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ABSTRACT
The paper employs a Reynolds-averaged Navier–Stokes (RANS) approach to investigate the time-dependent wave breaking processes. The numerical
model is the smoothed particle hydrodynamic (SPH) method. It is a mesh-free particle approach which is capable of tracking the free surfaces of large
deformation in an easy and accurate way. The widely used two-equationk–ε model is chosen as the turbulence model to couple with the incompressible
SPH scheme. The numerical model is employed to reproduce cnoidal wave breaking on a slope under two different breaking conditions—spilling and
plunging. The computed free surface displacements, turbulence intensities and undertow profiles are in good agreement with the experimental data
and other numerical results. According to the computations, the breaking wave characteristics are presented and discussed. It is shown that the SPH
method provides a useful tool to investigate the surf zone dynamics.

RÉSUMÉ
L’article utilise une approche RANS pour étudier les processus de déferlement des vagues en fonction du temps. Le modèle numérique est la méthode
des particules hydrodynamiques lissées (SPH). C’est une approche particulaire sans maillage qui est capable de dépister et de suivre les surfaces
libres soumises à de grandes déformations, facilement et de manière précise. Le modèle à deux équations largement répanduk–ε est choisi comme
modèle de turbulence pour être couplé avec le schéma incompressible SPH. Le modèle numérique est utilisé pour reproduire le déferlement sur une
pente d’une onde cnoïdale sous deux conditions différentes de déferlement—déversant et plongeant. Les déplacements calculés de la surface libre, les
intensités de turbulence et les profils du contre-courant de fond sont en bon accord avec les données expérimentales et d’autres résultats numériques.
Selon les calculs, les caractéristiques des vagues déferlantes sont présentées et discutées. On montre que la méthode SPH fournit un outil utile pour
étudier la dynamique des zones de ressac.
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1 Introduction

Coastal waves break in a region called the surf zone, which
is characterized by the irreversible transformation of organized
wave motions into motions of different types and scales including
the turbulence, vortices, low frequency waves and currents. The
swash zone is identified as the part of the beach between the min-
imum and maximum water levels during the wave running up and
down. The knowledge of wave breaking is very essential to nearly
all of the coastal processes, such as the coastal current, sediment
and pollutant transport and wave forces on coastal structures.
Excellent reviews on the research progress of surf and swash zone
dynamics have been made by Ting and Kirby (1994, 1995, 1996),
Lin and Liu (1998a, b), Bradford (2000) and Longoet al.(2002).

The wave breaking process must be clarified in order to solve
many coastal problems. However, the study of breaking waves is
a difficult task for a number of reasons. For example, the velocity
field during breaking is extremely chaotic and varies rapidly in
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time. The difficulties of measuring velocity due to the existence
of air bubbles entrained by the plunging jet have hindered many
experimental studies on the wave breaking. Field studies also suf-
fer from the same difficulties as the experiments and, in addition,
are hindered by limited site access and environmental variability
(Bradford, 2000). For these practical reasons, the numerical stud-
ies of breaking waves have become increasingly popular in that
the numerical simulations can provide flow details without scal-
ing and observational difficulties. As far as the current knowledge
is concerned, numerical models based on the full Reynolds-
averaged Navier–Stokes (RANS) equations might be the most
powerful tool to deal with the time-dependent flows including
the breaking waves. Combined with the free surface tracking
techniques such as the MAC (Harlow and Welch, 1965) and VOF
(Hirt and Nichols, 1981) methods, the RANS models have been
extensively employed and validated in the costal hydrodynamics
through the implementation of the finite difference, finite volume
or finite element schemes.
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In contrast to the commonly used Eulerian grid method, a par-
ticle model has the great advantage in that the particles move in
Lagrangian coordinates and the advection in the N–S equations
is directly calculated by particle motion without the numerical
diffusion. The numerical diffusion becomes a severe problem
when the deformation of free surface is large. The particle model
employed in this paper is developed based on the smoothed
particle hydrodynamics (SPH) method (Monaghan, 1992). SPH
is a mesh-free particle approach which was originally from the
astrophysics and later extended to the fluid flows. In the original
applications of SPH to the fluid flow, the fluid was assumed to be
weakly compressible and an equation of state was introduced to
calculate the pressure. Besides, the solid boundary treatment was
implemented through a force function. Recently an incompress-
ible SPH model has been put forward by Shao and Lo (2003),
in which the pressure was calculated through a pressure Poisson
equation derived from combinations of the mass and momen-
tum equations. The boundary treatment and solution process are
also very similar to those employed in a grid method. Thus the
incompressible SPH model serves as a good link between the
particle and grid modeling techniques. The incompressible SPH
model has proved to be a robust way for free surface tracking
through the applications of a regular wave interacting with the
breakwater (Gotohet al., 2004) and a solitary wave breaking on
the beach (Shao and Gotoh, 2005). The breaking waves were
also studied by Koshizukaet al. (1998) using the moving parti-
cle semi-implicit (MPS) method (Koshizukaet al., 1995), which
clearly showed the differences between a spilling and plunging
breaker for a cnoidal wave.

Turbulence modeling is another key issue to be addressed in
the analyses of breaking waves. For the non-breaking waves,
the potential flow theory can be used with enough accuracy.
While for the breaking waves, the flow becomes highly rota-
tional and complicated, thus necessitating the implementation of
more sophisticated descriptions of wave dynamics. At the cur-
rent stage, direct numerical simulation (DNS) is impossible for
the high Reynolds number flows in large computational domains.
Large eddy simulation (LES) has been put forward to balance
the computational accuracy and efficiency (Rogallo and Moin,
1984). However, LES still needs a very fine grid and this require-
ment cannot easily be achieved in practice. Although the LES
modeling was tried by Gotohet al. (2004) for a regular wave
interacting with the breakwater, the spatial resolution was not
fine enough to capture the detailed flow properties such as small
eddies, so the essence of real LES could not be fully explored.
On the other hand, the RANS equations coupled with different
turbulence closure models have enjoyed great successes in a wide
variety of practical fields. Turbulence stresses in the RANS equa-
tions can be closed using any of the existing turbulence models.
No single turbulence model is accepted universally for solving
all classes of problem but each model has certain advantages over
the other depending on the type and nature of the flow field to be
simulated and the desired accuracy of results. Among the existing
turbulence closure schemes, the two-equationk–ε model is the
most popular one which has undergone numerous tests. For exam-
ple, Lin and Liu (1998a, b) successfully employed a nonlinear

k–ε model to investigate two different breaking waves in the surf
zone. The same problem was later addressed by Bradford (2000)
and meanwhile a detailed comparison was also made for the three
different turbulence models.

Until now it seems that no specific turbulence model has
ever been designed for the SPH method. Monaghan (2002) put
forward the conception of compressible turbulence in an SPH
method. The proposed SPH alpha model is an extension of the
original XSPH algorithm, which aimed to reduce the particle
disorder at short length scales and retain the constants of motion.
Besides, Shao and Gotoh (2005) used a 2D sub-particle scale tur-
bulence model based on the eddy viscosity assumption to simu-
late a wave breaking on the beach. A similar turbulence modeling
technique was also used by Violeauet al. (2001) for a Poiseuille
turbulence flow. Here a more widely used two-equationk–ε

model is to be incorporated into the basic SPH numerical scheme.
The paper is organized in the following ways. First, an incom-

pressible SPH method is developed using the RANS equations
and a two-equationk–ε model is formulated using the particle
approach. Then the numerical model is employed to reproduce
the wave breaking experiment of Ting and Kirby (1994). Flow
characteristics of the spilling and plunging breakers are discussed
based on the simulation results. Finally, we fully employ the
advantages of numerical modeling to disclose fundamental dif-
ferences between the two types of breakers by investigating the
temporal and spatial evolutions of turbulence quantities.

2 Navier–Stokes equations and turbulence model

2.1 Navier–Stokes equations

Employing an SPH particle approach, the RANS equations are
presented in the Lagrangian form as

1

ρ

Dρ

Dt
+ ∇ · u = 0 (1)

Du
Dt

= −1

ρ
∇P + g + ν0∇2u + 1

ρ
∇ · ⇒

τ (2)

whereρ = density; t = time; u = velocity; P = pressure;
g = gravitational acceleration;ν0 = kinematic viscosity of
laminar flow and

⇒
τ = Reynolds stress. The mass conservation

equation (1) is written in the form of a compressible flow using
a full derivative. The purpose is to impose the incompressibility
by setting Dρ/Dt = 0 at fluid particles during the semi-implicit
SPH computations.

2.2 Two-equationk–ε turbulence model

The k–ε model has enjoyed great popularity in the numerical
hydrodynamics. It is an important turbulence closure model on
a level lower than the Reynolds stress closure model. In thek–ε

model, instead of seeking the direct closure of the Reynolds stress
transport equations, an eddy viscosity assumption is made to
relate the Reynolds stress

⇒
τ (with each element denoted byτij)
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in Eq. (2) to the turbulence kinetic energyk and the strain rate of
mean flow as

τij

ρ
= 2νTSij − 2

3
kδij (3)

whereSij = 1
2(∂ui/∂xj + ∂uj/∂xi) is the element of mean strain

rate;νT = turbulence eddy viscosity andδij = Kronecker delta.
By assuming the local balance of the turbulence production

and dissipation and using a dimensional analysis, the relationship
between the turbulence eddy viscosityνT, turbulence energyk
and turbulence dissipation rateε is established as follows

νT = cd
k2

ε
(4)

wherecd = empirical constant.
The k and ε transport equations are derived from the N–S

equations and represented in the following form for the SPH
particle approach as

Dk

Dt
= ∇ ·

(
νT

σk

∇k

)
+ Pk − ε (5)

Dε

Dt
= ∇ ·

(
νT

σε

∇ε

)
+ c1ε

ε

k
Pk − c2ε

ε2

k
(6)

where σk, σε, c1ε and c2ε are the empirical turbulence con-
stants andPk = turbulence production rate defined in a 2Dxy
plane by

Pk = νT

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+
(

∂u

∂y
+ ∂v

∂x

)2]
(7)

Although the closure assumptions employed in thek–ε equa-
tions are crude, this model has been successfully used to predict
many complex flows. The recommended values for the empirical
coefficients have been given by Rodi (1993) ascd = 0.09, σk =
1.0, σε = 1.3, c1ε = 1.44 andc2ε = 1.92. According to Lin and
Liu (1998a), a sensitivity analysis on these parameters showed
that a 10% change inσk, σε andc2ε only caused less than 10%
change in the total turbulence energy, while a 10% change inc1ε

could lead to more than 50% change in the turbulence energy.
In spite of some uncertainties involved, the recommended val-
ues are adopted for the current SPH computations and the results
indicate that they work well.

3 Equation solution processes

The above basic equations are solved through a two-step pre-
diction and correction processes as stipulated by Shao and Lo
(2003) and Shao and Gotoh (2005). The first prediction step is an
explicit integration in time without enforcing the incompressibil-
ity: the gravitational force, the laminar and Reynolds stresses in
N–S equation (2) are used and an intermediate particle velocity
and position are obtained. At this moment, the incompressibility
or mass conservation is not satisfied, which is demonstrated by
deviations of the instantaneous particle density from the initial
density. Therefore, in the second correction step, the pressure
term is used to update particle velocities and positions obtained
from the prediction step. The pressure is calculated from a pres-
sure Poisson equation formulated by combining the mass and

momentum equations (1) and (2), a semi-implicit approach which
is very similar to that employed in a typical grid method (Chorin,
1968). The turbulence properties are updated according to Eqs (5)
and (6) after the mean flow field has been solved.

The incompressible SPH model in this paper is different from
the original weakly compressible SPH of Monaghan (1992), in
that the pressure is determined implicitly from the solution of
Poisson equation rather than an equation of state. This algorithm
was developed based on the MPS method of Koshizukaet al.
(1995, 1998), who enforced the incompressibility by keeping the
number density of particles being a constant.

4 SPH formulations

In an SPH conception, the motion of each particle is calculated
through interactions with neighboring particles using an analyt-
ical kernel function. For the fluid flows, all terms in the N–S
equations are formulated by particle interaction models and thus
a grid is not needed. For a detailed review of the SPH theory see
Monaghan (1992). SPH particles move in a Lagrangian coordi-
nates and the advection in N–S equations is directly calculated
by particle motion without the numerical diffusion. Each particle
can carry a massm, velocityu and other properties depending on
the problem. For the turbulence modeling, a particle also carries
a turbulence eddy viscosityνT, turbulence energyk and energy
dissipationε. The basic SPH formulations used in the paper are
summarized as follows.

The fluid densityρa of particlea is evaluated by

ρa =
∑

b

mbW(|ra − rb|, h) (8)

wherea and b = reference particle and its neighbors;mb =
particle mass;ra andrb = particle positions;W = interpolation
kernel andh = smoothing distance, which determines the range
of particle interacts and is taken to be 1.2 times of the initial
particle spacing in the computations.

The pressure gradient assumes a symmetric form since it
conserves the linear and angular momentums(

1

ρ
∇P

)
a

=
∑

b

mb

(
Pa

ρ2
a

+ Pb

ρ2
b

)
∇aWab (9)

where the summation is over all particles other than particlea

and∇aWab = gradient of the kernel taken with respect to the
positions of particlea.

In a similar way, the velocity divergence of particlea is
formulated by

∇ · ua = ρa

∑
b

mb

(
ua

ρ2
a

+ ub

ρ2
b

)
· ∇aWab (10)

The Reynolds stress in Eq. (2) is formulated by applying the
above SPH definition of divergence

(
1

ρ
∇ · ⇒

τ

)
a =

∑
b

mb

( ⇒
τa

ρ2
a

+
⇒
τb

ρ2
b

)
· ∇aWab (11)

The Laplacian for pressure is formulated as a hybrid of a stan-
dard SPH first derivative with a finite difference approximation
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for the first derivative and represented also in the symmetrical
form as

∇ ·
(

1

ρ
∇P

)
a

=
∑

b

mb

8

(ρa + ρb)2

Pabrab · ∇aWab

|rab|2
(12)

where the abbreviationsPab = Pa − Pb andrab = ra − rb are
used.

Following this, the laminar viscosity term is formulated by

(ν0∇2u)a =
∑

b

mb

2(νa + νb)

ρa + ρb

uabrab · ∇aWab

|rab|2
(13)

whereuab = ua − ub is used.
While applying the SPH rules to calculate the element of mean

strain rate in Eq. (3), the full derivative between two particles is
first obtained using the finite difference and then it is decomposed
into x andy directions. Thus(

∂ui

∂xj

)
a

=
(

∂ui

∂rab

)(
∂xj

∂rab

)
= (ui)a − (ui)b

rab

(xj)a − (xj)b

rab

(14)

whererab = |rab| is the distance between two particles.

5 Treatment of boundary conditions and free surfaces

5.1 Boundary and surface conditions for the SPH particles

The treatment of boundary conditions and free surfaces in the
SPH model has already been illustrated in details by Gotohet al.
(2004) and Shao and Gotoh (2005). A brief summary is given as
follows.

The fixed solid boundaries are treated by fixed wall particles
to balance the pressure of inner fluid particles and prevent them
from penetrating the wall. The pressure Poisson equation is also
solved on these wall particles similar to the treatment of solid
walls in a grid method. In order to improve computational accu-
racy in the near-wall region, a wall function is used to relate
velocity at the computational particles closest to bed to the instan-
taneous shear stress at the bed. A quadratic resistant law based on
the logarithmic velocity profile is used. The incident wave is pro-
duced by moving a numerical wave paddle located at the offshore
boundary, which is treated by moving wall particles. The free sur-
faces can be easily and accurately tracked by particles in the SPH
model, since the particle density on free surface drops signifi-
cantly due to lack of particles in the outer region of free surface.

5.2 Boundary and surface conditions for the turbulence
properties

Appropriate surface and boundary conditions are also needed for
the turbulence properties. On the free surface, the zero-gradient
boundary conditions are imposed for both thek andε to ensure
the advective and diffusive fluxes ofk and ε to be zero, i.e.,
∂k/∂n = 0 and∂ε/∂n = 0, wheren is the unit normal on the
free surface. For the SPH particles, this requirement is achieved
by setting the values ofk andε of the surface particles equal to
those of the particles immediately underneath free surface in the

normal direction. Thus there is no turbulence exchange between
the air and water.

In theory the turbulence vanishes on the solid walls so that
both thek and ε become zero on the wall. However, in prac-
tice, the numerical resolution cannot be so fine as to resolve
the viscous sub-layer. Thus the boundary conditions fork and
ε are generally specified in the turbulent boundary layer instead
of right on the wall. Here we follow the approach of Lin and
Liu (1998a, b) to use the log law distribution of mean tangential
velocities in the turbulent boundary layer, so that the values of
k andε can be expressed as the functions of distance from the
solid boundary and the mean tangential velocities outside of the
viscous sub-layer.

For thek–ε model, it is also necessary to seed a small amount
of k andε in the initial and inflow boundary conditions. Lin and
Liu (1998a, b) and Bradford (2000) used different approaches
to seed the initial turbulence properties and unanimously found
that the final computational results were insensitive to the ini-
tial seeding. In this paper, we reasonably assume that the initial
condition should be described in such a way to satisfyνT ≈ ν0,
while at the inflow boundaryνT ≈ 10ν0 should be applied. It
means that the initial turbulence level is quite low in the inner
fluid region and slightly higher near the inflow boundary. This
leads to the initial seeding values ofk = 2 × 10−5 m2/s2 and
ε = 4× 10−5 m2/s3 for the inner fluids andk = 2× 10−3 m2/s2

andε = 4×10−2 m2/s3 for the inflow boundary. In addition, the
initial velocity of fluid particles is set zero and the initial pressure
is assumed to be hydrostatic.

6 Numerical simulations of wave breaking on a
slope—spilling and plunging breakers

6.1 Experimental setup

The detailed experimental setup has been given in the initial paper
of Ting and Kirby (1994). Here only some important parameters
are summarized. A beach with constant slope ofs = 1/35 is
connected to a region with constant water depth ofdc = 0.4 m.
The coordinate system is chosen so that the originx = 0.0 m is
located at the position where the still water depth isd0 = 0.38 m
andy = 0.0 m is located at the still water surface. According
to Ting and Kirby (1994), a sketch view of the experimental
setup is shown in Fig. 1. The following notations are used in the

Mean water
level

H

1:35

y

x

d0 = 0.38 m
dc = 0.4 m

SWL

Wave generator

Figure 1 Sketch view of experimental setup (Ting and Kirby, 1994).



342 Shao

study:ζmeandenotes the mean water level measured with respect
to the still water level,ζcrestis the crest height andζtroughrepresents
the trough level.h is the mean water depth,hb is the water depth
at breaking point andc = √

gh is the wave celerity estimated by
the shallow water linear theory. The wave heightH is defined as
the distance between the wave crest and trough.

In the experiment, the incident cnoidal wave had a heightH =
0.125 m and periodT = 2.0 s for the spilling breaker case, while
H = 0.128 m andT = 5.0 s were used to generate a plunging
breaker. The laboratory experiment recorded a breaking wave
heightHb = 0.1625 m atxb = 6.4 m for the spilling breaker
andHb = 0.190 m atxb = 7.795 m for the plunging breaker,
respectively.

6.2 Computational parameters

The incompressible SPH method coupled with ak–ε turbulence
model is employed to reproduce the above experiment. The com-
putational domain is taken to be 20.0 m long, covering from
x = −4.0 m tox = 16.0 m. The time step
t is automatically
adjusted in the computation, satisfying the stability requirements
of Courant condition and viscous diffusion. By considering the
computational efficiency, the initial particle spacing is chosen as

X = 0.02 m and approximately 12,000 particles are employed
in the computation. The fluid particles are initially arranged on
a regular, equally spaced grid system, with boundary particles
added to form the horizontal bed, slope and offshore wavemaker.

In the following analyses, the numerical results of both spilling
and plunging breakers are extracted fromt = 12T , from which
the computed velocities and free surface profiles indicate that the
computed waves in the surf zone have almost reached the steady
state and the set-up and set-down have fully developed. The time
scale is longer thant = 8T adopted by Lin and Liu (1998a) and
t = 10T adopted by Bradford (2000) in the simulations of a
similar case.

6.3 Wave transformation and breaking characteristics

The instantaneous SPH particle snapshots of the 12th breaking
wave are shown in Figs 2(a–c) and 3(a–c), respectively, for the
spilling and plunging breakers. It is seen that the general fea-
tures of wave breaking, collapsing and subsequent turbulent bore
formation have been well captured by the SPH computations.
The simulated wave breaking processes are very similar to those
found by Lin and Liu (1998a, b) and Bradford (2000) in the
numerical computations and Ting and Kirby (1994, 1995, 1996)
in the experiments. The spilling breaker is a milder wave break-
ing process, in which the wave keeps its quasi-symmetric form
up to the final collapse and the wave height decreases gradually
as shown in Fig. 2(a–c). In comparison, the plunging breaker
is much more violent and the wave shape deforms drastically
after the breaking as shown in Fig. 3(a–c). The overturning of
the wave front at breaking is qualitatively captured by the SPH
computations in Fig. 3(b). The curling forward of wave crest hits
the surface of wave trough and the impact of the jet pushes up
a wedge of water to form a new wave att = 0.2T as seen in
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0.0
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(c)

Figure 2(a–c) Instantaneous particle snapshots of spilling wave.

Fig. 3(c). Bradford (2000) did not find the overturning of the
wave front even a much finer grid was used. Lin and Liu (1998b)
did find this phenomenon by performing a higher resolution sim-
ulation of plunging wave, but the computation was carried out
in a constant water depth. In contrast, the SPH computations
adequately reproduce the curling forward of the plunging front
using a relatively coarser particle spacing of
X = 0.02 m. This
is due to that the SPH approach has the advantage of treating
free surfaces of large deformation without the numerical diffu-
sion, which is inevitable in an Eulerian grid method. In spite
of the fact that the VOF method used by Lin and Liu (1998b)
and Bradford (2000) theoretically possesses the ability to model
complex free surface geometries and fluid detachment, a strict
spatial resolution is required.

Further examining the instantaneous velocity fields of spilling
and plunging waves in Figs 4(a–c) and 5(a–c) shows that the
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Figure 3(a–c) Instantaneous particle snapshots of plunging wave.

velocities under the spilling breaker are quite similar to those
under a non-breaking wave found from the liner wave theory,
except that slightly larger velocities appear at the wave front. On
the other hand, the velocity distributions of the plunging breaker
deviate significantly from the linear wave theory and the mag-
nitude of the velocity is also much higher. Att = 0.1T after
the breaking as shown in Fig. 5(b), a plunging jet with maximum
velocity of 3.5 m/s impacts toward the wave trough and generates
a turbulent bore with a velocity of 2.5 m/s att = 0.2T , as shown
in Fig. 5(c). The velocity field immediately underneath the wave
trough of the impingement is greatly modified by the penetration
of the plunging jet. In contrast, the maximum velocity of the
spilling breaker in Fig. 4 is found to be only 1.5 m/s.

The above general wave transformation and breaking pro-
cesses indicate that the plunging breaker has a very obvious
transitional stage, during which the wave rapidly changes the
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2.0 m/s
 t = 0.4T 

(c)

Figure 4(a–c) Instantaneous velocity fields of spilling wave.

shape and dissipates the energy. The spilling breaker, however,
produces the final quasi-steady turbulent bore with negligible
notice. From this point, we could reasonably propose that the
depth-averaged equations such as the shallow-water equation
should perform well in the simulations of a spilling breaker,
provided that the turbulence dissipation mechanism is given
suitable consideration. But as for the plunging model, lots
of work should be done to test the accuracy of the depth-
averaged equations in the transitional stage (Lin and Liu,
1998b).

6.4 Comparisons and analyses of wave surface profiles

The computed distributions of the mean water levels, the wave
crest and trough elevations by the SPH model are shown in
Figs 6 and 7, respectively, for the spilling and plunging waves.
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Figure 5(a–c) Instantaneous velocity fields of plunging wave.

Meanwhile, the experimental data of Ting and Kirby (1994) and
numerical results of Bradford (2000) are shown for comparison.
It should be mentioned that Bradford (2000) used different turbu-
lence models in the computations and found that thek–ε model
gave the best match to the surface elevations and the RNG model
gave the best match to the undertow and turbulence profiles. Here
we use the best results of Bradford (2000) to validate the SPH
computations.

Figure 6 shows the comparisons for the spilling breaker.
It is seen that the model predictions by both the SPH and
Bradford (2000) closely match the trough and mean water levels.
However, the wave crest is underpredicted before and after the
breaking by Bradford (2000). The SPH computations underpre-
dict the crest level before the breaking but overpredict it after the
breaking. The breaking point is defined at which the maximum
wave height is obtained. The experiment (Ting and Kirby, 1994)
recorded a breaking wave heightHb/dc = 0.406 atxb/dc = 16.0
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Figure 6 Computational and experimental mean water levels, wave
crest and trough elevations of spilling wave.
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Figure 7 Computational and experimental mean water levels, wave
crest and trough elevations of plunging wave.

for the spilling breaker. Thek–ε model of Bradford (2000) pre-
dicted a breaking wave heightHb/dc = 0.348 atxb/dc = 12.78,
which is earlier than the real breaking. In comparison, the SPH
computations predict a breaking wave heightHb/dc = 0.385 at
xb/dc = 17.0, which is later than the real breaking. Bradford
(2000) performed a sensitivity analysis by refining the grid size
and deactivating the turbulence, but there was no much improve-
ment in the predictions of the breaking height and locations.
He attributed the discrepancies to the inadequate descriptions
of wave dynamics at the inflow boundary. A similar work is also
done using the SPH runs and it is found that the breaking position
is really quite sensitive to the inflow condition. However, both
thek–ε trials of Bradford (2000) and SPH computations agree in
that the predicted breaking wave heightHb is insensitive to the
particular choice of the inflow wave theory.

For the plunging wave as shown in Fig. 7, the predictions
by SPH model are also generally better than those obtained by
Bradford (2000). The experiment of Ting and Kirby (1994) in
this case yielded a breaking wave heightHb/dc = 0.475 at
xb/dc = 19.49. Thek–ε model of Bradford (2000) reported a
breaking wave heightHb/dc = 0.405 atxb/dc = 18.13 and the
SPH model reports a breaking wave heightHb/dc = 0.495 at
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xb/dc = 17.4. This indicates that a larger wave height can be
obtained by the SPH approach, since it uses particles to track
the free surfaces without numerical diffusion. It is quite obvi-
ous that both numerical models poorly predict the trough level.
Bradford (2000) continuously overpredicted the wave trough,
while the SPH computations underestimate the trough prior to
the breaking but slightly overestimate it after the breaking. Here
we attribute the failure of accurately reproducing the wave trough
to the insufficient length of the computational domain. The gen-
erated plunging wave has a period ofT = 5 s. By using the
cnoidal wave theory, the corresponding wave length is estimated
to be 10.8 m in a constant water depth ofdc = 0.4 m. The hori-
zontal section of the computational domain for the SPH runs and
probably adopted by Bradford (2000) cannot meet this require-
ment. As a result, the wave has already started shoaling over the
slope prior to the full development in the constant depth, which
could cause the large discrepancy between the computational and
experimental wave trough levels.

6.5 Comparisons and analyses of undertow
and turbulence quantities

In order to further verify the accuracy of the SPH model, the com-
puted mean undertow velocities and turbulence intensities are
compared with the experimental data of Ting and Kirby (1994)
and numerical results of Bradford (2000) in Figs 8(a, b) and 9(a,
b), for the spilling and plunging breakers, respectively. In the
spilling breaker case, the comparisons are made at locations of
(x − xb)/hb = 4.397 and 10.528. As for the plunging breaker,
the comparisons are made at(x − xb)/hb = 3.571 and 12.987.
The mean quantities are obtained by averaging over the succes-
sive numerical wave data fromt = 12T to t = 20T . In all the
figures, the vertical length scale is normalized by the local water
depthh and the undertow velocities and turbulence intensities are
normalized by the wave celerityc = √

gh.
It is shown from Figs 8 and 9 that both the magnitude and

the vertical distributions of the mean quantities are reasonably
predicted in all cases. However, the computations by two numer-
ical models match the experiment better for the plunging wave as
compared with the spilling wave. It is also found that under the
plunging breaker, the vertical variations of undertow and turbu-
lence quantities are smaller than those under the spilling breaker.
This is due to that the vertical mixing is much larger in the plung-
ing wave, which reduces the vertical gradients and thus makes
the problem easier to solve.

It should be noticed here that the SPH computations gener-
ally overestimate the turbulence levels. The overpredictions are
much more obvious for the spilling wave than for the plunging
wave. For example, the turbulence intensities are overestimated
by a maximum value of 64% for the spilling wave in Fig. 8(a)
and a maximum value of 52% for the plunging wave in Fig. 9(a).
Besides, the overpredictions are much more predominant in the
inner surf zones rather than the outer surf zones, according to the
classifications by Ting and Kirby (1994, 1995, 1996). The same
problem was also reported by Lin and Liu (1998a, b). They con-
cluded that the source of discrepancy could be traced to the use
of constant coefficients in thek–ε model. These coefficients have
been derived from the quasi-steady flows and thus may behave
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Figure 8 Computational and experimental mean undertow velocities
and turbulence intensities at locations of (a)(x − xb)/hb = 4.397 and
(b) (x − xb)/hb = 10.528 for spilling wave.

poorly in a strongly transient turbulence flow such as the ini-
tial breaking wave. In addition, they further concluded that this
problem only localized near the breaking wave front, and in the
surf zones away from the breaking front the turbulence intensities
could be well predicted by thek–ε model using the recommended
coefficients.

The accurate prediction of the undertows is of great impor-
tance to the prediction of the sediment motion, since the vertical
gradient of the suspended sediment concentration is very sen-
sitive to the shape of undertow profiles. However, much finer
resolutions and longer computations are needed to accurately
capture the existence of the undertow currents. Figures 8 and 9
indicate that although obvious discrepancies with the experiment
exist, the SPH computations predict a relatively stronger under-
tow as compared with a weaker one predicted by Bradford (2000)
using the RNG model. The primary reason for the difference is
attributed to the insufficient computational time in the simulations
of Bradford (2000), in which the waves might not have attained
the quasi-steady state and the full set-up and set-down might
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Figure 9 Computational and experimental mean undertow velocities
and turbulence intensities at locations of (a)(x − xb)/hb = 3.571 and
(b) (x − xb)/hb = 12.987 for plunging wave.

not have fully developed. In the SPH runs, the mean values are
obtained by averaging the numerical wave data fromt = 12T to
t = 20T . In comparison, Bradford (2000) averaged the wave
data over 5T up to t = 10T for the spilling wave and over
3T up to t = 6T for the plunging wave. Recently, a perfect
agreement between the computational and experimental under-
tow profiles was reported by Lin and Liu (2004) for an identical
spilling wave, in which the mean average was computed from
t = 25T to t = 30T .

6.6 Spatial and temporal evolutions of turbulence quantities

One of the great advantages of the numerical models is their abil-
ity to disclose the evolutions of turbulence quantities in the spatial
and temporal domains. Using the SPH computational results, the
turbulence intensity distributions are shown in Figs 10(a–c) and
11(a–c), respectively, for the spilling and plunging waves. Inside
the figures, the turbulence quantities are normalized by the wave
celerityc = √

gh and only high turbulence areas are displayed
for clarity.
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Figure 10(a–c) Turbulence intensity distributionsk1/2/c of spilling
wave.

It is shown that there exist fundamental differences in the
dynamics of turbulence between the spilling and plunging break-
ers, which can be related to the processes of wave breaking
and turbulence production. For the spilling wave as shown in
Fig. 10, the high turbulence area is mainly concentrated in the
breaking wave front. In other regions, the turbulence quantity is
rather small, which suggests that the mean flow has little influ-
ence from the breaking process. The highest turbulence level
k1/2/c = 0.08–0.1 appears in the roller region. As the wave prop-
agates forward, the turbulence kinetic energy gradually changes
but with very similar patterns of the turbulence distributions
accompanied by the decaying wave amplitude.
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Figure 11(a–c) Turbulence intensity distributionsk1/2/c of plunging
wave.

On the other hand, the turbulence levels increase rapidly after
the wave breaking for the plunging case as shown in Fig. 11. The
maximum turbulence levelk1/2/c = 0.12 − 0.18 is generated
almost instantly as the plunging jet touches down on the wave
trough. The roller continues to spread downwards as the break-
ing wave front propagates downstream and penetrates as deep as
half the water depth, which is shown att = 0.2T in Fig. 11(c).
In comparison, the roller is essentially confined to the top of the
wave front for the spilling breaker in Fig. 10. As a result, on the
middle elevation, the turbulence transport is much stronger for
the plunging wave than for the spilling wave. However, our com-
putations further indicate that the initial geometry and strength
of the plunging jet generally only have local influence to the

wave motion and have little impact on the turbulence transport
mechanisms a short distance away from the plunging point.

The above turbulence production and development processes
are well consistent with the experimental observations of Ting
and Kirby (1994, 1995, 1996) and the numerical simulations of
Lin and Liu (1998a, b) and Bradford (2000). From this point,
it can be reasonably concluded that the different kinds of wave
breakers can be distinguished not only by the surface profiles but
also by the turbulence fields under the breaking front. Based on
the analyses of the turbulence characteristics, we further propose
that the potential flow theory could be applied to the non-breaking
and pre-breaking waves with enough accuracy, but great atten-
tions should be paid to the region near the wave breaking front
and more advanced modeling technique is needed to address this
local issue.

6.7 Limitations of numerical approach

Although good agreement with the literature is achieved in the
SPH computations, there exist some uncertainties about the sim-
ulation results and the numerical approach is limited by several
factors. For example, the wave breaking is a two-phase problem.
Especially in the plunging waves, the entrapped air leads to the
increased air entrainment and formation of bubbles in the water,
which strongly influences the subsequent breaking waves. Unfor-
tunately, this issue is not addressed by the present SPH model.
Besides, the undertow velocities are still underpredicted due to
the inadequate run time. In the SPH computations, the time-mean
average is calculated using successive wave data over 8T from
t = 12T to t = 20T , while 102 successive wave data were
used in the experiment of Ting and Kirby (1994). As previously
mentioned, it is remarkably noticed that the turbulence level is
overpredicted in all the cases. The primary reason is due to that
the coefficients used in thek–ε model were obtained from the
experiments for steady flows rather than oscillatory flows. There
are still strong needs to further improve the performance of tur-
bulence closure models. The intrusions of air in the roller and
upper area of the surf zone might also account for the deviations
between the numerical and experimental turbulences.

The repeatability of the computations provides a useful check
for numerical models dealing with the periodical flow simu-
lations. Since the wave breaking events in this study have a
repeatable occurrence, highly reproducible computational waves
are also essential to ensure the accurate predictions of the under-
tow and turbulence quantities. To investigate the repeatability of
SPH computations, we made simple analyses on time series of
the calculated breaking wave heightHb, for each of the waves
betweent = 12T and 20T . The results indicate that there is a
variation of 5% inHb for the spilling breaker and the variation is
8% for the plunging breaker. This suggests that the differences
between each flow due to the phase differences are small and the
periodical motions of the breaking waves are well reproduced.
However, the exact repeatability cannot be maintained in practice,
because the wave breaking is a non-deterministic process and the
turbulence has a random nature and affects the repeatable flows.
The analyses also show that the variations in the breaking wave
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height are larger in the plunging wave rather than in the spilling
wave, which is consistent with the previous conclusion that the
turbulence levels in the former are higher than those in the latter.

7 Conclusions

The paper presents an incompressible SPH method coupled with
k–ε model to simulate the spilling and plunging waves. The
numerical results are in good agreement with the documented
data. The particle approach gives the better predictions of the
wave surface profiles, turbulence and undertow quantities as com-
pared with the predictions by the Euler grid method in the tested
range. The SPH model is shown to be capable of accurately track-
ing the free surfaces without the numerical diffusion. Thek–ε

model is found to be a simple and effective tool to deal with
the turbulence under the breaking waves even if constant coef-
ficients are used for the model. It is disclosed that under the
plunging breaker, the wave deformations and turbulence levels
are much larger and the vertical variations of the undertow and
turbulence quantities are much smaller, as compared with the
spilling breaker. The study indicates that there are fundamental
differences in the wave dynamics between the spilling and plung-
ing waves, which are disclosed by the wave breaking processes
and the turbulence evolutions.

Additional work is needed to address the influence of air
bubbles in the breaking waves. A two-phase SPH model incorpo-
rating the water–air interactions will be developed in the future
work.
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Notation

c = Wave celerity
c1ε = Turbulence constant

c2ε = Turbulence constant
cd = Turbulence constant
d0 = Still water depth at origin
dc = Constant water depth
g = Gravitational acceleration
h = Kernel smoothing distance or mean water depth

hb = Water depth at breaking point
H = Wave height defined as distance between wave crest

and trough
Hb = Wave height at breaking point

k = Turbulence kinetic energy
k̄ = Time-mean turbulence kinetic energy
m = Particle mass
n = Unit normal on free surface
P = Pressure
Pk = Turbulence production rate
r = Distance between particles
r = Position vector
s = Slope of beach

Sij = Element of strain rate
T = Wave period
u = Velocity vector
ū = Time-mean undertow velocity

W = Interpolation kernel
xb = Horizontal coordinate at breaking point
δij = Kronecker delta

t = Time increment


X = Particle spacing
ε = Turbulence dissipation rate

ζcrest = Wave crest level
ζmean= Mean water level
ζtrough = Wave trough level

ν0 = Kinetic viscosity of laminar flow
νT = Turbulence eddy viscosity
ρ = Fluid density

σk, σε = Turbulence constants
⇒
τ = Reynolds stress

τij = Element of Reynolds stress

Subscripts and symbols

a = Reference particle
ab = Values between particlea andb

b = Neighboring particle
t = Time
x = Horizontal coordinate
y = Vertical coordinate
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