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ABSTRACT
An incompressible Smoothed Particle Hydrodynamics (SPH) method is put forward to simulate non-linear and dispersive solitary wave reflection and
transmission characteristics after interacting with a partially immersed curtain-type breakwater. The Naviers–Stokes equations in Lagrangian form
are solved using a two-step split method. The method first integrates the velocity field in time without enforcing incompressibility. Then the resulting
deviation of particle density is projected into a divergence-free space to satisfy incompressibility by solving a pressure Poisson equation. BasicSPH
formulations are employed for the discretization of relevant gradient and divergence operators in the governing equations. The curtain wall and horizontal
bottom are also numerically treated by fixed wall particles and the free surface of wave is tracked by particles with a lower density as compared with
inner particles. The proposed SPH model is first verified by the test of a solitary wave with different amplitudes running against a vertical wall without
opening underneath. Then it is applied to simulate solitary wave interacting with a partially immersed curtain wall with different immersion depths. The
characteristics of wave reflection, transmission, dissipation and impacting forces on the curtain breakwater are discussed based on computationalresults.

RÉSUMÉ
La méthode Smoothed Particle Hydrodynamics (SPH) est proposée pour simuler les caractéristiques de la réflexion et de la transmission d’une onde
solitaire non linéaire et dispersive après avoir interagi avec un brise-lames de type rideau partiellement immergé. Les équations de Navier-Stokessous
forme lagrangienne sont résolues en utilisant la méthode des pas fractionnaires en deux étapes. La méthode intègre d’abord le champ de vitesses dans
le temps sans condition d’incompressibilité. Puis la variation résultante de la densité des particules est projetée dans un espace à divergence-libre
pour satisfaire la condition d’incompressibilité en résolvant une équation de Poisson pour la pression. Les formulations de base de SPH sont utilisées
pour la discrétisation des opérateurs appropriés de gradient et de divergence dans les équations. Le mur de rideau et le fond horizontal sont traités
numériquement par des particules fixes de mur et la surface libre de la vague est suivie par des particules de densité plus faible que les particules
intérieures. Le modèle proposé SPH est d’abord testé dans le cas d’une onde solitaire avec différentes amplitudes fonctionnant contre un mur vertical
sans ouverture inférieure. Ensuite il est appliqué à la simulation d’une onde solitaire agissant sur un rideau partiellement immergé à différentes
profondeurs. La réflexion, la transmission, la dissipation et les efforts sur le brise-lames sont présentés sur la base des résultats de calcul.

Keywords: Smoothed Particle Hydrodynamics, solitary wave, curtain-type breakwater.

1 Introduction

Upon reaching the shoreline, tsunamis can break and travel inland
for large distances with potential damages for coastal environ-
ment, human property and life. Thus dissipation of wave height
and energy from propagating waves is of basic necessity in
coastal engineering. Different types of wave breakwaters have
been designed throughout the world for this purpose. Among
them the fixed-type breakwater, such as rubble mound break-
waters of the gravity type, is widely used due to its stability
and easy construction. However, the cost of such breakwater
will increase extremely with the increasing water depth. Besides,
sometimes it is harmful to coastal environment since it almost cuts
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off the normal interrelationship between offshore and near-shore
regions.

A curtain-type breakwater, being a rigid impermeable vertical
wall ascending from a fraction of the water depth upwards, has
many advantages. Different from the conventional gravity-type
breakwater, it is less dependent on the geo-technical conditions
of the sea bottom on which it is to be installed and thus its cost is
relatively low. Besides, tsunamis can often be simplified as soli-
tary wave or combinations of negative and positive solitary-like
waves. The barrier can effectively intercept these kinds of long
waves, whose energy is mostly concentrated within near the sur-
face. At the same time, water circulation is maintained in the gap
below, and the flow of sediment and maritime life near the seabed
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Figure 1 Sketch view of curtain breakwater for tsunami control.

is unimpeded. In practice, the curtain barrier can be supported
on piles driven along the breakwater alignment for rigidity. The
partially immersed curtain breakwater for tsunami control can
be conceptually described in Fig. 1, where the immersion index
dimmer/d is defined by the ration ofdimmer (which is the distance
between the water surface and the bottom tip of the curtain wall)
over local water depthd.

This old issue had been earlier addressed by Ursell (1947),
who derived an analytical solution for the partial transmission
and reflection of deep water waves interacting with a fixed ver-
tical infinitely thin barrier, extending from the water surface
to some depth below this surface. Wiegel (1960) developed a
theory based on power transmission for the same problem and
obtained valuable experimental data to verify his theory. Later
Reddy and Neelamani (1992) expanded this theory and carried
out a detailed experimental investigation to determine the char-
acteristics of wave reflection and transmission by a curtain wall
for a wide range of wave steepness and different immersion
depths of the barrier. Investigations have also been extended to
the configuration of the curtain wall to include vertical slotted
or slit-type wave barriers (Kriebelet al., 1998), porous screens
(Losadaet al., 1993) and multiple permeable barriers (Lee and
Lee, 2001; Neelamani and Vedagiri, 2002), in which the wave
energy dissipation occurs within the barriers. A relevant review
has been made by Lo (2000), who also carried out a detailed
study on the issue of flexible curtain-type wave barriers consist-
ing of vertically tensioned membrane by using an eigenfunction
approach. However, the solitary wave application has been paid
little attention in the above-mentioned literatures. One of the main
reasons might be that either the theoretical or experimental tech-
niques they employed were not able to deal appropriately with
the problems of large amplitude wave characterized by strong
non-linearity and dispersion such as in the case of a solitary wave.

Numerical models based on the solutions of the Navier–Stokes
(N–S) equation have become increasingly popular to address this
problem up to, and even beyond wave breaking, since they can
provide full details of the flow in the region of interest. The phi-
losophy of the Smoothed Particle Hydrodynamics (SPH) method
is employed in the paper as the N–S solver. SPH first originated in
astrophysics for the study of dynamics of interstellar gas (Lucy,
1977) and also provided a powerful tool to model a wide range of
hydrodynamics problems. The basic concept of the SPH is that
any field variable of a reference particle can be expressed with
enough accuracy by integrals, which are approximated by sum-
mation interpolants over neighboring particles. From this point,
spatial derivatives such as the gradient and divergence operators
in the N–S equation can be similarly evaluated by summation

interpolants with particle properties. One of the great advantages
of the SPH modeling of free surface flows is that particles move
in Lagrangian coordinates and advection is directly calculated by
particle motion. Thus free surface can be conveniently and accu-
rately tracked by particles without numerical diffusion, which is
usually encountered in the traditional Eulerian approach. In early
simulations of fluid flows by SPH, incompressibility is realized
through an equation of state so that the fluid is assumed to be
slightly compressible (Monaghan and Kos, 1999). In this case,
a large sound speed has to be introduced, which could easily
cause problems of sound wave reflection at the boundary and
the high sound speed leads to a crippling CFL time-step con-
straint (Cummins and Rudman, 1999). Here a real incompressible
SPH conception is proposed similar to that of the SPH projec-
tion employed by Cummins and Rudman (1999). The pressure
is not a thermodynamic variable obtained from the equation of
state, but obtained by way of solving a pressure Poisson equation
derived from a semi-implicit algorithm. The simulations of a vor-
tex spin-down and Rayleigh–Taylor instability by Cummins and
Rudman (1999) showed that both the computational efficiency
and stability have been improved as compared with the initial
weakly compressible SPH numerical schemes.

The paper is organized in the following ways. First, the numer-
ical SPH model is introduced including governing equations and
various SPH formulations. Then the proposed model is validated
by the test of a solitary wave with different amplitudes run-
ning against a vertical wall without opening underneath. Finally
it is applied to simulate solitary wave interacting with a par-
tially immersed curtain wall with different immersion depths.
The characteristics of wave reflection, transmission, dissipation
and impacting forces on the curtain breakwater are discussed
based on computational results. The study in the paper provides
basic information for understanding the efficiencies of this type
of special breakwater. The findings on the characteristics of wave
transmission are essential to select the appropriate configuration
of such breakwater for a prevailing wave climate once the per-
missible range of transmission has been decided for the harbor
side operations.

2 Governing equation and equation solver

The SPH model solves the N–S equations in Lagrangian form

1

ρ

Dρ

Dt
+ ∇ · u = 0 (1)

Du
Dt

= −1

ρ
∇P + g + ν0∇2u (2)

whereρ = fluid particle density;t = time; u = particle veloc-
ity; P = particle pressure;g = gravitational acceleration and
ν0 = µ0/ρ = laminar kinematic viscosity. It is noted that Eq. (1)
is represented in the form of a compressible flow. Incompress-
ibility is enforced by way of setting Dρ/Dt = 0 at each particle
during the computation.

The prediction–correction scheme of the incompressible SPH
method consists of two steps similar to the two-step projection
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method of Chorin (1968) for solving the N–S equations. The
prediction step is an explicit integration in time without enforc-
ing incompressibility. Only the laminar viscous and gravitational
terms in the N–S Eq. (2) are used and an intermediate particle
velocity and position are obtained

�u∗ = (g + ν0∇2u)�t (3)

u∗ = ut + �u∗ (4)

r ∗ = r t + u∗�t (5)

where�u∗ = changed particle velocity during the prediction
step;�t = time increment;ut and r t = particle velocity and
position at timet; andu∗ andr ∗ = intermediate particle velocity
and position.

Then the second correction step is applied to adjust fluid den-
sities at the particles to initial values prior to the prediction step.
In the correction, the pressure term is used to update the par-
ticle velocity obtained from the intermediate step. The relevant
procedures are

�u∗∗ = − 1

ρ∗
∇Pt+1�t (6)

ut+1 = u∗ + �u∗∗ (7)

where�u∗∗ = changed particle velocity during the correction
step;ρ∗ = intermediate particle density between the prediction
and correction; andPt+1 andut+1 =particle pressure and velocity
of time t + 1.

Finally the positions of particle are centered in time

r t+1 = r t + (ut + ut+1)

2
�t (8)

wherer t andr t+1 = positions of particle in timet andt + 1.
The pressure for enforcing incompressibility in the correction

step is obtained from the mass conservation Eq. (1) represented
in the discrete form by SPH particles as

1

ρ0

ρ0 − ρ∗
�t

+ ∇ · (�u∗∗) = 0 (9)

whereρ0 = initial constant density at each of the particles.
Combining Eqs (6) and (9), the pressure Poisson equation is

obtained as follows

∇ ·
(

1

ρ∗
∇Pt+1

)
= ρ0 − ρ∗

ρ0�t2
(10)

The above equation solver is also analogous to that employed
in the Moving Particle Semi-implicit (MPS) method (Koshizuka
et al., 1998; Gotoh and Sakai, 1999) in that the source term of
the Poisson equation is the variation of particle densities, while
it is usually the divergence of intermediate velocity in finite dif-
ference methods. By employing the relevant SPH formulations
in the following section, Eq. (10) is discretized into simultaneous
linear equations whose matrix is symmetric and positive definite.
These equations can be solved efficiently by using the Incomplete
Cholesky Conjugate Gradient (ICCG) method (Hirsch, 1990). By
using this semi-implicit algorithm, the stability of pressure due
to the change of particle density is well improved and the stable
pressures have been obtained in a dam-break simulation by Shao

and Lo (2003). Convergence of the iteration is assumed to be sat-
isfactory when the difference between two successive iteration
steps reduces to 0.1 Pa and approximately two to six iterations
are required for the pressure equation. The incompressible SPH
scheme was found to be first-order accurate globally (Shao and
Lo, 2003).

3 SPH formulations

The SPH formulations as developed by Monaghan (1992) are
obtained by interpolating from a set of points that may be dis-
ordered. The interpolation is based on the theory of integral
interpolants using kernels that approximate a delta function.
The interpolants are analytic functions that can be differentiated
exactly. If the points are fixed in position, the equations reduce
to finite difference equations, with different forms depending on
the interpolation kernel. The SPH equations describe the motion
of the interpolating points, which can be thought of as particles.
Each particle carries a massm, a velocityu, and other properties,
depending on the problem.

Using the above concepts, any quantity of particlea, whether
scalar or vector, can be approximated by the direct summation of
the relevant quantities of its neighboring particlesb

ϕa(r a) =
∑

b

mb

ϕb(r b)

ρb(r b)
W(|r a − r b|, h) (11)

wherea andb = reference particle and its neighbors;ϕa andϕb =
scalar or vector quantity being interpolated and interpolating;r a

andr b = position of particles; andW = interpolation kernel and
h = smoothing distance. Thus the fluid density at particlea, ρa

is evaluated by

ρa =
∑

b

mbW(|r a − r b|, h) (12)

Kernels can assume many different forms and the use of dif-
ferent kernels is the SPH analog of using different difference
schemes in finite difference methods. By balancing the compu-
tational accuracy and efficiency, the following kernel based on
the spline function and normalized in two dimensional (2-D) is
adopted (Monaghan, 1992)

W(r, h) = 10

7πh2

(
1 − 3

2
q2 + 3

4
q3

)
q < 1

W(r, h) = 10

28πh2
(2 − q)3 1 ≤ q ≤ 2

W(r, h) = 0 q > 2

(13)

whereq = r/h andr = separation distance between the particles.
The smoothing distance or kernel rangeh determines the degree
by which a particle interacts with neighboring particles. In the
subsequent computationh is set twice the initial particle spacing.

The gradient term has different forms depending on the deriva-
tion used. The following symmetric form is widely used since it



SPH simulation of solitary wave interaction 369

conserves linear and angular momentum exactly. For example,
the gradient of the pressure is expressed as(

1

ρ
∇P

)
a

=
∑

b

mb

(
Pa

ρ2
a

+ Pb

ρ2
b

)
∇aWab (14)

where the summation is over all particles other than particlea

and∇aWab = gradient of the kernel taken with respect to the
positions of particlea. Similarly, the divergence of a vectoru at
particlea can be formulated symmetrically by

∇ · ua = ρa

∑
b

mb

(
ua

ρ2
a

+ ub

ρ2
b

)
· ∇aWab (15)

In order to avoid pressure instability and decoupling in the
computation, the Laplacian is formulated as a hybrid of a standard
SPH first derivative with a finite difference approximation for the
first derivative, which is similar to the approach by Cummins and
Rudman (1999)

∇ ·
(

1

ρ
∇P

)
a

=
∑

b

mb

8

(ρa + ρb)2

Pabr ab · ∇aWab

|r ab|2 (16)

wherePab = Pa − Pb andr ab = r a − r b are defined.
Using the same rule the SPH formulation of the laminar

viscous term in Eq. (2) is

(ν0∇2u)a =
∑

b

4mb(µa + µb)r ab · ∇aWab

(ρa + ρb)2(|r ab|2) (ua − ub) (17)

The above equation is based on a similar SPH expression used
by Monaghan (1992) to model heat conduction. The expression
conserves linear momentum exactly, while angular momentum
is only approximately conserved.

4 Numerical treatment of solid walls and free surface

4.1 Wall boundaries

The solid walls are also simulated by particles, which balance the
pressure of inner fluid particles and prevent them from penetrating
the wall. Here we follow the treatment used by Koshizukaet al.
(1998) and Gotoh and Sakai (1999) to model the wall boundaries
such as the partially immersed curtain wall by fixed wall particles,
which are equally spaced according to the geometric configura-
tions of the wall. The pressure Poisson Eq. (10) is solved on these
wall particles to repulse the inner flow particles accumulating in
the vicinity of the wall. For example, the pressure of wall parti-
cles increases when the particle density in the vicinity of the wall
increases and thus the inner fluid particles are repelled away from
the wall, and vice versa. The velocities of wall particles are set to
be zero to represent the no-slip boundary conditions. In order to
impose the homogeneous Neumann boundary condition on wall
particles, several lines of dummy particles are put on the other
side of the wall and the pressure of these dummy particles is set
to be equal to the pressure of neighboring wall particles. Thus
the normal pressure gradient of wall particles is approximately
zero and we only consider the interactions between neighboring
wall particles and inner fluid particles while solving the pressure
equation.

4.2 Free surfaces

Free surfaces are easily identified by particle densities. Since no
particle exists in the outer region of the free surface, the par-
ticle density will drop suddenly on the surface. A particle is
regarded as a surface particle if the absolute value of the differ-
ence between the particle density and reference density exceeds
0.01ρ0. A Dirichlet boundary condition of zero pressure is given
to this particle. Unlike wall particles, surface particles are not
considered in the pressure Poisson equation.

5 Computational efficiency

In the incompressible SPH method, each fluid particle needs a
list of neighboring particles within a distance of kernel range (2h

in this paper). The whole list, which is updated in each time step,
requires the scale ofN2 operations for the calculation of distances
between all pairs of particles, whereN is the number of particles.
This list generation can dominate the computation time in large
problems involving many particles.

In order to improve computational efficiency, linked list data
structures put forward by Monaghan and Lattanzio (1985) are
employed to identify neighboring particles within a distance of
2h. The computational domain is divided into square cells having
side lengths of 2h and a list of particles belonging to each cell
is created. A particle located within a given cell then considers
interactions only with particles in neighboring cells. In this way,
computational efficiency is significantly improved.

In addition, the time step is also dynamically adjusted in the
computation for acceleration based on the following Courant
condition

�t ≤ 0.1
l0

Vmax
(18)

and the constraint of viscous diffusion

�t ≤ 0.1
l20

ν0
(19)

where Vmax = maximum particle velocity andl0 = typical
particle spacing.

6 Model verification

In this section the proposed incompressible SPH model is val-
idated by the non-linear reflection of high amplitude solitary
waves from a vertical wall. When low amplitude solitary waves
collide with a vertical wall, they behave as solitons and reflect
without reduction in the wave height and speed. However, in
case of highly non-linear solitary waves with large amplitude,
the reflected wave will lose part of the energy to a dispersive tail.
Thus the height and speed of the reflected wave are smaller than
those of the incident wave before collision. This problem has been
addressed extensively in the literatures, represented by Cooker
et al. (1997) using a boundary-integral method for solving the
Eulerian equations and by Madsenet al. (2002) using a high-
order Boussinesq approximation with fully non-linear boundary
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conditions. Their numerical results are employed here to test the
SPH model.

Generally speaking, the following sequences of events occur
during the whole impact processes of the solitary wave. Ini-
tially the incident wave propagates with constant speed and wave
height. As the wave crest is less than about twice the water depth
from the wall, the wave crest accelerates significantly. At the
instant timeta (the so-called attachment time in Cookeret al.,
1997), the wave crest snaps through to the wall with a correspond-
ing elevationηa. With a little delay up to timet0, the maximum
run-up occurs with an elevationη0, which can be several times
larger than the incident amplitude. After a further delay, the wave
crest leaves the wall attd (the so-called detachment time) with
an elevationηd, which is always less thanηa. It follows that
t0 − ta < td − t0, i.e., the time of water line falling is always
longer than the time of rising. Besides, the total time during
which the crest is attached to the wall is called the wall residence
time defined bytr = td − ta, which provides an unambiguous
characterization of the phase shift incurred during reflection for
waves of both small and large amplitudes. For small and moder-
ate amplitude solitary waves there will be very little difference
in wave height and speed as compared with the perfect reflection
soliton behavior.As for high amplitude solitary waves with strong
non-linearity and dispersion, the behavior is totally different.

In the following analysis,τ = (d/g)1/2 is the dimensional
time scale andε = a/d is the dimensionless wave amplitude,
a being the amplitude of the incident wave traveling on a fluid
with a constant water depthd. A series of SPH simulations have
been made with non-linearity parameterε ranging from 0.05 to
0.75. We consider a constant water depth of 1.0 m and compu-
tational domain 40.0 m long, which is long enough to eliminate
the influence of the vertical wall on the initialization of the soli-
tary wave profile at the beginning of the computation. The initial
condition is based on the solitary wave data of Tanaka (1986),
whose numerical solution is extremely accurate even for the high-
est waves. The SPH particles are initially put on a Cartesian grid
with a spacing ofl0 = 5.0 cm and thus about 16,000 particles
are involved in the computation. The choice of the particle spac-
ing l0 is made balancing both the computational efficiency and
accuracy. Generally speaking, the particle number in the vertical
direction must be at least 20 in order to eliminate the effect of
the bottom wall in a vertical 2-D case. Here it should be noted
that the small wave amplitude (ε = 0.05) is of the same order as
particle spacingl0, which could strongly reduce the accuracy of
SPH simulation in this case. The initial solitary wave is put on
the entrance side of the computational domain, with each parti-
cle assuming a velocity and elevation as given by Tanaka (1986).
This initialization of data for particles is similar to Monaghan
and Kos (1999), who used solutions derived from Boussinesq
equation. The horizontal distance from the wave crest to the wall
is x0, which for each wave is chosen so that the fluid elevation at
the wall is always less than 10−5d at the beginning of the sim-
ulation. This setting is also consistent with that used by Cooker
et al. (1997) in a similar calculation. The computational time step
�t is automatically adjusted in the whole simulations required
by the Courant constraint and viscous diffusion.

According to SPH computations, the normalized attachment
elevationηa, detachment elevationηd and maximum run-upη0,
are plotted against the dimensionless incident wave amplitudeε

in Fig. 2. The normalized instantaneous wall force as a function
of time relative tot0 (which is the time at maximum run-up) for
selected values ofε, are shown in Fig. 3. The wall forces are
obtained by integrating the pressure distributions over the wall
from the seabed to the free surface. The pressure distribution is
calculated integrating individual particle pressures and mapping
them onto a 1.0 cm×1.0 cm grid system inserted in the simulation
domain. In both figures, the numerical results by Cookeret al.
(1997) using a boundary-integral method to solve Euler equation
with fully non-linear boundary conditions and by Madsenet al.
(2002) using a high order Boussinesq approach to solve Laplace
equation, are also shown for comparison. The good agreement
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between them is quite satisfactory. However, both Cookeret al.
(1997) and Madsenet al. (2002) reported a numerical break-
down in their computations when the non-linearity parameterε

exceeds 0.7. On the other hand, the SPH simulations are very
stable even ifε reaches 0.75. One reason is that the advection
term in the N–S equation is calculated by particles and the free
surface is also tracked by particles without numerical diffusion
in the SPH formulation. Thus it is capable of handling violent
wave flows with large deformation during their run-up and run-
down processes. Besides, it is also noted from Fig. 3 that the
result of Madsenet al. (2002) deviates significantly from that of
Cookeret al. (1997) atε = 0.6. By comparison, the SPH result
is quite consistent with that of Cookeret al. (1997), in which the
curve follows a two-peak pattern rather than a three-peak one as
reported by Madsenet al. (2002).

From Fig. 2 it is shown that the maximum run-upη0 for weakly
non-linear waves is approximately a linear function and more than
twice the incident wave amplitude. At sufficiently high ampli-
tude, i.e.ε > 0.65, the run-up increases non-linearly withε and
exceeds three times the incident wave amplitude. Besides, the
attachment elevationηa is always higher than the detachment
elevationηd ·ηa increases almost linearly within the whole range
of ε but with a much slower rate as compared with the maximum
run-up. On the other hand,ηd increases only slightly withε and
seems to approach an asymptotic value at largeε, whose physical
mechanism is yet to be adequately disclosed. Fig. 3 shows that
for ε up to 0.3, the wall force is single peaked while it becomes
double peaked for higher waves. This is attributed to the mutual
interactions between the hydrostatic and dynamic pressures dur-
ing the wave run-up and run-down processes. For small waves,
the force is dominated by hydrostatic pressure and has a single
maximum, which occurs around the time of maximum run-up at
t0. For waves with larger values ofε, the vertical acceleration
of flow becomes more important, especially during the initial
run-up stage. Thus it increases the pressure above the hydrostatic
value and the first maximum occurs before the maximum run-up.
During the maximum run-up, the acceleration forces are counter-
acting the hydrostatic forces, leading to a local minimum. Later
at the end of wave run-down, the deceleration again increases the
pressure above the hydrostatic value and creates a second peak in
the force. However, its magnitude is slightly smaller as compared
with the previous one.

7 Solitary wave reflection and transmission by
partially immersed curtain breakwater

In this section, the solitary wave transmission and reflection by
a partially immersed curtain breakwater are studied based on the
above incompressible SPH model. The following computational
parameters are employed. The initial water depth isd = 20.0 cm
and the computational domain is 10.0 m long. The initial particle
spacing isl0 =1.0 cm and totally 20,000 particles are used in the
computation. Here the particle spacingl0 assumes a smaller value
as compared with that employed in the previous section. The
purpose is to further improve the spatial accuracy. Meanwhile,

in order to reduce the computational cost, the constant water
depth also assumes a smaller value. In this regard, the vertical
scale of the simulation might deviate somewhat from the real
situation. Nonetheless, this vertical scale is quite close to what
is commonly used in most wave flume experiments and still has
a practical meaning. The curtain wall is located at a distance of
4.0 m from the left boundary and the incident wave amplitude is
chosen asε = a/d = 0.3 and 0.6, respectively, in the simulation.

In order to evaluate the influence of different immersion con-
ditions, four immersion depths of the curtain wall are selected,
i.e., the immersion index isdimmer/d = 0.0, 0.25, 0.50 and 0.75.
The curtain wall is assumed to be vertical, rigid and imperme-
able and overtopping is not considered here. The time step�t is
dynamically adjusted in the computation to satisfy the stability
requirement of Eqs (18) and (19) and the kinematic viscosity is
taken asν0 = 10−6 m2/s. The initial wave condition is described
by giving the SPH particles near the entrance of the computa-
tional domain with a specified wave profile and velocity, based
on the numerical solutions of Tanaka (1986).

7.1 Smaller amplitude solitary wave (ε = 0.3) impacting on
curtain wall with different immersion depths

The reflection and transmission characteristics of a smaller ampli-
tude solitary wave (ε = 0.3) are analyzed here using the SPH
model. The time sequences of particle configurations of the soli-
tary wave before and after interaction with the curtain wall are
shown in Fig. 4(a–d) under the condition ofdimmer/d = 0.50. In
Fig. 4(a)–(d) corresponds to the incident wave, maximum runup,
rundown and reflected and transmitted waves, respectively.

From the computation it is shown that after the incident wave
impacts on the curtain wall, a transmitted wave is created due to
the pressure difference on both sides of the wall. The redundant
pressure on the left side pushes part of the water on the right
to move in the form of a wave. This transmitted wave gradu-
ally develops into a stable solitary wave as it propagates further
downstream. Meanwhile, the reflected waves are created by the
interaction between the incident wave and the curtain wall. How-
ever, the reflection is not very clear and assumably composed of
two parts. One part, which is far away from the curtain wall, was
created by the direct reflection when the incident solitary wave
approached the wall prior to its run-up. In contrast, another part,
which is close to the curtain wall, was created by the rundown
motion of the flow.

In order to quantitatively verify the accuracy of the above
computations, the surface profiles of fully transmitted waves are
shown in Fig. 5(a–d), under conditions of different immersion
depths of dimmer/d = 0.0, 0.25, 0.50 and 0.75, respec-
tively. Meanwhile the theoretical wave profiles based on the
Boussinesq equation (Dean and Dalrymple, 1991) are given
for comparison. The good agreement between the two is quite
satisfactory, validating the accuracy of the SPH computations.
Besides, the numerical wave celerityc is computed to be around
1.55–1.47 m/s under different immersion conditions. These val-
ues are also well consistent with the theoretical ones estimated by
c = √

g(H + d).
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Figure 4 (a–d) Time series of solitary wave before and after impacting
on curtain wall under immersion depthdimmer/d = 0.50.

Wave energy dissipation is the main topic of interest in the
study of breakwaters. During the solitary wave interacting with
the curtain breakwater, a part of the incident wave energy is
expected to dissipate due to the vortex shedding at the bottom
tip of the barrier due to energy transmission, wave breaking and
turbulence developed during the run-up and run-down processes.
Apart from reflection, the partially immersed vertical barrier
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Figure 5 (a–d) Computational and theoretical transmitted solitary wave
profiles under different immersion depthsdimmer/d.

transmits the remaining part of wave energy from the incident
wave. If we define the coefficient of transmission asKt = Ht/Hi ,
reflectionKr = Hr/Hi and dissipationKd = Hd/Hi , where
Ht, Hr, Hd andHi are the transmitted, reflected, dissipated and
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incident wave heights, respectively,the following relationship can
be established by employing energy conservation law

K2
t + K2

r + K2
d = 1 (20)

In Fig. 6(a), the transmission coefficientKt is plotted against
different immersion depthsdimmer/d based on the above SPH
computations. It is shown that over half of the incident wave
energy could be transmitted while the immersion depthdimmer/d

is less than 0.50. However, the curtain breakwater tends to be very
effective in deterring solitary wave when its immersion depth
is over 50%, from which point the coefficient of transmission
begins to decrease rapidly until it attains a small value of 35%
atdimmer/d = 0.75. This finding is also supported by the experi-
mental results of Reddy and Neelamani (1992), who carried out a
detailed study on regular wave dissipation by a partially immersed
vertical barrier.

By employing the energy conservation Eq. (20), the calcu-
lated coefficient of dissipationKd is plotted against different
immersion depthsdimmer/d in Fig. 6(b). It is interesting to see
that Kd increases proportionally with the immersion depth at
the beginning. However, it tends to be a constant value of 75%
after the immersion depth reaches 50%. This phenomenon is due
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Figure 6 (a) Transmission coefficientKt under different immersion
depthsdimmer/d. (b) Dissipation coefficientKd under different immer-
sion depthsdimmer/d.

to the fact that the smaller transmission usually leads to larger
reflection and the wave dissipation remains almost unchanged
as a result. Besides, it is primarily found that the immersion
depthdimmer/d = 0.50 is a critical parameter in evaluating the
breakwater behavior under solitary wave conditions.

The prediction of hydrodynamic forces exerting on the curtain
barrier is an important issue in the planning, design and monitor-
ing of such breakwaters as a permanent structure with necessary
depth of immersion. As wave interacts with the barrier, each
side of the barrier experiences fluctuating pressures and, because
these pressures differ on the up-wave and down-wave sides, the
barrier also experiences time-varying wave forces. Based on SPH
computations, the time sequences of wave forces on the curtain
wall are shown in Fig. 7, under conditions of different immersion
depths ofdimmer/d = 0.0, 0.25, 0.50 and 0.75. The wave forces
were obtained by integrating the computed pressure values on
both sides of the curtain barrier and normalized byρgd2 in the
figure. It is shown that all cases follow a similar evolution pattern,
i.e., a sudden increase of net forces up to the peak followed by a
rapid decay of their intensity to zero. The maximum forces occur
during the maximum run-up on the curtain wall by the incident
wave and the wave forces increase with the increasing immersion
depth. It is quite consistent with the numerical results by Cooker
et al. (1997) and Madsenet al. (2002) in that the maximum
wave force occurs during the maximum run-up in case of smaller
amplitude solitary waves. However, it is different from their com-
putations in that shorter duration and smaller magnitude of the
maximum forces are observed. This is because the transmission
underneath the curtain wall greatly reduces the hydrodynamic
force (by about 2/3 in the computation atdimmer/d = 0.75) as
compared with a fully immersed case like that in Cookeret al.
(1997) and Madsenet al. (2002). Fig. 7 also indicates that the
hydrodynamic forces change rapidly fromdimmer/d = 0.50 to
0.25, implying thatdimmer/d = 0.50 is a key parameter, which is
consistent with the conclusion drawn above from the analysis of
wave energy.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.1

0.0

0.1

0.2

0.3

0.4

t
0

Maximum runup time 

dimmer/d = 0.75
dimmer/d = 0.50
dimmer/d = 0.25
dimmer/d = 0.0

F
o

rc
es

 o
n

 c
u

rt
ai

n
 w

al
l F

/(
ρg

d
2 )

Time t (s)

Figure 7 Time sequences of wave forces on curtain barrier under
different immersion depthsdimmer/d using smaller wave (ε = 0.3).
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7.2 Larger amplitude solitary wave (ε = 0.6) impacting on
curtain wall with different immersion depths

In this section we consider a larger amplitude solitary wave
(ε = 0.6) interacting with a partially immersed curtain break-
water. According to SPH computations, the wave reflection,
transmission and energy dissipation characteristics of the larger
solitary wave are almost identical to those of the smaller solitary
wave (ε = 0.3), which have already been shown in detail in the
previous section. Thus they will not be further re-addressed in
the paper.

However, the hydrodynamic force on the curtain wall by the
larger amplitude solitary wave is totally different from that by
the smaller solitary wave, in that it becomes double peaked for
the higher wave. In Fig. 8, the time sequences of the normalized
wave force under different immersion depths are shown. A dou-
ble peaked wave force pattern is observed before and after the
maximum run-up, which occurs at about timet0 = 1.2 s. The
magnitude of the second peak is slightly smaller as compared
with the first one. These phenomena have already been justified
by Cookeret al. (1997) and Madsenet al. (2002) in their compu-
tations of larger amplitude solitary waves interacting with a fully
immersed curtain wall. However, the magnitude of the maxi-
mum force in our computation is only 1/3 as compared with their
results. This is also attributed to the fact that the transmission
underneath the curtain barrier greatly reduces the hydrodynamic
forces. The mechanism behind this double force peak by the
larger solitary wave is the mutual interaction between the hydro-
static and dynamic forces and can be easily understood in the
following way: if we split up the total pressure into a hydrostatic
part which is measured from the instantaneous position of the
free surface and an acceleration part which includes non-linear
velocity terms and the temporal derivative of the vertical velocity,
it is very obvious that the hydrostatic part has only one maximum
value, which occurs during the maximum run-up at timet0. On
the other hand, the dynamic part has two extremes just before and
after the maximum run-up and thus increases the pressure above
the hydrostatic level. Therefore, the two-peak force problem must
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Figure 8 Time sequences of wave forces on curtain barrier under
different immersion depthsdimmer/d using larger wave (ε = 0.6)

be carefully addressed during the practical design of breakwaters
for defending against larger amplitude non-linear waves.

8 Conclusion

The paper presents an SPH particle model to simulate solitary
wave reflection and transmission after impacting on a curtain-
type breakwater. The model can easily and accurately track free
surfaces by Lagrangian particles without numerical diffusion.
The computations have been carried out under conditions of dif-
ferent immersions of the curtain wall using both smaller and
larger amplitude non-linear waves. The computational results are
in good agreement with those reported in the literature and show
that the partially immersed curtain breakwater is effective in dis-
sipating incoming wave energy if its immersion depth is over half
of the water depth. Another important discovery is that the wave
force on the curtain wall has only one single peak value in case of
smaller waves while it has a double peak value in case of larger
non-linear waves. This is caused by the counterbalance between
the hydrostatic and dynamic forces during the wave run-up and
run-down processes and should be paid great attention in practice
for the purpose of breakwater safety.

Future improvement is needed to develop a better turbulence
model to address the turbulence effect during wave breaking.
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Notation

a = Wave amplitude on constant water depth
c = Wave celerity (=√

g(d + H))

d = Constant water depth
dimmer = Immersion depth of curtain wall

g = Gravitational acceleration
h = Kernel smoothing distance

Hd = Dissipated wave height
Hi = Incident wave height
Hr = Reflected wave height
Ht = Transmitted wave height
Kd = Coefficient of dissipation (=Hd/Hi )
Kr = Coefficient of reflection (=Hr/Hi )
Kt = Coefficient of transmission (=Ht/Hi )
l0 = Initial particle spacing
m = Particle mass
N = Number of particles
P = Pressure
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q = Non-dimensional distance between particles (=r/h)
r = Distance between particles
r = Position vector
t = Time

t0 = Time of maximum run-up
ta = Time of attachment
td = Time of detachment
tr = Wall residence time (=td − ta)
u = Velocity

Vmax = Maximum particle velocity
W = Interpolation kernel
�t = Time increment
�u = Changed velocity

ε = Non-linear wave parameter (=a/d)
η0 = Maximum run-up elevation
ηa = Attachment elevation
ηd = Detachment elevation
ν0 = Kinetic viscosity of laminar flow
ρ = Fluid density

ρ0 = Initial density
τ = Time scale (=√

d/g)

ϕ = Quantity interpolated/interpolating

Subscripts and symbols
a = Reference particle
b = Neighboring particles

ab = Value between particlesa andb

∗ = Intermediate value
∗∗ = Corrected value
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