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Abstract 

The use of the Advanced Censored Closure (ACC) technique, recently proposed by the authors for 

predicting the peak response of linear structures vibrating under random processes, is extended to 

the case of non-linear oscillators driven by stationary white noise. The proposed approach requires 

the knowledge of mean upcrossing rate and spectral bandwidth of the response process, which in 

this paper are estimated through the Stochastic Averaging method. Numerical applications to 

oscillators with non-linear stiffness and damping are included, and the results are compared with 

those given by Monte Carlo Simulation and by other approximate formulations available in the 

literature. 
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1. Introduction 

The stochastic analysis of structural and mechanical systems subjected to dynamic actions of a 

random nature has become very popular in the last decades, given that in a number of engineering 

situations deterministic approaches are quite unsatisfactory. 

When the dynamic excitation is modelled as a Gaussian process, and the system exhibits a 

linear behaviour, the response is Gaussian too. In this case, then, the knowledge of mean value and 

standard deviation fully defines the response from a probabilistic point of view. In many 

circumstances, however, due to a non-linear behaviour of the system, the response may significantly 

deviate from the Gaussianity, and higher-order statistics are then required. Unfortunately, these are 

available in exact form just for a restricted class of simple systems: therefore, several approximate 

methods, with a different degree of complexity and accuracy, have been proposed. Perhaps, the 

most popular approaches are the methods based on Gaussian and non-Gaussian closure schemes 

and on approximate solutions of the Fokker-Planck-Kolmogorov (FPK) equation, which are well 

codified in the literature (e.g. [1, 2, 3, 4, 5]). Of course, different approaches are also available (e.g. 

the methods based on the maximum entropy principle and on the dissipation energy balancing) and, 

among these, the Stochastic Averaging (SA) method [6, 7] is applied in this paper in order to 

estimate the mean upcrossing rate and the Power Spectral Density (PSD) of the response of a 

Single-Degree-of-Freedom (SDoF) oscillator with non-linear restoring force under white noise 

input. 

It is well known that the mere probabilistic characterization of the response process is not 

sufficient in a reliability analysis. In fact, under the assumption that a vibrating system fails as soon 

as the response firstly exits a given safe domain, the statistics of the first passage time have to be 

estimated, starting from the knowledge of the statistics of the response to the random excitation. 

This is recognized to be one of the most complicated problem in Computational Stochastic 

Mechanics, and no exact solutions have been derived, even in the simplest case of SDoF linear 

oscillators under stationary white noise; hence, a number of approximate formulations are available 

in the literature. 

Among these, the most popular one is the so-called “Poisson approach” (e.g. [3]), in which 

the response upcrossings of a deterministic threshold are assumed to be statistically independent 
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events. This classical approach, however, proves to be too conservative when the response process 

is narrowband, and/or when the threshold is not high enough. In these situations, in fact, 

consecutive upcrossings of the response process cannot be realistically considered as independent 

events, as they tend to occur in clumps, whose mean size depends on the spectral bandwidth of the 

response. The latter, then, has to be somehow accounted for in order to improve the results. 

The Gaussian Censored Closure (GCC) technique proposed by Senthilnathan and Lutes [8] 

reveals the same bounds, since also in this case the clumping tendency of the response upcrossings 

is neglected. With the purpose of overcoming this drawback, Muscolino and Palmeri [9, 10] 

recently introduced an expedient “censorship factor,” which can be directly related to the spectral 

bandwidth of the response process; the use of the Gumbel model as “uncensored” PDF for the peak 

response, instead of the Gaussian one, further improves the results. Effectiveness, accuracy and 

computational advantages of this technique have been proved in the reliability analysis of linear 

structures, also in the general case of Multi-Degree-of-Freedom systems subjected to coloured 

noises [11]. 

Aim of this paper is to extend the use of the proposed technique, termed Advanced Censored 

Closure (ACC), to non-linear SDoF oscillators under stationary white noise. The results herein 

presented complement those included in Ref. [12], in which only the case of non-linear damping is 

coped with. At the best knowledge of the authors, these are the first “consistent” applications of a 

censored closure technique in the reliability analysis of non-linear dynamical systems. The only 

examples found in the literature, in fact, are the pioneering papers by Suzuki and Minai [13, 14] in 

which, however, the response of elastoplastic structures is assumed to be Gaussian. 

The proposed ACC technique is amply illustrated by numerical examples, which 

demonstrate the superiority with respect to Poisson approach and GCC technique, especially when 

the response process of the non-linear oscillator is narrowband. 

 

2. Response analysis 

Let us considerer the random vibration of a non-linear SDoF oscillator driven by a zero-mean 

stationary white noise tW : 

( ),+ =&& &
t t t tm X f X X W  (1) 
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where tX  is the random process that describes the motion, 0≥t  is the generic time instant, m  is 

the inertia, ( ), &f x x  is the non-linear restoring force, which depends on the instantaneous values of 

displacement, =tX x , and velocity, =& &tX x , and the over-dot denotes the time derivate. For the 

simplicity purpose, the restoring force is assumed to be symmetric with respect to the origin of the 

phase plane { , }&x x , i.e. ( ) ( ), ,= − −& &f x x f x x . As a consequence, in our analyses the mean value of 

the response process tX  is zero. 

From a probabilistic point of view, the state variables of the system, tX  and &
tX , are 

characterized in stationary conditions by the knowledge of the time-independent joint Probability 

Density Function (PDF), ( ),& &XXp x x . Given that ( ), &f x x  is a non-linear function, ( ),& &XXp x x  is non-

Gaussian, and as strong is the non-linearity in the reaction force, as largely the PDF of the response 

deviates from the Gaussianity. These situations, when the exact solution is not available, the PDF of 

the response can be estimated via a number of approximate methods known to the literature. 

Among others, the Stochastic Averaging (SA) method is widely adopted, being versatile and 

quite straightforward [6]. The method, herein applied in the form recently presented in Ref. [7], 

operates under the assumption that the motion is pseudo-harmonic, that is: 

[ ]

[ ]
eff

eff

cos ( )

sin ( )

ω

ω

= +Φ

= − +Φ&

t t t t

t t t t

X A A t

X A A t
  

in which the amplitude tA  and the phase Φt  constitute a 2-variate random process “slowly” varying 

with respect to the time t , and eff ( )ω a  is a deterministic function that describes the “effective” 

value of the amplitude-dependent circular frequency of vibration:  

eff
eff

( )( )ω =
k aa

m
  

For a given value of the amplitude, =tA a , the method furnishes the effective stiffness, 

eff ( )k a , and the effective damping coefficient, eff ( )c a , as solution of the implicit equations:  

eff c

eff s
eff

1( ) ( )

1( ) ( )
( )

π

π ω

=

= −

k a I a
a

c a I a
a a
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where c ( )I a  and s ( )I a  are the integral functions associated with the in-phase and out-of-phase 

components of the restoring force, respectively:  

[ ]

[ ]

2

c eff
0

2

s eff
0

( ) cos( ), ( )sin( ) cos( )d

( ) cos( ), ( )sin( ) sin( )d

π

π

θ ω θ θ θ

θ ω θ θ θ

= −

= −

∫

∫

I a f a a a

I a f a a a

  

In stationary conditions, the Rayleigh-like approximate PDF of the amplitude can be 

evaluated once the functions eff ( )ω a  and eff ( )c a  are known:  

eff

00

( )1 ( )( ) expω
ππ

⎡ ⎤Π
= −⎢ ⎥

⎣ ⎦
A

A
A

m a a m ap a
N SS

 (2) 

where 0S  is the level of the uniform PSD of the white noise input, and AN  is just a normalization 

constant, which can be computed by satisfying the axiomatic condition:  

0

( )d 1
+∞

=∫ Ap a a   

and where the function ( )Π A a  is given by:  

2
eff eff( ) ( ) ( )dωΠ = ∫A a a c a a a  (3) 

Notice that the value of AN  in Eq. (2) depends on the arbitrary constant of integration arising from 

the indefinite integral of Eq. (3). 

 The PDF of Eq. (2) can be conveniently used for determining the joint PDF of tX  and & tX  in 

the approximate form:  

( )2 2 2
eff2 2 2

eff

1( , )
2

ω
π ω

= +
+

& & &
&

AXXp x x p x x
x x

  

where effω  is the expected value of eff ( )ω a : 

eff eff eff
0

E ( ) ( ) ( )dω ω ω
+∞

= = ∫t AA a p a a   

E ⋅  being the expectation operator. 
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Finally, the PSD of response process tX  can be estimated in the form:  

[ ]

2 2
eff eff

2 22 2
0 eff eff

( ) ( )1( ) ( )d
2 ( ) ( )

ωω
π ω ω ω

+∞

=
⎡ ⎤− +⎣ ⎦
∫X A

a c a aS p a a
a c a m

 (4) 

and the associated spectral moments [15] are given by:  

,
0

2 ( )d , 0,1,2,λ ω ω ω
+∞

= =∫ Li
i X XS i   

which allow measuring the spectral bandwidth of tX  through the dimensionless parameter (e.g. 

[3]): 

2
1,

0, 2,

1
λ

λ λ
= − X

X
X X

q  (5) 

which is bounded in the interval [0,1] : that is, as large is Xq , as large is the spectral bandwidth of 

the response process. 

  

3. Reliability analysis 

Let the first passage time, 1( ) 0≥T b , be the random variable that describes the time instant at which 

the response process tX  firstly upcrosses the (Double) D-barrier of level 0>b , which defines the 

symmetric safe domain [ , ]−b b . The first passage time, then, satisfies the mathematical conditions: 

1

1 1

1

( )

( ) ( )

[0, ( )]

0

≤ ∀ ∈

=

>&

t

T b

T b T b

X b t T b

X b

X X

 

Let the peak response, 0≥tY , be the non-stationary random process that describes the 

largest absolute value of the response over the time interval [0, ]t . The peak response, then, can be 

so defined:  

{ }
0
max ττ≤ ≤

=t t
Y X  (6) 

and the samples of tY  are monotonic non-decreasing function of the time t . 
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One can easily prove that 1( )T b  and tY  are complementary random variables (e.g. [11]), as 

the Cumulative Distribution Functions (CDFs) of these quantities sum up to one:  

1 ( ) ( ) ( ; ) 1+ =T b YF t F b t  

Interestingly, when the safe domain [ , ]−b b  is assumed for the response process tX , the CDF of the 

first passage time gives the probability of failure:  

1f ( ) 1( ) ( ) Pr ( )= = ≤T bP t F t T b t  

while the CDF of the peak response gives the reliability, that is the probability of success:  

f( ) 1 ( ) ( ; ) Pr= − = = ≤Y tR t P t F b t Y b  

where the symbol Pr ⋅  denotes the probability associated with the event into angle brackets. 

 

3.1 Poisson approach 

In the reliability analysis of dynamical systems excited by random noises no exact solutions have 

been derived, even in the simplest case of the stationary vibration of a linear oscillator under white 

noise. The simplest approximate formulation known to the literature is the so-called Poisson 

approach (e.g. [3]), in which the spectral bandwidth of the response process is neglected. When 

applied to the system under consideration, the method gives the reliability as:  

[ ]( ) 2 ( ) 1 exp 2 ( )ν +⎡ ⎤= − −⎣ ⎦X XR t F b b t  

where ( )X bν +  is the time-independent mean upcrossing rate of the level b  by the response process 

tX : 

0

( ) ( , )dν
+∞

+ = ∫ && & &X XXb x p b x x  (7) 

and ( )XF x  is the CDF of tX . These quantities are directly furnished by the response analysis. 

 Unfortunately, although very simple, the Poisson approach proves to be excessively 

conservative when the response process tX  is narrowband, e.g. because the system is lightly 

damped, and/or when the level b  is not high enough with respect to the standard deviation of the 

response, σ X . In these circumstances, in fact, consecutive upcrossings of the selected D-barrier are 
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far to be independent events, and exhibit the tendency to occur in clumps, whose mean size 

increases as the spectral bandwidth of tX decreases (e.g. [16]). What is also important to note is 

that, even in the case of broadband response process, the mean upcrossing rate of Eq. (7) has to be 

effectively computed, otherwise the reliability given by the Poisson approach may be heavily 

inaccurate. As a consequence, the popular Stochastic Linearization (SL) method (see Appendix) 

should be avoided in the reliability analysis of non-linear systems, as the accuracy in predicting the 

response statistics may be inadequate in practical circumstances. 

 

3.2 Gaussian Censored Closure 

The Gaussian Censored Closure (GCC) proposed by Senthilnathan and Lutes [8] suffers the same 

limitations as the Poisson approach, since also in this case the spectral bandwidth of the response 

process is not accounted for. The method has been originally applied in the reliability analysis of 

linear oscillators, but the extension to non-linear oscillators is quite straightforward. 

The basic idea is to operate a convenient censorship in the joint PDF of the random 

processes tX , &
tX  and tY , ( , , ; )& &XXYp x x y t , with the aim of eliminating the probability associated 

with the impossible event that the absolute value of the response, tX , overcomes the peak 

response, tY , in a given time instant, that is:  

Pr 0> =t tX Y  (8) 

In the formulation by Senthilnathan and Lutes [8] this censorship is obtained with the help of a 

Monte Carlo Simulation (MCS), which is used in each time step in order to evaluate the r.h.s. of the 

differential equations ruling the statistical moments of the peak response. The latter can be written 

in the compact form [11]: 

( )1
, ( ) E , , , 1, 2,−= =&& Li

i Y t t t tm t i Y g X X Y i  (9) 

where , ( ) E= i
i Y tm t Y  is the i -th statistical moment of tY , and ( ), ,&g x x y  is the highly non-linear 

function so defined:  

( ) ( ) ( ) , sign( ) sign( ) and
, ,

0 , otherwise
⎧ = ≥⎪= − = ⎨
⎪⎩

& &
& & &

x x x x y
g x x y x U x x U x y   
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( )⋅U  being the unit step function continuous from the right:  

0 , 0
( )

1 , 0
<⎧

= ⎨ ≥⎩

x
U x

x
  

Since the joint PDF ( , , ; )& &XXYp x x y t  is a priori unknown, at a generic time instant t  the 

expectation in the r.h.s. of Eq. (9) cannot be evaluated by the definition:  

( ) ( )1 1

0

E , , , , ( , , ; ) d d d , 1, 2,i i
t t t t XXYY g X X Y y g x x y p x x y t x x y i

+∞ +∞ +∞
− −

−∞ −∞

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
∫ ∫ ∫ &

& & & & L  (10) 

In Ref. [8], then, a numerical scheme is proposed, that requires: (i) the generation of a number sn  of 

the samples { }( ) ( ) ( ), ,&j j j
t t tX X Y , s1, 2, ,= Lj n , under the assumption that ( , , ; )& &XXYp x x y t  is jointly 

Gaussian; (ii) the satisfaction of Eq. (8) through the substitution of the j -th sample ( )j
tY  with the 

value ( )j
tX  when the generation gives ( ) ( )<j j

t tY X ; (iii) the approximate evaluation of the 

expectation in the r.h.s. of Eq. (9) as:  

( ) ( )
s 11 ( ) ( ) ( ) ( )

1

E , , , , , 1, 2−−

=

≅ =∑& &
n

ii j j j j
t t t t t t t t

j

Y g X X Y Y g X X Y i  (11) 

Notice that, because the joint PDF ( , , ; )& &XXYp x x y t  is assumed to be Gaussian, Eq. (11) has to be 

evaluated only for the first two statistical moments, 1,2=i . Interestingly, since the peak response 

has possible values only in the range [0, )+∞ , while a Gaussian process has non-zero probability in 

the entire real axis ( , )−∞ +∞ , in the paper by Senthilnathan and Lutes [8] two non-linear 

transformations of tY  are also considered, and the consistent definitions of the non-linear function 

( ), ,&g x x y  are derived. Unfortunately, these transformations do not improve substantially the 

accuracy of the GCC technique. 

 

4. Advanced Censored Closure 

Despite the simplicity of the GCC technique proposed by Senthilnathan and Lutes [8], two main 

flaws may discourage its practical application: (i) the results do not depend on the spectral 

bandwidth of the response process, and then the clump tendency of the response upcrossings is not 

accounted for; (ii) the assumption that the joint PDF ( , , ; )& &XXYp x x y t  is Gaussian may lead to an 

unacceptable degree of inaccuracy, especially in the case of non-linear oscillators. With the aim of 
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overcoming these two drawbacks, a novel technique, termed Advanced Censored Closure (ACC), 

has been proposed in the recent papers by Muscolino and Palmeri [9, 10, 11, 12]. In this approach 

the spectral bandwidth of the response tX  is taken into account through the so-called “censorship 

factor,” unknown before to the literature, and the marginal PDF of the peak response tY  is obtained 

by manipulating the Gumbel distribution. 

About the first flaw, it would be stressed that even the exact knowledge of the joint PDF 

( , ; )XXp x x t& &  at a given time instant t  (this is the case, for instance, of linear dynamical systems 

driven by Gaussian processes) does not include the bandwidth effects, which on the contrary could 

be appreciated in the time domain through the auto-correlation function of the response process. 

Moreover, about the second flaw, although it could be formally cured with appropriate non-linear 

transformations, the use of the Gumbel model, also known as the “first asymptote of extremes,” 

seems to be preferable from a theoretical point of view. This model, in fact, proves to be the 

asymptotic distribution of the largest value, Y , of an exponentially-distributed random variable, X  

(e.g. [17]), and this is precisely the case of the approximate description of the response process tX  

given by the SA method. On the contrary, the other two asymptotes known to the literature are 

inappropriate in our case: the Fréchet model, in fact, can be used when the random variable X  is 

described by a Cauchy-like distribution, while the Webull model requires that the distribution of the 

random variable X  is bounded in a finite interval. 

In Ref. [9] it is demonstrated that, without loss of generality, Eq. (9) can be conveniently 

posed in the form:  

1
,

0

( ) 2 ( ) ( ) ( ; )d , 1,2χ ν
+∞

+ −= Φ =∫& i
i Y X Ym t i t b b b t b i  (12) 

where ( ; )ΦY b t  is the so-called “uncensored” CDF of the peak response, and ( )χ t  is the censorship 

factor, which is bounded in the interval [0,1] . Let us emphasize that Eq. (12) has been simply 

derived by assuming a convenient expression for the joint PDF ( , , ; )& &XXYp x x y t  in Eq. (10), where 

the only approximation is that the values of the random processes & tX  and tY , at a given time instant 

t , are statistically independent. As demonstrated through numerical simulations, the actual effects 

of this assumption are negligible in practical applications, and then Eq. (10) and Eq. (12) can be 

thought to be equivalent (more details can be found in Ref. [9]). 
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Instead of the Gaussian model considered in the GCC technique [8], the use of Gumbel 

model is suggested in the ACC technique [9, 10, 11, 12] for the uncensored CDF of the peak 

response: 

( )( ; ) exp exp
( )
η

κ
⎧ ⎫⎡ ⎤−⎪ ⎪Φ = − −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

Y
Y

Y

b tb t
t

 (13) 

The latter depends on the two parameters ( )ηY t  and ( )κY t , which account for the position and the 

spread of the probability mass, respectively: 

( ) ( ) 0.5772 ( )

( ) 0.7797 ( )

η µ κ

κ σ

= −

=

Y Y Y

Y Y

t t t

t t
 

( )µY t  and ( )σY t  being the mean value and the standard deviation of the peak response, given by: 

1,

2
2,

( ) ( )

( ) ( ) ( )

µ

σ µ

=

= −

Y Y

Y Y Y

t m t

t m t t
 

Of course, more accurate results can be obtained by using more sophisticated models for the 

uncensored CDF ( ; )ΦY b t , e.g. based on the truncated type-A and type-C Gram-Charlier series 

expansions (e.g. [18]). In this case, however, the computational effort may excessively increases as 

higher-order statistics are required, while in the case of the Gumbel model only the first two 

statistical moments are needed. 

Eq. (12) shows that the rate of change of the statistical moments of the peak response 

process is proportional to the censorship factor, i.e. as large is ( )χ t , as fast the statistical moments 

, ( )i Ym t  increase, and as conservative are the results: in particular, when the proposed ACC 

technique is applied with ( ) 1χ =t  one can prove that the results become consistent with those of the 

Poisson approach. The accuracy is improved when the censorship factor is estimated as the 

expected value of the semi-empirical correction term, ( )β b , proposed by Vanmarcke [9] in the 

reliability analysis of stationary Gaussian processes:  

0

( ) E ( ) ( ) ( ; )dχ β β
+∞

= = ∫t Yt Y y p y t y  (14) 

where:  
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( )
( )

1.2

2

1 exp 1.253
( )

1 exp 0.5
X X

X

q b
b

b

σ
β

σ

− −
=

⎡ ⎤− −⎣ ⎦

 

σ X  being the standard deviation of the response process, and Xq  being the bandwidth parameter of 

Eq. (5). Moreover, in Eq. (14) ( ; )Yp y t  is the marginal PDF of the peak response at time t , which is 

given by:  

[ ]{ }( ; ) 2 ( ; ) ( ) 0.5 ( ; ) ( ; ) ( )φ= − +ΦY Y X Y Xp y t y t F y y t p y t U y  (15) 

where ( ; )φY y t  is the uncensored PDF of the peak response: 

1 ( ) ( )( ; ) ( ; ) exp exp
( ) ( ) ( )

η ηφ
κ κ κ

⎧ ⎫⎡ ⎤∂ − −⎪ ⎪= Φ = −⎨ ⎬⎢ ⎥∂ ⎪ ⎪⎣ ⎦⎩ ⎭
Y Y

Y Y
Y Y Y

t y t yy t y t
y t t t

 

Interestingly, the PDF of Eq. (15) can be viewed as the combination of two terms: the first one is 

proportional to the PDF of the response process, ( ; )Xp y t , which gives an essential contribution 

when the time t  is relatively small, i.e. only in the first cycles of the response process; the second 

one is proportional to the uncensored PDF of the peak response, ( ; )φY y t , whose contribution 

prevails when the time t  increases (in particular, in stationary conditions ( ; ) ( ; )φ→Y Yp y t y t  as 

→+∞t ). 

 Once Eq. (12), for 1, 2=i , are numerically integrated, the time evolution of the first two 

statistical moments of the peak response, 1, ( )Ym t  and 2, ( )Ym t , are sufficient in evaluating the 

approximate PDF of Eq. (15). An effective numerical scheme of solution, based on the so-called 

“midpoint” method [19], also known as the second-order Runge-Kutta method, can be found in Ref. 

[11], where the complete flow-chart is displayed and discussed, and where it is also emphasized the 

computational efficiency of the proposed ACC technique in comparison with the classical 

approaches. 

 Finally, one can prove that the results of the GCC (without transformations of the random 

process tY ) are recovered when: (i) in Eq. (12) the censorship factor is assumed to be one, ( ) 1χ =t ; 

(ii) the mean upcrossing rate is that one of the “equivalent” linear system given by the Stochastic 

Linearization (SL) method (Eq. (A.2)); and (iii) the uncensored CDF takes the Gaussian expression:  
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1 ( )( ; ) 1 erf
2 2 ( )

µ
σ

⎧ ⎫⎡ ⎤−⎪ ⎪Φ = +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

Y
Y

Y

y ty t
t

 (16) 

erf( )⋅  being the error function [20]. Notice that the proposed approach allows saving some 

computational time with respect to the original formulation by Senthilnathan and Lutes [8], given 

that the MCS in computing Eqs. (11) is avoided.  

 

5. Numerical applications 

For the validation purpose, the Advanced Censored Closure (ACC) technique, summarized in the 

previous section, is implemented in a simple code running on Mathematica [21], with different 

degrees of complexity: 

1. In the first analysis, the censorship factor ( )χ t  is given by Eq. (14), the Stochastic 

Averaging (SA) method is applied in computing the PSD of Eq. (4) and the mean 

upcrossing rate of Eq. (7), and the Gumbel model is considered for the uncensored 

distribution of the peak response (Eq. (13)): the label “ACC” is used for this solution. 

2. In the second analysis, the only difference with respect to the first one is that the censorship 

factor takes the constant value ( ) 1χ =t : the label “Poisson” is used for this solution, given 

that the value ( ) 1χ =t  is consistent with the assumption of independent upcrossings by the 

response process. 

3. In the third analysis, the censorship factor is still ( ) 1χ =t , while the mean upcrossing rate is 

evaluated by the Stochastic Linearization (SL) method (Eq. (A.2)), and the Gaussian model 

is considered for the uncensored distribution of the peak response (Eq. (16)): the label 

“GCC” is used for this solution. 

The analyses are conducted on oscillators with non-linear stiffness (sub-section 5.1) and damping 

(sub-section 5.2), and the results, in terms of the evolutionary mean value and standard deviation of 

the peak response, are compared with the statistics from Monte Carlo Simulation (MCS), with 

s 500=n  samples, which is performed with a house code running on MATLAB [22]. 
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5.1 Linear-plus-cubic stiffness 

In a first stage, a SDoF oscillator with non-linear stiffness is considered. The non-linear restoring 

force in Eq. (1) is modelled as the reaction of an elastic spring with linear-plus-cubic stiffness in 

parallel with a linear viscous dashpot:  

3
1 3( , ) = + +& &f x x k x k x c x  

in which 2
1 1s−=k m , 2 2

3 0.1cm s− −=k m  and 10.1s−=c m , m  being the inertia of the oscillator. 

The analyses are carried out with three increasing levels of the PSD of the white noise input, 
2

0 0.1=S m , 1.0 , 2 310 cm s− , and the results are displayed in Figs. 1, 2 and 3, respectively. In the 

MCS the excitation is approximated as a pink noise with circular frequency of cut-off 

c 40 rad/sω = , i.e. as a broadband process with uniform PSD of level 0S  in the interval c[0, ]ω . 

 In Fig. 1.a, for the case of “low” level of excitation ( 2 2 3
0 0.1cm s−=S m ), the mean 

upcrossing rates of the response process given by the SA (Eq. (7), solid line) and the SL (Eq. (A.2), 

dot-dashed line) methods are compared, in a logarithmic scale, with that one estimated by MCS 

(circles). In both cases the agreement is quite satisfactory: only at higher levels of the barrier b , in 

fact, the SL method overestimates the actual mean upcrossing rate of tX . 

 Fig. 1.b shows, in a logarithmic scale, that the approximate PSD of the response process tX  

given by the SA method (Eq. (4), solid line) compares very closely with the PSD obtained by MCS 

(circles). Each sample of the PSD is computed in the MATLAB code by the function pwelch( )⋅ , 

which implements the so-called Welch method [23]. 

 Fig. 1.c plots the mean value of the peak response, µY , as a function of the time, t . The 

proposed ACC technique (solid line) is in good agreement with the results of the MCS (circles). 

The Poisson solution (dashed line) and the GCC technique (dot-dashed line) overestimate the peak 

response. This is because the response process, tX , is narrowband: in fact, the equivalent damping 

ratio given by the SL method is ( )eq eq eq2 0.0396ζ = =c m k  (see Appendix), and the bandwidth 

parameter given by the SA method is 0.234=Xq . The accuracy of the ACC technique reduces 

when the standard deviation of the peak response, σY , is considered (Fig. 1.d). This prediction, 

however, is conservative, as the probability of failure, fP , increases with the standard deviation of 

the peak response. Moreover, it is worth noting that generally the probability of failure is much 
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more sensitive to the mean value µY , which controls the position of the PDF of the peak response 

and which is accurately predicted by the proposed ACC technique, than to the standard deviation 

σY , which controls the spread around µY . 

 The same results are displayed in Figs. 2 and 3 for the levels of the excitation “medium” 

( 2 2 3
0 1.0 cm s−=S m ) and “high” ( 2 2 3

0 10 cm s−=S m ), respectively. In these cases the deviation of 

the response process from the Gaussianity increases: this is confirmed by Figs. 2.a and 3.a, in which 

the mean upcrossing rate given by the SL method (dot-dashed lines), operating under the 

assumption of Gaussianity, deviates from the results of the MCS (circles), while the SA method 

(solid lines) is still in good agreement. On the contrary, some non-negligible differences emerge in 

the evaluation of the PSD of the response process via the SA method (solid lines). The most 

relevant portion of these differences is shadowed in Figs. 2.b and 3.b, which prove that in the cases 

of medium and high levels of excitation the SA method (solid lines) overestimates energy content 

and spectral bandwidth of the response process of the non-linear oscillator under consideration. As 

a consequence, the accuracy of the proposed ACC technique decreases (see Fig. 2.c and 3.c), 

although the advantages of this approach (solid lines) with respect to Poisson solution (dashed 

lines) and GCC technique (dot-dashed lines) persist. Interestingly, the differences among these three 

approaches tend to decrease when the level of excitation increases, although the bandwidth 

parameter is almost constant, being 0.251=Xq  in the second case ( 2 2 3
0 1.0 cm s−=S m ) and 

0.257=Xq  in the third case ( 2 2 3
0 10 cm s−=S m ). 

 

5.2 Linear-plus-cubic damping 

In a second stage, the same analyses as in the previous sub-section are carried out on a SDoF 

oscillator in which the non-linear restoring force is modelled as the reaction of a linear elastic spring 

in parallel with a linear-plus-cubic viscous dashpot:  

3
1 3( , ) = + +& & &f x x k x c x c x  

in which -21s=k m , 1
1 0.01s−=c m , and -2

3 0.001cm s=c m , m  being the inertia of the system. 

The analyses are performed with the same levels of the white noise input considered in the previous 
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sub-section, i.e. 2
0 0.1=S m , 1.0 , 2 310 cm s− , and the results are displayed in Figs. 4, 5 and 6, 

respectively. 

 Figs. 4.a, 5.a and 6.a demonstrate the ability of the SA method (solid line) in predicting the 

actual mean upcrossing rate of the response process, estimated by MCS (circles), even when the 

level of the excitation is high. Figs. 4.b, 5.b and 6.b demonstrate the same accuracy in estimating 

the PSD of the response process. Notice that, as opposite to the previous case of non-linearity in the 

stiffness, the bandwidth parameter increases with the level of the input, from 0.135=Xq  when the 

excitation is low ( 2 2 3
0 0.1cm s−=S m ), to 0.369=Xq  when the excitation is high 

( 2 2 3
0 10 cm s−=S m ); correspondingly, the equivalent damping ratio given by the SL method is 

eq 0.0181ζ =  when the excitation is low, eq 0.156ζ =  when the excitation is high. 

 Figs. 4.c, 5.c and 6.c show that the accuracy of the proposed ACC technique (solid line) in 

predicting the mean value of the peak response is substantially independent of the spectral 

bandwidth of the response process. The Poisson approach (dashed line), on the contrary, 

overestimates the results of the MCS (circles) when the response is more narrowband (Fig. 4.c), 

while the GCC technique gives an acceptable estimate only when the response is more broadband 

(Fig. 6.c). Finally, also in the case of non-linear damping the proposed ACC results to be 

conservative in terms of standard deviation of the peak response, and the discrepancy with respect 

to the MCS tends to decrease as the spectral bandwidth of the response process increases (Figs. 4.d, 

5.d and 6.d). 

 

6. Conclusions 

In the framework of the reliability analysis of dynamical system excited by random processes, the 

Advanced Censored Closure (ACC) technique has been extended in this paper to the stationary 

vibration of non-linear SDoF oscillators under white noise. 

 The proposed approach enables the statistics of the non-stationary peak response process to 

be accurately predicted with a moderate computational effort, once mean upcrossing rate and 

spectral bandwidth of the response process are known. The Stochastic Averaging method is applied 

in computing these quantities. 
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 The numerical applications to oscillators with non-linear stiffness and damping demonstrate 

that the ACC technique is very versatile, and that the results are in good agreement with those given 

by Monte Carlo Simulation even when the level of the input increases, and then the response 

process deviates from the Gaussianity. The superiority of the proposed approach with respect to the 

classical Poisson approach, as well as to the more simple Gaussian Censored Closure, is also 

stressed. 

 

Appendix. Stochastic Linearization 

The Stochastic Linearization (SL) method, widely adopted in practical applications because of its 

simplicity, substitutes the non-linear restoring force in Eq. (1) with the linear expression:  

( )eq eq eq, = +& &f x x k x c x   

where the “equivalent” values of stiffness and damping, eqk  and eqc , are evaluated under the 

assumption that the PDF of the response is Gaussian [1, 24]. These values depend on the 

approximate variances 2σ% X  and 2σ &% X  of tX  and & tX : 

eq 2

eq 2

( , )

( , )

σ

σ

⎡ ⎤⎣ ⎦=

⎡ ⎤⎣ ⎦=
&

% &

%

% & &

%

t t t

X

t t t

X

E f X X X
k

E f X X X
c

 (A.1) 

where the symbol ⋅%E  stands for the “Gaussian” expectation operator. In stationary conditions, 

then, one obtains:  

( , ) ( , ) ( ) ( )d d

( , ) ( , ) ( ) ( )d d

+∞ +∞

−∞ −∞

+∞ +∞

−∞ −∞

=

=

∫ ∫

∫ ∫

&

&

% & & % % & &

% & & & & % % & &

t t t X X

t t t X X

E f X X X f x x x p x p x x x

E f X X X f x x x p x p x x x

 

( )% Xp x  and ( )&% &Xp x  being the approximate Gaussian PDFs of tX  and & tX : 



18 

2

2

2

2

1( ) exp
22

1( ) exp
22

σπ σ

σπ σ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
&

&&

%
%%

&
% &

%%

X
XX

X
XX

xp x

xp x

 

Eqs. (A.1), then, require the knowledge of 2σ% X  and 2σ &% X , which can be evaluated as solution of the 

implicit equations:  

2 2

0
2

( , )

( , )

σ

π

⎧ =
⎪
⎨
⎪ =
⎩

&
% & %

% & &

t t t X

t t t

E f X X X m

SE f X X X
m

 

Finally, the corresponding mean upcrossing rate of the level b  by the response process takes the 

expression: 

2

2

1( ) exp
2 2

σ
ν

π σ σ
+ ⎡ ⎤

= −⎢ ⎥
⎣ ⎦

&%%
% %

X
X

X X

bb  (A.2) 
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Evolutionary mean value (c) and standard deviation (d) of the peak response. 

Figure 3. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator 

with linear-plus-cubic stiffness under white noise of “high” intensity (S0/m2 = 10 cm2 s−3). Evolutionary 

mean value (c) and standard deviation (d) of the peak response. 

Figure 4. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator 

with linear-plus-cubic damping under white noise of “low” intensity (S0/m2 = 0.1 cm2 s−3). Evolutionary 

mean value (c) and standard deviation (d) of the peak response. 

Figure 5. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator 

with linear-plus-cubic damping under white noise of “medium” intensity (S0/m2 = 1.0 cm2 s−3). 

Evolutionary mean value (c) and standard deviation (d) of the peak response. 

Figure 6. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator 

with linear-plus-cubic damping under white noise of “high” intensity (S0/m2 = 10 cm2 s−3). Evolutionary 

mean value (c) and standard deviation (d) of the peak response. 
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Figure 1. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator with

linear-plus-cubic stiffness under white noise of "low" intensity (S0/m2 = 0.1 cm2 s-3). Evolutionary mean value (c) and

standard deviation (d) of the peak response.
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Figure 2. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator with

linear-plus-cubic stiffness under white noise of "medium" intensity (S0/m2 = 1.0 cm2 s-3). Evolutionary mean value (c) and

standard deviation (d) of the peak response.
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Figure 3. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator with

linear-plus-cubic stiffness under white noise of "high" intensity (S0/m2 = 10 cm2 s-3). Evolutionary mean value (c) and

standard deviation (d) of the peak response.
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Figure 4. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator with

linear-plus-cubic damping under white noise of "low" intensity (S0/m2 = 0.1 cm2 s-3). Evolutionary mean value (c) and

standard deviation (d) of the peak response.



0 4 8 12 16 20
0.001

0.01

0.1 SA
SL
MCS

0 1 2 3
0.01

0.1

1

10

100 SA
MCS

0 100 200 300
0

4

8

12

16

20

ACC
Poisson
GCC
MCS

0 100 200 300
0

1

2

3

4

5
ACC
Poisson
GCC
MCS

t [s] t [s]

µ
Y [

cm
]

σ Y
 [c

m
]

b [cm] ω [rad/s]

ν X
 [H

z]

S X
 [c

m
2 /s

]

+

  a)   b)

  c)   d)

Figure 5. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator with

linear-plus-cubic damping under white noise of "medium" intensity (S0/m2 = 1.0 cm2 s-3). Evolutionary mean value (c) and

standard deviation (d) of the peak response.
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Figure 6. Mean upcrossing rate (a) and Power Spectral Density (b) of the stationary response of a SDoF oscillator with

linear-plus-cubic damping under white noise of "high" intensity (S0/m2 = 10 cm2 s-3). Evolutionary mean value (c) and

standard deviation (d) of the peak response.




