so, Eq. (12) brings:  

vv( ) ( ) ( ) ( ) ( )i i i i it t t t F t= + −z D z D z v  (16) 

where:  

v v2 v
v v

0 1 0 0 0
; ( ) ( ( )) ( ) ;

12i i i
i i i

t x t t
k c

φ
ω ζ ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ϒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
D D v   
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Analogously, after some algebra, Eq. (10) brings:  

T
v v v v v( ) ( ) ( ) ( ) ( ) ( )i i i ii

t t g t t M t t⎡ ⎤= + + −⎢ ⎥⎣ ⎦∑z D z v D z v v z  (17) 

where:  

v 2 v
v v v v v

0 1 0 0
; ( )

( ) ( )2 i
i i

t
K t C tω ζ ω

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥− −− −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
D D   

In order to eliminate in the r.h.s. of Eq. (17) the time derivative of the modal state arrays 

( )i tz , Eq. (16) is substituted, so giving:  

v v v v v( ) ( ) ( ) ( ) ( ) ( ) ( )i i i ii i
t t t t t g M t F t⎡ ⎤= + + + ⎢ ⎥⎣ ⎦∑ ∑z D z D z v v  (18) 

where:  

T T
v v v v v v v( ) ( ) ( ) ; ( ) ( ) ( )i i i i i ii

t M t t t t M t= − = −∑D D v v D D D v v D   

 In a second stage, the comparison between Eqs. (4), (14) and (15) shows that an 

additional internal variable, namely 1( )i tλ , has to be introduced for the i -th mode of 

vibration of the continuum. As a consequence, when the first m  modes are retained in the 

dynamic analysis, m  additional internal variables, i.e. 11( )tλ , 21( )tλ ,  and 1( )m tλ , have 

to be considered. By using these new quantities, the i -th modal force associated with the 

reaction of the foundation, ( )iF t , can be expressed as:  

1
1( ) ( )i i

b b

K
F t t

A
λ

ρ
=  (19) 

where 1( )i tλ  can be viewed as the strain in the spring 1K  of the SLS model (Fig. 3a) associated 

with the effects of the viscoelastic foundation on the i -th mode of vibration of the beam. By 

virtue of the second of Eqs. (15), moreover, this additional internal variable is ruled by:  

1
1

1

( )
( ) ( ) i

ii

t
t q t

λ
λ

τ
= −  (20) 
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Eqs. (16), (18), (19) and (20) have to be solved simultaneously. To this end, let us 

considerer the super-array listing the state variables of the coupled oscillator-beam-foundation 

system:  

TT T T
v 1 11 1( ) ( ) ( ) ( ) ( ) ( )m mt t t t t tλ λ⎡ ⎤= ⎢ ⎥⎣ ⎦z z z z  (21) 

which is ruled by the state-space equation: 

( ) ( ) ( )t t t= +z D z f  (22) 

where the time-dependent dynamic matrix, ( )tD , and the constant forcing array, f , take 

the expressions:  

vv1 1 1
v vv1

1 T
1v 1

T
1

v

T
1

T
1

( ) ( )
( ) ( ) ( )

( )
0 0

( ) ;
0 0( )

0
[0 0] 1

0
[0 0] 1

m
m

b b b b

b b

m m
b b

M t K M t K
t t t

A A g
K

t
A

t K
t

A

ρ ρ

ρ

ρ

τ

τ

⎡ ⎤
⎢ ⎥ ⎡⎢ ⎥ ⎢⎢ ⎥ ⎢⎢ ⎥ ⎢⎢ ⎥− ⎢⎢ ⎥ ⎡ ⎤⎢⎢ ⎥ ⎢ ⎥⎣ ⎦⎢⎢ ⎥ ⎢⎢ ⎥ ⎢⎢ ⎥ ⎢⎢ ⎥= = ⎢⎢ ⎥ ⎡ ⎤⎢−⎢ ⎥ ⎢ ⎥⎣ ⎦⎢⎢ ⎥ ⎢⎢ ⎥ ⎢⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎣⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

D D D v v
v

D D v

D f
D D v

v

v

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦

 (23) 

When the initial conditions of the system are assigned, 0(0) =z z , along with the time law 

for the moving oscillator, v( )x x t= , the solution of Eq. (22) furnishes at once the dynamic 

responses of beam, foundation and oscillator. Since the classical incremental solutions do 

not apply when the dynamic matrix is time-dependent, an efficient numerical scheme is 

proposed in the next sub-section. 

 

4.2 Numerical scheme 

Eq. (22) constitutes a set of 3 2m +  first-order non-homogeneous linear differential equations, 

with time-dependent coefficients. The solution can be expressed in integral form as [19]: 
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0 0
( ) ( , 0) ( , )d

t
t t t τ τ⎡ ⎤= + ⎢ ⎥⎣ ⎦∫z z fΘ Θ  (24) 

where 0z  is the array listing the initial conditions of the state variables, and ( , )t τΘ  is the 

two-time transition matrix associated with the time-dependent dynamic matrix ( )tD , given 

by the first of Eqs. (23). Unfortunately, Eq. (24) is not useful in practical applications, as 

numerical evaluation of the transition matrix and implementation of the convolution 

integral are too cumbersome. 

The solution of Eq. (22), then, can be sought by the single-step scheme herein 

presented. Let the time axis be subdivided into ‘small’ intervals of equal length, t∆ . More 

precisely, t∆  should be sufficiently small when compared with the time scales of oscillator, 

beam, foundation and time law of the transit, e.g.:  

{ }
b

1
v v

1 2 1 2 1 1min , , ,
8 8 5 50 max ( )m

L
t

x t
π π τ
ω ω

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪∆ = ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
  

where v2π ω  and 2 mπ ω  are the undamped periods of vibration of the moving oscillator and 

of the higher mode of the continuum, respectively; 1τ  is the relaxation time of viscoelastic 

foundation; and { }vmax ( )x t  stands for the maximum speed of the oscillator along the beam. 

Since t∆  is small, in the n -th time interval, 1,n nt t +
⎡ ⎤⎢ ⎥⎣ ⎦ , being nt n t= ∆ , the dynamic 

matrix can be assumed to be constant without appreciable loss of accuracy. In particular, let 

the n -th dynamic matrix to be ( /2)n nt t= + ∆D D , i.e. the coefficients of nD  take the values 

at the midpoint of the n -th time interval. In this interval, then, Eq. (22) can be re-written as:  

[ ] 1( ) ( ) ( ) ( ) ,n n n nt t t t t t t += + − + ≤ ≤z D z D D z f  (25) 

Eq. (25) can be conveniently viewed as a state-space equation with time-independent 

coefficients, forced by the constant array f  and by an extra time-dependent term, 

[ ]( ) ( )nt t−D D z . The key point of the proposed numerical scheme is the assumption that this 

term varies linearly in the n -th time interval. Hence, the state arrays at the beginning, 

( )n nt=z z , and at the ending, 1 1( )n nt+ +=z z , can be related via the implicit equation:  
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[ ]01 1 1 1( ) ( )n n n n n n nnn n n nt t+ + +
⎡ ⎤= + + − + −⎢ ⎥⎣ ⎦z z L f D D z D D zΘ Γ Γ  (26) 

where the n -th transition matrix nΘ  can be easily computed as the exponential matrix of 

n t∆D  [19]: 

expn n t⎡ ⎤= ∆⎢ ⎥⎣ ⎦DΘ   

and where the matrices nL , 0nΓ  and 1nΓ  are given by [20]:  

( ) ( ) ( )1 1 11 1
03 2 1 3 2; ;n n n n n n n nt tnm n m

− − −
∆ ∆+ += − = − = −L I D L D L I DΘ Γ Θ Γ   

3 2m+I  being the identity matrix of size 3 2m + . According to Muscolino [21], Eq. (26) can 

be solved with respect to 1n+z : 

1
ˆˆ

n n nn+ = +z z L fΘ  (27) 

where the ‘modified’ matrices ˆ
nΘ  and ˆ

nL  are given by:  

[ ]{ }0
ˆˆ ( ) ;n n n n n n n nn t= + − =J D D L J LΘ Θ Γ   

being { } 1

3 2 1 1( )n nm n nt
−

+ +
⎡ ⎤= − −⎢ ⎥⎣ ⎦J I D DΓ . 

 

5 Dimensionless combinations of the design parameters 

The generic response of the dynamic system considered in this paper, e.g. the peak deflection 

of the supporting continuum or the maximum vertical acceleration experienced by the moving 

oscillator, can be viewed as an output variable, 0Q , which is a function of a large number of 

input variables, 1Q … rQ . The application of the Dimensional Analysis (see Appendix II), 

then, allows defining the dimensionless combinations of the design parameters which rule the 

response. As a result, the dependence on the input variables can be suitably simplified.  

According to the procedure summarized in Appendix II, the complete set of the input 

variables in our problem is initially identified. The first input variable is the acceleration of 

gravity, -2[ ] = LTg . For the beam we have four input variables: mass per unit length, 
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-1
b b

L MAρ⎡ ⎤ =⎢ ⎥⎣ ⎦ ; flexural stiffness, 3 2
b b

L MTE J −⎡ ⎤ =⎢ ⎥⎣ ⎦ ; span length, b LL⎡ ⎤ =⎣ ⎦ ; and damping 

ratio, b 1ζ⎡ ⎤ =⎣ ⎦  (dimensionless). Three for the oscillator: mass, [ ]v Mm = ; undamped circular 

frequency of vibration, [ ] 1
v rad Tω −=  (radians are dimensionless); and damping ratio, 

[ ]v 1ζ = . Three for the foundation, described by the SLS model: equilibrium modulus, 
1 2

0 L MTK − −⎡ ⎤ =⎣ ⎦ ; stiffness of the Maxwell element, 1 2
1 L MTK − −⎡ ⎤ =⎣ ⎦ ; and relaxation time, 

1 Tτ⎡ ⎤ =⎣ ⎦ . Finally, in the simplest case where the speed vx  of the oscillator is constant, there is 

one more input variable: the travelling time, vtr b / TT L x⎡ ⎤= =⎣ ⎦ . Altogether, then, 12r =  

input variables (design parameters) rule the response in our study, whose dimensions are in 

the form [ ] L M TN N Nil im it
iQ =  ( 1, ,i r= ), where L , M  and T  are base units of length, 

mass and time, respectively. Among the several suitable choices, the 3s =  input variables 

b bAρ , 
b b

E J  and g  are selected in constituting the complete subset of dimensionally 

independent variables. In practical railway applications, in fact, b bAρ  and 
b b

E J  are 

preventively selected, and 29.81m/sg =  takes a fixed values. 

 Once the dimensionally independent variables are chosen, Eq. (A.34) is applied in 

order to define the independent dimensionless combinations: 3
1 b b b b b

L A g E JρΠ = , which 

controls the span length of the supporting beam; 2 b
ζΠ =  (the damping ratio is 

dimensionless); ( )2 23
v3 b b b bm g A E JρΠ = , which gives the dimensionless mass of the 

moving oscillator; ( )46
v4 b b b bE J A gω ρΠ = , which measures the circular frequency of the 

oscillator in radians; v5 ζΠ = ; ( )46
tr6 b b b b

T A g E JρΠ = , which gives the travelling time of 

the moving oscillator; ( )4
3

07 b b b bK E J A gρΠ =  and ( )4
3

8 1 b b b bK E J A gρΠ = , whose 

values control the stiffness of the foundation; ( )46
9 1 b b b b

A g E Jτ ρΠ = , which gives the 

relaxation time of the foundation. 

 

6 Numerical examples 

The numerical scheme of Eq. (27), implemented in a Mathematica 4.0 [22] code, is applied in 

order to scrutinize the effects of the design parameters on the dynamic response of the 

oscillator-beam-foundation system. It is also quantified the inaccuracy associated with the use 

of an equivalent Kelvin-Voigt model in representing the viscoelastic foundation. To do this, 

the so-called Modal Strain Energy (MSE) method is applied (see Appendix I). Noticeably, the 
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MSE method, originally proposed by Johnson and Kienholz [23] for the analysis of structures 

with constrained viscoelastic layers, is the most popular one in the dynamic analysis of 

viscoelastically damped structures. Even though straightforward, however, this method proves 

to be inaccurate is some engineering situations (e.g., Refs. [15], [24] and [25]), and then should 

be carefully adopted.  

 

6.1 Numerical values of the design parameters 

In the numerical analyses the beam is assumed to be the UIC60 European high-speed rail, 

which has the following properties [9]: 3
b 7850 kg/mρ = , 7 2

b 2.00 10 N/cmE = × , 
2

b 76.9 cmA = , 4
b 3060 cmJ = . Since all these quantities are used in defining the subset of 

dimensionally independent variables in our problem, the dimensionless results displayed in 

the following can be directly extended to different track configurations once the current 

values of mass per unit length, b bAρ , and flexural stiffness, b bE J , are considered.  

Both Simply-Supported (SS) and Clamped-Clamped (CC) boundary conditions are 

investigated. In our analyses the span length, 
b

L , varies from 5  to 40 m : for actual track 

configurations, in fact, convergence studies prove that beams of span length b 10 mL ≥  can 

accurately approximate the response of the ideal beam of infinite length [6]. Then, the first 

dimensionless combination, 1 b
LΠ ∝ , varies from 0.230  (‘short’ beam) to 1.84  (‘long’ 

beam). The damping ratio of the beam is assumed to be zero, i.e. 2 0Π = . 

The mass of the moving oscillator vm  is assumed to vary from 100  to 500 kg : as a 

consequence the third dimensionless combination, v3 mΠ ∝ , varies from 0.0761 (‘light’ 

oscillator) to 0.380  (heavy oscillator). The fundamental circular frequency of actual train 

vehicles, vω  in our simple model, varies from 5  to 25 rad/s ; accordingly, the fourth 

dimensionless combination, v4 ωΠ ∝ , varies from 7.45  (‘flexible’ oscillator) to 37.3 rad  (‘stiff’ 

oscillator). Also the damping ratio of the oscillator is assumed to be zero, i.e. 5 0Π = . The 

travelling time, trT , is assumed to be one second, and then the sixth dimensionless 

combination, tr6 TΠ ∝ , takes the constant value 0.671. 

According to Ref. [6], the equilibrium modulus of the rail foundation, 0K , varies from 
65.20 10×  to 7 23.54 10 N/m× . As a consequence, the seventh dimensionless combination, 
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07 KΠ ∝ , varies from 51.91 10×  (‘soft’ foundation) to 61.30 10×  (‘stiff’ foundation). The 

viscoelastic behaviour of the foundation is governed by the last two dimensionless 

combinations, ( )08 1 7K KΠ = Π  and 9 1τΠ ∝ . In order to define realistic values of these 

quantities, we refer to the experimental results displayed in Ref. [12], in which ‘low-frequency’ 

tests show that the equivalent stiffness (the ‘storage modulus’) of the elastomeric pad, 

fRe ( )K ω⎡ ⎤⎣ ⎦ , monotonically increases with the frequency of vibration, approximately from 
72.0 10 N/m×  at 31.4 rad/sω = , to 72.7 10 N/m×  at 628 rad/sω = . These can be 

assumed as the limiting values of the storage modulus when the frequency goes to zero 

(equilibrium modulus) and when the frequency goes to infinity, respectively. When the 

elastomeric foundation is modelled with the SLS model (Eq. (13)) we have 0f
(0)K K=  and 

( )
0 1f

K K K∞ = + , from which one computes 7
0 2.0 10 N/mK = ×  and 7

1 0.7 10 N/mK = × . 

If the ratio 01 0.7 2.0 0.35K K = =  is assumed to be constant, it follows that 8 70.35Π = Π . 

More complicated is the assessment of the last dimensionless combination. The 

experimental results presented in Ref. [12], in fact, demonstrate that the elastomeric pad used 

in the Milan subway is almost ‘hysteretic,’ as the ‘loss factor’ of the foundation, 

f f f( ) Im ( ) Re ( )K Kη ω ω ω⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ , increases slowly with the vibration frequency, approximately 

from 0.15  at 31.4 rad/sω =  to 0.21 at 628 rad/sω = . Recent studies demonstrated that 

the use of more refined state-space viscoelastic models, e.g. the ‘Generalized Maxwell model’ 

[26] and the LPA (Laguerre Polynomial Approximation) technique [27], enable the time-

domain dynamic analysis of linear hysteretic structures. Since the SLS model is too simple to 

accurately fit the experimental data, nevertheless in our analyses it is assumed that the 

relaxation time varies from 0.001 to 1s , in so covering all the situations of practical interest; 

as a consequence, the dimensionless combination 9Π  varies from 46.71 10−×  to 0.671. 

 

6.2 Eigenproperties of the continuum: effects of boundary conditions and span length 

The eigenproperties (modal frequencies and modal shapes) of the beam-foundation sub-

system are evaluated according to Eqs. (5) and (6). Once the boundary conditions of the 

beam at 0x =  and 
b

x L=  are specified, the first of Eqs. (5) gives modal shapes and 
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characteristic equation. In particular, when the beam is Simply Supported (SS) at the 

ends, the i -th modal shape takes the expression: 

( )b
( ) sin , 1,2,i i ix A x L iφ γ= =  (28) 

and the characteristic equation is sin( ) 0γ = , whose non-trivial solutions are i iγ π= . 

When the beam is Clamped-Clamped (CC) at the ends, the i -th modal shape is:  

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }

b b

b b

( ) sin sinh cos cosh

cos cosh sin sinh , 1,2,

i i i i i i

i i i i

x A x L x L

x L x L i

φ γ γ γ γ

γ γ γ γ

⎡ ⎤⎡ ⎤= − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤− − − =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (29) 

and the characteristic equation is cos( )cosh( ) 1γ γ = , whose non-trivial solutions should be 

numerically computed: 1 4.73γ = , 2 7.85γ = ,  (notice that (2 1) /2i iγ π≅ +  for 2i > ). 

In both Eqs. (28) and (29) iA  is merely a normalization constant, whose value can be 

computed via Eq. (6) when i k= . In Figure 4 (top rows) the first six modal shapes of the 

beam for both SS (solid line) and CC (dashed line) boundary conditions are depicted in a 

dimensionless form; for each mode the values of the coefficients iγ  are also displayed. 

Once the dimensionless coefficients iγ  are evaluated, the i -th eigenvalue in the first 

of Eqs. (5) takes the expression: 

4b b
4

b b b
i i

E J
A L

α γ
ρ

=  

Since its dimensions are -2[ ] = Tiα , the associated dimensionless value proves to be:  

4
43 4

b b b b
3 4 4

1b b b b b

i i
i

E J E J
A g A g L

γ γ
α

ρ ρ

⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜⎟⎜ ⎟⎜= =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎟⎜Π⎟⎟⎜ ⎝ ⎠⎝ ⎠
 

where 1Π  accounts for the mechanical characteristics of the beam, and the coefficients iγ  

depend only on its boundary conditions. 

 The second of Eqs. (5) allows now evaluating the modal circular frequencies of the 

continuum. The i -th dimensionless value is given, in compact form, by:  
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( )
4 4

4 0 b b6 3 4 7b b b b
1 1b b b b

i i
i

E JK
E J A g

A A g
γ γ

ω ρ
ρ ρ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= + = + Π⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜Π Π⎝ ⎠ ⎝ ⎠
 (30) 

It is worth noting that the parametric investigation presented in the previous sub-section 

demonstrates that for the first modes of vibration the prevailing term in the r.h.s. of Eq. 

(30) is the dimensionless combination 7Π , which increases with the foundation stiffness. 

The effects of boundary conditions and span length of the beam, which is measured 

by the dimensionless combination 1Π , are then investigated. In Figure 4 (centre rows) the 

dimensionless values of the first six modal circular frequencies (Eq. (30)) are displayed for 

1Π  varying from 0.230  to 1.84 , while the foundation is assumed to be soft (i.e. 
5

7 1.91 10Π = × ). Interestingly, this analysis reveals that when 1 1.00Π ≥  (i.e. 
b

21.8mL ≥  

in the case of the selected UIC60 rail) the first three modal frequencies approach 

asymptotic values which are independent of the boundary conditions. The convergence is 

slightly slower when higher modes are considered.  

For the comparison purposes, Eqs. (A.31) and (A.32) are also applied in order to 

compute the equivalent values of circular frequencies, iω , and damping ratios, iζ , given by the 

MSE method. These quantities reveal the same tendency, i.e. when 1 1.00Π ≥  the asymptotic 

values are approached. In the following, then, the numerical analyses are conducted with 

1 1.00Π = . Moreover, given that the boundary conditions do not affect appreciably the 

eigenproperties of the continuum, in the following the beam is assumed to be SS at the ends. 

Figure 4 (centre rows) demonstrates also that the equivalent circular frequencies iω  in 

the MSE method are everywhere greater than the corresponding circular frequencies iω , as 

the viscoelastic damping in the foundation induces an apparent increase in the stiffness of the 

system. Finally, Figure 4 (bottom rows) shows that the effective damping ratio iζ  provided by 

the viscoelastic foundation is slightly higher in the case of SS beams; furthermore, iζ  tends to 

increase with the span length and to decrease in the higher modes. 

  

6.3 Eigenproperties of the continuum: effects of the foundation characteristics 

The effects of the dimensionless combinations 7Π  (equilibrium modulus) and 9Π  

(relaxation time), which fully characterize the viscoelastic foundation, are scrutinized in 
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this sub-section. For the limiting values of the equilibrium modulus, i.e. 5
7 1.91 10Π = ×  

(soft foundation, solid line) and 6
7 1.30 10Π = ×  (stiff foundation, dashed line), Figure 5 

shows in log-linear form how dimensionless modal frequencies (centre rows) and effective 

damping ratios (bottom rows) vary with the relaxation time. 

The plots reveal that the equivalent modal circular frequencies in the MSE method, 

iω , increase monotonically with the relaxation time, approaching the asymptotic value for 

9 0.01Π >  (i.e., 1 0.0139 sτ >  in the case of the selected UIC60 rail). In addition, it is 

worth noting that when the foundation is stiff (dashed line) the values of the first six 

modal frequencies are very close, since the prevailing contribution to the stiffness of the 

beam-foundation sub-system is due to the bed of viscoelastic springs. 

More interesting is the behaviour of the effective modal damping ratios, iζ . When 

the foundation is stiff (dashed line) iζ  decreases monotonically with the relaxation time, 

and is almost constant for the first six modes of vibration. On the contrary, when the 

foundation is soft (solid line) iζ  takes a maximum where 9 0.002Π =  (i.e., 1 0.00298 sτ = ), 

and decreases significantly in the higher modes. 

 

6.4 Number of modes of the continuum 

The accuracy of the response is investigated as a function of the number m  of the modes 

of the continuum which are retained in the analysis. Figure 6 (left) shows the convergence in 

terms of the peak displacement of the beam, while Figure 6 (right) in terms of the peak 

absolute acceleration of the moving oscillator. In both cases for 12m ≥  the responses 

predicted by the proposed method (solid lines) and by the MSE method (dashed line) do not 

vary appreciably. Since the computational time exponentially increases with m , one can 

conclude that the use of 12m =  allows a good degree of accuracy with a tolerable 

computational effort. In the following, then, all the numerical analyses are conducted with 

12m =  modes of vibration of the continuum. Moreover, it is worth noting that although the 

MSE method allows saving some computational time, the peak responses of beam and 

oscillator (Fig. 6) could be excessively underestimated. For instance, in the particular case 

considered in this sub-section ( 3 0.380Π = , i.e. heavy oscillator, 4 14.9 radΠ = , 
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5
7 1.91 10Π = × , i.e. soft foundation, and 9 0.00336Π = ) the inaccuracy of the MSE method 

is greater than 15% . 

 

6.5 Response analysis: effects of mass and stiffness of the moving oscillator 

The effects on the response of the dimensionless combination 3Π  and 4Π , which control 

the mass and the circular frequency of the moving oscillator, respectively, are scrutinized. 

Figure 7 shows that the peak responses of beam and oscillator increase linearly with the 

mass vm , which is proportional to 3Π , and confirms that the MSE method is 

anticonservative. Figure 8 reveals that, in the selected range of values, the peak response of 

the beam is almost independent of vω , which is proportional to 4Π , while the peak 

response of the oscillator tends to increase with vω . 

 

6.6 Response analysis: effects of the foundation characteristics 

Finally, the effects on the response of the dimensionless combination 7Π  and 9Π , which 

control the equilibrium modulus and the relaxation time of the foundation, respectively, 

are investigated. Figures 9 and 10 show that, for the selected range of values, the peak 

responses of beam and oscillator reduce as the equilibrium modulus and the relaxation 

time increase. More interestingly, as a consequence of the apparent increase in the modal 

frequencies of the continuum, also in this case the MSE method (dashed line) proves to 

underestimate everywhere the peak responses. 

 

7 Concluding remarks 

A novel state-space formulation for evaluating the dynamic response of elastic beams resting 

on viscoelastically damped foundation to moving SDoF oscillators has been presented in this 

paper. The formulation is essentially devoted to investigate in the time domain the interaction 

between train vehicles and railway track, where viscoelastic components, e.g. elastomeric pads, 

are often introduced with the aim of mitigating the vibrations in vehicles and track. The main 

advantage is that, as opposite to the current state-of-practice (see Appendix I), the 

introduction of a number of additional internal variables in the complete state array (Eq. (21)) 
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allows the proposed technique to consistently take into account the frequency-dependent 

behaviour of the viscoelastic foundation. 

As the position of the oscillator on the beam varies with time, the dynamic matrix 

of the governing state-space equation is time-dependent (Eqs. (22) and (23)). Since the 

classical incremental solutions do not apply in this circumstance, an efficient single-step 

scheme has been provided for the numerical integration, based on a dynamic ‘modification’ 

in each time step (Eq. (27)). The proposed approach enables the dynamic responses of 

supporting continuum and moving oscillator to be simultaneously computed, once the 

twelve design parameters have been selected. 

Since this number is too large to carry out parametric investigations of general interest, 

the so-called Buckingham Π -Theorem (see Appendix II) is applied in order to define the 

dimensionless combinations of the design parameters that control the response of the system 

under consideration. In doing so, the results of the dynamic analyses, presented in a 

convenient dimensionless form, can be directly extended to different track configurations. 

The proposed procedure is amply illustrated by numerical examples, in which the 

effects of some important parameters, such as boundary conditions, span length, number of 

modes of the supporting beam, as well as dynamic characteristics of moving oscillator and 

viscoelastic foundation, are investigated in dept, and some interesting tendencies in the 

responses of beam and oscillator are highlighted. Finally, it is pointed out that the inaccuracy 

associated with the use of effective values of stiffness and damping for the foundation, widely 

adopted in the conventional techniques, could be unacceptable for engineering purposes. 

 

Appendix I. State-space formalism with the MSE method 

The Modal Strain Energy (MSE) method [23] is a general tool that allows defining the 

equivalent Kelvin-Voigt modal oscillators of a structure provided with viscoelastic 

components. According to this method, the effects of the viscoelastic foundation on the 

continuum considered in this study can be accounted for with equivalent values of the 

modal circular frequencies, i iω ω≥ , and of the modal damping ratios, i iζ ζ≥ , herein 
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denoted with an over-tilde. In particular, the circular frequency of the i -th mode of 

vibration is the root of the implicit equation: 

f

b b

Re ( )i
i i

K

A

ω
ω α

ρ

⎡ ⎤⎣ ⎦= +  (A.31) 

where iα  is the i -th eigenvalue of the first of Eqs. (5). Once the root iω  is numerically 

found, the damping ratio in the i -th mode of vibration is given by: 

f
2b

b b

Im ( )

2
i

i
i

K

A

ω
ζ ζ

ω ρ

⎡ ⎤⎣ ⎦= +  (A.32) 

while the associated modal response is ruled by the equation: 

b2

0
( ) 2 ( ) ( ) ( , ) ( )d

L

i i i i i i iq t q t q t f x t x xζ ω ω φ+ + = ∫   

In comparison with Eq. (3), the only formal difference is that in this case the i -th modal 

viscoelastic force, ( )iF t , is missed out. As a consequence, the state-space governing equation of 

the oscillator-beam-foundation system can be written in a form like Eq. (22): 

( ) ( ) ( )t t t= +z D z f   

where the reduced super-array 
TT T T

v 1( ) ( ) ( ) ( )mt t t t⎡ ⎤= ⎢ ⎥⎣ ⎦z z z z  is of size 2 2m + , i.e. the 

m  additional internal variables associated with the viscoelastic foundation are cut out, and 

where:  

v vv1 T

1v 1

T

v

( ) ( ) ( )
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t
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D D
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D D

 (A.33) 

in which:  
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0 1
; ( ) ( ) ( )

2i i i i i
i i i

t t M t
ω ζ ω

⎡ ⎤
⎢ ⎥= = −⎢ ⎥− −⎢ ⎥⎣ ⎦

D D D v v D   

while the remaining quantities in Eqs. (A.33) take the same expressions as in Eqs. (23). 

 

Appendix II. Review of the Dimensional Analysis 

The basis of the Dimensional Analysis is that the form of any ‘physically meaningful’ 

equation has to be such that the relationship between the actual physical quantities is 

independent of the magnitude of the base units. This is because the value of a physical 

quantity, 0Q , that is an ‘output variable’ in a physical process, follows uniquely once all 

the ‘input variables’ that define the process, 1Q , 2Q ,  and rQ , are specified. 

 In this framework, the so-called ‘Buckingham Π -Theorem’ plays a fundamental role 

[28, 29]. The latter can be expressed as: 

Any physically meaningful equation 0 1( , , )rQ Q Q= Φ , involving a set of r  input variables, 

is equivalent to a dimensionless equation of the form 0 1( , , )r s−Π = Ψ Π Π , involving a set 

r s−  independent dimensionless combinations of the original r  input variables, where s  is 

the number of these input variables that are dimensionally independent. 

The important fact to notice is that the new relation Ψ  involves s  fewer variables than 

the original relation Φ : this simplify the theoretical and experimental studies, and allows 

highlighting what really matter in a physical process. 

According to Sonin [29], in the practical application of the Buckingham Π -

Theorem, four steps have to be done: 

1. The complete set of the input variable, 1{ , , }rQ Q , that determines the value of the 

output variable 0Q  is identified. 

2. The dimensions of the input variables 1{ , , }rQ Q  are listed; a complete subset of 

dimensionally independent variables 1{ , , }sQ Q  (s r≤ ) is selected among the input 

variables; the dimensions of each of the remaining input variables, 1{ , , }rsQ Q+ , and 

of the output variable, 0Q , are expressed as product of powers of the dimensions of 

1{ , , }sQ Q , i.e.: 
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1
1 , 0, 1, ,N Ni is

siQ Q Q i s r⎡ ⎤⎡ ⎤ = = +⎢ ⎥⎣ ⎦ ⎣ ⎦   

where the exponents 1iN … isN  are dimensionless real number.  

3. The independent dimensionless combinations are defined: 

( )1 ( )
1

, 1, ,s i
N Ni s i s i s

s

Q
i r s

Q Q
+

+ +
Π = = −  (A.34) 

along with the dimensionless form of the output variable:  

0
0 ( )1 ( )

1

N N
s i s i s

r

Q

Q Q+ +
Π =  

4. The dimensionless relationship 0 1( , , )r s−Π = Ψ Π Π  can be established. 
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Figure 1. Schematic of a beam on viscoelastic foundation carrying a SDoF moving 

oscillator. 
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Figure 2. Interaction between beam-foundation sub-system (a) and moving oscillator (b). 

alessandro
Barra



 

 

( )U t

( )F t

1c1k

2k
3k

b)

( )U t

( )F t

1C
1K

0K

a)

Figure 3. Standard Linear Solid (SLS) model (a) and Zener model (b). 
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Figure 4. Modal shapes of the beam-foundation sub-system (top rows). Effects of the span 

length of the beam (Π1 ∝ Lb) on frequencies (centre rows) and effective damping ratio

(bottom rows) of the first modes. ----- Simply Supported (SS) beam. - - - Clamped-Clamped

beam.
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Figure 4. Continues.
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Figure 5. Modal shapes of the beam-foundation sub-system (top rows). Effects of the relaxation 

time of the viscoelastic foundation (Π9 ∝ τ1) on frequencies (centre rows) and effective 

damping ratio (bottom rows) of the first modes. ----- Soft foundation. - - - Stiff foundation.
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Figure 5. Continues.
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Figure 6. Convergence of the dimensionless peak responses of beam (left) and oscillator (right) 

when the number of modes retained in the analysis increases.
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Figure 7. Effects of the mass of the oscillator (Π3 ∝ m v) on the dimensionless 

peak responses of beam (left) and oscillator (right).
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Figure 8. Effects of the circular frequency of the oscillator (Π4  ∝ ωv) 

on the dimensionless peak responses of beam (left) and oscillator (right).
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Figure 9. Effects of the equilibrium modulus of the foundation (Π7 ∝ K 0)

on the dimensionless peak responses of beam (left) and oscillator (right).
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Figure 10. Effects of the relaxation time of the foundation (Π9 ∝ τ1)

on the dimensionless peak responses of beam (left) and oscillator (right).




