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Simeon Bird: Constraining Fundamental
Physics From Cosmology

Summary

I use mathematical models and numerical simulations to constrain cosmological inflation,
the seeds of structure, and the mass of the neutrino. I revisit arguments that simple
models of inflation with a small red tilt in the scalar power spectrum generically yield
an observable tensor spectrum. I show that criteria for fine-tuning based upon the alge-
braic simplicity of the potential depend strongly upon the assumptions they incorporate
about the potential. Furthermore, several models with algebraically simple potentials
require carefully tuned initial field configurations. I demonstrate the existence of poten-
tials with vanishingly small tensor amplitudes which are natural in terms of both their
algebraic form and initial conditions. I thus argue that proposed experiments which make
highly sensitive measurements of the tensor amplitude cannot definitively rule out the
inflationary paradigm.

The overshoot problem is the need to make the initial kinetic energy of the inflaton
small enough to ensure slow-roll. I investigate claims that brane inflation solves the over-
shoot problem through microphysical restrictions on the phase space of initial conditions.
By carrying out a comprehensive analysis of the parameter space allowed by the latest
advances in brane inflation model-building, I find that the vast majority of the phase
space of initial conditions is still dominated by overshoot trajectories.

Current results from the Lyman-α forest assume that the primordial power spectrum
of density perturbations follows a simple power-law form with running. I perform a large
suite of numerical simulations, using them to calibrate a minimally parametric framework
for describing the power spectrum. Combined with cross-validation this framework allows
me to directly reconstruct the power spectrum shape, a consistency check on the standard
model. I find no evidence for deviation from scale-invariance, but current Lyman-α data
do not have sufficient statistical power to robustly probe the shape of the power spectrum
at these scales. In contrast, the ongoing Baryon Oscillation Sky Survey will be able to
do so with high precision.

I perform an extensive suite of N-body simulations of the matter power spectrum,
probing deep into the non-linear regime while incorporating massive neutrinos. I compare
my results to the widely used HALOFIT approximation, and find that in the strongly non-
linear regime it significantly over-predicts the suppression due to the free-streaming of
neutrinos. Most published constraints are not affected, as they have used HALOFIT only
in the linear or mildly non-linear regime. However, my results are important for future
galaxy and weak lensing surveys.
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“There are more things in heaven and earth, Horatio,
than are dreamt of in your philosophy.”

– Hamlet, by William Shakespeare

1
Introduction

1.1 The Universe

Cosmology is the study of the Universe. It seeks to understand what the Universe is
made of, and how it has evolved. Over the long history of science, few subjects have
excited such wide speculation. However, in recent decades mankind is for the first time
in the fortunate position of having large quantities of reliable data with which to turn
speculation into testable hypothesis.

1.1.1 Composition

Dark Energy

The Universe is flat, with an energy density near the critical density (Melchiorri et al.,
2000; Spergel et al., 2003). However, only thirty percent of this is matter; the other
seventy percent of the Universe is dark energy. Early hints of dark energy were provided
by simulations of structure formation (Efstathiou et al., 1990), which suggested that
the matter density was only a third of the critical density. Later measurements of the
supernovae distance-luminosity relation showed that the Universe is undergoing a period
of accelerated expansion (Riess et al., 1998), implying the existence of either matter
with negative pressure or a cosmological constant. Recently Blake et al. (2011) used
measurements of the acoustic scale of oscillations in the primordial plasma as a standard
ruler, and obtained independent confirmation of the acceleration of the Universe. Current
data show no significant deviation from a cosmological constant, but are not sufficient to
rule out alternatives such as exotic matter species.

Dark Matter

Dark matter describes the non-baryonic weakly interacting matter which makes up eighty
percent of the matter in the Universe. It was first proposed by Zwicky (1933), who
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obtained tentative evidence for it from estimates of the mass of the Coma cluster, and
then rediscovered by Rubin and Ford (1970), whose observations of the rotation curve of
the Andromeda galaxy implied the presence of a non-luminous galactic halo. A purely
gravitational explanation was largely ruled out by Markevitch et al. (2004), who found
the centre of mass for luminous matter in the Bullet cluster was offset from the total
centre of mass. Further evidence appears from many other experiments, for example, the
cosmic microwave background (Spergel et al., 2003) and galaxy surveys (Percival et al.,
2002).

Massive active neutrino species were an early candidate for dark matter. However,
because they retain significant thermal velocities from the early Universe, when they were
relativistic, they cannot make up the majority of the dark matter; these residual thermal
velocities would severely damp structure formation on small scales, to an extent which
is incompatible with observations (Bond et al., 1980). Since neutrinos are known to be
massive (Becker-Szendy et al., 1992), they do make up some small fraction of the dark
matter, and I discuss using this fact to constrain their mass further in Section 1.6.

Baryons

The Universe manifestly also contains baryonic matter. Examination of absorption in
high-redshift quasar spectra reveals that most of the baryons in the Universe are in the
diffuse gas of hydrogen and helium making up the Intergalactic Medium (see, e.g. Rauch
(1998) for a review). Absorption from residual hydrogen at z ∼ 3 leads to the complex
structure of overlapping hydrogen absorption called the Lyman-α forest, discussed further
in Section 1.7. Detecting the Intergalactic Medium at low redshift is more challenging;
here both hydrogen and helium are fully ionised, and thus do not cause significant ab-
sorption signals. Finally, trace amounts of radiation are present, mostly in the form of
microwave background photons, discussed in Section 1.4.

1.1.2 History

Although accelerated expansion was only discovered recently, the expansion of the Uni-
verse has been known for far longer. Friedman (1922) and Lemâıtre (1927) proposed a
cosmology with a uniform expansion of space, which was confirmed when Hubble (1929)
observed a linear relation between distance and redshift for nearby galaxies. I discuss
the Friedman-Lemâıtre model further in Section 1.2; one consequence is that in the dis-
tant past the Universe was much hotter and denser (Lemâıtre, 1931) and governed by
progressively higher energy physics.

The concordance cosmology begins with inflation (Starobinsky, 1979; Guth, 1981), a
period of accelerated exponential expansion in the very early Universe. The motivation for
inflation, described further in Section 1.3, is to explain dynamically the initial conditions
of the Universe. It occurs when the Universe is dominated by a form of matter with
negative pressure (Linde, 1983), called the inflaton, whose properties I discuss further
in Section 2.1. Chapter 3 presents work regarding some observational consequences of
inflation.

Once inflation finishes, the inflaton is presumed to have decayed into radiation and
matter, marking the start of the radiation era. The Universe is at this time a hot plasma,
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gradually cooling and expanding. Once it cools to a temperature of 109 K, the neutron
decay reaction ceases to be in equilibrium, leading to the decoupling of the neutrino
background (Section 1.6). Free neutrons start to decay and combine with protons to
form helium and lithium nuclei (Alpher et al., 1948). Radiation density redshifts faster
than matter, and so matter soon starts to dominate, when T ∼ 104 K.

When T ∼ 3000 K, free electrons combine with protons, marking the end of the
primordial plasma. The majority of photons emitted at this time are not scattered
again, but are redshifted by the expansion of the Universe, forming the cosmic microwave
background (CMB), which I discuss further in Section 1.4.

The CMB was emitted about 3.8× 105 years after the end of inflation, and the Uni-
verse is now almost 1.4×1010 years old (see, e.g. Komatsu et al. (2011) for a compilation
of the latest CMB and other results). The dominant physical process during the inter-
vening time has been the collapse of matter under gravity to form structure. Section 1.5
describes an analytical approach to modelling this process, while Section 2.3 discusses
the corresponding numerical methods. In Chapter 5, I present work using the Lyman-
α forest, a system of absorption features in quasar spectra explained further in Section
1.7, to constrain the seeds of structure.

In the rest of this Chapter, I describe in more detail some of the physics alluded
to above. Section 1.2 discusses the expanding Universe, Section 1.3 the motivation for
inflation, and Section 1.4 the CMB. In Section 1.5 I describe the growth of structure, in
Section 1.6 massive neutrinos, and in Section 1.7 the Lyman-α forest. I return to the
technical background of inflation and the simulation of cosmic structure in Chapter 2, as
these are the main topics of this thesis, and the subjects of Chapters 3-6.

1.2 Friedmann-Robertson-Walker Cosmology

In this Section I elaborate on the models of an expanding Universe discussed above. These
models assume the cosmological principle, which embodies the idea that there should be
nothing special about our position in the Universe, nor any preferred directions in which
to look. Observational evidence is provided by the CMB, which is homogeneous and
isotropic on large scales (Mather et al., 1990).

Solving the Einstein equations under the assumption of homogeneity and isotropy
leads to the Friedmann-Robertson-Walker (FRW) metrics (Friedman, 1922), with the
equation

ds2 = −dt2 + a2(t)
(
dr2 + f 2(r)(dθ2 + sin2 θdφ2)

)
. (1.1)

Here I use polar coordinates, units such that c = 1, and define a dimensionless expansion
factor a(t), which is by convention normalised to unity at the present day. f(r) is a
function dependent on curvature. Measurements of the microwave background acoustic
peak combined with data on the Hubble constant imply that our Universe is spatially
flat (Spergel et al., 2003), so f(r) = r.

The Friedmann equations can be derived from the Einstein equations for this metric
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and are (
ȧ

a

)2

=
8πG

3
ρ +

Λ

3
− k

a2
(1.2)

ä

a
= −4πG

3
(3p + ρ) +

Λ

3
. (1.3)

G is Newton’s gravitational constant, Λ is a cosmological constant and k is spatial cur-
vature. A dot denotes a derivative with respect to cosmic time. I assume a perfect fluid
with density ρ and pressure p. Conservation of mass energy implies that

ρ̇ = −3
ȧ

a
(p + ρ) . (1.4)

Thus, the assumption of an equation of state for the matter species fixes the phenomeno-
logical evolution of the Universe. Dark matter is pressureless, with p = 0, while relativistic
species, such as radiation, have p = ρ

3
. I can also simplify the above equations by defining

the energy density in curvature and the cosmological constant (or dark energy) as

ρk =
3k

8πGa2
, pk = −ρk

3
, (1.5)

ρΛ =
Λ

8πG
, pΛ = −ρΛ . (1.6)

The Hubble parameter is defined as H = ȧ/a, and the critical density by

ρc =
3H2

8πG
. (1.7)

The critical density can be used to define Ωs = ρs/ρc, which has the advantage that the
sum over all species Ωtotal = 1.

The above equations show that matter density, ρm ∼ a−3, dark energy density ρΛ ∼ a0,
and radiation density ρr ∼ a−4. In our Universe all three species are present, and there is a
radiation-dominated phase, a matter-dominated phase, and finally a period of accelerated
expansion.

1.3 Inflation

The CMB is observed to be a nearly perfect black body (Mather et al., 1990); thus at
the time of last scattering, the entire sky was in thermal equilibrium. This seemingly
innocuous fact demands further explanation, due to the scales involved. If we assume a
matter-radiation dominated Universe like that described in the last Section, the average
density of the Universe at early times ultimately reaches the Planck scale. This is the scale
on which quantum corrections to general relativity are presumed to become important,
requiring a theory of quantum gravity. The cosmological horizon is defined by the distance
a signal at the speed of light can travel since this phase; essentially the maximal radius
over which matter in the Universe can be in causal contact. If the Universe had always
contained only matter and radiation, the horizon at last scattering would subtend less
than a degree on the present-day sky. However, the CMB proves that at last scattering
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the entire sky is in thermal equilibrium, and thus it seems it was in causal contact. This
puzzle is the horizon problem.

There are a few potential solutions; perhaps some as-yet undiscovered physical prin-
ciple demands that the initial conditions of the Universe are at a certain temperature,
possibly due to unknown physics at the Planck scale. Alternatively, the expansion history
of the Universe may be modified so as to dynamically make the effective horizon at large
scattering larger. Inflation realises the second idea through a period of exponential ex-
pansion, which mimics domination by a cosmological constant (Starobinsky, 1979; Guth,
1981; Sato, 1981; Mukhanov and Chibisov, 1981; Linde, 1982b; Albrecht and Steinhardt,
1982).

A Universe dominated by a cosmological constant would have no means of decaying
into the observed matter dominated Universe, nor would it be able to explain the origins
of structure. Inflation instead postulates domination by a scalar field, the inflaton. The
vacuum energy of the inflaton mimics a cosmological constant, but gradually decreases.
Ultimately the energy of the inflaton is unable to sustain inflation, and the Universe
transitions into a radiation dominated phase, while the inflaton may decay into more
familiar particle species. The equations describing the dynamics of the inflaton will be
presented in Section 2.1. The result is that the expansion factor during inflation is

a(t) = a0e
Ht , (1.8)

with a slowly-decreasing Hubble parameter. This exponential expansion allows a near
Planck-scale homogeneous and isotropic patch, small enough to be in causal contact, to
be stretched to cover the entire observable Universe. In effect, inflation solves the horizon
problem by dynamically stretching the horizon.

Inflation can also provide a dynamical mechanism to explain the observed flatness
of the Universe. Matter density redshifts as ΩM ∼ a−3, while curvature redshifts as
Ωk ∼ a−2, so during the matter era the ratio of Ωk to ΩM increases. There is a similar
result for the radiation era, the end result of which is that satisfying the present day
constraints on Ωk requires an exceedingly small amount of initial curvature.

It is possible that curvature could be forbidden by an as-yet undiscovered symmetry
principle. However, inflation solves the flatness problem dynamically; an exponential
increase in the scale factor will exponentially suppress curvature. An adequate solution
to the horizon problem requires ∼ 60 e-folds of inflation (Ht ∼ 60), so by the end of
inflation curvature will be suppressed to at most Ωk ∼ e−120, which is far too small to be
observed. The Universe may still be globally closed or open, but on scales vastly greater
than the horizon.

The final, and possibly most compelling, motivation for inflation is that it provides an
explanation for the origin of structure, while simultaneously solving the above problems.
The earliest tracers of inhomogeneous structure so far observed are tiny temperature fluc-
tuations in the CMB black body spectrum (Smoot et al., 1992; Bennett et al., 2003b),
whose amplitude and distribution underpin our understanding of much of the later Uni-
verse. Inflation provides a framework for producing these fluctuations. According to
inflation, structure originates as quantum fluctuations in the value of the inflaton field.
Exponential expansion boosts these quantum effects to large scales, freezing their ampli-
tude as fluctuation modes leave the horizon and allowing them to serve as the seeds of
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structure. The details of the quantum field theory calculation which yields these results
are beyond the scope of this thesis, but are described in, e.g., Mukhanov et al. (1992).

While inflation solves the flatness and horizon problems, as well as generating the
seeds of structure, there is considerable uncertainty about its observational predictions.
This is due to several factors, mainly related to our limited knowledge of particle physics
at these energies. To make predictions for the amplitude of perturbations, and for their
power spectrum, it is necessary to know the potential for the inflaton, discussed further
in Section 2.1. Our incomplete understanding of particle physics at these scales also
comes into play at the end of inflation. I mentioned above that the inflaton should decay
into matter and radiation, but it is not known exactly how this might take place. These
issues could be resolved if it were possible to embed inflation within a complete high-
energy theory of particle physics and quantum gravity. The leading contender for this is
string theory (Green et al., 1988). Although it is far from being experimentally proven,
string theory allows us to examine fully realised case studies of inflationary models, and
thus at least gain understanding of the challenges faced by them. In Chapter 4, I discuss
the issue of overshoot in the context of brane inflation, the string theory inflation model
which has received most attention.

1.4 The Cosmic Microwave Background

As discussed in Section 1.1, the cosmic microwave background (CMB) is composed of
relic radiation, emitted when the temperature of the Universe was around 3000 K. At
this time, free protons and electrons combined, causing the mean free path of a photon
to change from extremely short to greater than the Hubble length. These photons were
then largely decoupled from the rest of the Universe, and can now be observed in the
microwave, allowing us a window into this early era.

The CMB was first observed accidentally by Penzias and Wilson (1965) as an unex-
pected microwave source, and initially suspected to be caused by pigeon droppings in the
antenna. It quickly became clear that the new source of radiation was extragalactic, and
the observational history of the CMB began.

Early work focussed on measuring the CMB temperature spectrum, which the COBE
satellite (Mather et al., 1990) showed to be a nearly perfect black body at 2.7 K, showing
that the Universe was homogeneous and isotropic on the largest scales, and detected
small fluctuations in the temperature from a perfect black body (Smoot et al., 1992), at
an amplitude of about 10−6 the total emission. Later experiments, such as the WMAP
satellite (Bennett et al., 2003a), have mapped these fluctuations, finding their power
spectrum and using it to determine the parameters of the concordance cosmology. We
currently await results from the Planck satellite (Planck Collaboration, 2005), which aims
to extract essentially all available information from the primary CMB temperature.

Future experiments will hopefully also make precision measurements of primordial
polarization in the CMB photons (Bond and Efstathiou, 1984; Kamionkowski et al.,
1997). This is more challenging; while the energy of the CMB is only weakly affected
by intervening matter, the polarization is severely masked by foreground emission of
polarized Galactic photons at all frequencies. However, CMB polarization is the current
best hope for detecting the theorised primordial gravitational wave background, which
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would give a second complementary probe into inflation (Starobinsky, 1979; Baumann
et al., 2009b). In Chapter 3 I discuss the predictions simple inflationary models make for
the amplitude of this background, an important piece of information for people building
polarization experiments.

Great efforts have been expended in pursuit of ever more accurate data on the CMB,
efforts justified by the rich harvest of theoretical insight it produces. Part of the power
of the CMB lies in the fact that it provides a clear window into a period when deviations
from homogeneity can be described by linear perturbation theory (Bond et al., 1994;
Seljak and Zaldarriaga, 1996).

1.5 The Growth of Structure

As mentioned in the previous Section, observations of the CMB imply that the early Uni-
verse was homogeneous and isotropic on large scales, with small perturbations probably
laid down during an early phase of inflation. As time passed, structure developed out of
the gravitational collapse of these perturbations. In this Section I discuss some of the
techniques used to describe this process.

Linear perturbation theory (Peebles, 1980) can be used when perturbations are small;
if there is a species with a homogeneous background density ρ(t) a dimensionless inho-
mogeneous perturbation from the background is defined such that δ(x, t) � 1. Two
species are important at this time in the real Universe; cold dark matter and radiation,
so I define δc for the matter and δr for the radiation. With this, I can approximate the
Einstein equations as coupled second order linear differential equations, accurate to first
order in the perturbations. I do not give the equations or their derivation here; instead
I talk about the rate at which the solutions grow with time.

Structure growth is sensitive to two factors. First, the rate at which the background
expands, meaning structure depends on which species dominates the Universe. Second,
because perturbations on larger scales than the cosmological horizon cannot self-interact,
they may grow at a different rate from those on sub-horizon scales.

The cold dark matter perturbation δc grows on all scales during the matter era like

δc(k, t) ∼ t2/3 ∼ a(t) . (1.9)

This is independent of the horizon scale because δc is a perturbation in pressure-less
matter.

The radiation perturbation δr behaves the same in all eras, but is affected by the scale
considered, since it possesses relativistic pressure and self-interaction. On super-horizon
scales δr is always proportional to the matter perturbation; a consequence of entropy
conservation in the Einstein equations. On sub-horizon scales, the radiation pressure
becomes important and the perturbation amplitude oscillates, with no lasting structure
growth.

Now let me turn to the behaviour of the matter perturbation during the radiation era.
Since radiation is the dominant component in the Universe at the time, the coupling of
matter to radiation becomes important on sub-horizon scales. The oscillations in radia-
tion suppress the growth of the matter perturbation, so that δc ∼ ln t. On super-horizon
scales, however, this coupling is not effective. Because the expansion of the Universe is
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slower during the radiation era, the matter perturbation grows somewhat faster, δc ∼ t.
Finally, during late-time exponential expansion the growth of all perturbations is sup-
pressed, and δc ∼ constant.

δc grows efficiently during the matter era, implying that the linear description, which
required δc � 1, will eventually break down. To probe this regime, descriptions of
non-linear structure growth are needed. The most accurate way to do this is to use
numerical simulations, with methods described in Section 2.3. However, approximate
analytic solutions can be very useful tools for some calculations, particularly when simu-
lations are too time-consuming to run. One such approximate solution, used in Chapter
6, is HALOFIT (Smith et al., 2003).

This rests on the idea that once a perturbation grows to a certain level, it collapses
into a virialized object, a halo. The halo has an internal structure independent of the
internal distribution of the pre-collapse material. This model effectively reduces the
non-linear problem of structure formation to the simpler one of finding approximate
functional solutions for the internal structure of a generic halo, and, on larger scales, for
correlations between halos. HALOFIT uses simulations to calibrate these functions, unlike
older methods based on spherical collapse or stable clustering (Peebles, 1974; Hamilton
et al., 1991; Peacock and Dodds, 1996).

1.6 Massive Neutrinos

Neutrinos are a family of neutral leptons, commonly produced in β-decay. Less well-
known is the existence of a ubiquitous cosmic neutrino background (Kolb and Turner,
1990). The cosmic neutrino background was produced at a temperature of ∼ 1 MeV,
when weak interactions decoupled. Its current number density and temperature can
be calculated with a straightforward application of relativistic statistical physics, for
neutrinos light enough to be relativistic at decoupling. The only complication is the
annihilation of positrons and electrons after neutrino decoupling, which boosts the photon
temperature relative to the neutrinos. The result is that the temperature Tν and number
density for each neutrino species nν are

Tν =

(
4

11

)1/3

Tγ nγ =

(
3

11

)
nν . (1.10)

The effective number of active neutrino species, N eff
ν , affects the expansion rate during

radiation domination, and through this the production of helium during Big Bang Nu-
cleosynthesis. Current constraints from BBN are N eff

ν = 2.4± 0.4 (Simha and Steigman,
2008), consistent with the standard model value of N eff

ν = 3.04.
All three of these flavours of neutrino have now been confirmed in accelerator exper-

iments. The measurement of oscillations between the three neutrino flavours has shown
the existence of a mass splitting between the three known neutrino species, implying a
lower limit on the sum of the neutrino masses, Mν > 0.05 eV (Becker-Szendy et al., 1992;
Fukuda et al., 1998; Ahmed et al., 2004). Precise measurement of the mass of tritium
β-decay products provides an upper limit of ∼ 2.2 eV (Lobashev, 2003) on the mass of
the electron neutrino, with future experiments hoping to reach constraints of 0.2 eV (Wolf
and KATRIN collaboration, 2010). However, the mass of the electron neutrino (< 1 eV)
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is so much smaller than the mass of other fundamental particles that obtaining better
constraints from decay reactions is extremely challenging.

Fortunately, the large scale structure of the matter distribution places constraints on
neutrino mass, as discussed in e.g. Lesgourgues and Pastor (2006). Once massive neu-
trinos have cooled sufficiently to become non-relativistic, they behave as a constituent of
the dark matter. Furthermore, while most dark matter is cold, that is, lacking significant
thermal dispersion, neutrinos are hot dark matter, which retain thermal velocity from the
early Universe. Free streaming of hot dark matter erases a proportion of fluctuations on
small scales, depending on what proportion of the total dark matter it makes up. This
allows us to weigh the neutrino background. I describe this effect more quantitatively in
Chapter 6.

Future galaxy surveys (Schlegel et al., 2009), CMB lensing (Planck Collaboration,
2005; Niemack et al., 2010) and weak lensing probes may measure the power spectrum
sufficiently accurately to constrain the neutrino mass to ∼ 0.05 eV (Abazajian et al.,
2011), guaranteeing a positive measurement and potentially distinguishing the neutrino
mass hierarchy, provided systematic errors can be kept under control. This would help
inform the construction of particle physics theories beyond the standard model.

1.7 The Lyman-α Forest

As mentioned in Section 1.1, the Lyman-α forest is a feature of quasar spectra. Quasars
are thought to be super-massive black holes with accretion discs which radiate, making
them extremely luminous objects visible at high-redshift. These properties let them act
as beacons, each illuminating a narrow beam of the Universe. Baryons present along the
beam will leave their mark on quasar spectra as absorption features, and the varying
redshifts to the absorber means a single transition line may appear many times. The
Lyman-α forest is the overlapping absorption from the Lyman-α transition, when neutral
hydrogen goes from its first excited state to its ground state.

The first cosmological use of the Lyman-α forest was that proposed by Gunn and
Peterson (1965). They pointed out that in a completely neutral Universe, quasar spectra
would be completely absorbed at shorter wavelengths than 1216Å, the rest frame wave-
length of the Lyman-α transition. The lack of what became known as the Gunn-Peterson
trough at z = 3 suggested that hydrogen is mostly ionised in the late Universe. Croft et al.
(1998) later suggested that, by measuring the statistics of absorption in quasar spectra,
it would be possible to constrain the clustering of matter. Advances in technology meant
that it was possible to use numerical simulations to predict the Lyman-α absorption
from cosmic structure (Hernquist et al., 1996), and thus quantify the relation between
statistical properties of the Lyman-α forest and cosmological parameters.

Unlike most other cosmological probes, the Lyman-α forest is sensitive to gas and ion-
isation physics, which must be constrained in concert with the cosmology. The biggest
systematic uncertainty comes from the requirement to simultaneously constrain the mean
absorption, which depends on the neutral fraction of hydrogen. This affects the ampli-
tude of the absorption correlations and so is partially degenerate with the amplitude
of the density perturbations (McDonald et al., 2005a), which weakens the cosmological
constraints. There is also uncertainty in calculating the temperature and temperature-
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density relation of the gas. Both these uncertainties are a reflection of a lack of knowledge
about the details of the ionising photon background due to stars and quasars.

Using the Lyman-α forest as a probe of structure has in recent years been refined and
applied to increasingly large datasets by, e.g. Viel et al. (2004); McDonald et al. (2006);
Seljak and Slosar (2006). In Chapter 5, I present work which builds on these analyses to
test the assumption of a smooth and nearly scale-invariant primordial power spectrum on
the smallest scales currently possible. I both analyse current data and make predictions
for future surveys. These future surveys will increase the number of spectra further and
measure not only the correlations along the line of sight but also those between quasar
spectra, producing a full three dimensional map of the IGM (Slosar et al., 2009, 2011).

The unique feature of the Lyman-α forest as a probe of structure formation is that it
is a direct probe of baryons. Thus it has allowed us to refine understanding of baryonic
physics, doing for gas simulations what studies of large scale structure have done for
numerical methods of describing gravitational collapse.
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1.8 Organisational Notes

The structure of this thesis is as follows. Chapter 2 describes technical information and
methods that underlie the work presented in the later chapters. Chapters 3-6 present
the main work of this thesis, which has two themes: inflation, Chapters 3 and 4, and the
growth of structure, Chapters 5 and 6.

Chapter 3 discusses fine-tuning criteria for a variety of inflaton potentials and how
the choices one makes when defining a criterion affects predictions for the tensor-scalar
ratio. In Chapter 4, I move to a particular inflation model, brane inflation, and explore
the status of the overshoot problem.

Chapter 5 uses new simulations of the Lyman-α forest to reconstruct the shape of the
power spectrum on the smallest scales, testing the assumption of near scale-invariance,
motivated by inflation. In Chapter 6, I perform a suite of simulations of massive neutrinos
to test the accuracy of current theoretical prescriptions for the effect they have on the
matter power spectrum.

The papers on which this thesis is based are listed below. In order to present each
chapter as an internally consistent piece of work, I have chosen not to alter the intro-
ductions of each paper from the published version, although I have in some cases made
changes to the ordering of Sections, and I have changed formatting to fit the style of this
thesis.

Chapter 3: Fine-tuning criteria for inflation and the search
for primordial gravitational waves
This work was published as S. Bird, H. Peiris and R. Easther, 2008, Phys. Rev.
D, volume 78, article 083518 and was carried out in collaboration with the named
co-authors.

Chapter 4: Brane inflation and the overshoot problem
This work was published as S. Bird, H. Peiris and D. Baumann, 2009, Phys. Rev.
D, volume 80, article 023534 and was carried out in collaboration with the named
co-authors.

Chapter 5: Minimally parametric power spectrum reconstruction
from the Lyman-α forest
This work was published as S. Bird, H. Peiris, M. Viel and L. Verde, 2011, MNRAS,
volume 413, issue 3, pages 1717-1728 and was carried out in collaboration with the
named co-authors.

Chapter 6: Massive neutrinos and the non-linear matter power spectrum
This work was carried out in collaboration with M. Viel and M. Haehnelt, and is
in preparation for submission to MNRAS.
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‘Your years of toil,’
Said Ryle to Hoyle,
‘Are wasted years, believe me.
The steady state
Is out of date.
Unless my eyes deceive me,

My telescope
Has dashed your hope;
Your tenets are refuted.
Let me be terse:
Our universe
Grows daily more diluted!’

– Barbara Gamow 2
Methods

In this Chapter, I discuss in more detail two topics which are important for later Chapters:
inflation and numerical simulation of structure. Section 2.1 explains how a scalar field
can produce inflationary expansion, and Section 2.2 discusses a model of inflation derived
from string theory. Section 2.3 is dedicated to the techniques and algorithms used when
simulating structure, and finally Section 2.4 derives the formulae for Lyman-α forest
absorption.

2.1 The Slow-Roll Formalism for Inflation

This Section discusses the mechanisms of inflation, and how a scalar field can produce
inflationary expansion. As discussed in Section 1.3, inflation requires matter with negative
pressure. A scalar field φ, with potential V (φ), can have this property. The Einstein
equations imply it has equation of state

ρ =
φ̇2

2
+ V (φ) p =

φ̇2

2
− V (φ) , (2.1)

which has negative pressure when moving sufficiently slowly that V > φ̇2/2. This is
known as slow-roll inflation. The Friedmann equations are

H2 =
1

3M2
P

(
φ̇2

2
+ V (φ)

)
ä

a
=

1

3M2
P

(
V (φ)− φ̇2

)
, (2.2)

defining the reduced Planck mass as M−2
P = 8πG in units such that c = h̄ = 1.

Energy conservation provides the final equation needed to close the system and implies
that the scalar field behaves as a damped harmonic oscillator in a potential

φ̈ + 3Hφ̇ + V ′(φ) = 0 , (2.3)
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where a prime denotes a derivative with respect to φ and the dot a derivative with respect
to t, cosmic time.

Realising inflation requires a negative pressure and a slowly varying Hubble parameter.
The first condition can be achieved by imposing a small kinetic energy φ̇2/2 � V (φ), and
the second with a small acceleration φ̈ � V ′(φ) 1. In this case, the equations of motion
become

3Hφ̇ + V ′(φ) ≈ 0 H2 ≈ V

3M2
P

. (2.4)

To check this leads to accelerated expansion (ä > 0), substitute Eq. 2.4 into Eq. 2.2 to
find

ä

a
= H2

(
1− φ̇2

2M2
PH2

)
(2.5)

≈ H2

[
1− M2

P

2

(
V ′

V

)2
]

. (2.6)

So, defining the first slow-roll parameter εV , accelerated expansion occurs when

εV =
M2

P

2

(
V ′

V

)2

< 1 . (2.7)

This condition for accelerated expansion implies the first slow-roll condition φ̇2/2 � V (φ).
Eq. 2.4 can be differentiated to find the second condition, φ̈ � V ′(φ), in terms of the
inflaton potential

φ̈ ≈ φ̇

3H

(
V ′′ − 3H ′φ̇

)
(2.8)

≈ V ′

3

(
M2

P

V ′′

V
− εV

)
. (2.9)

Defining the second slow-roll parameter ηV = M2
PV ′′/V shows that slow-roll holds when

ηV � 1.
The slow-roll formalism can be used to derive the power spectrum of perturbations

from inflation. However, this calculation is rather involved, requiring careful attention to
issues of gauge, and somewhat tangential to the main direction of this work. I therefore
simply quote the results and explain their physical significance. The power spectra of
scalar perturbations Ps(k) and tensor perturbations Pt(k) are given by

Ps =
H2

πεV M2
P

∣∣∣∣
k=aH

, Pt =
16H2

πM2
P

∣∣∣∣
k=aH

. (2.10)

These quantities are evaluated at horizon-crossing (k = aH) because this is the time at
which the quantum scalar field perturbations are frozen in. The factor of 16 in Pt arises
because the graviton is spin two, while the scalar field is spin zero.

1I can choose the direction of φ such that V ′ > 0.
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Derivatives of the Hubble parameter can be used instead of an expansion in potential
slow-roll parameters. While this makes the potential parameters less obviously related
to slow-roll, it allows us to make use of the Hamilton-Jacobi formalism and construct a
potential that adheres to given observational parameters.

The master equation for the Hubble expansion is obtained by differentiating Eq. 2.2
with respect to time and substituting φ̈ using Eq. 2.3, to obtain the exact equation

H ′ = − φ̇

2M2
P

. (2.11)

The Hubble slow-roll parameters can be defined as

εH = 2M2
P

(
H ′

H

)2

ηH = 2M2
P

(
H ′′

H

)
. (2.12)

With this definition, Eq. 2.6 becomes the exact equation

ä

a
= H2 (1− εH) . (2.13)

The second slow-roll condition becomes ηH � 1, and, by interpreting H as H(φ), the
equations of motion can be recast with φ as the dependent variable.

Finally, the Hubble slow-roll parameters are related to the potential slow-roll param-
eters, to first order in slow-roll, by

εH ≈ εV , ηH ≈ ηV − εV , (2.14)

so in practice either formalism can be used as the need arises. In Chapter 3, I use the
potential slow-roll formalism, while in Chapter 4, I use Hubble slow-roll parameters. In
Chapter 4, I discuss the effect of a non-canonical kinetic term in the inflaton action and
the resulting speed limit. This is realised through a Lorentz factor γ(φ), which prevents
the inflaton from accelerating quickly, even where the potential is non-flat.

2.2 D-brane Inflation and String Theory

In this Section I give a brief overview of the physical motivation and reasoning behind
the model of inflation investigated in Chapter 4 which is grounded in string theory.

String theory is currently the best candidate for a theory of quantum gravity, which
also describes particle physics at very high energies. As mentioned in Section 1.3, one of
the major unsolved problems in inflation is the lack of an inflaton potential derived from
first principles. Since string theory is a theory of high energy particle physics, asking
whether it can produce the inflaton is a very natural question.

String theory attempts to explain relativistic particles as one dimensional strings,
fundamentally fuzzy on the string scale. Because the string scale is lower than the
Planck scale, this fuzziness can resolve the ultraviolet catastrophes of quantum field
theory. Furthermore, it tames the high energy quantum behaviour of gravity with higher
order corrections corresponding to loop terms for the quantised string. String theories
have an internal conformal gauge symmetry, related to the ability to re-parametrize the
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coordinate system on the string. To preserve this symmetry, string theory requires several
extra internal degrees of freedom, the famous extra dimensions. Because these dimensions
are not observed, they are presumed to be compactified.

As well as one-dimensional string objects, string theory admits the existence of higher-
dimensional membranes (or manifolds), known as D-branes 2. D-branes are fully dynami-
cal objects and may possess charge and mass. Furthermore, any number of the dimensions
of the surface may be observably large. Thus the observable Universe can be viewed as a
four dimensional D-brane moving in some higher dimensional space. The higher dimen-
sional space is unobservable from our point of view, either because the higher dimensions
are collapsed, or because we (and the rest of the Universe) are charged with some higher-
dimensional field and thus confined to the brane.

The original formulation of brane inflation by Dvali and Tye (1999) postulated a
D3-brane and a D3-brane, which possess opposite sign charges of a higher-dimensional
generalization of electromagnetism. Because they are charged, these two branes attract
each other, and as they fall together their mutual potential energy is partly converted into
expansion. From the point of view of an observer confined to the brane, it would appear
as if the Universe is four dimensional and contains a scalar field moving in a potential.
This is interpreted as the inflaton.

Unfortunately, it soon became apparent that this inflaton potential was not sufficiently
flat to agree with observations. In order to resolve this, Kachru et al. (2003) proposed
a stack of D3-branes, which would use their charges to create a warped region of space,
flattening the inflaton potential. It was initially believed that this potential would be
ruined by the fields necessary for moduli stabilization, but Baumann and McAllister
(2007) computed further corrections to the inflaton potential, due to interaction terms
with other fields present in the wider, unwarped, space, which restored the flat potential
necessary for inflation. This model is the basic picture in Chapter 4.

Unlike the original models of inflation, such as those discussed in Section 2.1, brane
inflation does not end when εH ∼ 1. Instead, branes ultimately collide, annihilating their
mutual charges and releasing their expanded energy into a low-energy brane correspond-
ing to the present-day Universe 3. There are also a few problems with the approach which
have yet to be resolved. First, it is not clear that a space warped by D3-branes is generic.
This problem is somewhat analogous to the well-known problem of whether a sufficiently
flat potential is generic in scalar field inflation.

It is important to remember that the model of D-brane inflation discussed above is
not the only possible model of inflation from string theory; there is also, for example,
the axion monodromy model of Silverstein and Westphal (2008). It is also likely that
there are several further ways of realising inflation in string theory that have yet to be
discovered.

For these reasons, it is probably best to regard D-brane inflation as a detailed case
study, or toy model, and use it as a laboratory to determine the sorts of challenges that a
particle physics model of inflation might face. This is the approach I take in Chapter 4,

2The name D-brane is used because these objects were originally introduced as surfaces upon which
open strings obeying Dirichlet boundary conditions could end. Open strings have two ends; for massless
strings, ends can either move at the speed of light (Neumann boundary conditions) or be held stationary,
confined to some manifold by a charge (Dirichlet boundary conditions).

3The exact mechanism for this is not yet well understood.
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where I examine whether D-brane inflation solves a particular problem of classical scalar
field inflation, called the overshoot problem. I hope thereby to gain a hint into whether
this problem generically exists in string theory models.

2.3 Simulating Structure

In this Section, I give an overview of some of the simulation techniques used in Chapters
5 and 6, and motivate my choice of codes.

2.3.1 Gravity

In this Subsection, I discuss some of the methods used for simulating the formation of
structures under Newtonian gravity. Newtonian gravity is expected to be a good approx-
imation in most circumstances because the Universe is dominated by cold dark matter
and baryons, whose velocities and matter densities are non-relativistic. One circumstance
where this is not always true is when simulating massive neutrinos, as in Section 2.3.4.

Since Birkhoff’s theorem implies that spherically symmetric gravitating structures
can be represented by point masses for external observers, it is natural to try to simulate
gravity using particles. The basic problem is that of N -body dynamics; we must find some
method of summing the force on each particle from a vast number of other particles.
The first attempt at simulating structure formation numerically was probably that of
Holmberg (1941) who, lacking modern computers, resorted to an ingenious method of
modelling gravitational interactions. 37 light-bulbs were carefully positioned and lit,
representing individual mass elements. Their gravitational evolution was computed by
carefully moving each bulb by hand according to the intensity of the light falling upon
it: the light being a proxy for gravitational attraction, since both radiation intensity and
the gravitational force are proportional to 1/r2.

This is an early example of the direct summation method of N -body calculations.
See, for example, Aarseth (2003) for more details of this approach. To simulate this
process with a finite number of particles, the gravitational force on each particle must be
calculated for each small time-step ∆t. A direct sum would look something like

Fi = G
∑

j

Mj(xi − xj)
−2 , (2.15)

where xi are positions and j is summed over all particles. Since this sum must, in
principle, be evaluated for every particle in turn, the cost of force calculations scales like
N2, where N is the number of particles, making direct summation impractically slow
on cosmological scales. The problem of modelling gravitational collapse can therefore be
restated as that of finding an approximation to the above summation which is both fast
and accurate.

It is important to realise that these N -body particles are not physical point particle
objects. When performing N -body simulations, Birkhoff’s theorem is implicitly being
used to approximate a large complex object as a point particle at the centre of mass of
the original object. This neglects internal structure on scales smaller than the mass scale
of the N -body particle. To check that structure on smaller scales than those resolved does
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not have a strong impact on results, an identical simulation is run with slightly lower mass
resolution. Boundary effects can be minimised by assuming periodic boundary conditions
and surrounding a simulation box with an identical copy of itself; physically this is useful
precisely because the Universe is homogeneous on large scales.

The gravitational dynamics can be described by the Poisson equation,

∇2φ(x) = 4πGρ , (2.16)

where φ is the gravitational potential. Once the density field, ρ, is known on a grid, this
equation can be solved using Fourier methods, which are much faster than direct sum-
mation. Therefore, one important approximation is the particle-mesh approach, where
particles are smoothed to the width of a grid cell and interpolated onto a grid, which is
then Fourier transformed, and the forces computed.

This can resolve long-range forces very accurately for little cost, but it has finite
resolution, corresponding to the spacing of the grid used. Collapse under gravity is a
problem where the dynamics cover an extremely wide range of scales, so this loss of
accuracy is problematic. Early codes, such as that of Efstathiou and Eastwood (1981),
used a particle mesh grid on large scales and resolved small scales with direct summation.
This results in the so-called particle-particle-particle-mesh, or P3M, algorithm. However,
the reliance on direct summation on small scales is still prohibitively slow for many
problems.

The final development in gravity solvers is the Tree-PM algorithm. Like P3M, this uses
a particle mesh to calculate long-range forces. The innovation is to use a tree algorithm
for short-range forces. This is essentially a multipole method, which groups particles
into a hierarchy of cells. For sufficiently distant force interactions, the effect of multiple
particles can be approximated into a single multipole force, substantially reducing the
number of computations and allowing essentially arbitrary resolution. TreePM is the
algorithm used in GADGET (Springel, 2005), the code used to run my simulations.

2.3.2 Hydrodynamics

In Chapter 5, I investigate the Lyman-α forest. The Lyman-α forest measures the distri-
bution of neutral hydrogen, so to simulate it I must describe not only dark matter, but
baryons. The first step to doing this is a description of adiabatic gas physics and pressure
forces. In this Section I give an overview of the commonly used models.

The natural way to describe an adiabatic gas is with a fluid approximation, unlike the
collisionless gravitational dynamics described in 2.3.1, which was modelled using particles.
Computational fluid dynamics is a well-studied subject, and modern approaches often use
an Eulerian grid approach. Here space is split into fixed grid cells, and the evolution of
the fluid is tracked with the flow across cell boundaries. This approach works very well
for computational fluid dynamics. However, in cosmology, hydrodynamics must almost
always be coupled to gravity, which introduces several complications. First, Eulerian
grid codes with a fixed grid for cosmology suffers from the same drawback as the bare
particle mesh method discussed in the last Section for gravity; limited spatial resolution.
Many pure fluid dynamical problems have a fixed length scale, so this is not necessarily
a problem. However, cosmological problems require a high dynamic range.
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To overcome these limitations, some Eulerian codes use Adaptive Mesh Refinement
(AMR). In AMR, grid cells are dynamically refined to a finer sub grid as the need arises.
This allows unbounded dynamic range, while not wasting computation time or memory.
However, AMR brings its own tradeoffs. The first problem is a practical one; the dynamic
increase in the grid size means that it is very hard to predict the memory requirements
of a fully adaptive code in advance. In addition, to refine a cell, a description of the
fluid distribution on scales of the refined mesh is needed, while the code can only store
information on the unrefined scales. In practice the fact that objects are constantly
collapsing under gravity ameliorates this problem. There are several cosmological AMR
codes in existence, for example RAMSES (Teyssier, 2002) and ENZO (O’Shea et al.,
2004), which couples hydrodynamics using AMR to a particle mesh gravity solver. The
simplistic gravity solver used in ENZO points to another problem with using grid codes
for cosmology; modern gravity solvers are inherently particle based and fit badly into
a grid-based fluid description. Having two entirely separate representations of matter
adds to programming complexity and computational overhead. Modelling cosmological
hydrodynamics with a particle-like description can ameliorate these difficulties.

This is the motivation for smoothed particle hydrodynamics (SPH). In SPH the fluid
is sampled by a number of tracer particles, each of which corresponds to a Lagrangian
fluid element of constant density. SPH discretises the fluid in mass rather than in spatial
coordinates, and so it fits well with the particle based description of gravity. In particu-
lar, it automatically has a high dynamic range, because of the concentration of particles
in areas of high matter density. A fluid description is then obtained by interpolating
smoothly between particles. My simulations in Chapter 5 use GADGET, whose formula-
tion of SPH explicitly conserves both entropy and energy (Springel and Hernquist, 2002).
Entropy conservation avoids spurious mixing, but means that an artificial viscosity force
is required to allow particle collisions to heat the gas, which in turn makes it hard for
SPH to model shocks correctly. Recently, Springel (2010) has presented AREPO, which
aims to combine the advantages of SPH and grid-based codes by discretizing the fluid
using a Lagrangian moving mesh.

One potential problem with SPH is that because it concentrates particles in regions
of high-density, voids are comparatively under-resolved, and problems sensitive to low-
density regions may suffer. In Chapter 5, I use GADGET to simulate the Lyman-α forest.
Most of the Lyman-α forest comes from the weakly non-linear regime, in regions of
comparatively small overdensity. Since there will be few shocks on these scales, of small
dynamical importance, an SPH code should be appropriate. Lack of resolution in the
voids, in principle, can cause concern. However, when Regan et al. (2007) compared
GADGET to ENZO, they found that the theoretically higher resolution in voids did not
in practice have a strong effect on the Lyman-α forest. In addition, the computational
overheads of AMR and the ability to switch off hydrodynamics in overdense regions meant
that GADGET was significantly faster when optimised for the Lyman-α forest.

2.3.3 Ionisation and Thermal Physics

Understanding the neutral hydrogen which makes up the Lyman-α forest also requires an
understanding of the ionisation and thermal physics of the gas. In my simulations, the
gas is supposed to be kept in ionisation equilibrium by an ultraviolet photon background,
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assumed to be spatially uniform and supplied as an external input to the simulation. This
assumption of a uniform UV background is justified because cosmic hydrogen is mostly
ionised at redshifts of z = 2 − 4, at least in the near mean density gas which gives rise
to the Lyman-α forest, and hence the gas is optically thin to hydrogen-ionising photons.
Optically thin gas also justifies my assumption that the gas is in ionisation equilibrium.
For optically thin gas, the neutral fraction will be changed by alterations in the amplitude
of the UV background, or by the growth of structure, both much slower processes than
ionisation. On the other hand, if the gas were optically thick the neutral fraction would
change on the much faster timescale of an ionisation front.

While the Lyman-α gas is optically thin to hydrogen-ionising photons, the situation
is different with respect to helium. Helium becomes doubly ionised at z ∼ 3; before the
completion of this process the gas is not optically thin to helium-ionising photons and
several of the above assumptions break down. Fortunately the Lyman-α forest is only
directly sensitive to neutral hydrogen, and so the main effect of helium reionisation is to
increase the temperature of the gas (Abel and Haehnelt, 1999). In order to quantify this
effect, I would need to include a robust model of radiative transfer into my simulations,
which is not currently feasible. Instead, I account for the uncertainty caused in the
thermal history by considering simulations with a variety of temperatures compatible
with observations, each generated by using a different effective helium photo-heating
rate.

2.3.4 Neutrinos

In this Section I examine some of the methods for simulating the effect of neutrinos on the
growth of structure. As discussed in Section 1.6, neutrinos are weakly interacting light
particles, which retain significant thermal dispersion and thus a long free-streaming length
in the late Universe. Because they are weakly interacting particles, they can be treated
in our simulations as an extra variety of dark matter, but, unlike the dominant cold dark
matter, with significant thermal velocity. This approach allows neutrinos to be simulated
fully self-consistently, including non-linear effects. Furthermore, since neutrinos do not
cluster significantly on scales smaller than their free-streaming length, computation of the
tree component of the gravitational forces required for cold dark matter can be omitted.
This significantly speeds up computation.

One complication with this approach is the impact of shot noise. For low-mass neu-
trinos the thermal velocity may be much higher than the gravitational flow velocity. The
neutrino distribution is only sampled at finite accuracy, which can lead to thermal shot
noise dominating the power spectrum. This is most acute at high redshifts, where the
neutrino temperature is greater and structure growth has not yet progressed to the same
extent. Shot noise can be avoided by simply increasing the number of neutrino particles.
While this is rather a brute force approach, and quickly reaches practical limits, it can
be extremely effective.

An alternative method, which avoids a neutrino particle species altogether, is to treat
the neutrinos as a perturbation to a single dark matter species. Here the cold dark matter
is treated normally, but additional power, representing the massive neutrinos, is added
to the particle-mesh grid (Brandbyge and Hannestad, 2009). The neutrino contribution
is calculated analytically, using linear perturbation theory, which gives it arbitrarily high
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resolution but neglects non-linear structure in the neutrinos. This approach is clearly
preferred at very high redshift, when non-linear clustering in the neutrinos is minimal,
and shot noise is of most concern. However, for z ≤ 2 the situation reverses, and particle-
based simulations incorporate more of the relevant effects.

With this in mind, Brandbyge and Hannestad (2010) proposed a hybrid scheme.
Massive neutrinos are initially included using the grid-based method. Once the neutrino
thermal velocity has dropped below a critical level, the lowest momentum grid cells are
converted into particles, with initial properties given by those of the grid cell before
conversion. The mass corresponding to these neutrino particles is then removed from the
grid. With this method, they claim to combine the advantages of particle and grid-based
simulations and are able to examine small-scale structures forming in the neutrinos.

I do not use this hybrid approach in Chapter 6, preferring purely particle or grid based
methods. I am interested only in the effect of neutrinos on the non-linear matter power
spectrum, and not on the small-scale neutrino structure. Furthermore, the criteria for
converting grid cells into particles adds complexity and potential fragility to the numerical
implementation, making it more difficult to prove convergence. Therefore in Chapter 6,
I have taken the approach of performing both grid and particle-based simulations that
are fully converged and checking them for consistency with each other. Since I find
explicitly that shot noise is negligible, I prefer the particle-based simulations when there
is disagreement.

In practice, the most important limitation of my simulations in Chapter 6 is that in the
early Universe, neutrinos are somewhat relativistic, reducing their effective mass. Because
GADGET is a Newtonian code, which incorporates constant mass neutrino particles, it
cannot adequately account for this and over-estimates the neutrino suppression, even in
the linear regime. I avoid this by starting my simulations at a sufficiently low redshift,
but a code which models the changing effective mass of the neutrino would be preferred.

2.3.5 Initial Conditions

In this Section I give a brief description of the methods used to generate the initial
conditions in my simulations. The basic problem is to turn the power spectrum of density
fluctuations, calculated using perturbation theory, into a three dimensional distribution
of particles. First the density field must be realised from the power spectrum. It is easiest
to do this in Fourier space, as the power spectrum gives the amplitude of Fourier modes
directly. The phases of the Fourier modes are generated randomly; this is equivalent to
assuming that the statistics of the initial field are Gaussian. In practice this is not entirely
accurate; neglecting the possibility of small primordial non-Gaussianities, gravitational
evolution causes some information leakage into the phases, and a deviation from pure non-
Gaussianity. The error from this can be easily made negligible by starting simulations at
high redshift.

The initial positions of the particles, assumed to be on a regular grid in my simula-
tions, need to be perturbed by the density field. To do this I use the first-order Lagrangian
approximation of Zel’dovich (1970). The Zel’dovich approximation assumes that a par-
ticle with initial position vector qi has been moved inertially to its new location xi by a
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displacement vector Φi(qi), generated from the initial density field, such that

xi = a(t)qi + D(t)Φi(qi) (2.17)

∂Φi

∂qi

= −δ(qi) , (2.18)

where a(t) is the scale factor, D(t) the linear growth rate and δ(qi) the density pertur-
bation field. The initial velocity can be found easily by differentiating with respect to
time

vi = −dD(t)

dt
Φi(qi) . (2.19)

The Zel’dovich approximation is accurate for small displacements, but it breaks down
once particle displacements are sufficiently large for particle trajectories to intersect. It
is therefore important to start simulations at a sufficiently early redshift, so that the
initial particle displacements are on average smaller than the mean particle spacing. An
alternative is to use second-order perturbation theory, which adds a correction term to
the above equation (e.g. Scoccimarro (1998).

2.4 Simulating Lyman-α Spectra

In this Section I detail the procedure for simulating a Lyman-α forest spectrum, given a
snapshot of a structure simulation, performed using the methods described in Section 2.3.
The first step is to find the velocity of each particle, including both peculiar velocities
and the Hubble flow. In my simulations, peculiar velocities have an effect around the
10% level.

Next, I calculate the optical depth, τλ, at a wavelength λ, as defined by the line
integral

τλ =

∫
σλnHdl , (2.20)

where σλ is the cross-section for the transition and nH is the number density of the neutral
hydrogen. σλ is given by the rest cross-section, σα, multiplied by a broadening function,
Φ,

aλ = σα × Φ . (2.21)

The oscillator strength of the Lyman-α transition, fα, is defined by the ratio between the
cross-section of the Lyman-α transition and the cross section of the transition involving
a free electron

fα =
σα

πr0λ
, (2.22)

where λ is the rest wavelength of the Lyman-α transition. The classical radius of the
electron, r0 is related to the Thomson cross-section, σT by

r0 =

√
3σT

8π
. (2.23)

Hence

σα =

√
π

3σT

8
fαλ . (2.24)
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To compute the broadening function, I neglect natural broadening from the intrinsic
uncertainty in the energy levels of the hydrogen atom. Natural broadening is only im-
portant in the densest absorbers (damped Lyman-α systems), which my simulations lack
the resolution to adequately resolve. The effect of DLAs can be included by a correction
applied when calculating the likelihood.

Hence the only form of broadening present is Doppler broadening. In an absorber
of temperature TH , mass mH , and velocity v, the probability of a particle having zero
velocity relative to an incoming photon is

Φ =
c√
πb

exp

[
−v

b

2
]

, (2.25)

where b =

√
2kTH

mH

. (2.26)

Hence, a wavelength bin at position i will suffer absorption from an HI absorber in bin
j according to:

τij = σαΦnHa∆ (2.27)

= σα
c√
πb

nHa∆ exp

[
−
(

vi − vj

b

)2
]

. (2.28)

Here ∆ is the bin width, and a is the expansion factor.
The flux in each bin is then simply F = e−τ . Each spectrum is smoothed with a

simple 3 point boxcar average, following Viel et al. (2004), and the flux power spectrum
from the simulation box is defined to be the average over a number of simulated spectra.
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“Inflation is as violent as a mugger, as frightening as an
armed robber and as deadly as a hit man.”

– Ronald Reagan

3
Fine-tuning Criteria for Inflation and the

Search for Primordial Gravitational Waves

Abstract

We revisit arguments that simple models of inflation with a small red tilt in the scalar
power spectrum generically yield an observable tensor spectrum. We show that criteria
for fine-tuning based upon the algebraic simplicity of the potential depend strongly upon
the explicit assumptions they incorporate, particularly regarding the end of inflation. In
addition, some models with algebraically simple potentials require carefully tuned initial
field configurations, and not all types of fine-tuning are identifiable via the algebraic
simplicity of the potential. Conversely, in the absence of a strong prior on the mechanism
that ends inflation, we demonstrate the existence of potentials with vanishingly small
tensor amplitudes, which are natural in terms of both their algebraic form and initial
conditions. We thus argue that proposed experiments (CMBPol or BBO) which make
highly sensitive measurements of the tensor amplitude cannot definitively rule out the
inflationary paradigm.

3.1 Introduction

In the simplest scenarios, inflation is driven by a single scalar field, the “inflaton”, rolling
in a slowly varying potential (Guth, 1981; Sato, 1981; Mukhanov and Chibisov, 1981;
Linde, 1982b; Albrecht and Steinhardt, 1982). Sufficient inflation (≈ 60 e-folds) smooths
the Universe and solves the flatness, horizon, and monopole problems. Initial inhomo-
geneities originate as quantum fluctuations in the inflaton field and the metric, sourcing
scalar (Hawking, 1982; Guth and Pi, 1982; Starobinsky, 1982; Bardeen et al., 1983) and
tensor (Grishchuk, 1975; Starobinsky, 1979) perturbations which are almost Gaussian
and scale-invariant (Bardeen et al., 1983). These broad-brush predictions are consistent
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with observations (Komatsu et al., 2009; Peiris and Easther, 2006a,b, 2008).

The shape of the inflaton potential is not predicted by theory; it is only required to
satisfy the slow-roll conditions. However, the shape of the potential is constrained by
the scalar spectral index, ns, which measures the deviation of the scalar power spectrum
from scale invariance, and the tensor-scalar ratio, r, which measures the amplitude of
the tensor modes relative to that of the scalar modes. Data from the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) combined with a compilation of supernovae and
baryon acoustic oscillations data gives ns = 0.960+0.014

−0.013 at the 68% confidence level (CL)
if the tensor-scalar ratio r = 0, and ns = 0.968±0.015 when we marginalize over r (Dunk-
ley et al., 2009; Komatsu et al., 2009). There is currently no evidence for the existence of
a primordial tensor background: the 95% CL upper limit from the same data compilation
is r < 0.20.

A detection of primordial tensors would have tremendous implications for cosmology
as their existence is a key prediction of inflation (Starobinsky, 1979). Moreover, measuring
a non-zero value of r would eliminate the ekpyrotic/cyclic scenarios, which predict an
unobservably small primordial tensor amplitude (Khoury et al., 2002; Boyle et al., 2004).
Finally, the observed amplitude of the tensor spectrum fixes the energy scale of inflation,
removing a major uncertainty in inflationary model building. On the other hand, an
observable tensor spectrum would imply the need for super-Planckian field variations
during inflation in simple single field models (Lyth, 1997), which raises specific theoretical
challenges.

Cosmic variance, polarized foregrounds, and weak lensing of the E-mode may ensure
that r ∼ 10−3 is the effective lower limit for a detection of tensor modes in the cosmic
microwave background (CMB) (Knox and Song, 2002; Kesden et al., 2002; Verde et al.,
2006; Amarie et al., 2005). Consequently, it is important to know whether inflation
makes a generic prediction for the value of r and, if so, whether it falls within the
detectable range. A plethora of explicit inflationary models with varying degrees of
physical motivation have been proposed. Many models do have observable values of
r (e.g. the chaotic inflation of Linde (1983)); conversely, a detection of tensors would
rule out many (Baumann and McAllister, 2007), but not all (Dimopoulos et al., 2008;
Easther and McAllister, 2006; Silverstein and Westphal, 2008), explicit string-theory
constructions. Consequently, to show that inflation has a “natural” range of r values, we
must establish a “weight” that will give preference to certain classes of models.

One weighting proposal is that of Boyle et al. (2006) (BST), who offer a fine-tuning
statistic based on the algebraic simplicity of the potential, along with five conditions
which a successful inflationary potential should satisfy. These criteria are then applied
to quartic polynomial potentials, with the conclusion that a high degree of fine-tuning is
required for ns > 0.98, or for r < 10−2 with ns > 0.95. If future observations confirm
that 0.95 < ns < 0.98, the BST criterion suggests that r is within the observable range.

In addition to tuning the parameters of the potential, some potentials need a very
special initial field configuration if inflation is to begin. This tuning can involve both
the suppression of the kinetic energy relative to the potential energy (to ensure that the
inflaton does not “overshoot” the inflationary portion of the potential) or the absence
of inhomogeneities on the initial inflationary patch. This topic has been investigated for
many of the common models of inflation (Belinsky et al., 1985; Goldwirth, 1990; Mendes
and Liddle, 2000; Underwood, 2008; Chiba, 2008).
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In particle physics, models are regarded as fine-tuned if they require correlations
between parameters beyond those imposed by the symmetries of the underlying theory
(’t Hooft, 1980), or when certain parameters are arbitrarily set to zero; models which are
not fine-tuned in this sense are known as “technically natural” (Hotchkiss et al., 2008).

There are other definitions of naturalness based on the sensitivity of observables to
small changes in their parameters (Barbieri and Giudice, 1988; Anderson and Castano,
1995). Hotchkiss et al. (2008) examined technically natural potentials which did not obey
all of the BST viability conditions, and found red-tilted examples with r < 0.01 which
were not fine-tuned under their definition. Other studies came to similar conclusions (Ef-
stathiou and Chongchitnan, 2006; Smith et al., 2008). Inflationary potentials are often
written down without reference to an underlying theory, so we do not necessarily know
the relevant symmetries, nor the couplings between the inflaton and other fields which
contribute loop corrections to the inflaton potential. Consequently, while technical natu-
ralness is a powerful tool, it is less useful when applied to generic inflationary potentials.
Moreover, inflationary potentials typically require some tuning in order that inflation
happens at all.

We tackle two questions. Firstly, we show that even a mild relaxation of the rules
imposed by BST significantly weakens their conclusions for the likely range of r. In
addition, we ask whether the inflaton’s initial conditions must be tuned in order for
viable inflation to occur. We consider only the ratio of the kinetic to potential energy,
treating the Universe as a homogeneous system and ignoring the ability of primordial
inhomogeneities to suppress the onset of inflation. However, this requirement places a
strong constraint on the inflationary model space, which does not overlap with the BST
proposal, demonstrating the interplay between the definition of tuning, and the resulting
conclusions for the likely values of r and ns. Our aim is not to assess the intrinsic merit of
different naturalness criteria. Rather, our purpose is to investigate whether conclusions
about the natural value of r are sensitive to assumptions encoded in the tuning criteria.
This question is of considerable importance when assessing and justifying CMB B-mode
or gravitational wave experiments sensitive to r. Likewise, any conclusions we reach
regarding the “natural” value of r in inflation will determine the significance of a null
result from these experiments.

3.2 Methodology

3.2.1 Notation

We use natural units, c = ~ = 1, and MP is the reduced Planck mass. The first two
slow-roll parameters are

ε =
M2

P

2

[
V ′(φ)

V (φ)

]2

, (3.1)

η = M2
P

[
V ′′(φ)

V (φ)

]
, (3.2)
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where V (φ) is the inflaton potential, φ is the inflaton and primes denote derivatives with
respect to φ. To first order, the spectral index and the scalar-tensor ratio are

ns = 1 + 2η − 6ε , (3.3)

r = 16ε . (3.4)

These quantities are evaluated 60 e-folds before the end of inflation, φe, when φ = φ60,
which is taken to correspond to the CMB scales1. A minimally coupled inflaton with a
canonical kinetic term has the equation of motion

φ̈ + 3Hφ̇ + V ′(φ) = 0 , (3.5)

where H is the Hubble parameter. The scale factor a(t) is described by

H2 =

(
ȧ

a

)2

=
1

3M2
P

[
V (φ) +

1

2
φ̇2

]
, (3.6)

where the overdot denotes a derivative with respect to coordinate time t. It is convenient
to use the number of e-folds, N , as the time variable, via

dN = Hdt . (3.7)

Hence both N and φ increase as t increases2. Defining φ̇ = Π, the equations of motion
are

dφ

dN
=

Π

H
, (3.8)

dΠ

dN
= −

(
3Π +

V ′

H

)
. (3.9)

Provided η − ε � 1, an attractor solution exists for this system (Goldwirth, 1990),
satisfying

dΠ

dN
= 0 =⇒ Π = − V ′

3H
. (3.10)

In every result quoted in this Chapter, we have solved the full equations of motion
numerically; no slow-roll approximation has been employed.

3.2.2 Selection Conditions

Following BST (Boyle et al., 2006), we consider quartic polynomial potentials and apply
five conditions which define a viable inflationary model. These conditions largely over-
lap with those of BST; since we are investigating the impact of changing the viability
conditions we specify them in some detail:

1Our conclusions are not sensitive to the details of reheating.
2The opposite sign convention can be found in the literature; with consistent usage, there is no

practical distinction.
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1. The density perturbations have an amplitude of roughly 10−5 60 e-folds before the
end of inflation, in agreement with observations.

2. At least 60 e-folds of inflation occur, with the trajectory starting on the slow-roll
inflationary attractor and φ evolves monotonically as a function of time.

3. Inflation terminates in a deterministic and smooth manner, via ε = 1, rather than
through a hybrid-type transition (Linde, 1994).

4. After inflation, the field evolves smoothly to a minimum of the potential located at
φm, and V (φm) = 0.

5. V is bounded below, and the minimum, if metastable, is long-lived.

Beyond specifying these rules, we must also write down a generic potential. We follow
BST and write down the quartic polynomial 3

V (φ) = V0(φ
4 + Bφ3 + Aφ2 + Cφ + D) . (3.11)

To satisfy condition (4), we require a minimum at φm, with V (φm) = 0. Without loss
of generality, we can set φm = 0, which implies that C = D = 0. To satisfy condition
(5), the potential must be bounded below, which implies V0 ≥ 0. The magnitude of
V0 is dynamically irrelevant, so we can choose it such that condition (1) is satisfied.
Typical values of V0 were around 10−16; in no case did one of our tested potentials exceed
V (φ) = M4

P . This is necessary (Linde, 1983) (but not sufficient) to keep quantum gravity
effects under control. Our potential now has two free parameters,

V = V0φ
2(φ2 + Bφ + A) . (3.12)

Note that A has dimensions of M2
P and B has dimensions of MP . We set A ≥ 0 to ensure

that the extremum at the origin is a minimum4. We apply a slightly stricter version of
condition (5), namely that the minimum is stable, eliminating ambiguity in the definition
of “long-lived”. Now we can impose V (φ) ≥ 0, since the inflaton must evolve toward the
lowest-lying point of the potential, which is assumed to be at V (0) = 0 (via condition
(3)). Hence V (φ) = 0 has at most two solutions for a valid potential, one of which is
at the origin, so that φ2 + Bφ + A = 0 has at most one solution, for which we need an
imaginary or vanishing determinant and thus

− 2

√
A

M2
P

≤ B

MP

≤ 2

√
A

M2
P

. (3.13)

We construct candidate potentials by randomly sampling A and B with logarithmic
priors within the given bounds and numerically testing to determine whether conditions
(2) and (3) are met. After imposing these rules, we can only populate a subset of the

3The inflaton potential is the effective potential of φ and thus includes all loop corrections. Conse-
quently, it can include terms that would be non-renormalizable if they appeared at tree level, and the
restriction to the quartic form is effectively a further prior based on algebraic simplicity. Note that this
cut excludes potentials of the Coleman-Weinberg form (Albrecht and Steinhardt, 1982; Linde, 1982a).

4For computational reasons, we also impose A < 105M2
P , but this makes no difference to our results.
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(ns, r) plane, as the assumed functional form of the potential and the selection conditions
constitute a strong theoretical prior on the slow-roll parameters, and hence the observ-
ables. Such restrictive theoretical priors can lead to a ”detection” of a tensor-scalar ratio
even when the likelihood with respect to the data shows no evidence for a deviation from
r = 0 (Destri et al., 2008). This point has also been made in Valkenburg et al. (2008).
Our results are in agreement with Hoffman and Turner (2001); Peiris et al. (2003); Boyle
et al. (2006). We stress that this cut is independent of any “weighting” function proposed
to assess the degree of tuning of potentials that do comply with the above conditions.

3.2.3 Fine-Tuning Criteria

We will discuss two fine-tuning criteria. The first is that proposed by BST, which mea-
sures the fine-tuning in the parameters of the potential. Our second measures fine-tuning
in the initial configuration of field space, as shown by the sensitivity to an initial kinetic
term.

BST Fine-tuning Criterion

The fine-tuning criterion proposed by BST counts the number of “unnecessary features”
occurring in the potential during the last 60 e-folds of inflation (Zη). A feature is a zero
of some derivative of η with respect to φ, so

Zη =
P∑

p=0

χ

(
dpη

dφp

)
, (3.14)

where χ(f) counts the number of zeros of f within a given range; in this case the last
60 e-folds of inflation. Since all derivatives of η may be non-trivial, the value of P is
arbitrary; we take P = 10. Our implementation differs slightly from that of BST, who
take χ(η,N) in the place of χ(η,φ): derivatives of N can introduce artificial features into
the potential (via the φ,N term), over-estimating the amount of fine-tuning. Our change
weakens BST’s conclusion that ns < 0.98 to ns < 0.99 for non-fine-tuned potentials, but
has no other impact. BST stipulate that models with Zη > 1 are fine-tuned, but their
criterion is not intended to quantify the degree of fine-tuning in such cases; models with
(say) Zη = 12 and Zη = 30 would be placed on the same footing. Our graphs therefore
show all points with Zη ≥ 12 as equivalent.

Initial Conditions Fine-tuning Criterion

The question of whether inflation itself requires a fine-tuned initial field configuration
has been discussed many times (Belinsky et al., 1985; Piran and Williams, 1985; Belinsky
and Khalatnikov, 1986; Piran, 1986; Gibbons et al., 1987; Albrecht et al., 1987; Belinsky
et al., 1988; Kung and Brandenberger, 1989, 1990; Goldwirth, 1990; Goldwirth and Piran,
1990; Goldwirth, 1991; Goldwirth and Piran, 1992). This is similar to a criterion applied
to chaotic inflation in Belinsky et al. (1985); Piran and Williams (1985) and to new
inflation in Goldwirth (1990). More generally, one can ask whether inflation generically
begins with initial conditions that are anisotropic, inhomogeneous or have non-zero spatial
curvature (Moss and Sahni, 1986; Albrecht et al., 1987; Kung and Brandenberger, 1989,
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1990; Goldwirth and Piran, 1990; Goldwirth, 1991). We ignore these possibilities, but
including them would in general strengthen the conclusions we obtain by working only
with an initially arbitrary kinetic term. The inflationary Universe driven by a single
scalar field is described by a second-order system of non-linear differential equations. We
consider how sensitive this system is to its initial conditions, Πi and φi, defining the
criterion Ri for a given potential as the fraction of initial conditions leading to valid
inflationary trajectories. That is:

Ri =

∫
F (φi, Πi)dφidΠi∫

dφidΠi

, (3.15)

where F (φi, Πi) is an indicator function which is unity where (Πi, φi) lead to successful
inflation, and zero otherwise. A model which is minimally fine-tuned has Ri = 1, and
one which is maximally fine-tuned has Ri = 0.

Notice that dφidΠi is not a dynamically invariant measure; the Hamiltonian phase
space measure contains an extra factor a3(t). With this weighting, it has been shown
that inflation is disfavored by e−3N , where N is the number of e-folds (Gibbons et al.,
1987; Gibbons and Turok, 2008) (for further discussion on whether inflation is generic,
see also Hollands and Wald (2002); Kofman et al. (2002)). We avoid the complexities
of the measure problem by assuming a priori that inflation occurs, considering only the
relative weighting of one inflationary model to another; we are not attempting to see
whether inflation itself is natural, but instead to compare the degrees of naturalness of
different inflationary potentials.

To evaluate F , we must check whether the system satisfies conditions (1)–(5) for a
given (Πi, φi). In some cases, inflation will end in a false vacuum – a minimum other
than φ = 0. These trajectories violate condition (5) and so are discarded. In a flat,
expanding, Friedmann-Robertson-Walker Universe, the Hubble parameter is monotonic
and fixes the total energy. We can use this to determine when the inflaton will be un-
able to cross a maximum in the potential without actually evolving the equations of
motion. If the system expands through 300 e-folds, yet the eventual destination is still
indeterminate, because the total energy exceeds that at the maximum, we discard the
trajectory. This situation is rare, and we impose this cut to avoid spending a dispropor-
tionate amount of effort evaluating a small set of trajectories. Finally, trajectories where
φ is not monotonically increasing are discarded.

Computational limitations prevent us from considering every possible initial condition,
so we limit ourselves to a small region ∼ 60 e-folds before the end of inflation. The choice
of the bounds on this region can change the numerical value of Ri significantly. However,
our aim is to compare different models, not to provide an absolute indicator of how fine-
tuned they are, so we need only enough variation in Ri to distinguish between them. To
see how this works, consider the possible reasons a given set of initial conditions can fail
to yield sufficient inflation. If there is a feature in the potential (an extremum, or a point
where ε = 1), most trajectories beyond it will be invalid. If the lower limit on φ is too
close to zero, and a feature lies beyond it, a model would be unfairly favored. However,
for large |φ|, potentials are dominated by the φ4 term and so features of this kind are
rare. In practice then, extending the range of φ will usually add a non-inflating region
to potentials with such a feature, and an inflating region to potentials without one, thus
accentuating the difference in Ri.
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Figure 3.1 The BST fine-tuning criterion with quartic potentials. The color scale shows
the value of Zη in the (ns, r) plane. The models were selected using a logarithmic prior
for A and B. (Left) A limited range shown for comparison with BST. (Right) Zη in an
extended range. The tail of points with low fine-tuning and low r extends beyond this
diagram. All points with Zη ≥ 12 are shown in the same color. See Section 3.3.4 for an
explanation of the “forbidden zone” in the middle.

The other major cause of a failing trajectory is overshoot. This occurs when a large
Πi pushes the field through the inflationary region too quickly, leaving insufficient time on
the slow-roll attractor to acquire sufficient e-folds of expansion before the inflaton starts
oscillating, or driving the field beyond the oscillatory region altogether. This problem is
present to some extent in all potentials. When V . Π2/2, the evolution is dominated by
the kinetic term; in this region the effect of the potential is negligible, and so evolution
does not serve to differentiate between models. We therefore chose as an upper bound
for Π the smallest value always within the kinetic dominated regime. We found that
V . 10−10M4

P , so Πi < 10−4M2
P . We also considered various other limits, with no

changes in conclusions.

Since we ask that φ be increasing we need Πi ≥ 0. For φi, we take φi < φ60, the
point on the potential 60-e-folds before the end of inflation, as measured by the attractor
solution. It is the point where ns and r are calculated, and defines the smallest value of
φ from which a valid trajectory can start. Our upper limit on φi is φ60 + 20MP , which is
≈ 2φ60 for large-field models such as V = λφ4. Our bounds are therefore:

φ60 ≤ φi ≤ (φ60 + 20MP ) , (3.16)

0 ≤ Πi ≤ 10−4M2
P . (3.17)

Finally, because F is evaluated on a finite grid, we ensure that our mesh is fine enough
to reduce the resulting error in Ri to less than 1%.
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Figure 3.2 The BST fine-tuning criterion with cubic potentials, relaxing selection condi-
tions (4) and (5). The color conventions are the same as those of Figure 3.1. The right
panel shows an extended range compared to the left.

Figure 3.3 Potentials not fine-tuned by the BST definition. Purple points have Zη = 0
and red points have Zη = 1. (Left) Quartic potentials satisfying all the BST selection
conditions. (Right) Cubic potentials relaxing selection conditions (4) and (5).

Fine-tuning Criteria for Inflation 33



3.3 Results

3.3.1 BST Fine-tuning Criterion

As the left hand panel of Figure 3.1 shows, we recover Figure 1 of BST. The conclusion
of BST that ns < 0.98 has been weakened to ns < 0.99; in addition, there are small
differences in the shapes of some of the fine-tuning regions. These changes appear to
be due to our use of φ derivatives instead of N derivatives when defining Zη, and will
not affect the following discussion. The right hand panel of Figure 3.1 shows a “tail”
of untuned models with r � 10−2, albeit at the cost of very red ns, which is ruled out
by data. This plot demonstrates that the BST criterion does not necessarily “predict” a
small deviation from scale-invariance, but rather that models with low Zη have correlated
values of ns and r. If ns is at the lower limit of the currently permitted range (∼ 0.94),
then r ∼ 0.01, but if ns ∼ 0.97, r > 0.01, and thus observable.

Figure 3.1 has regions with high Zη for r > 0.4 and r < 10−4. The corresponding
potentials typically have a small region with decreased slope, or an inflection point. This
is bracketed by two zeros of V ′′ (and thus η), which guarantees a high value of Zη. The
boost to Zη is less efficient in low-r models because the inflaton moves more slowly and
the second zero of η is encountered more than 60 e-folds before the end of inflation.

Having reproduced the essential features of BST’s results, we now investigate what
happens as the selection conditions are relaxed. First, the potential may have parameters
which are irrelevant at the values of φ which determine ns and r, but which are important
as inflation comes to an end. In this case, we do not expect conditions (4) and (5) to hold,
since we are only constraining the form of the potential as the cosmological perturbation
spectrum is laid down. We also know that if we have a pure Λ4 − (φ/µ)4 potential,
ns ∼ 0.95 while r can be very small. This potential has the form of equation (3.11) once
we drop the positivity condition. We now relax conditions (4) and (5), and consider cubic
potentials with a linear term, which includes the “inflection point” potentials found in
some string-theoretic constructions (Baumann et al., 2007, 2008; Krause and Pajer, 2008;
Linde and Westphal, 2008), with the form

V (φ) = V0(φ
3 + Aφ2 + Bφ + C) . (3.18)

Without loss of generality, we set V (0) = 0, and V0 < 0, so that V (φ) → −∞ as φ→∞.
Once condition (4) is abandoned, inflation is no longer tied to the deepest minimum, so
there may be two regions satisfying the inflationary conditions, up to a rescaling of the
potential so that the perturbation amplitude is correct. If there are two such regions,
one will deposit the field in a (local) minimum, while the other will occur when φ is
slowly rolling to infinity (or to V ∼ M4

P ). In this case we include points for ns and r
obtained from both regions, and show our results in Figure 3.2. Strikingly, there are now
non-fine-tuned points with a slightly red ns and with r < 10−4. These points occur in a
region of the cubic potential with no following minimum.

The whole upper arm of Figure 3.2 contains points where, after inflation finishes, the
inflaton ends in a minimum, while the lower arm contains points where it does not. The
sharp delineation and curved feature at ns ≈ 0.975 and r ≈ 0.05 marks the boundary
between the two regimes, although it becomes much less sharp as ns increases. It is
important to note that the density of points on these planes is controlled by the assumed
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priors on the distributions of potential parameters when drawing samples – what matters
here is the presence of even a single non-fine-tuned point with small r. Thus the conclusion
that large r is correlated with ns for untuned models reached by applying BST is driven
by its implicit assumption that the endpoint of inflation is fixed by the same parameters
that determine the shape of the potential at φ60.

This is more clearly seen in Figure 3.3 which selects out only the points which are
not fine-tuned by the BST definition, i.e. the region for which Zη ≤ 1. The axes of this
figure include the 3σ range of ns allowed by the most recent cosmological data, and values
of r which encompass both those accessible to next generation experiments (r ∼ 0.01)
as well as those which are effectively undetectable (r ∼ 10−3 − 10−5). The left panel of
this figure, which reproduces the BST results for the full observationally-allowed range,
shows that there exist natural models with r < 10−2 at the redder end of this range. In
BST’s analysis, this region extends to ns ∼ 0.98, while on our graph the region extends
to ns ∼ 0.99, due to our use of φ derivatives to compute Zη, rather than N derivatives. In
absolute terms, the difference in ns is small, but the relative breaking of scale invariance
differs by a factor of 2, which is a non-trivial distinction and is driven by a small and not
unreasonable change in the specification of the fine-tuning criterion.

We also investigated the consequences of imposing the full set of BST selection con-
ditions but adding higher order terms to the potential. With a φ6 term we reproduce the
results proposed by BST on qualitative grounds. The only significant new region with
Zη < 2 was within the formerly blank zone in the middle of the “arms” seen in the plots,
and did not contain points with r < 10−2. Note that these “forbidden zones” seen in
the plots are not due to under-sampling, but arise due to our chosen restrictions on the
functional form and shape of the potential. If ns and r are observed within these zones,
inflation cannot be described by a purely quartic potential, as discussed in Section 3.3.4.
Figure 3 of Kinney (2002) shows a similar result, but the “forbidden zone” is simply
populated more sparsely than the rest of the (ns, r) plane. This is because they expand
in derivatives of the Hubble parameter, instead of using an explicit form for the potential
as is done in this work. The differences underscore our main conclusion; how generic an
observable appears is often sensitive to details of the inflationary model.

3.3.2 Initial Conditions Fine-tuning Criterion

Figure 3.4 shows the equivalent plots to Figure 3.1, for the initial conditions fine-tuning
criterion. The potentials used to generate the plots are the same as Figure 3.1. A model
with smaller Ri is more fine-tuned.

We see two distinct regions; a “head” where ns ≥ 0.96, which has relatively high Ri,
and a “tail” with relatively low Ri. In the head region, failed trajectories are dominated
by overshoots, while in the tail the potential contains an extremum in the region of
interest. Here, failed trajectories are dominated by those which originate on the far side
of the maximum and have insufficient kinetic energy to pass over it. These potentials
can appear natural in the BST criterion, because the feature occurs more than 60 e-
folds from the end of inflation and does not contribute to Zη. Figure 3.4 shows that the
whole extended tail which the BST criterion considers natural has negligible Ri. This is
clarified in Section 3.3.4; the only way to have both low ns and low r is for φ60 to be near
a maximum.

Fine-tuning Criteria for Inflation 35



Figure 3.4 The initial conditions fine-tuning criterion for the same potentials as shown in
Figure 3.1. The color scale shows the value of Ri in the (ns, r) plane. Points with a lower
Ri are more fine-tuned. (Left) selected region showing observationally relevant values of
ns. (Right) an extended range. See Section 3.3.4 for an explanation of the “forbidden
zone” in the middle.

The head contains models which resemble the monomial potentials of chaotic infla-
tion. Such potentials were examined in, e.g., Belinsky et al. (1985), and found to be
largely insensitive to their initial conditions; our results support this conclusion. In these
potentials, the failed trajectories are almost entirely overshoots. Note that Ri decreases
slightly with r. This correlation is not as strong as that between the head and the tail,
but it is still significant. For a fixed perturbation amplitude, a larger r implies a larger
V ′ at φ60, as the magnitude of V is fixed by condition (1). The system enters the slow-
roll regime when Π ∼ V ′, so a larger V ′ will mean an earlier entry into slow-roll, and a
corresponding decrease in the amount of overshoot.

The head continues down to r ≈ 10−6, and potentials with smaller r are very fine-
tuned. V ′/V must be tiny to achieve such a small r, and there is thus a minimum or
inflection point in the vicinity. These are fine-tuned, first because they are sensitive to
overshoot, and second because the inflection point can be followed by a steep slope, in
which ε > 1, prematurely ending inflation. See Chapter 4 for an investigation of the
sensitivity of these potentials to initial conditions in the context of brane inflation.

To highlight the complementary information provided by the two fine-tuning criteria,
we present two examples in Table 3.1 and Figure 3.5. Case 1 has low Ri, but is not
fine-tuned by BST’s criterion. Case 2 is fine-tuned according to the BST criterion, but
has high Ri. Case 2 has a flat plateau near φ60, which leads to the small value of r.
Between the plateau and the end of inflation, there is a kink in the potential, during
which η changes sign, leading to the high BST fine-tuning.

Figure 3.5 shows that trajectories can travel through three major regimes (Goldwirth
and Piran, 1992): a “fast-roll” regime, where the kinetic energy dominates, a “slow-roll”
regime, where inflation takes place, and an oscillatory regime. The oscillatory regime is
entered as inflation ends, and does not concern us here5. Both fast and slow-roll regimes
have V ′ � 3HΠ. The condition for fast-roll is Π2 � V , and for slow-roll, Π2 � V . The

5A WKB approximation shows that it begins when 9H2 ≈ 4V ′′.

36 Fine-tuning Criteria for Inflation



Parameter Case 1 Case 2
ns 0.952 0.963
r 2.34× 10−2 3.65× 10−3

Zη 1 7
Ri 0.137 0.781
V0 8.19× 10−18 2.38× 10−17

A 777.0 148.8
B 55.6 22.86
φ60 −11.4 −7.959
φe −1.34 −1.264

Table 3.1 Examples of potentials where the two fine-tuning criteria lead to different
conclusions. Inflation ends at φe, when ε = 1.

Figure 3.5 (Top) The potentials for Case 1 (left) and Case 2 (right) – see text and Table
3.1. The last 60 e-folds of inflation take place between −11.4 . φ . −1.3 for Case
1, and between −7.96 . φ . −1.26 for Case 2. (Bottom) The gray region shows the
portion of the initial conditions which lead to sufficient inflation in Case 1 (left) and Case
2 (right), while the white region shows a portion which does not. The dashed line shows
the boundary between the slow-roll regime and the fast-roll regime, while the solid line
shows the slow-roll attractor, and the dot-dashed line shows φ60. Only a subset of the Π
range tested is shown.
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equations of motion are, in the fast-roll regime:

dΠ

dN
∼ −3Π

dφ

dN
∼ 1, (3.19)

and in the slow-roll regime:

dΠ

dN
∼ −3Π

dφ

dN
∼ Π√

V
. (3.20)

In both regimes, Π is drawn strongly towards the slow-roll attractor. In slow-roll, φ
rolls gently down the potential, while in fast-roll φ increases quickly, but little expansion
occurs. If we return to our specific example potentials, trajectories with high initial kinetic
energy decelerate rapidly towards the inflationary attractor. In Case 2, if the attractor is
reached by a given trajectory, the inflaton will roll smoothly down the potential, yielding
sufficient e-folds of inflation. Overshoot trajectories appear when there is sufficient kinetic
energy to prevent the system reaching the slow-roll phase with a negative enough φ. In
Case 1, the system must exit the fast-roll regime in a specific range of φ in order to
achieve sufficient inflation. If slow-roll starts when φ < −15MP , the inflaton will be on
the wrong side of the maximum, unable to reach φ = 0. If it enters the slow-roll regime
with φ � φ60, it will overshoot. The initial Π must therefore be such that the kinetic
energy dissipates when −11MP < φ < −15MP . This (relatively) narrow range causes
the potential to appear fine-tuned.

3.3.3 Common Inflationary Potentials

In addition to the analysis of the quartic potential of equation (3.12), it is interesting
to see what fine-tuning criteria say about standard potentials. We computed the values
of Zη and Ri for a set of these, choosing their free parameters to produce observables
in agreement with the experimental bounds in Komatsu et al. (2009). The models we
investigated are chaotic inflation (Linde, 1983), new inflation (Linde, 1982b; Guth and Pi,
1982), power-law inflation (Lucchin and Matarrese, 1985), hybrid inflation (Linde, 1994),
natural inflation (Freese et al., 1990), the Coleman-Weinberg potential (Albrecht and
Steinhardt, 1982; Linde, 1982a) and two hilltop models (Easther et al., 2006; Efstathiou
and Chongchitnan, 2006). Our results are shown in Table 3.2. Our results agree with
similar calculations performed for chaotic (Belinsky et al., 1985) new (Goldwirth, 1990)
and natural (Knox and Olinto, 1993) inflation.

For chaotic inflation (and power-law / natural inflation, which have similar dynamical
properties), all the fine-tuning criteria agree: they are “natural” in terms of symmetry
considerations, turning points, and insensitivity to initial conditions. New inflation and
hilltop type models are sensitive to their initial conditions in a way that is not accounted
for by the BST fine-tuning criterion. For parameter choices where the log term is signif-
icant, Coleman-Weinberg potentials appear fine-tuned in both criteria as the log φ term
generates a high Zη, while their sensitivity to initial conditions is well-known (Goldwirth
and Piran, 1992). For a sufficiently large value of µ, the log term becomes unimportant
and the potential resembles that of chaotic inflation. However, these potentials may be
technically natural, in the sense that they are stable against (further) loop corrections.
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Model Potential µ ns r Zη Ri

Chaotic V0φ
µ 4 0.949 0.273 0 0.868

2 0.966 0.135 0 0.861

New V0 [(φ/µ)2 − 1]
2

15 0.955 0.0287 1 0.168

Power-law V0 exp(−φ
√

2/µ) 120 0.983 0.133 0 1.0
Natural V0 [1 + cos (φ/µ)] 10 0.966 0.0976 0 0.831

Hybrid V0

[
1 + (φ/µ)2] 1 0.966 0.137 12 0.864

100 1.01 9.0× 10−4 0 0.761

Hilltop V0

[
1− (φ/µ)2] 10 0.954 0.011 0 0.010

8.8 0.945 0.007 0 0.06

Hilltop V0

[
1− (φ/µ)4] 4 0.954 2.2× 10−4 1 0.001

20 0.970 0.018 0 0.60
Stabilized V0[C − (φ/µ)4 0.5 0.955 1.3× 10−6 1 0.00
Hilltop +0.01(φ/µ)8] 6 0.963 0.012 3 0.344

Coleman- V0[1/4 + (φ/µ)4× 8 0.947 0.0013 10 0.06
Weinberg (ln (φ/µ)− 1/4)] 30 0.967 0.057 1 0.83

Table 3.2 Fine-tuning criteria for specific potentials. For the hybrid potentials, we are
neglecting the second field until φ = −µ, at which point we assume inflation ends abruptly.
Thus, we are not applying BST selection conditions (3)–(4). Further, we are not applying
BST selection condition (4) to the Hilltop potentials. Lower r for the quadratic Hilltop
potential comes at the cost of a redder ns than allowed by observations. Finally, in the
case of the natural potential, to compare our µ with the f of Freese et al. (1990), divide
by
√

8π.
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The Coleman-Weinberg potential thus has one parameter, and in the absence of a micro-
scopic theory, no value of µ is favored over any other. However, both Zη and Ri change
significantly between µ = 8 and µ = 30. Thus the tuning criteria will penalize the po-
tential for not being in the “chaotic” regime, even though the underlying physics has not
changed.

Hybrid inflation, which can be highly fine-tuned by the BST criterion, in addition to
lacking a deterministic end to inflation (since the endpoint of inflation is fixed by the
coupling between φ and a second field, which is not included in this potential), is very
insensitive to initial conditions. In these cases, the BST trend is reversed; models with
low r are less fine-tuned. A hybrid model with µ � 1 has V ∼ V0, η ∝ 1/µ2, Zη = 0,
ns ∼ 1, and unobservable r. Conversely, the hybrid case with µ � 1 resembles chaotic
φ2 inflation, and hence has Zη = 0. The intermediate regime µ ∼ 1 balances the two
asymptotic forms of V and hence has high Zη, even though r is large and ns ∼ 0.96.

Finally, we consider a potential which is stabilized by a higher order term, but is
constructed to meet all five of the BST conditions,

V = V0

[
C −

(
φ

µ

)4

+ δ

(
φ

µ

)8
]

. (3.21)

The value of C is fixed by condition (4), with V = 0 at the minimum, and δ is assumed
to be small (10−2).6 For µ < 0.8 this potential has Zη = 1, together with a very low
value of r. It provides a counter-example to BST’s claim that natural potentials require
r > 10−2. It is, however, very fine-tuned with respect to initial conditions. Higher values
of µ do not involve fine-tuned initial conditions but have a larger r, as well as a large Zη.

3.3.4 The Forbidden Zone

The blank “forbidden zone” in Figures 3.1-3.4 is not an artifact of the selection priors;
it is inaccessible for quartic potentials. Higher order potentials have a smaller forbidden
zone, and cubic potentials a larger one (see Figure 3.2). In order to acquire some intuition
about why this is the case, we shall now attempt to minimize ns− 1 for fixed r. In what
follows, MP = 1. Recall that:

ns = 1 + 2η − 6ε (3.22)

≈ 1 + 2
V ′′

V
(for small r). (3.23)

Thus, r < 10−2 implies ε . 10−3, so if in addition ns ∼ 0.9, V ′′ is negative and reasonably
large. Now:

V ′′(φ60) < 0 =⇒ 12φ2
60 + 6Bφ60 + 2A < 0 . (3.24)

Since φ < 0 < A, this implies B > 0. If V ′ is small and V ′′ is large, a zero of V ′ must
be nearby. So, for large ns − 1 and small r, φ60 will be fairly near a maximum of the
potential (φm)7. Furthermore, φ60 > φm, because N → ∞ as φ60 → φm. Therefore, we

6In the original formulation of the BST criterion, polynomial potentials of degree n > 4 have Ztotal =
Zη + n− 4, but we will work with a Zη derived solely from the shape of the potential.

7If we desired both η and ε to be small, we could achieve this with a flat potential and no necessity
for a maximum. This conclusion is borne out by Figure 3.4, where the high Ri for points with ns ∼ 1
and small r show that no maxima are nearby.
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shall consider all relevant quantities evaluated at φm, Taylor-expanding around this point
when the description is inadequate.

If a maximum exists, it occurs at:

φm =
−3B +

√
9B2 − 32A

8
. (3.25)

For A > 0, this is a strictly decreasing function of B. Recall that B2 < 4A, due to
condition (5), so

φm > −
√

A

2
. (3.26)

A lower bound on V ′′, therefore, is:

V ′′ > V0(12φ2
m + 6Bφm + 2A)

> V0(12φ2
m + 12

√
Aφm + 2A)

> V0(3A− 6A + 2A)

> −V0A . (3.27)

Since this minimal V ′′ is at a maximum of V , it also locally minimizes η, so:

V =
V0A

2

16

η > −16

A
. (3.28)

We cannot simply evaluate V ′ at φm, because this would tell us that r = 0. The leading
order of the Taylor expansion is significant here. We compute it via

V ′ ≈ V ′(φm) + V ′′(φm)
(φ60 − φm)

2

≈ (φ60 − φm)
V0A

2
(3.29)

=⇒ ε ≈ (φ60 − φm)2

2

(
16

A

)2

(3.30)

=⇒ r ≈ 2048

A2

(
φ60 +

√
A

2

)2

. (3.31)

Here our simple analytic approximations can go no further, because φ60 is a non-linear
function of both A and B. However, when r ∼ 10−2, numerical calculations show that
φ60 − φm ∼ 1. Case 1 (see Figure 3.5 and Table 3.1) has φ60 − φm ≈ 2. With this final
approximation, we obtain:

ns & 1−
√

r

2
. (3.32)

Even when the final rough fit is no longer valid, it can be seen that on the lower arm of
Figure 3.1, reaching low ns requires a very low r, and the potential which minimizes ns

for given r will contain a maximum.
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For large r, this lower bound on ns ceases to hold, both because ε begins to become
significant in the expression for ns and because φ60 need no longer be in proximity to a
maximum. These models tend to involve a large variation in φ during inflation, η � ε,
and positive V ′′. Hence a better approximation for the minimum ns is:

ns & 1− 3r

8
. (3.33)

Matching these two limits together, we obtain a rough description of the forbidden zone.

3.4 Conclusions

We have investigated whether, given the observed limits on the scalar tilt ns, it is possible
to claim that certain ranges of values for the tensor-scalar ratio r are “fine-tuned” in a way
that is independent of the definition of fine-tuning. We find that, on the contrary, different
criteria are sensitive to different types of fine-tuning, and hence can give differing answers
about the naturalness of a given potential. The BST criterion, based on the number of
unnecessary “features” in the potential, tells us that models with r < 10−2 are fine-tuned
for ns > 0.95, while an alternative criterion based on sensitivity to initial conditions
shows that models with ns < 0.94 and r < 10−3 are fine-tuned, but with ns > 0.94 there
are “natural” models with r ∼ 10−6.

Moreover, BST’s conclusions are not robust against relatively minor modifications
to their criteria. In particular, the claim that models with ns > 0.98 are fine-tuned is
softened by a small technical change in the fine-tuning criterion Zη: our upper limit on
natural values of the spectral index is ns < 0.99. This may seem like a fine distinction,
but recall that the breaking of scale invariance is measured by ns − 1, and thus differs
by a factor of 2. Moreover, Planck is expected to measure ns with a 1-σ error of 0.0045
(Planck Collaboration, 2005) and ns = 0.99 cannot be easily distinguished from ns = 1,
but ns = 0.98 could be detected with considerable confidence. Likewise, BST’s conclusion
that ns > 0.95 implies r > 10−2 in the absence of fine-tuning only holds if the potential
evolves smoothly to an analytic minimum with V (0) ≈ 0. This is equivalent to requir-
ing that the parameters fixing the shape of the potential as cosmological perturbations
are laid down also govern the shape of the potential as inflation ends. While it is not
inherently unreasonable, this restriction immediately excludes both hybrid inflation and
many stringy constructions, even though their underlying potentials may be technically
natural from a particle physics perspective. Pending a better understanding of physics
at the energy scale of inflation, this condition therefore seems overly restrictive.

Our alternative criterion is based on the sensitivity of a particular potential to the
inflaton’s initial conditions. It shows that potentials with ns < 0.94 and r < 10−3

are very sensitive to their initial conditions, as are all models with r < 10−6. Since
inflation was originally designed to solve the initial condition problems of a hot big bang,
one should certainly check that inflation itself does not require the Universe to be in a
special initial state. For our “scoring” of the initial conditions problem, there is a small
preference for models with higher r, but the specific results we find depend on the explicit
construction of our fine-tuning criterion, so we do not see this as a robust conclusion.
Rather, we emphasize that this criterion singles out a different set of potentials from the
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Figure 3.6 The set of models which are deemed natural by both the BST and initial
conditions criteria, i.e. Zη < 2 and Ri > 0.5. The color bar shows Ri. (Left) Imposing
all five BST conditions. (Right) Neglecting selection conditions (4) and (5). Potentials
which have low r ∼ 10−4 and ns ∼ 0.95 generically contain a flat plateau terminating in
a drop, similar to Case 2 in Figure 3.5.

BST criterion, and neither set of potentials is a strict subset of the other. The above
conclusions apply to potentials that are well-described by a quartic potential.

We have shown that conclusions drawn from BST-like criteria depend on the explicit
assumptions they encode. We also discussed a second type of fine-tuning – sensitivity
to the initial field configuration – which is distinct from that described of BST. One
may restrict attention to models deemed acceptable by both criteria. The left panel
of Figure 3.6 indicates that, at face value, this would lead one to conclude that the
“natural” lower limit on the tensor amplitude is r & 0.04, and thus well within the range
that is experimentally accessible. However, the right panel shows that this conclusion
only holds if condition (4) is imposed. Moreover, there are types of fine-tuning missed by
our initial conditions criterion (e.g. initial inhomogeneity or spatial curvature); including
these would further reduce the number of models for which inflation can be regarded as
generic.

The BST criterion aims to characterize the fine-tuning of the shape of the potential.
The initial conditions criterion might, at face value, appear to measure only the sensi-
tivity to an initially large kinetic term. However, it is important to realize that it also
encodes information about the functional form of the potential: for instance, a potential
with a steep hill, a small plateau, and another steep downhill stretch will have difficulty
supporting inflation without carefully tuned initial conditions. Thus, Ri penalizes the
functional form of the potential, but in a different way to Zη. Hence, Occam’s razor
cannot characterize fine-tuning (even of a single property, such as the shape of the poten-
tial) in an unequivocal way. These ambiguities will remain after the arrival of data with
sufficient precision to select a small region of the (r, ns) plane. If this region is disfavored
according to a specific fine-tuning criterion, should we interpret this as evidence against
inflation, or even (in a more limited sense) as evidence against a class of inflationary mod-
els? Absent a detailed understanding of the physics of inflation, the answer is unclear,
since we would not know whether the fine-tuning identified by that criterion is relevant
to the underlying theory.
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As is well known (Lyth, 1997), simple single field models of inflation have a direct
correlation between the total excursion of the inflaton field and the value of r. If values
of r > 10−3 are ruled out by experiment, this would also eliminate all single field models
with ∆φ > MP , with dramatic consequences for inflationary model building, as well as
for alternative theories of the early Universe (Khoury et al., 2002; Boyle et al., 2004).
Many proposed inflationary models predict signals in this range but only a handful of
models live in the lower part, the so-called “tensor desert” at 10−3 < r < 10−2 (Smith
et al., 2008; Alabidi, 2007; Efstathiou and Chongchitnan, 2006). Conversely, many other
models have r � 10−3. Consequently, it is clear that the inflationary paradigm would
not be ruled out by a failure to detect primordial tensors, although a large and important
class of models would be conclusively eliminated.

Our experience with different fine-tuning criteria suggests that it is likely to be im-
possible to construct a set of criteria which defines a “generic inflationary model” that is
simultaneously (a) robust against small changes, (b) does not eliminate apparently rea-
sonable models from consideration, and (c) leads to a definitive conclusion for the likely
value of the tensor-scalar ratio r. Rather, the value of analyses like that of BST lies in the
extent to which they identify a category of inflationary models which would be falsified if
future experiments fail to detect tensors. However, determining that r . 0.001 – or any
other value likely to be experimentally accessible – cannot be construed as a definitive
test of inflation.
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“Alice sighed wearily. ‘I think you might do something
better with the time,’ she said, ‘than waste it in asking
riddles that have no answers.”’

– Alice in Wonderland, by Lewis Carroll

4
Brane Inflation and the Overshoot Problem

Abstract

We investigate recent claims that brane inflation solves the overshoot problem through
a combination of microphysical restrictions on the phase space of initial conditions and
the existence of the Dirac-Born-Infeld attractor in regimes where the slow-roll attractor
does not apply. Carrying out a comprehensive analysis of the parameter space allowed
by the latest advances in brane inflation model-building, we find that these restrictions
are insufficient to solve the overshoot problem. The vast majority of the phase space
of initial conditions is still dominated by overshoot trajectories. We present an analytic
proof that the brane-inflationary attractor must be close to the slow-roll limit, and update
the predictions for observables such as non-Gaussianity, cosmic string tension and tensor
modes.

4.1 Introduction

The inflationary paradigm postulates a period of nearly exponential expansion in the
early Universe. This ameliorates various initial conditions problems of the classical hot
big bang model and explains the smoothness of the Universe when averaged on large
scales. Furthermore, according to inflation, initial inhomogeneities originated as quan-
tum fluctuations in the inflaton field and the metric, sourcing scalar (Hawking, 1982;
Guth and Pi, 1982; Starobinsky, 1982; Bardeen et al., 1983) and tensor (Grishchuk, 1975;
Starobinsky, 1979) perturbations which are adiabatic, scale-invariant and almost Gaus-
sian. (Bardeen et al., 1983). These broad-brush predictions of inflation are consistent
with the latest observations (Komatsu et al., 2009; Peiris and Easther, 2006a; Kinney
et al., 2006; Peiris and Easther, 2006b; Martin and Ringeval, 2006; Alabidi and Lyth,
2006; Lesgourgues and Valkenburg, 2007; Peiris and Easther, 2008; Alabidi and Lidsey,
2008; Kinney et al., 2008; Baumann et al., 2009b).
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However, while acknowledging the substantial successes of inflation as a phenomeno-
logical model of the early Universe, several theoretical challenges remain. Chief among
these are the lack of a single compelling particle physics motivation for inflation and
an understanding of the initial conditions leading to successful inflation. Attempts have
recently been made to address both of these challenges within the context of string the-
ory (see Baumann and McAllister (2009); Linde (2006); Cline (2006); Burgess (2007);
Tye (2008); Kallosh (2008); McAllister and Silverstein (2008) for recent reviews). In this
Chapter, we shall investigate ‘warped brane inflation’ (Kachru et al., 2003), one of the
most well-developed string theory models of inflation. Here the inflaton field is identified
with the position of a D-brane in a warped higher-dimensional space, with effective four-
dimensional dynamics governed by the Dirac-Born-Infeld (DBI) action, and an inflaton
potential that is in principle completely derivable from fundamental theory (Baumann
and McAllister, 2009).

For inflation to be insensitive to initial conditions one typically hopes that the infla-
ton field will naturally flow toward an attractor solution (Belinsky et al., 1985; Felder
et al., 2002; Underwood, 2008), on which the inflaton slow-rolls and the Universe inflates.
However, should the energy of the inflaton be initially kinetic dominated, it is possible for
the end of inflation to be reached before the solution has approached the attractor. The
statement that a large initial kinetic energy spoils inflation is often called the overshoot
problem (Brustein and Steinhardt, 1993). Due in part to somewhat broad limits on the
initial kinetic energy in models of inflation based on effective field theory, this occurs for
a large proportion of possible inflationary trajectories. This poses a theoretical problem,
because one of the central aims of inflation is to explain the special initial conditions re-
quired for the hot big bang. For inflationary models suffering from the overshoot problem,
it seems like we have simply exchanged one initial conditions problem for another.

The overshoot problem seems particularly acute for small-field models of inflation,
where the inflationary region only occupies a small area of phase space. The brane in-
flation models that we discuss in this Chapter are of the small-field type (Baumann and
McAllister, 2007) and so seem susceptible to a generic overshoot problem. However, Un-
derwood (2008) recently observed that brane inflation may not suffer from the overshoot
problem, based on a calculation for a specific set of model parameters. This was due
to a combination of two effects: a restriction on the allowable initial conditions due to
microphysical consistency conditions, and an increase in the domain of applicability of
the attractor trajectory due to the DBI action. Since this claim constitutes an important
theoretical argument supporting brane inflation, we will check it for the full range of
parameters, including those identified by recent advances in string theory model-building
(Baumann et al., 2009a, 2006; Baumann et al., 2008).

Our treatment closely parallels the effective field theory analyses of the overshoot
problem that have been performed for most of the classic inflationary models (e.g. Be-
linsky et al. (1985); Piran and Williams (1985)). Related work on the parameter space
for brane inflation models consistent with the latest experimental bounds has appeared
in Bean et al. (2007); Peiris et al. (2007); Bean et al. (2008); Gmeiner and White (2008);
Lorenz et al. (2008); Alabidi and Lidsey (2008); Agarwal and Bean (2009); Tzirakis and
Kinney (2009); Chen and Gong (2009); Hoi and Cline (2009); Cline et al. (2009). Here,
we add a systematic study of the overshoot problem and the fine-tuning of inflationary
initial conditions for brane inflation.
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Figure 4.1 Warped D3-brane inflation (figure reproduced from Baumann and McAllister
(2009)). The 3-branes fill the four-dimensional spacetime and are pointlike in the extra
dimensions (shown in this figure). The warped throat has a radial dimension r and a
five-dimensional base with coordinates Ψ. At rUV the throat attaches to the bulk space.
This introduces a cut-off to the throat solution, making the total space finite. The radial
coordinate of the D3-brane in the warped throat plays the role of the inflaton field.

We perform a comprehensive analysis of the entire parameter space, and determine
whether, in general, these models solve the overshoot problem. We find that they do
not; almost all possible trajectories are still dominated by overshoots. Furthermore, we
reiterate two generic predictions of these models already given in Firouzjahi and Tye
(2005); Bean et al. (2007): a potentially observable level of cosmic strings generated
after the end of inflation and negligible levels of primordial non-Gaussianity. Finally, we
examine which regions of the parameter space seem to require less tuning of the initial
conditions, and consider the extent to which microphysical restrictions on the phase space
of initial conditions would have to tighten before the overshoot problem for brane inflation
can be solved.

4.2 D-brane Inflation

4.2.1 D3-brane motion in warped geometries

Since the original brane inflation proposal by Dvali and Tye (1999) many variants of
inflation sourced by D-brane motion through a higher-dimensional spacetime have been
studied, e.g. Dvali et al. (2001); Alexander (2001); Burgess et al. (2001, 2002); Garcia-
Bellido et al. (2002); Jones et al. (2002); Shiu and Tye (2001); Burgess et al. (2004);
DeWolfe et al. (2004); Iizuka and Trivedi (2004); Burgess et al. (2007); Pajer (2008);
Krause and Pajer (2008). In this work we consider a specific, and, arguably, the best
understood scenario: D3-brane motion in warped throat geometries (Kachru et al., 2003).

In these scenarios inflation is driven by a mobile D3-brane which fills the four-
dimensional spacetime R3,1 (with metric gµν), and is pointlike in the extra-dimensional
space M6 (with metric gmn). The ten-dimensional background spacetime is defined by
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the following warped line element

ds2 = h−1/2(y)gµνdxµdxν + h1/2(y)gmndymdyn , (4.1)

where the warp factor h(y) is a function of the coordinates on the internal space M6. Local
approximations to such warped spaces are ubiquitous in the flux compactifications of
type IIB string theory1 (Douglas and Kachru, 2007). Exact solutions to the supergravity
equations may be found (Klebanov and Strassler, 2000) that take the structure of a cone
for the extra dimensions

gmndymdyn = dr2 + r2ds2
X5

, (4.2)

where r parametrizes the radial direction and X5 is a certain base manifold, for example,
a 5-sphere, S5, or the Einstein space T 1,1 (arising as the limit of the Klebanov-Strassler
geometry). These have Vol(S5) = π3 and Vol(T 1,1)= 16

27
π3, respectively. The warp factor

at large r is approximately

h(r) ≈
(

R

r

)4

. (4.3)

In this limit the spacetime (4.1) becomes AdS5 ×X5. We define the constant curvature
(or warping) scale

R4

(α′)2
≡ 4πgsN

π3

Vol(X5)
, (4.4)

in terms of the string coupling gs, the string length `s =
√

α′, a flux integer N and the
dimensionless volume of X5 with unit radius. Vol(X5) generically takes a value of order
π3.

The motion of a D3-brane in this warped geometry is governed by the DBI action

S = −
∫

d4x
√
−g

[
M2

pl

2
R+ P (X, φ)

]
, (4.5)

where R is the four-dimensional Ricci scalar and

P (X, φ) = f(φ)−1
(√

1− 2f(φ)X − 1
)

+ V (φ) . (4.6)

Here we have defined the canonical inflaton φ ≡ r
√

T3 in terms of the brane tension

T3 =
1

(2π)3

1

gs

m4
s , (4.7)

where ms ≡ 1/
√

α′ is the string scale. The quantity X ≡ −1
2
gµν∂µφ∂νφ ≈ 1

2
φ̇2 is the

corresponding kinetic term, and V (φ) is the inflaton potential, whose derivation we shall
sketch in §4.2.2. The function f(φ) ≡ T−1

3 h(φ) is the (rescaled) warp factor in terms of
the canonical inflaton

f(φ) =
λ

φ4
, (4.8)

1Readers unfamiliar with this terminology may find a useful Stringlish-to-English dictionary in
Hertzberg et al. (2007).
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with λ given by

λ ≡ π

2

N

Vol(X5)
. (4.9)

In the slow-roll limit, f(φ)X � 1, the DBI action (4.6) reduces to the canonical
slow-roll action

P (X, φ) = −X + V (φ) . (4.10)

Slow-roll corresponds to non-relativistic motion of the brane. The non-slow-roll limit
associated with relativistic motion of the brane is characterized by a Lorentz-like factor

γ ≡ [1− f(φ)φ̇2]−1/2 . (4.11)

For γ � 1 inflation can occur even for relatively steep potentials. However, large values
of γ correspond to small values of the effective speed of sound associated with inflaton
fluctuations. This leads to large non-Gaussianity in the primordial scalar fluctuations,
so that the parameter region of viable relativistic DBI models is significantly constrained
by the observational data (Baumann and McAllister, 2007).

The Hubble parameter, H, is given by the sum of potential and kinetic contributions

H2 =
1

3M2
pl

[
V (φ) +

γ − 1

f

]
. (4.12)

4.2.2 Parametrization of the inflaton potential

The computation of the potential V (φ) for D3-brane inflation has a long and painful
history (see Baumann and McAllister (2009) for a recent review). Approximations com-
monly employed in string theory computations have proved to be insufficient when trying
to capture all effects relevant for inflation.

This challenge is illustrated by the eta problem: small corrections, ∆V (φ), to the
inflationary potential often lead to large corrections to the second derivative of the po-
tential or the inflaton mass, causing inflation to end prematurely. This is an example of
the UV sensitivity of inflation where high-energy effects, in this case dimension-6 Planck-
suppressed corrections, affect the inflationary dynamics.

We now give a brief summary of all relevant contributions to the D3-brane potential
(more details may be found in Baumann and McAllister (2009)). At zeroth order, the
inflaton potential is given by the Coulomb potential between a D3-brane and an anti-D3-
brane,

V̂0(φ) = D

(
1− 3D

16π2φ4

)
, (4.13)

where the constant D sets the scale of the brane-antibrane interaction

D ≡ 2T3

hIR

. (4.14)

Here hIR ≡ h(φIR) is the warp factor at the tip of the throat (see Fig. 4.1). This warped
scale D exponentially suppresses the D3-D3 interaction, making the potential (4.13)
extraordinarily flat. In addition there may be distant energy sources in the bulk space,
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which shift the scale of the potential but do not significantly affect the slope or the
curvature, such that

V̂0(φ) = D

(
s− 3D

16π2φ4

)
, (4.15)

where s & 1 parametrizes the contribution of bulk energy to the cosmological constant
during inflation.

So far, the potential is flat, and eminently suitable for supporting a large amount of
inflation. In particular, the inflaton mass is small and η � 1. However, we have ignored
crucial interactions with moduli-stabilizing ingredients. Kachru et al. (2003) identified
that the leading moduli-stabilization effect leads to a generic eta problem by adding a
H2φ2 term to the potential, which makes η = 2

3
. However, they also pointed out that fur-

ther corrections to the potential are expected from additional moduli-stabilization effects
and from coupling of the throat to the bulk geometry. It has recently become possible to
systematically analyse the leading corrections to the brane inflation potential (Baumann
et al., 2009a, 2010), using insights from the AdS/CFT correspondence (Maldacena, 1998;
Gubser et al., 1998; Witten, 1998). The potential acquires a correction, ∆V , of the form

∆V (φ, Ψ) =
∑
∆

c∆

(
φ

φUV

)∆

f∆(Ψ) , (4.16)

where Ψ denotes the angular direction, and φUV is the value of the inflaton at the large-
radius end of the throat. The scaling dimension ∆ takes a discrete spectrum of values 2

(Baumann et al., 2009a, 2010):

∆ = 1 ,
3

2
, 2 ,

5

2
, . . . (4.17)

Sufficiently deep inside the throat, φ � φUV and so only a few of the lowest ∆’s will be
relevant. Furthermore, symmetries can project out some of the ∆ modes. Notice that
the ∆ = 1 mode does not affect η, but only corrects the slope of the potential. We will
absorb it into the small-eta contribution of the potential by defining

V0(φ) ≡ V̂0(φ) + a1f1(Ψ)
φ

Mpl

. (4.18)

In general, the potential implied by (4.16) has a highly nontrivial angular dependence
given by the functions f∆(Ψ). We will not solve the angular problem in full generality in
this work, but study various approximate solutions that we believe capture the qualitative
features. Only in the case when a single ∆ mode is dominant has the effective radial
potential been computed analytically (Baumann et al., 2009a). In that case, the resulting
potential is

V (φ) = V0(φ) + M2
plH

2

[(
φ

Mpl

)2

− a∆

(
φ

Mpl

)∆
]

. (4.19)

2The scale of the individual corrections (parametrized by the coefficients c∆) is hard to compute
without more global information about the compact space and its effects on perturbations at φUV, the
large-radius end of the throat. The constants c∆ are therefore treated as free (tunable) parameters.
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The minus sign in Eq. (4.19), which is crucial for achieving the correct phenomenology,
arises because f∆ is a harmonic function. Any nontrivial harmonic function must have
a negative region; thus, if one angular mode dominates, minimizing over the angular
directions will lead to negative f∆. This argument is only valid when a single mode of ∆
dominates, hence we consider only that case and small perturbations thereof.

We believe this approximation to be valid in the inflationary region (in particular,
during the last 60 e-folds of expansion), but for large values of the inflaton field higher
angular modes may become relevant and complicate the angular motion. When consider-
ing the overshoot problem, however, the evolution in this region will usually be dominated
by kinetic energy, and hence largely insensitive to the detailed shape of the potential.

Consider, for example, the case where the inflaton potential is determined by the
combined effect of the φ3/2, the φ2, and possible higher φ∆ corrections. Importantly, the
two correction terms have different angular dependencies

∆V (φ, Ψ) = a3/2

(
φ

Mpl

)3/2

f3/2(Ψ) + a2

(
φ

Mpl

)2

f2(Ψ) . (4.20)

At some critical value of the field, φc, (depending on the coefficients a3/2 and a2) both
terms will be equally important. For φ < φc, the φ3/2 term dominates and the potential
has a unique angular minimum. For φ > φc, the φ2 term dominates and the location
of the angular minimum changes. For a critical region near φc, both the φ3/2 term and
the φ2 term are dynamically important, so the exact radial motion is hard to compute
in a simple way. In this Chapter, we will make the simplifying assumption that a single
mode φ∆ determines the potential shape throughout the throat region. We know this
to be invalid for large values of φ, but since the dynamics in this regime will usually be
dominated by kinetic energy, we do not expect a distortion of the potential shape beyond
the inflationary region to significantly affect our overshoot analysis.

The corrections to the D3-brane potential were computed in Baumann et al. (2009a)
in the ‘probe approximation’, i.e. the most general UV perturbations to the throat su-
pergravity solution are parametrized and the D3-brane is then used as a probe of that
perturbed geometry. It is true that in the relativistic limit the brane kinetic energy can
lead to additional corrections to the throat geometry. It is quite possible that these cor-
rections again fall into the classification of Baumann et al. (2009a), but the full nonlinear
problem has not been studied and is beyond the scope of the present Chapter.

In any case, once the dynamics has become potential-dominated, our branes always
slow-roll (see Section 4.5). The potential corrections for a slow-rolling (nonrelativistic)
brane derived in Baumann et al. (2009a) are therefore sufficient. Furthermore, in the rel-
ativistic limit the dynamics is insensitive to the form of the potential, but the (corrected)
shape of the warp factor would be important.

Two qualitatively different scenarios can now arise, depending on whether the frac-
tional ∆ = 3

2
mode is part of the spectrum or is projected out.

Quadratic models. If the ∆ = 3
2

mode is projected out of the spectrum, the effective
radial potential is

V (φ) = V0(φ) + βH2φ2 . (4.21)

The phenomenology of these types of potentials was first studied analytically by Kachru
et al. (2003) and Firouzjahi and Tye (2005), and numerically by Shandera and Tye (2006).
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Inflection point models. If the fractional mode ∆ = 3
2

is present, it leads to inflection point
models (Baumann et al., 2009a; Baumann et al., 2008, 2007; Krause and Pajer, 2008).
If φ3/2 was the only correction term, the effective radial potential would be (Baumann
et al., 2009a)

V (φ) = V0(φ) + M2
plH

2

[(
φ

Mpl

)2

− a3/2

(
φ

Mpl

)3/2
]

. (4.22)

We also allow a small φ2 term to slightly perturb the potential in the inflationary region

V (φ) = V0(φ) + M2
plH

2

[
β

(
φ

Mpl

)2

− a3/2

(
φ

Mpl

)3/2
]

, (4.23)

although this does not lead to qualitative changes in our results. If β ∼ O(1) then the
potential (4.23) may be viewed as a small perturbation of the inflection point model of
Eq. (4.22) (Baumann et al., 2009a; Baumann et al., 2008).

To simplify calculations, we now set Mpl = 1 and replace H(φ) by its value at φUV

H2
UV ≡ H2(φUV) ≈ VUV

3
=

Ds

3
+O(Dsφ2) . (4.24)

This leads to an error in V (φ) of O(Dφ4), the same as the overall uncertainty in the
potential, which can be removed by a small redefinition of a∆.

Thus the quadratic case is

V (φ) = Ds

(
1− CD

φ4
+ αφ +

βφ2

3

)
, (4.25)

and the inflection point case is

V (φ) = Ds

(
1− CD

φ4
+ αφ +

β

3

[
φ2 − a3/2φ

3/2
])

, (4.26)

where for convenience we have defined

C ≡ 3

16π2

1

s
. (4.27)

Parameters of the potential. To be sure that the argument regarding the minimization
of the angular function is valid, and that the sign of the leading coefficient is such that it
can cancel the inflaton mass term, one single power of φ must be dominant in Eq. (4.16).
The linear term (which cannot solve the eta problem) must therefore be smaller than the
leading a∆ term, i.e.

αφ <
a∆φ∆

2
(4.28)

throughout inflation. We do not know the exact location of the tip, so we impose this
at the end of inflation, when ε = 1, ensuring that it is the case for all larger φ. For
the inflection point case, a2 must be small compared to a3/2 (although it need not be
positive), and so we also impose 0.9 < β < 1.1.
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4.2.3 Initial conditions and overshoot

The basic objective of this Chapter is to examine the overshoot problem for models of
brane inflation. To quantify the effect of an initially large kinetic energy, we define the
conjugate momentum

Π ≡ ∂L
∂φ̇

=
φ̇

(1− f(φ)φ̇2)1/2
= γφ̇ , (4.29)

where L is the Lagrangian density corresponding to the DBI action (4.6). We can redefine
the Lorentz factor (4.11) in terms of the conjugate momentum (4.29)

γ ≡
√

1 + f(φ)Π2 . (4.30)

We wish to analyze the effect of the initial field value φi and a possibly large initial
momentum Πi on classical inflationary trajectories in a flat, homogeneous Universe. We
shall apply a criterion similar to that applied to, for example, chaotic inflation in Belinsky
et al. (1985); Piran and Williams (1985). The criterion Ri for a given potential is the
proportion of the total phase space which leads to successful inflation, and is defined by

Ri ≡
∫

F (φi, Πi)dφidΠi∫
dφidΠi

, (4.31)

where F (φi, Πi) is an indicator function unity where (φi, Πi) leads to successful infla-
tion, and zero otherwise. We define a successful trajectory to be one which satisfies all
microphysical and observational constraints (see below). Minimal fine-tuning of initial
conditions corresponds to Ri = 1, and maximal fine-tuning to Ri = 0. Here we have
used the Hamiltonian measure of Gibbons et al. (1987), canceling a factor of a3(φi) which
is the same for all parameters. Our main results do not depend on the details of the
measure, but on the upper bound for Π derived below. Hence our conclusions should be
largely unaltered should an alternative measure be used.

This is a well-defined criterion, because there are microphysical constraints on the
allowable initial conditions that make the total phase space finite.3 A lower limit is set
upon φi because the branes must initially be separated by at least a string length, so
that inflation does not end immediately. We also assume that Πi ≥ 0, so that φ evolves
monotonically. We shall now review briefly two other important constraints on the phase
space for brane inflation, arising from microscopic consistency requirements, which bound
the initial conditions phase space from above.

Field range constraint. A restriction on the maximal field range of the inflaton for
brane inflation models was derived in Baumann and McAllister (2007); heuristically, this
bound arises because the inflaton now has a geometrical interpretation, and cannot move
a distance that is larger than the size of the compactified space. At the same time the four-
dimensional Planck mass (the unit in which the field excursion of the canonical inflaton
field is measured) also scales with the volume of the compact space. By considering only
the volume of the space inside the warped throat (omitting any motion within the bulk)
one obtains an upper bound on the inflaton field range for a given warp factor. For

3This is to be contrasted with the corresponding effective field theory analysis, where ad-hoc limits
on the phase space need to be introduced.
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the AdS warp factor considered in this work, the field range bound ultimately has the
following simple form (Baumann and McAllister, 2007):(

∆φ

Mpl

)2

<
4

N
. (4.32)

For the throat to be warped we require that N ≥ 1, and the validity of the supergravity
description requires that N � 1. We shall take N = 10 to be the lower limit (the exact
number makes little difference to the results), and thus obtain a lower bound on the
warping and an upper bound on the field range. We see that in the regime of control the
field range is always sub-Planckian.

Backreaction constraint. To constrain the initial inflaton momentum we consider
the requirement that the D3-brane not contain enough energy to trigger the production
of significant amounts of Kaluza-Klein modes, which would back-react on the geometry.
This is required for the effective four-dimensional description to be valid, and implies that
the Hubble parameter is everywhere less than the local warped string scale (Underwood,
2008; Frey et al., 2006; Becker et al., 2007; Kobayashi et al., 2008). At the tip, where the
warped string scale is smallest, we impose the condition

H ≤ ms

h
1/4
IR

. (4.33)

Using Eq. (4.14), we get

H <
√

2π3/4 D1/4g1/4
s . (4.34)

Finally, this can be written as a function of the conjugate momentum

Π√
2(γ + 1)

<

√
6π3/2 D1/2g

1/2
s − V (φ) . (4.35)

For concreteness, we shall take gs = 0.01.

4.3 Dynamics and Observables

In the preceding section, we examined the model of D-brane inflation, and the theoretical
consistency conditions that attach to it. We shall now discuss the evolution of the inflaton,
define observables, and briefly review the relevant observational constraints, completing
the definition of successfully inflating trajectories.

4.3.1 Equations of motion

The inflationary dynamics are controlled by the DBI action (4.5). For our time coordinate
we shall use the number of e-folds of inflation,

dN = Hdt . (4.36)
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Using the canonical momentum of Eq. (4.29), we can write the equations of motion in
the following form

dφ

dN
=

Π

Hγ
, (4.37)

dΠ

dN
= −3Π− V ′(φ)

H
+

f ′(φ)

2Hγ

(
γ − 1

f

)2

, (4.38)

where a prime denotes a derivative with respect to φ. Our conventions are chosen such
that φ decreases towards the end of inflation, in agreement with the sign convention used,
for example, in Peiris et al. (2007). We solve this system of equations numerically in the
following analysis.

4.3.2 Cosmological observables

Power spectra. We shall calculate observables to first order in the Hubble slow-variation
parameters

ε =
2M2

pl

γ

(
H ′

H

)2

, (4.39)

η =
2M2

pl

γ

(
H ′′

H

)
, (4.40)

κ =
2M2

pl

γ

(
γ′H ′

γH

)
. (4.41)

The power spectra of scalar and tensor fluctuations are then given (to first order in the
slow-variation parameters) by

Ps(k) =
γ

8π2M2
pl

H2

ε

∣∣∣∣∣
k=aHγ

, (4.42)

Pt(k) =
2

π2

H2

M2
pl

∣∣∣∣∣
k=aH

. (4.43)

Notice that scalar perturbations freeze out at k = aHγ, when exiting the sound horizon,
while tensor modes freeze out at k = aH. We can parametrize small deviations from scale-
invariance using the scalar spectral index ns, and measure the magnitude of gravitational
waves using the tensor-scalar ratio r

ns − 1 =
d ln Ps

d ln k
= 2η − 4ε− 2κ , (4.44)

r =
Pt

Ps

≈ 16

γ
ε . (4.45)

Because Pt, the tensor power spectrum, is evaluated at freeze-out for the tensor modes
k = aH, the second equality in (4.45) holds only in the slow-roll regime, where γ ≈ 1.
When we calculate ns and r, we shall always start the inflaton on the DBI attractor
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trajectory, as described by Eq. (4.52) in Section 4.5. When we consider the fine-tuning of
the initial conditions we shall quantify the effect of starting the inflaton off the attractor.
In the following analysis, we assume that these observables are measured at the typical
physical scales corresponding to cosmic microwave background (CMB) measurements.

4.3.3 Observable constraints

The most important observational constraints on inflation are provided by the CMB. In
order to predict the observables for brane inflation, we must compute the evolution of
the inflaton, find the end of inflation, and then work backward to determine the e-folds
corresponding to the CMB scales, taking reheating into account.

The end of inflation. Within a string length of the tip of the throat, string modes
between the D3-brane and the anti-D3-branes will become tachyonic (Kachru et al.,
2003). The resulting instability will annihilate the branes and end inflation. However,
near the tip, the warp factor deviates from the form of Eq. (4.8) in a model-dependent
way. This makes it difficult to calculate the value of φ when the tachyonic transition
occurs. Fortunately, it is not necessary; inflation will end when ε > 1, so we need simply
make sure that this happens before the tip of the throat.

While we cannot calculate the value of φ at the tip exactly, we can find an approx-
imation to it by combining Eqs. (4.8) and (4.14). This is a very conservative upper
bound, because the true form of the warp factor is much flatter than this (Klebanov and
Strassler, 2000). We found that this upper bound is generally slightly larger than φend,
at which inflation ends via ε = 1, but that the differences between the two quantities do
not significantly change the observables. Thus, we can be reasonably confident that the
tip of the throat is not reached before the breakdown of slow-roll.

We encountered a small class of models for which γ became very large in the region
of the tip, preventing ε > 1. With the AdS warp factor, these models are all ruled out
by the field range bound. However, since inflation here is likely to continue right up
to the tachyonic transition, it is possible that model-dependent corrections to the warp
factor near the tip could weaken the field range bound sufficiently to prevent the model
from being ruled out. This could lead to distinctive observational signatures, such as
primordial black holes, but because γ only becomes large near the end of inflation, is
unlikely to lead to large non-Gaussianity on CMB scales. The calculation of such warp
factor corrections is beyond the scope of this work. We simply assume the AdS warp
factor throughout, and thus consider such models ruled out by the field range bound.

Reheating uncertainty. Reheating after brane inflation is very model-dependent (Kof-
man and Yi, 2005). Here, we make the simplifying assumption of instantaneous reheating.
From the point of view of the potential, more sophisticated reheating models would simply
modify the number of effective e-folds needed for inflation to solve the horizon problem,
thus shifting the part of the potential to which the CMB scales correspond. This is
roughly equivalent to a small change in the value of s in Eq. (4.15). Because we already
allow s to vary, this should not change the results.

Horizon scales. If we assume instantaneous reheating, a scale k exits the horizon N
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e-folds before the end of inflation;

N(k)− log [H(N)] = 67.9− 1

2
log [H(φend)] . (4.46)

Here φend is the value of the inflaton at the end of inflation. We can use Eq. (4.46)
to deduce the location of the CMB scales in terms of N . This depends slightly on the
potential, but in practice it is usually around N = 58. In order to solve the horizon
problem, inflation must last at least this long.

WMAP normalization. The amplitude of the power spectrum has been accurately
determined by experiments such as WMAP (Komatsu et al., 2009) to be, at the 68%
confidence level, Ps = (2.445 ± 0.096) × 10−9 at k = 0.002 Mpc−1. We impose the
constraint that Ps is within 1.5σ of its observed value. This essentially fixes the overall
scale of the potential, Ds in Eq. (4.19).

The only other measurement currently strong enough to significantly constrain the
model is that on ns, but this is not imposed because we would like to see the full range
of observables predicted by the self-consistent model parameter space.

4.3.4 Priors on the potential parameters

In the quadratic case, β lies between zero and one. Since all models are equivalent for a
sufficiently small β, we take β > 10−5 as a lower limit.

In the inflection point case, a fine-tuning is required in the parameter a3/2 to achieve
inflation, so we simply place broad limits upon this parameter and allow the sufficient
inflation constraint to set effective limits.

In order to avoid complications with reheating, we assume that s, which measures the
contribution to the total potential energy from the bulk, does not dominate enormously
over the potential energy from the brane-antibrane pair. Concretely, we assume s < 10.
Table 4.1 summarizes our priors for the entire parameter space.

Parameter Lower limit Upper limit
log β (quadratic) −5 0

β (inflection) 0.9 1.1
a3/2 0 1
log s 0 1
α 0 Eq. (4.28)

log λ −0.3 Eq. (4.32)
φi φend Eq. (4.32)
Πi 0 Eq. (4.35)

Table 4.1 Summary of parameter space. Uniform priors were placed on the quantities in
the leftmost column. The lower bound on log λ comes from Eqs. (4.9) and (4.32).
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Figure 4.2 The scalar spectral index ns vs the tensor-scalar ratio r for the quadratic case.
Left: color scale shows log β, the size of the mass correction to the potential. Right: color
scale shows log s, the magnitude of the bulk energy in units of the warped string scale at
the tip.

4.4 Results

4.4.1 Observables

In this section we consider the cosmological observables, ignoring the overshoot problem
for the moment. We shall choose the initial conditions specifically in order to minimize
the amount of overshoot; this implies a large φi, and Πi chosen so that the evolution
starts on the inflationary attractor. Each dot in Figs. 4.2 and 4.3 corresponds to a set of
parameters which generated a successful trajectory (as defined in the previous sections)
with these special initial conditions, and the values of ns and r plotted for each dot are
those for this trajectory. Bean et al. (2007) performed this analysis for the quadratic
case, and we reproduce their results where our analyses overlap.

Figure 4.2 plots the observables ns and r against values of the potential parameters,
for the quadratic case. The scatter in r is largely due to variation in the values of the
parameter s, while β controls ns. A significant value of α would boost the tensor-scalar
ratio, without affecting ns. Since we are not allowing α to dominate the dynamics, it
just leads to additional scatter in r. The equivalent graphs for the inflection point case
follow a similar pattern, although ns is generically much bluer than in the quadratic case,
reflecting the increased difficulty of circumventing the η problem.

In neither case are observable tensor modes generated. This is consistent with the
Lyth bound in combination with the field range limit of Baumann and McAllister (2007).

Points with the red tilt favored by WMAP have small β. Red tilt requires η < 0, and,
since we always have γ ≈ 1 (see Section 4.5), this implies V ′′ < 0. This implies

2βφ <
20 CD

φ6
. (4.47)

Equation (4.28), the limit on α, is in terms of a2 = 1 − β, and so a larger value of α
is allowed for such small β models. Thus the scatter due to α is more pronounced for
parameters giving rise to a red tilt.
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When β . 10−5, the quadratic term is dynamically unimportant and the potential is

V (φ) = Ds

(
1− CD

φ4

)
. (4.48)

Thus the predictions for all models with very small β are essentially identical, as derived
analytically in Appendix C of Kachru et al. (2003).

The Lorentz factor γ is very close to unity for all models, quadratic and inflection
point. We found that it was not possible to generate an observable degree of primordial
non-Gaussianity with this potential if all constraints are satisfied, in agreement with the
results of Bean et al. (2007). A proof is presented in Section 4.5 that, for the potential
(4.19) and the AdS warp factor, the inflationary attractor slow-rolls. The proof makes use
of the field range bound of Eq. (4.32) and significant non-Gaussianity can be generated
if this restriction is ignored (Bean et al., 2007). A successful trajectory will in general
be close to the attractor for most of its evolution, and thus close to the slow-roll limit.
We found no trajectories, for any initial conditions, which generated observable non-
Gaussianity on CMB scales.

Because all models are slow-roll, the nonstandard kinetic term does not have a signif-
icant effect on the dynamics, and so the value of λ is uncorrelated with ns and r.

The brane-antibrane annihilation which ends inflation will generate cosmic strings, at
a dimensionless amplitude given by Firouzjahi and Tye (2005)

Gµ =

√
1

32πgs

[
1

fIR

]1/2

. (4.49)

Here gs < 1 is the string coupling, and fIR is the (rescaled) warp factor at the tip of the
throat. Taking a fiducial value of gs = 0.01 and using Eq. (4.14), we can calculate Gµ.
If we assume a red spectral tilt, we have 5 × 10−9 < Gµ < 2 × 10−8 for the quadratic
case, and 7× 10−11 < Gµ < 2× 10−9 for the inflection point case. A significantly larger
value of s would lower these values. Models with a redder spectral tilt need a smaller
warp factor at the tip to match the CMB amplitude, and thus lead to a lower value of
Gµ. Where they overlap, these results are in agreement with Firouzjahi and Tye (2005);
Bean et al. (2007).

The current best observational bounds on cosmic strings come from searching for their
signatures in the CMB (Lo and Wright, 2005), and from nondetections of the gravitational
radiation that would result from the decay of string networks. Millisecond pulsar timing
surveys provide the best constraints of the latter type, but are dependent on assumptions
about the overall level of background gravitational waves. Constraints vary between
Gµ < 10−6 and Gµ < 10−7 (Battye et al., 2006).

This is insufficient to dramatically limit the model, but future weak lensing surveys
or CMB experiments could improve constraints to Gµ < 10−9 (Mack et al., 2007; Planck
Collaboration, 2005; Fraisse et al., 2008), while the LISA satellite could improve upon
that by several orders of magnitude (DePies and Hogan, 2007).

4.5 Non-Relativistic DBI Attractor

For the DBI kinetic term and the potential used in this Chapter, significantly relativistic
trajectories with γ > 1.1 are known to be ruled out by the field range bound (Baumann
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and McAllister, 2007) (see Bean et al. (2007) for a numerical study). Here we prove
analytically that the inflationary attractor is always close to the slow-roll limit, with
γ ≈ 1.

To describe the DBI inflationary attractor found by Underwood (2008), we define a
new variable,

χ ≡ −φ̇
√

f , (4.50)

such that

χ̇ =

√
f

γ3

[
V ′ − 3Hγχ− f ′

f 2
(γ − 1)

]
. (4.51)

This has an attractor solution when dχ/dt ≈ 0:

χAttr =
(A + B)

√
1 + A2 + 2AB −B

(1 + (A + B)2)

< A + B

(√
1 + A2 + 2AB − 1

1 + (A + B)2

)
, (4.52)

where we have defined

A ≡ V ′√f

3H
, (4.53)

B ≡ f ′

3Hf3/2
. (4.54)

If A2 + 2AB � 1, then we have χAttr ∼ A. The definition of γ gives

γ = (1− χ2)−1/2 . (4.55)

To show that the attractor solution is nonrelativistic, it suffices to show that A � 1,
irrespective of the size of B. To see this, we shall consider only the part of the attractor
solution which depends on B, assuming that A is small, and bracket the behavior in the
two limiting cases. If B is small enough that AB is also small, then

χ− A <
AB2

1 + (A + B)2
< A . (4.56)

To derive the final inequality, note that this term is largest when B � 1.
If, on the other hand, B > 1/A, so that AB is also large, we have

χ− A <

√
2AB3/2

1 + (A + B)2
∼
√

2A

B
<
√

2A . (4.57)

The second equality is because AB � 1, which implies that A > B−1. In the worst case,
therefore, the speed on the attractor is bounded by a small multiple of A.

We must now show that A is small. Using (4.53) we have the following upper bound

A <

√
fV ′

3
√

V
. (4.58)
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This can clearly be large if f is allowed to grow without limit, but the field range
bound prevents this. Eq. (4.32) can be recast in the form (Peiris et al., 2007) (in units
where Mpl ≡ 1)

Vol(X5)

π

∫ φUV

φend

dφ φ5f(φ) < 1 , (4.59)

which implies, for the AdS warp factor

π2

2
λφ2

UV < 1 , ⇒
√

f <

√
2

πφUVφ2
. (4.60)

Substituting this and Eq. (4.19), the form of the potential, into Eq. (4.58) and drop-
ping terms of order unity gives

A <

√
Ds
(
2φ + CD

φ5

)
φUVφ2π

√
1 + 1

3
φ2 − a∆φ∆ − CD

φ4

. (4.61)

This is much less than 1 unless D
φ4 ∼ 1, by which time inflation has already ended.

Thus the attractor is slow-roll, and as long as the inflaton moves on the attractor, we will
have γ ≈ 1, in agreement with the numerical results.

4.5.1 Implications for the overshoot problem

We shall now relax the special choice of initial conditions in the last section, and consider
the full (φi, Πi) plane compatible with the initial conditions bounds of §4.2.3, checking
each successful set of parameters from the previous section for trajectories suffering from
overshoot. We find that, for every set of parameters allowed by the constraints, Ri <
5×10−3. That is, more than 99.5% of initial conditions lead to trajectories suffering from
overshoot. This was because, in contrast to the specific case considered by Underwood
(2008), the bound on the initial kinetic energy was insufficiently restrictive to solve the
overshoot problem. The other effect identified in Underwood (2008), the increased extent
of the inflationary attractor, and consequent increase in e-folds, was also found to be
ineffective. Both effects required a much stronger warping than was allowed by the field
range bound and the observational constraints.

We have determined that the entire “successful” parameter space suffers from over-
shoot, but would like to know which parameter combinations suffer more than others.
Unfortunately, the fact that overshoot trajectories dominate makes this difficult, so we
introduce an additional, ad-hoc, kinetic bound of Πi ≤ 10−7M2

pl purely as a presentation
aid for the following results. We call the analogous rescaled initial conditions fine-tuning
criterion R̂i. The bound was chosen so that the least fine-tuned quadratic model had R̂i

of about unity, and then applied to both the quadratic and inflection point cases. We
calculated R̂i to an accuracy of about 1%, using a grid-refinement method.

Figure 4.3 shows the results for R̂i. For observationally relevant values of ns, the
quadratic case suffers less from overshoot than the inflection point case. Points with
ns < 1.0 always have R̂i ≈ 0. These potentials have small β or a3/2, and so are very flat
in the region of interest. Because of this, they must dissipate more kinetic energy before
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Figure 4.3 The color scale shows the rescaled initial conditions criterion R̂i. Top: results
for the quadratic case. Bottom: results for the inflection point case. Left: scalar spectral
index ns plotted against the tensor-scalar ratio r. Right: strength of the warping scale
λ plotted against the magnitude of the mass term (β for the quadratic case, a3/2 for the
inflection point case).
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becoming potential–dominated, making them more susceptible to overshoot. The flatter
the potential, the less field variation is required to generate sufficient inflation. Thus the
flatter models, which also have ns < 1, can have a larger warping scale than those with
ns > 1, without violating Eq. (4.32).

For blue tilted models, the most important parameter controlling R̂i is λ, the warping
scale. The warping scale is largely uncorrelated with the observables, which leads to
the slightly chaotic appearance of the top-left plot of Fig. 4.3. It is apparent from the
right-hand plots of Fig. 4.3, which show R̂i as a function of the potential parameters,
that a high value of λ can make it harder to achieve inflation, even though this means
a smaller initial conditions phase space. The effect of increasing λ is to tighten the field
range bound, Eq. (4.32). A tighter field range bound allows the inflaton less space to
dissipate excess kinetic energy, making overshoot more severe.

4.5.2 Successful inflection point inflation

The generic behavior of the potential in the inflection point case involves either super-
Planckian field variations (disallowed by the field range bound), when the a3/2 correction
is too small, or else a metastable minimum of the potential when it is too large. Successful
inflation can only occur in a carefully balanced intermediate regime between these two
effects, when the minimum has become an inflection point. This requires a fine-tuning of
the model parameters and the initial conditions, which we shall now quantify. We shall
assume α = 0 for simplicity. In order to have an inflection point, we need

5× 10−3 < a3/2 < 1.5 . (4.62)

If a3/2 > 1.5, a minimum always occurs for φ > Mpl. This could be transformed into an
inflection point potential if D was sufficiently large, but inflation would then occur in the
vicinity of the former minimum, where
φ > Mpl, which is always outside the throat. If a3/2 < 10−3, the potential is insufficiently
flat and the field variation is super-Planckian, violating the field range bound.

Once we have chosen an a3/2, we need to pick D carefully. It is helpful to reparametrize
CD in terms of a3/2

CD ≡ w

(
3a3/2

4

)12

. (4.63)

To get inflation we need 5.3 × 10−3 < w < 6 × 10−3. Once we combine this limit with
the observed amplitude of the power spectrum, we need:

0.01 < a3/2 < 0.4 . (4.64)

The bottom-right plot of Fig. 4.3 shows this fine-tuning graphically, and the further
fine-tuning that results when we also require that ns < 1.1.

A nonzero α can weaken this tuning, and increase the generic value of r, but it does
not significantly change the observables, unlike in the quadratic case.
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4.6 Conclusions

Recently, Underwood (2008) proposed an intriguing solution to the overshoot problem
for brane inflation.4 Theoretical limits on allowed initial conditions shrunk the volume of
phase space, removing most of the trajectories leading to overshoot, while the existence of
the DBI attractor extended to regions where the slow-roll attractor did not, thus allowing
more inflation to take place. However, Underwood (2008) studied the dynamics only for
a very specific choice of parameters in the inflationary potential and the warp factor, so
it remained unclear if these two effects were sufficient to solve the overshoot problem in
general.

In this Chapter we performed a comprehensive scan of the parameter space allowed
by the latest advances in brane inflation model-building (Baumann et al., 2009a, 2006;
Baumann et al., 2008). For each set of parameters we first worked out the observables for
a particular set of initial conditions, chosen so that they were least likely to suffer from
the overshoot problem. If this trajectory satisfied all microphysical and observational
constraints, we quantified the degree of overshoot by calculating the proportion of the
homogeneous phase space of initial conditions leading to successful inflation. We found
that in all cases this was less than 5 × 10−3; that is, less than 0.5% of the phase space
volume of initial conditions led to successful trajectories. Therefore, brane inflation does
not significantly alleviate the overshoot problem.

The qualitative differences in our conclusions compared to Underwood (2008) are easy
to understand: Most importantly, the parameters chosen by Underwood (2008) violate
the field range bound (4.32), and therefore do not satisfy all microphysical constraints,
unless one allows Vol(X5) (the dimensionless volume of the base of the warped throat
geometry) to be very small. In fact, we find that Vol(X5) . 10−4 is required to prevent
overshoot solutions. This is to be compared with the generic value of Vol(X5) = π3

that we have used in our analysis. For parameters which do satisfy the constraints, the
extension of the attractor solution does not occur; as proved in Section 4.5, the DBI
attractor is close to the slow-roll limit throughout once we impose the field range bound.

We find that known theoretical limits on the initial conditions phase space do not
shrink it sufficiently to rule out all the overshoot trajectories. The difference from Under-
wood (2008) is due to Eq. (3.40) of that work missing a factor of T−1

3 , as can be seen on
dimensional grounds. If the maximum initial momentum is Πmax then, with the revised
bound given in Eq. (4.33), we have

Πmax ∝ D1/4 , (4.65)

where D is a measure of the warped string scale at the tip of the throat (which determines
the warped 3-brane tension at the tip). On the other hand, the amplitude of the primor-
dial power spectrum is proportional to Ds, as shown by Eq. (4.43). Here, s parametrizes
the ratio of energy density localized in the bulk relative to the energy density of the
brane-antibrane system in the throat. If the inflationary energy is dominated by the
brane-antibrane tension [corresponding to s ∼ 1 in Eq. (4.19)], the warped string scale
at the tip constrains both the range of the initial momentum and the amplitude of the

4Other creative proposals for solving the overshoot problem of brane inflation have appeared in Itzhaki
and Kovetz (2007); Itzhaki (2008); Spaliński (2009).
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primordial power spectrum. Because the latter is tightly constrained by observations, we
cannot solve the overshoot problem.

If we allow the inflationary energy to be dominated by bulk energy (corresponding to
s � 1 in Eq. (4.19)), we break this correlation. The kinetic energy bound is still given
by Eq. (4.65), and allows us to solve the overshoot problem provided s & 1020 (since the
normalization of the power spectrum constrains the combination Ds, this is equivalent
to a very small value of D, the warped string scale at the tip). However, the bulk energy
remains after the end of inflation. In this case, it may be challenging to explain how the
Universe attains a state with small cosmological constant after inflation, i.e. reheating
would have to be addressed carefully.

The addition of an initially large, negative spatial curvature can mitigate overshoot
(Freivogel et al., 2006) by increasing the Hubble friction. In Freivogel et al. (2006),
the inflaton gains kinetic energy by rolling down a steep potential after starting at rest
through a tunnelling event. In our formulation, we make no specific assumption about
the mechanism by which initial conditions are set, only that they have to obey the
microphysical bounds (4.32) and (4.33), and the magnitude of the kinetic term allowed
by the backreaction bound is typically significantly larger than in the specific mechanism
of Freivogel et al. (2006). For large kinetic energy, the friction due to curvature is less
effective. We found that the initial contribution of curvature to the Hubble parameter
had to be larger than the contribution of the scalar field to have a significant effect. The
largest initial kinetic energy for which the curvature term was effective was far below
the microphysical bound; about Π ∼ 10−6. The equivalent figure without curvature is
Π ∼ 10−7. This is not a significant increase in terms of resolving overshoot, and so we
have neglected the effects of spatial curvature.

In order to determine which regions of parameter space suffered most from overshoot,
we excluded the parts of the initial conditions space which always led to overshoot, and
computed the proportion of the remaining space that led to successful inflation. We
found parameter sets with a blue tilt ns > 1 and a small warping scale suffered least
from overshoot. In the inflection point case, avoiding overshoot to the same degree as
the quadratic case required very blue spectra, inconsistent with observational limits.

Our analysis of the overshoot problem relied on currently available microscopic bounds
on the inflaton field value φmax (from the geometric field range bound) and momentum
Πmax (from backreaction considerations). We found that these bounds were too weak
to allow a solution of the overshoot problem. However, it is conceivable that a future
analysis could reveal stronger constraints on φmax and Πmax. We therefore ask what
bounds would be sufficient. Reducing φmax while keeping Πmax fixed would make the
overshoot problem more severe, since this provides less field space for dissipating excess
kinetic energy. The most promising avenue for solving the overshoot problem is therefore
finding a stronger microscopic bound on the initial inflaton momentum. Quantitatively,
our analysis showed that the new bound on Πmax would have to be at least 4 orders
of magnitude stronger than the currently applied limit. Solving the overshoot problem
for parameters giving a red tilt would require an improvement of 5 orders of magnitude.
These conclusions are not sensitive to small perturbations of the potential shape away
from the ∼ 60 observationally-relevant e-folds of inflation.

As a by-product, our analysis recovered known observational predictions of quadratic
brane inflation (Bean et al., 2007; Firouzjahi and Tye, 2005), and computed new pre-
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dictions for the inflection point case. The model parameter space consistent with micro-
physical and observational restrictions predicts unobservably small levels of both tensor
modes and primordial non-Gaussianity, but a potentially observable cosmic string ten-
sion, in both the quadratic and inflection point cases. We have also shown analytically
that the DBI attractor solution will always slow-roll, and thus trajectories near it will
generate nonobservable levels of non-Gaussianity.
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“It is a capital mistake to theorise before one has data.
Insensibly one begins to twist facts to suit theories, in-
stead of theories to suit facts. ”

– A Scandal in Bohemia, by Sir Arthur Conan-Doyle

5
Minimally Parametric Power Spectrum

Reconstruction from the Lyman-α Forest

Abstract

Current results from the Lyman-α forest assume that the primordial power spectrum of
density perturbations follows a simple power-law form, with running. We present the first
analysis of Lyman-α data to study the effect of relaxing this strong assumption on pri-
mordial and astrophysical constraints. We perform a large suite of numerical simulations,
using them to calibrate a minimally parametric framework for describing the power spec-
trum. Combined with cross-validation, a statistical technique which prevents over-fitting
of the data, this framework allows us to reconstruct the power spectrum shape without
strong prior assumptions. We find no evidence for deviation from scale-invariance; our
analysis also shows that current Lyman-α data do not have sufficient statistical power to
robustly probe the shape of the power spectrum at these scales. In contrast, the ongoing
Baryon Oscillation Sky Survey will be able to do so with high precision. Furthermore,
this near-future data will be able to break degeneracies between the power spectrum
shape and astrophysical parameters.

5.1 Introduction

The primordial power spectrum of density fluctuations underpins much of modern cos-
mology. On large scales, it has been measured with high precision by cosmic microwave
background (CMB) experiments (e.g. Komatsu et al. 2011 and references within). In
order to improve our knowledge of its scale-dependence, we turn to smaller scales, and
astrophysical measurements probing later epochs in the evolution of the Universe. In this
Chapter, we shall examine constraints from the data set which has probed the smallest
scales to date: the Lyman-α forest.
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The Lyman-α forest consists of a series of features in quasar spectra due to scattering
of quasar photons with neutral hydrogen. Since hydrogen makes up most of the baryonic
density of the Universe, the Lyman-α forest traces the intergalactic medium (IGM), and
thus the baryonic power spectrum, on scales from a few up to tens of Mpc. This makes
it the only currently available probe of fluctuations at small scales in a regime when the
corresponding density fluctuations were still only mildly non-linear, thereby simplifying
cosmological inferences. A number of authors have examined the cosmological constraints
from the Lyman-α forest in the past (Croft et al. 1998; Theuns et al. 1998; McDonald
et al. 2000; Hui et al. 2001; Viel et al. 2002; Gnedin and Hamilton 2002; McDonald et al.
2005a; Viel and Haehnelt 2006; Lidz et al. 2006), while Seljak et al. (2005, 2006) examined
constraints combined with other data sets. For a review of the physics of the IGM and
its potential for cosmology, see Meiksin (2009).

Previous analyses assumed that the primordial power spectrum on Lyman-α scales is
described by a nearly scale-invariant power law – a strong prior – and proceeded with
parameter estimation under this assumption. In contrast, in this work we attempt to
constrain the shape and amplitude of the primordial power spectrum at these scales
using minimal prior assumptions about its scale-dependence.

In view of the observational effort dedicated to the Lyman-α forest, and its promise as
a probe of the primordial power spectrum, in this work we shall explore the possibilities of
going beyond parameter fitting. To give us insight into the underlying model for the power
spectrum shape, which parameter estimation by itself cannot do, our present application
to Lyman-α data should therefore ideally assume full shape freedom throughout the
analysis. As a nearly scale-invariant primordial power spectrum is a generic prediction of
the simplest models of inflation, a minimally parametric reconstruction can be a powerful
test of inflationary models. Lyman-α constrains the smallest cosmological scales; thus, it
provides the longest lever-arm when combined with the statistical power and robustness
of CMB data, yielding the best opportunity presently available to understand the overall
shape of the power spectrum.

The main Lyman-α observable, the flux power spectrum, does not have a simple al-
gebraic relationship to the matter power spectrum. By z ∼ 3, the absorbing structures
are weakly nonlinear, and are also affected by baryonic physics. Hence, to establish the
relationship between the primordial power spectrum and the flux power spectrum, we
must resort to hydrodynamical simulations. The initial conditions used in our simu-
lations allow for considerable freedom in the shape of the primordial power spectrum,
and this allows us to recreate the Lyman-α forest resulting from generic power spectrum
shapes. Using an ensemble of simulations which sample the parameter space required to
describe the flux power spectrum, we construct a likelihood function which can be used
to perform minimally parametric reconstruction of the primordial power spectrum, while
simultaneously constraining parameters describing IGM physics.

A statistical technique called cross-validation (CV) is used to robustly reconstruct
the primordial power spectrum and Markov Chain Monte Carlo (MCMC) techniques
are used to obtain the final constraints. The statistical approach parallels Sealfon et al.
(2005) and Verde and Peiris (2008), who applied the same method to data from the CMB
and galaxy surveys. Peiris and Verde (2010) added the current Lyman-α forest data to
the joint analysis with larger scale data, via the derived constraints on the small-scale
matter power spectrum from McDonald et al. (2005a). However, these latter constraints
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were derived assuming a tight prior on the shape of the primordial power spectrum at
Lyman-α scales – an assumption which we drop in this work. In our analysis we consider
both the flux power spectrum determined by McDonald et al. (2006) from low-resolution
quasar spectra obtained during the SDSS, and simulated data for the upcoming Baryon
Oscillation Sky Survey (BOSS: Schlegel et al. 2009).

This Chapter is organized as follows. In Section 5.2 we review the framework for
power spectrum reconstruction and describe the details of the simulations and parameter
estimation setup. Section 5.3 describes the data, and results are presented in Section
5.4. We conclude in Section 5.5. Technical details of our calculations are relegated to
Appendices 2.4 and 5.2.6.

5.2 Methods

In this section, we describe the statistical technique used in this Chapter, and how we
built the likelihood function for minimally parametric reconstruction from Lyman-α data.
Section 5.2.1 describes the framework for power spectrum reconstruction in general terms,
while Section 5.2.2 gives further details of our specific implementation of this framework.
Sections 5.2.3 - 5.2.5 detail numerical methods used to extract a flux power spectrum
from a given primordial power spectrum. Finally, Section 5.2.7 describes the parameter
estimation implementation.

5.2.1 Power spectrum reconstruction

Previous analyses of the Lyman-α forest (McDonald et al. 2005a; Viel et al. 2004) have
assumed that the primordial power spectrum is a nearly scale-invariant power law, of the
form

P (k) = As

(
k

k0

)ns−1+αs ln k

, (5.1)

and then constrained As,ns and αs. In this work we will follow the same spirit as Sealfon
et al. (2005); Verde and Peiris (2008), going beyond parameter estimation in an attempt to
deduce what the Lyman-α forest data can tell us about the shape of the power spectrum
under minimal prior assumptions. A major challenge involved in all such reconstructions
is to avoid over-fitting the data; it is of little use to produce a complex function that fits
the data set extremely well if we are simply fitting statistical noise. Equally, an overly
prescriptive function which is a poor fit to the data should be rejected. To achieve this
balance, we add an extra term, LP , to the likelihood function which penalizes superfluous
fluctuations. Schematically, the likelihood function is:

logL = logL(Data|P (k), Astrophysics) + λ logLP , (5.2)

where the form of LP will be discussed shortly. We have assumed a model for the
IGM thermodynamics, discussed in Section 5.2.4, and marginalised over a number of
parameters of this model, including the temperature and temperature-density relation.
This model constitutes a physically motivated prior constraint, incorporating information
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about the expected physics of the IGM. Part of the purpose of this study is to examine
whether this model is sufficient; should we detect features in the primordial power spec-
trum, we would look at whether a physically motivated extension of this model could
account for them.

Equation 5.2 now contains an extra free parameter which measures the magnitude of
the smoothing required; the penalty weight λ. As λ →∞ the likelihood will implement
linear regression. For particularly clean data, carrying no evidence for any feature in the
P (k), λ should be large. Data carrying strong evidence for P (k) features would be best
analysed with a small value of λ. We need a method of determining, from the data, the
optimal penalty weight. Our chosen technique is called cross-validation (CV) (Green and
Silverman 1994), which quantifies the idea that a correct reconstruction of the underlying
information should accurately predict new, independent data.

The variant of CV used in this Chapter splits the data into three sets. The function is
reconstructed using two of these sets (training sets). The likelihood (excluding the penalty
term) of this reconstruction, given only the data in the remaining set (validation set), is
calculated. This step is called validation; because the data in each set are assumed to be
independent, we now have a measure of the predictivity of the reconstruction. Validation
is repeated using each set in turn and the total CV score is the sum of all three validation
likelihoods. The optimal penalty is the one which maximizes the CV score.

More generally, CV splits the data into k independent sets, with 2 < k ≤ n, where n
is the number of data points. k − 1 sets are used for training, and the remaining set for
validation. Larger k allows for a bigger training set, and thus better estimation of the
function to be validated against, but for most practical problems large k is computation-
ally intractable. We have chosen k = 3 as a compromise. We verified that using k = 2,
following Verde and Peiris (2008), made a negligible difference to our results despite the
smaller training set size.

CV assumes that each set is uncorrelated; a mild violation of this assumption will
lead to an underestimation of errors, but not a systematic bias in the derived parameters
Carmack et al. (2009). Our data include a full covariance matrix, and so we are able to
verify that correlations between the sets are weak.

The minimally parametric framework applied in this Chapter follows that of Sealfon
et al. (2005), Verde and Peiris (2008) and Peiris and Verde (2010). It uses cubic splines to
reconstruct a function f(x) from measurements at a series of points, xi, called the knots.
The function value between each pair of knots is interpolated using a piecewise cubic
polynomial. The spline is fully specified by the knots, continuity of the first and second
derivatives, and boundary conditions on the second derivatives at the exterior knots (the
knots at either end of the spline). The splines have vanishing second derivative at the
exterior knots. If the power spectrum is given by smoothed splines, the form of the
likelihood function given above is

logL = logL(Data|P (k)) + λ

∫
k

d ln k(P ′′(k))2, (5.3)

where P ′′(k) =
d2P

d(ln k)2
.
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Knot Position P (k) (/10−9)
(Mpc−1) Minimum Maximum

A 0.475 0.83 3.25
B 0.75 0.60 3.23
C 1.19 0.60 3.67
D 1.89 0.53 4.16

Table 5.1 Positions of the knots. The maximum and minimum values of P (k) are the
extremal values covered by our simulations. Fixed knots are not shown, but are discussed
in the text.

5.2.2 Knot placement

The number and placement of the knots is chosen initially and kept fixed throughout
the analysis. Once there are sufficient knots to allow a good fit to the data, adding
more will not alter the shape of the reconstructed function significantly. In choosing
the number of knots, we seek to find a balance between allowing sufficient freedom in
the power spectrum, and having few enough parameters that the data are still able to
provide meaningful constraints on two sets out of three when subdividing the data into
the training and validation sets, as described above. Available computing resources limit
us in any case to considering only a few knots. We fit the primordial power spectrum with
a four-knot spline for the Lyman-α forest k-range. The flux power spectrum is available
in twelve k-bins, so there are three bins per knot, which should allow sufficient freedom.
By comparison, Peiris and Verde (2010) used seven knots to cover the k-range spanned
by CMB, galaxy surveys and Lyman-α data, with a single knot for the Lyman-α forest.

The SDSS flux power spectrum covers the range of scales, in velocity units, of kv =
1.41 × 10−3 − 0.018 s/km. Dividing by a factor of H(z)/(1 + z) converts to comoving
distance coordinates, so the constraints on the matter power spectrum are on scales of
roughly k = 0.4− 3 Mpc−1. In this range of scales we place four knots (A–D, from large
to small scales) evenly in log space. Numerical details of the knots are shown in Table
5.1. The maximum and minimum values of P (k) given there for each knot are simply
the extremal values covered by our simulations. Simulation coverage of P (k) has been
expanded where necessary to fully cover the range allowed by the data.

We must specify the primordial power spectrum on scales well outside the range
probed by data, even though they have no effect on the Lyman-α forest. This is for two
reasons. The first is that when running a simulation we must have a well-defined way to
perturb the initial particle grid for all scales included in the simulation. In order to ensure
that the scales on which we have data are properly resolved, we also need to simulate
larger and smaller scales , and these require a defined power spectrum. The second reason
is that our interpolation scheme works best when the perturbations induced by altering
one of the knots are reasonably local. Adding extra end knots helps to prevent large
secondary boundary effects, which would make interpolation far more difficult.

For numerical stability reasons, we would like the amplitude of fluctuations on these
scales to be reasonably constant, but do not wish to make strong assumptions about the
amplitude of the power spectrum there. Therefore we add two “follower” knots at each
end of the spline. The amplitude is fixed to follow the nearest parameter knot, assuming
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Figure 5.1 Effect on the flux power spectrum of varying the D knot at z = 3. On a scale
where the best-fitting amplitude is 0.9, the amplitudes of the D knot are, from the lowest
line upwards, 0.5, 0.7, 1.1, 1.3 and 1.7. Non-linear growth tends to erase dependence on
the initial conditions, so the effect is smaller at lower redshifts.

that between follower and followed, the shape is a power law with ns = 0.97. 1 The two
follower knots are at scales of k = (0.15, 4) Mpc−1.

We also add a few knots, even more distant from the scales probed by the data, with
completely fixed amplitudes consistent with the WMAP best-fitting power spectrum.
The amplitude of the primordial power spectrum on these scales does not significantly
affect results; we have added knots here so that the initial density field is well-defined
on a larger range of scales than probed by the simulation. This allows us to avoid
any boundary effects associated with the ends of the spline. These fixed knots are at
k = (0.07, 25, 40) Mpc−1, with amplitudes of (2.43, 2.03, 2.01) ×10−9. Fig. 5.1 shows the
effect of altering the amplitude of the D knot on the flux power spectrum.

5.2.3 Simulations

In this study, full hydrodynamical simulations were run using the parallel TreePM code
GADGET-2 (Springel 2005). GADGET computes long-range gravitational forces using a

1Hence, if the amplitude of the power spectrum at the D-knot is PD, the power spectrum at the
follower knot has the amplitude PD(kD/kD+1)0.03, where kD is the position of the D knot and kD+1 the
position of the follower.
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particle grid, while the short-range physics are calculated using a particle tree. Hydrody-
namical effects are included by having two separate particle types; dark matter, affected
only by gravity, and baryons, modelled using smoothed particle hydrodynamics (SPH),
where particles are supposed to approximate density elements in the matter fluid. The
rest of this section gives technical details of our simulations and the included astrophysics,
and may be skipped by the reader interested only in the cosmological implications.

GADGET has been modified to compute the ionisation state of the gas using radiative
cooling and ionisation physics as originally described by Katz et al. (1996), and used in
Viel and Haehnelt (2006). Star formation is included via a simplified prescription which
greatly increases the speed of the simulations, where all baryonic particles with over-
density ρ/ρ0 > 103 and temperature T < 105K are immediately made collisionless. Viel
et al. (2004) compared simulations using this prescription with identical simulations using
a multi-phase model, and found negligible difference in the Lyman-α statistics. Addition-
ally, all feedback options have been disabled, and galactic winds neglected; Bolton et al.
(2008) found that winds have a small effect on the Lyman-α forest. The gravitational
softening length was set to 1/30 of the mean linear inter-particle spacing.

The gas is assumed to be ionised by an externally specified, spatially homogeneous
UV background, based on the galaxy and quasar emission model of Haardt and Madau
(2001). We follow previous analyses in assuming that the gas temperature is initially in
equilibrium with the CMB, that the gas is in ionisation equilibrium, optically thin, and
that we can neglect metals and evolution of elemental abundances. Lyman-α absorption
arises largely from near mean-density hydrogen, which should undergo little chemical
evolution, so using a simplified star formation criterion and neglecting metals is physically
well-motivated. Assuming that the gas is optically thin and in ionisation equilibrium will
break down during reionisation, but at the redshifts we are interested in, we can model the
effect of non-instantaneous reionisation by increasing the photo-heating rate, as described
in Viel and Haehnelt (2006).

The fiducial simulation for this Chapter has a box size of 60 Mpc h−1 and 2 × 4003

gas and dark matter particles, [which we will write as (60, 400) in future], and runs from
z = 199 to z = 2. Snapshots are output at regular intervals between redshift 4.2 and
2.0. Initial conditions were generated using N-GenICs, modified to specify the primordial
power spectrum by a spline, and use separate transfer functions for baryons and dark
matter, as calculated using CAMB (Lewis et al. 2000).

For knots B and C, we used the above fiducial parameters for box size and particle
resolution. For the D knot, we slightly compromised on box size in favour of particle
resolution, and used simulations of (48, 400), since we found that the D knot had a
negligible affect on the largest scales. To fully capture the behaviour of the A knot,
we used larger simulations with (120, 400). We have used different sized simulations
to ensure that for each knot, the characteristic scales representing it have very good
numerical convergence; this issue is addressed in full in Section 5.2.6. Our ability to
do this is one technical advantage of our approach compared with previous studies; if
we were to alter the amplitude of the whole power spectrum, we would need to achieve
convergence over all the relevant scales at once. In our approach, each simulation only
needs strict convergence over the narrow range of scales probed by a single knot.
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5.2.4 IGM thermodynamics

Constraints on the thermal history of the IGM are given in terms of the parameters of a
polytropic temperature-density relation

T = T0

(
ρ

ρ0

)γ−1

, (5.4)

where a given SPH particle has temperature T and density ρ. T0 and ρ0 are the average
quantities for the whole simulation snapshot. To determine T0 and γ from a simulation
box, a least-squares fit is performed from low-density particles satisfying

− 1.0 < log

(
ρ

ρ0

)
< 0 . (5.5)

Regions that are less dense than the lower limit above are ignored because they are poorly
resolved in SPH simulations (Bolton and Becker 2009). The simplified star formation
criterion means that many overdensities have been turned into stars, and their baryonic
evolution not followed; hence they are also neglected. Both γ and T0 are assumed to
follow a power law broken at z = 3 by HeII reionisation (Schaye et al. 2000), so that they
are given by:

γ =

{
γA [(1 + z)/4]dγS

if z < 3,

γA [(1 + z)/4]dγR

if z > 3.
(5.6)

T0 =

{
TA

0 [(1 + z)/4]dT S
0 if z < 3,

TA
0 [(1 + z)/4]dT R

0 if z > 3.
(5.7)

When performing parameter estimation, we marginalize over γA, TA
0 and dγS,R, dT S,R

0 .
The different thermal histories were constructed by modifying the fiducial simulation’s
photo-heating rate as described in Section 2.2 of Bolton et al. (2008).

The effective optical depth is described by a power law, with parameters:

τeff = τA
eff [(1 + z)/4]τ

S
eff . (5.8)

Previous studies (McDonald et al. 2005a; Viel and Haehnelt 2006) used the same
transfer function for both dark matter and baryon particles; we have used different trans-
fer functions for baryon and dark matter species. At our starting redshifts, the transfer
functions for the baryons are about 10% lower than for the dark matter on these scales,
because baryon fluctuations have not grown as fast during tight coupling. Once they
have decoupled from the photons, the baryons fall into the potential wells of the dark
matter, and by z = 1, the linear transfer functions are almost identical. At redshifts 2−3,
however, the effect is small but noticeable, and accounts for a 2% scale-independent drop
in the power spectrum. This is too small to affect current data, but could be potentially
important for analysing BOSS data.

Our model for the thermodynamics of the IGM assumes that the gas is optically
thin. By z = 3, the neutral fraction of hydrogen is extremely low, making this a good

74 P(k) Reconstruction from Lyman-alpha



approximation for describing Lyman-α photons. However, the reionisation of HeII to
HeIII at this time means that the gas is optically thick to helium reionising photons. HeII
reionisation alters the effective heating rate and changes the temperature-density relation
by adding energy to the gas; an effect we account for by marginalising over γ and T0.
However, HeII heating processes are likely to be inhomogeneous, potentially producing
significant fluctuations in the IGM temperature. The impact of such fluctuations on the
flux power spectrum was examined by McQuinn et al. (2011), using simulations which
incorporated radiative transfer effects. They found a negligible effect on the 1D flux power
spectrum used here. This was ascribed to two effects; first, a higher temperature region
of the IGM has a smaller neutral fraction, leading to exponentially less absorption, and
thus a negligible contribution to the flux power spectrum. Furthermore, the large, slightly
overdense regions giving rise to the Lyman-α forest are less affected by temperature
fluctuations than underdense areas.

5.2.5 The flux power spectrum

In the case of Lyman-α, the observable is not a direct measurement of the clustering
properties of tracer objects, as in galaxy clustering, but the statistics of absorption along
a number of quasar sightlines. Therefore we define the flux, F , as

F = exp(−τ), (5.9)

where τ is the optical depth. We define the flux power spectrum as

PF (k) = |δ̃F (k)|2,

δF =
F
F̄
− 1 . (5.10)

Here F̄ is the mean flux. The tilde denotes a Fourier transformed quantity, where our
Fourier conventions, used throughout, are:

f̃(k) =

∫
f(x)eikxdx . (5.11)

To aid the eventual understanding of our results, we digress slightly here to review
the physical effects of the various thermal parameters on the flux power spectrum. The
mean flux, essentially a measure of the average density of neutral hydrogen, has a large
impact on the amplitude of the flux power spectrum. Cosmological information from
the Lyman-α forest is obtained through examining the power spectrum shape and its
redshift dependence. The effect of a higher temperature, as preferred by the flux power
spectrum, is to suppress power predominantly on small scales, as a higher temperature
wipes out small-scale structure in the baryons. The exponent of the temperature-density
relation, γ, controls the temperature difference between voids and overdensities. A higher
γ makes voids cooler and overdensities hotter. At high redshifts, where much of the
Lyman-α absorption comes from voids, the effect of an increased γ is to decrease the
temperature of the Lyman-α emitting regions, so there is relatively more small-scale
structure. At low redshifts, however, most of the Lyman-α absorption comes from near
mean density material, and so an increased γ increases the temperature, decreasing the
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amount of small-scale structure. For further details of the physical effects of the various
parameters, see Section 4.2.1 and Fig. 3 of Viel and Haehnelt (2006), as well as Fig.
11-13 of McDonald et al. (2005a).

Current constraints on PF are given by McDonald et al. (2006), determined from
∼ 3000 SDSS quasar spectra at z = 2− 4.

Each simulation snapshot was processed to generate an averaged flux power spectrum
as follows. First, 8000 randomly placed simulated quasar sightlines were drawn through
the simulation box. For a 60 Mpc h−1 box, this constitutes an average spacing between
sightlines of 670 h−1kpc, corresponding to scales of roughly k = 10 Mpc h−1, far smaller
than the scales probed by the Lyman-α forest. We verified that doubling the number of
sightlines to 16000 made a negligible difference to the resulting power spectra.

When calculating absorption, particle peculiar velocities were included, which in-
creases the (non-rescaled) magnitude of the power spectrum by approximately 10%.

To generate the flux power spectrum, the absorption due to each SPH particle near
the sightline is calculated, giving us a number of simulated quasar spectra, which are
smoothed with a simple boxcar average. Each spectrum is rescaled by a constant so that
the mean flux across all spectra and absorption bins matches that observed by Kim et al.
(2007). This rescaling hides our ignorance of the amplitude of the photo-ionizing UV
background. The mean over all the rescaled spectra is then used as the extracted flux
power spectrum for the box. For further details of how we computed the absorption, see
Section 2.4.

We follow previous work in not attempting to model continuum fitting errors. The
Si III contamination found by McDonald et al. (2006) is modelled by assuming a linear
bias correction of the form P ′

F = [(1 + a2) + 2a cos(vk)] PF , with a = fSiIII/(1 − F̄),
fSiIII = 0.011, and v = 2271 km/s.

Finally, since high-density, damped Lyman-α systems (DLAs) are not modelled by
our simulations, we add a correction to the flux power spectrum to account for them, of
the form calculated by McDonald et al. (2005b). The amplitude of this correction is a
free parameter, and will be discussed further in Section 5.2.7.

We checked the convergence of our simulations with respect to box size and particle
resolution. Here we give only a brief summary of the results; further details may be
found in Section 5.2.6. For the highest redshift bins at z = 4.2, 4.0 and 3.8, increasing
the particle resolution had a large effect on the flux power spectrum. Achieving numerical
convergence for the Lyman-α forest at high redshift is challenging, because most of the
signal for the Lyman-α forest is coming from poorly resolved underdense regions. In
addition, current data at high redshifts are much more noisy than at low redshifts, and
future surveys will not probe these redshifts at all. Accordingly, we follow Viel and
Haehnelt (2006) and do not use the three highest redshift bins in our analysis.

At lower redshifts, and except in the smallest and largest k-bins, the change with
increased particle resolution was small. On the smallest scales, however, there was a
change of around 5% in each bin. This increase is systematic, and so we correct for it
as described in Section 5.2.6. The larger box increased power on the largest scales by
around 5%, due to sample variance in the simulation box. The methodology we used to
correct for this effect is again detailed in Section 5.2.6.

The above figures were the dominant errors in our modelling of the flux power spec-
trum. Uncorrected modelling errors are therefore . 2% of the flux power spectrum in
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each bin, far below the current measurement error of ∼ 12% in each bin of the flux power
spectrum, and on the order of the expected statistical errors for the BOSS survey, which
are ∼ 1.5%. A significant decrease in modelling errors would require the use of simula-
tions with improved particle resolution, which are beyond the computational resources
available to us.

5.2.6 Convergence Checks

In this appendix, we detail the checks we have performed to ensure that our simula-
tions are properly converged with respect to box size and particle number. We have
usually been comparing the relative change in the flux power spectrum when changing a
parameter, making strict convergence not essential.

To check box-size convergence, we compared the flux PF (k) for our fiducial simulation
with a large box size simulation (“L”) which had size (75, 500), and otherwise identical
parameters to the fiducial simulation (“F”). This isolates the effect of box size by having
identical particle resolution to simulation F. To test convergence with respect to particle
number, we used a high resolution simulation (“H”), with (60, 500). In order to isolate
the change due to numerical effects, we did not rescale the mean optical depth for the
plots in this section.

The left hand plot of Fig. 5.2 shows the change in the flux power spectrum with
increased box size; simulation L divided by simulation F. The flux power spectrum is
converged with respect to box-size; however, there is a systematic increase on large scales.
This is due to sample variance: the specific realisation of cosmic structure we are using
is biased slightly low on the largest scales probed by the box. The larger box recovers
the input power spectrum much better on these scales, because it contains far more
modes, and hence shows an increase in power. Because we use the same realisation of
structure for all our simulations, this effect will be constant, and is easily corrected for
by altering the best-fitting power spectrum. Once this is done, convergence of the flux
power spectrum is very good.

The right hand plot of Fig. 5.2 shows the change in the flux power spectrum with
increased particle resolution. The effect is small, except on small scales or at high redshift.
Achieving numerical convergence for the Lyman-α forest at high redshift is challenging,
because most of the signal for the Lyman-α forest is coming from poorly resolved under-
dense regions. In addition, current data at high redshifts is much more noisy than at low
redshifts, due to a paucity of quasar spectra. Accordingly, we follow Viel and Haehnelt
(2006) and do not use the three highest redshift bins at z = 4.2, 4.0 and 3.8 in our
analysis.

Our initial base for the central power spectrum was the output of simulation H. We
corrected for box size and resolution following the method proposed by McDonald (2003).
To correct for sample variance on the largest scales, we ran two additional simulations with
box size 120 Mpc h−1, and 4003 and 2003 particles. The smaller simulation has identical
particle resolution to our fiducial simulations, and should thus be directly comparable to
them. We then corrected our best-guess power spectrum by the ratio between the two,

CS(k) = PF (NP = 400)/PF (NP = 200) . (5.12)

The smallest scale bin was excluded from this correction as it was clearly being affected
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Figure 5.2 (Left) The change in the flux power spectrum due to increasing the box size at
fixed particle resolution. Each green line shows the effect on a different redshift bin, from
4.2 to 2.0. The effect is generally around 2% (grey box), with a systematic increase on
large scales, for which we correct (see text). (Right) The effect on the flux power spectrum
due to increasing the particle number from 2 × 4003 to 2 × 5003. Each line shows the
effect on a different redshift bin, from 4.2 to 2.0. The grey box show a variation of 4%.
Redshift bins with greater variation are labelled.

by poor resolution convergence.
Because simulation H is nearly converged, we had to be careful when correcting for

resolution; if the error in the correction is larger than the correction itself, accuracy is
definitely not increased. Therefore, we ran two simulations, with box size of 24 Mpc h−1;
T1 and T2. T1 has the same particle resolution as simulation H, and thus 2003 particles.
T2 has 4003, giving it much increased particle resolution. These simulations do not
resolve the largest scales probed by the Lyman-α forest at all, but Fig. 5.2 shows that
these scales are not affected by poor resolution convergence. Simulation H is corrected
by

CR(k) = P T2
F /P T1

F . (5.13)

To avoid our correction itself being biased by a small box size, we ignore those bins on
scales greater than a quarter of the box-size of 24Mpc h−1. We also ignore any correction
for redshift bins where the correction for the smallest scale bin is less than the uncertainty
in the simulations, which we take to be 1%, on the grounds that these are already fully
converged. We are left with a slight increase in power on the smallest scales.

5.2.7 Parameter estimation

So far we have given a formula for the primordial power spectrum, and described how
we use it to extract a flux power spectrum to compare with observational data. In this
section, we shall describe how we actually performed that comparison. First we describe
a scheme for robustly interpolating the parameter space to obtain flux power spectra
corresponding to parameter combinations which we have not simulated, following Viel
and Haehnelt (2006). Secondly, we describe the parameters of the Monte Carlo Markov
chains we used for parameter estimation. For more details of MCMC, see, for example
Lewis and Bridle (2002).
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Parameter interpolation

Directly calculating a flux power spectrum from a given set of primordial fluctuations
requires a hydrodynamical simulation. This makes it impractical to directly calculate PF

for every possible set of input parameters. Instead, simulations are run for a representative
sample and other results are obtained from these via interpolation. We assume that the
flux power spectrum varies smoothly around the best-fitting model, parametrize this
variation with a quadratic polynomial for each data point, and then check that this
accurately predicts new points. If we have some simulation with a parameter vector
which differs from a ‘best-guess’ simulation by δpi, the corresponding change in the flux
power spectrum, δPF , is given by

δPF =
∑

j

αjδpj + βjδp
2
j . (5.14)

The coefficients of this polynomial are constrained by performing a least-squares fit to
flux power spectra generated by numerical simulations. We experimented with including
cross-terms (of the form pipj), but found that this did not significantly improve the
accuracy of the interpolation.

To estimate the interpolation coefficients, we used seven simulations for each of our
four power spectrum parameters, one of which was used to test the accuracy of the
interpolation. To check for correlation between parameters, we simulated varying two
neighbouring knots at once. As the greatest effect of each knot on the flux power spec-
trum is over a localized range of scales, our interpolation errors should be maximal here.
We needed only four simulations per thermal history parameter, and checked we could
accurately predict δPF for a very different thermal history. As a final interpolation verifi-
cation, we performed a simulation where all six parameters were changed simultaneously.
Fig. 5.3 shows the interpolation errors for one of our tests, which are around 1% of the
total change for each bin. This is smaller than the expected statistical errors for BOSS,
and was replicated by our other test simulations.

MCMC methodology

To perform parameter estimation, we use a version of the publicly available CosmoMC
Lewis and Bridle (2002) code, with a modified likelihood function as described in Section
5.2.1.

We marginalize over four parameters for the four knots, with priors as specified in
Table 5.1, and over eight parameters of the thermal history, as described in Section 5.2.3.

We follow the advice of McDonald et al. (2006), and add a number of nuisance pa-
rameters to the SDSS data, all with Gaussian priors. To parametrize uncertainty in the
resolution of the spectra, we add a parameter α2 with prior 0± 49, and multiply the flux
power spectrum by exp (−k2α2). The effect of an increased α2 is therefore to damp power
on the very smallest scales. Each redshift bin has one parameter, fi, to describe uncer-
tainty in the subtraction of background noise, with a prior of 0 ± 0.05. To marginalize
over the uncertainty in the effect of DLAs, we add Adamp, with a prior of 1 ± 0.3. The
effect of this correction is to increase the slope of the flux power spectrum.

We also marginalize over residual uncertainties in the Hubble parameter, h and ΩM ,
using flat priors of 0.2 < ΩM < 0.4, and 0.5 < h < 0.9. For the rest of our background
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Figure 5.3 The difference between the flux power spectrum as obtained from interpolation,
and directly by simulation. Here only the C and D knots have been changed from their
initial values. Each line represents simulation output at a different redshift bin, between
z = 2.0 and z = 4.2. The grey band shows 1% error bars.

cosmology, we assume parameters in agreement with those preferred by WMAP 7, in-
cluding negligible gravitational waves and spatial curvature. The priors on h and ΩM

make a negligible difference to our results, because both these parameters only weakly
affect the Lyman-α forest. We assume T0 < 50000 K and 0 < γ < 5/3 on physical
grounds; the temperature-density relation of the IGM cannot be steeper than the perfect
gas law, and very high temperatures would contradict independent measurements of the
IGM temperature by Schaye et al. (2000).

Cross-validation methodology

Cross-validation (CV) requires the splitting of the data set into n independent sets. For
best results, these sets should be as uncorrelated as possible. We choose to use alternating
bins in k for each set. For data with n k bins, the first set would consist of bins 1, 4, 7 . . . ,
the second bins 2, 5, 6 . . . and the third similarly.

To calculate the CV score, we estimate the best-fit from the two training sets, using a
MCMC. The CV score for the remaining, validation, set is the likelihood of this best-fit.
The total CV score for a given penalty is the sum of the CV scores for each set.

5.3 Datasets

5.3.1 Current data from SDSS

The SDSS data used in this study consist of a best-fitting flux power spectrum in 12 k-bins
and 11 redshift bins, together with a covariance matrix and a set of vectors describing
the foreground noise subtraction. It was analysed by McDonald et al. (2006), and comes
from 3000 quasar spectra. Of these, ∼ 2000 are at redshift 2.2 − 3, and ∼ 1000 above
that. We use the 8 redshift bins at z < 3.8 only.
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We have chosen not to include any additional small-scale information based on high-
resolution quasar spectra. In principle, this can help break degeneracies and should be
included in future analyses. Currently, however, systematic error from such data sets is
hard to quantify, and the optimal method for extracting the thermal state of the IGM
is not yet clear. Our focus in this work has been robustness, and so we have limited
ourselves to a single data set, whose properties have been extensively studied and are
relatively well-understood.

5.3.2 Simulated data from BOSS

In this section we will describe our simulated data for forecasting constraints from BOSS,
an ongoing-future survey which will acquire 1.6×105 quasar spectra (Schlegel et al. 2009),
between z = 2.2 − 3.0. We need to simulate both a covariance matrix and a flux power
spectrum.

We have assumed that the noise per spectrum of the BOSS data will be approximately
the same as they were for SDSS. This is a simple assumption, but broadly justified because
both surveys use similar instruments (Schlegel et al. 2009). Truly accurate modelling of
the covariance matrix is impossible until the release of the final data, however, we expect
our modelling of the BOSS covariance matrix to be completely adequate for a forecast.
Our simulated BOSS covariance matrix is simply the SDSS covariance matrix scaled to
account for the increase in statistical power resulting from the much greater number of
quasar sightlines. There are roughly 2000 quasar sightlines in the SDSS sample below
z = 3, so the scale factor is 2000/160000 = 1/80.

To generate the flux power spectrum, we used cosmological parameters consistent with
the best-fitting results from WMAP 7, and thermal parameters consistent with theoretical
expectations: γ ∼ 1.45 and T0 = 2.3 × 103 [(1 + z)/4]0.2 K. The effective optical depth
was τ = 0.36 [(1 + z)/4]3.65. The power spectrum amplitude was selected to match a
spectrum with σ8 = 0.8 and ns = 0.96.

We then added uncorrelated Gaussian noise with a variance given by the diagonal
elements of the simulated BOSS covariance matrix. As BOSS will only take data at
z ≤ 3, we dispense with the thermal parameters for higher redshifts. The foreground
noise properties of the BOSS data are expected to be similar to those of the SDSS
data; we therefore leave the priors on the parameters measuring uncertainty in the noise
subtraction and the parameter measuring resolution uncertainty, α2, unchanged.

BOSS is also expected to determine the transverse flux power spectrum. Simulating
the larger scales needed to properly model the effect of this is beyond the scope of this
Chapter, and we refer the interested reader to Slosar et al. (2009); White et al. (2010).

5.4 Results

5.4.1 Current constraints

Fig. 5.4 shows the CV-reconstruction of the primordial power spectrum from SDSS data.
We have shown plots for two penalties: one high, one low. This was because we have
been unable to determine an optimal penalty from current data; the CV score shows no
significant variation, even when the penalty is having negligible impact on the likelihood.

P(k) Reconstruction from Lyman-alpha 81



0.4 0.6 1.0 2.0 3.0

k (Mpc−1)

1.0

1.5

2.0

2.5

3.0

3.5

P
ri

m
or

d
ia

l
P

(k
)
/

10
−9

Low Penalty

0.4 0.6 1.0 2.0 3.0

k (Mpc−1)

1.0

1.5

2.0

2.5

3.0

3.5

P
ri

m
or

d
ia

l
P

(k
)
/

10
−9

High Penalty

Figure 5.4 Constraints on the primordial power spectrum from SDSS data from CV, for
low (left) and high (right) penalties. Black circles show the positions of the knots, with
arbitrary normalisation. The light blue regions show the top 68% of likelihoods for SDSS
data, while the dark blue regions show the 95% likelihood range. We discuss the similarity
between these two regions in the text. The black error bar shows the results of previous
analyses (Viel et al. 2009) assuming a power-law power spectrum at k = 1 Mpc−1. The
dashed lines show limits on the slope from that work.

We interpret this to mean that the shape constraints on the primordial power spectrum
from current Lyman-α data are very weak.

We have emulated confidence limits by plotting the envelope of samples which have
a likelihood in the top 68% and the top 95%. At the 95% level, the power spectrum is
allowed to oscillate more within the allowed envelope, but the size of the overall constraint
on the amplitude does not greatly change. In this work, the low penalty plot is being
affected by the priors on the A-knot; our constraints have become so weak that at the
largest scales probed they are affected by the range probed by our simulation suite (see
Fig. 5.5 for these limits). It is also possible that the shape of the primordial power
spectrum on much larger scales, assumed for numerical reasons, is having a small effect
on the constraints by anchoring the amplitude of the power spectrum. Neither effect
would be important if it were not for the extreme weakness of the constraints from the
data. However, the similarity of the 68 and 95% contours is a generic feature of using
the cross-validation technique for reconstruction, as found in Verde and Peiris (2008).
It occurs because we have marginalised over the power spectrum shape in a non-trival
way, meaning that the shape of the likelihood function is not particularly Gaussian in
the power spectrum parameters.

Previous analyses assumed a power-law prior for the shape of the primordial power
spectrum, and constrained this slope and the overall normalisation from the same data
used above. While such parameter estimation leads to tight constraints from the data
(assuming the underlying shape prior is correct), relaxing this tight prior leads to the
loss of ability to constrain the scale-dependent shape of the power spectrum. The current
data can still be used as part of a minimally parametric primordial power spectrum if
one exploits the extended range in scales that can be probed in combination with other
data sets (Peiris and Verde 2010).

The black error bar in Fig. 5.4 shows a comparison with Viel et al. (2009). Our
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Figure 5.5 Constraints on the primordial power spectrum from the penalty term alone,
using the value in the “low penalty” plot of Fig. 5.4 above. Dashed lines show the power
specrum range sampled by the simulations.

method gives results for the amplitude of the primordial power spectrum at Lyman-
α scales which are completely consistent with that work, but somewhat weaker. This is
to be expected; we are removing a tight prior on the shape of the power spectrum. For a
very high penalty, i.e. the limit at which the implicit prior in our analysis approaches a
power-law spectrum, we can reproduce the error bars of Viel et al. (2009). We are also in
agreement with the results of an earlier analysis of the Lyman-α forest, McDonald et al.
(2005a), which constrained σ8 = 0.85± 0.13.

The corresponding constraints on ns from our reconstruction are extremely weak,
especially for the low penalty: ns ∼ 0.2 − 1.2. The constraints on ns in Viel et al.
(2009), in addition to the power-law prior, were greatly assisted by the fact that the
pivot scale k0 in Eq. 5.1 was chosen to be k0 = 0.002 Mpc−1; a small change in the slope
of the power spectrum at k0 leads to a large change in power spectrum amplitude by
k = 1 Mpc−1. Here, we are trying to constrain a scale-dependent ns(k) = 1 + d ln P

d ln k
using

only the interval of scales sampled by Lyman-α forest. We find that, while the current
Lyman-α data are able to constrain the amplitude of the power spectrum at these scales,
they are not powerful enough on their own to significantly constrain the shape of the
spectrum in a robust manner. At no penalty do we see any evidence in the current data
against a scale-invariant power spectrum.

We can explicitly demonstrate that the current Lyman-α data add little information
to a weak prior on the shape of the power spectrum in the following way. Fig. 5.5
shows a minimally parametric reconstruction assuming the penalty designated “low”.
These constraints were generated without using any data whatsoever, and are similar
to those obtained with the Lyman-α forest data. This figure shows clearly that our
SDSS constraints are affected by the prior even for the low penalty. Since the penalty is
proportional to P ′′(k), it cannot determine the power spectrum amplitude. Instead, the
allowed power spectrum amplitude is simply the minimal range probed by our simulations.

The CV part of our method involves reconstructing the optimal penalty, and thus the
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strength of the shape prior justified by the data. CV is essentially a method to reconstruct
the most favoured prior correlation between knots; since the prior is reconstructed from
the data, prior-driven constraints would not necessarily be a problem. However, here we
are finding that no particular prior is favoured over any other. Thus, the width of the
envelopes in Fig. 5.4 are actually arbitrary and should not be used to draw conclusions
about the amplitude of primordial fluctuations at Lyman-α scales.

We performed a number of checks to determine the cause of our failure to find an
optimal penalty. Changing our methodology for splitting the data into CV bins did
not affect the results. A flux power spectrum simulated in the same way as our BOSS
data, and using the same parameters, but with error bars of the same magnitude as the
current data showed no preference for a particular penalty, despite, as we shall see, there
being a well-defined optimal penalty for BOSS simulations. Fixing the thermal history
parameters γ and T0 to fiducial values was also sufficient to allow us to reconstruct a
penalty. Therefore statistical error and systematic uncertainty in the thermal history are
the significant factors preventing us from robustly reconstructing a minimally parametric
power spectrum shape from current data.

Constraints on the thermal history parameters are as follows. For the low penalty we
found 0.8 < γ < 1.7 at 1σ (recall that this upper limit is imposed as a physical prior),
while for the high penalty 0.2 < γ < 1.7. The corresponding constraint from Viel et al.
(2009) is γ = 0.63± 0.5. There is a noticeable decrease in the best-fitting value of γ with
an increased penalty (i.e. a stronger shape prior). We find it intriguing that we prefer
an inverted temperature-density relation with γ < 1.0 only for a high penalty, but the
constraints are so weak that we cannot draw any solid conclusions from them.

Constraints on the other parameters at 1σ were similar for both penalties. Those
for the low penalty were: 50000 > T0 > 35000 K, τeff = 0.33 ± 0.03, a slope of τS

eff =
3.3 ± 0.3, h = 0.7 ± 0.15 and ΩM = 0.25 ± 0.04. Finally, constraints on the noise
parameters largely reproduce the priors (listed in Sec 5.2.7). Our results mirror those
of Viel et al. (2009); we have therefore verified that those results are not biased by a
shape prior on the power spectrum. The constraints of this work and Viel and Haehnelt
(2006) on the IGM temperature, T0, prefer a larger central value than that obtained
by McDonald et al. (2005a). However, McDonald et al. (2005a) imposed a prior of
T0 = 20000 ± 2000K, derived from analysis of the flux probability distribution function
of high-resolution quasar spectra, so a direct comparison is not possible. For further
discussion of this intriguing result, we refer the interested reader to Section 5 of Viel
et al. (2009).

5.4.2 Simulated constraints from BOSS

Unlike current data, our simulated BOSS data shows a well-defined maximum in the CV
score. In Fig. 5.6 we show the constraints using this optimal penalty, together with our
input power spectrum. The input data is reconstructed very well, within an envelope of
roughly 0.4× 10−9; a precision comparable to that of a CV reconstruction from WMAP
data (Verde and Peiris, 2008). Even though our simulated power spectrum is nearly
scale-invariant, we do not recover a very high optimal penalty. This is a feature of our
approach; unless the data is noiseless, not all oscillations in the power spectrum will be
ruled out, and the optimal penalty is one which allows for them while being consistent
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Figure 5.6 Constraints on the power spectrum for simulated BOSS data. Black circles
show the positions of the knots, normalized to match the input power spectra (black line).
The orange region shows the top 68% of likelihoods from BOSS-quality Lyman-α data.
The grey region shows an extrapolation of the 1σ results from WMAP data to these
scales, and the grey dashed line shows its lower extent.
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with experimental noise.
Our method was designed to extract P (k), and so the penalty may not be entirely

optimal for the derivative. Even given this, our constraints of 0.7 < ns < 1.2 are still
comparatively weak. However, even this constraint could be useful to test for potential
systematics, or in combination with other data sets. One other important data set will
be the power spectrum of the cross-correlation of the flux (Viel et al. 2002; McDonald
and Eisenstein 2007; Slosar et al. 2009), which BOSS is expected to measure for the first
time. Estimating the power of combined constraints is beyond the scope of this Chapter,
but it could be considerable.

Fig. 5.7 shows the thermal parameters as reconstructed from BOSS data. We have
correctly reconstructed our input, as marked by the black dots. The reconstructed h
and ΩM were also consistent with their input values; ΩM = 0.27 ± 0.02 (input: 0.267),
h = 0.74± 0.05 (input: 0.72).

Marginalized constraints on the thermal and noise parameters are almost a factor of
two better for BOSS than for current data. We have assessed the impact that further
information about the thermal history of the IGM would have on cosmological constraints,
imposing priors corresponding to present and reasonable near-future measurements:

τeff = 0.36± 0.11 , τS
eff = 3.65± 0.25 ,

T0 = 23000± 3000K , γ = 1.45± 0.2 .

Constraints on the mean optical depth are from Kim et al. (2007). For the temperature of
the IGM, we follow Becker et al. (2011) and assume a future IGM study has determined
γ to the required precision.

The effect of the primordial power spectrum evolves with redshift in a different way
to T0 and γ. Hence, sufficiently accurate data can break degeneracies between them. For
τeff , the constraints from BOSS are already much tighter than our prior from Kim et al.
(2007), so this prior provides no additional information. Overall, therefore, the extra
information provided by our thermal priors has no significant effect on our reconstruction
of the primordial power spectrum.

5.5 Discussion

In this work, we have performed a minimally parametric reconstruction of the primordial
power spectrum, using Lyman-α data. This is an extension of McDonald et al. (2005a);
Viel and Haehnelt (2006), who used Lyman-α data to measure the amplitude and slope of
the primordial power spectrum on small scales, assuming that it had a power-law shape.
Using a highly prescriptive model to fit data, even if it is physically motivated, can hide
systematic effects, which may bias the recovered parameters in a manner which is hard
to detect unless the bias is extremely large. Further, it is vital to go beyond parameter
estimation and test the underlying model of the primordial power spectrum. This can
in principle be achieved with a minimally parametric reconstruction framework coupled
with a scheme for avoiding over-fitting the data.

Peiris and Verde (2010), who attempted such a reconstruction including Lyman-
α data, assumed that the power spectrum could be well approximated by an amplitude, a
power-law slope and its running across the scales probed by the Lyman-α forest. In their
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Figure 5.8 Comparison of our constraints. Blue is from current data; orange is our BOSS
forecast. The grey region shows part of a reconstruction using both the CMB data and
galaxy clustering measured by SDSS (Peiris and Verde 2010). The black squares show two
knots used in the earlier reconstruction, while the black error bar shows 1σ constraints
on power spectrum amplitude from parameter estimation (Viel et al. 2009). The dashed
line shows the extrapolated WMAP best-fitting power spectrum.

P(k) Reconstruction from Lyman-alpha 87



analysis this assumption was justified as the Lyman-α data was treated as a single point
and combined with CMB and galaxy survey data to reconstruct the power spectrum over
a wide range of scales.

However, the only likelihood function available up to now contained a power-law
assumption about the primordial power spectrum shape, making it impossible to treat
the Lyman-α data in a fully minimally parametric manner. We remedy this, performing a
large suite of numerical simulations to construct a new likelihood function. The primordial
power spectra thus emulated have considerable freedom in their shapes, specified by
cubic smoothing splines. This provides the first ingredient for a minimally-parametric
reconstruction scheme.

The second ingredient, as mentioned above, is to avoid fitting the noise structure
of the data with superfluous oscillations. To this end, our method uses cross-validation
(CV) to reconstruct the level of freedom allowed by the data. CV is a statistical technique
which quantifies the notion that a good fit should be predictive. Schematically, it is a
method of jackknifing the data as a function of a “roughness” penalty. A small penalty
thus allows considerable oscillatory structure in the power spectrum shape, while a larger
penalty specifies a smoother shape. This penalty term thus performs the same function
as a prior on the smoothness of the power spectrum. Jackknifing the data then tests
the predictivity of the smoothing prior, choosing as the optimal penalty the one that
maximizes predictivity. For technical details see Section 5.2.1.

For the Lyman-α current data from SDSS (McDonald et al. 2006), CV yields no
significant preference for any particular penalty. In the context of CV, this indicates that
no penalty is more predictive or favoured over any other; in other words, the data are
not sufficiently powerful to accurately reconstruct the strength of the shape prior.

The minimally parametric method thus provides no evidence for features in the power
spectrum in the current data, and our results are fully consistent with a scale-invariant
power spectrum. The best-fitting amplitude of the power spectrum is, as in previous work,
slightly higher than that extrapolated from WMAP (Komatsu et al. 2011). However,
because the data do not contain sufficient statistical power to reconstruct the power
spectrum shape, our error bars are extremely large. An analysis that uses different
statistical techniques, such as Bayesian evidence (Jeffreys 1961), could provide further
insight, but is beyond the scope of this Chapter.

In the not so distant future, the first data from a new Lyman-α survey, BOSS (Schlegel
et al. 2009), will be made available. We simulate a flux power spectrum and covariance
matrix for BOSS, with an 80 fold increase in statistical power over the current data. In
this case we successfully reconstruct the power spectrum, using CV to find an optimal
penalty. The parameters we extract using CV are completely consistent with the inputs
to the simulation, and the resulting constraints are comparable to those achieved by
performing CV reconstruction using WMAP data (Verde and Peiris 2008). We verify
that statistical error is the factor preventing us from finding an optimal penalty for
current data by simulating a power spectrum identical to BOSS, but with wider error
bars, again failing to find an optimal penalty.

Finally, we show that adding plausible future data on the smallscale thermodynamics
of the IGM to BOSS does not significantly improve constraints on the primordial power
spectrum. The simulated BOSS data are sufficiently powerful on their own to break
degeneracies between the IGM and cosmological parameters, and are limited by statistical
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error rather than systematic uncertainty.
We have not considered the impact of the information BOSS is expected to provide on

the transverse flux power spectrum. This will probe larger scales than our current work,
offering a longer baseline and thus better sensitivity to the overall shape of the power
spectrum. However, applying the present technique to the improved data set would
require simulations probing much larger scales, hence greatly increasing the numerical
requirements.

Fig. 5.8 shows the constraints from BOSS in comparison to those Peiris and Verde
(2010) obtained by reconstructing the power spectrum using the CMB and the matter
power spectrum from SDSS. By combining BOSS data with other probes (Seljak et al.
2005, 2006), such as galaxy clustering, the CMB, and the transverse flux power spectrum,
we will be able to accurately reconstruct the shape of the power spectrum on scales of
k = 0.001− 3 Mpc−1, probing ten e-folds of inflation.

P(k) Reconstruction from Lyman-alpha 89



90



“On two occasions I have been asked [by members of
Parliament]: ‘Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?’
I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.”

– Charles Babbage

6
Massive Neutrinos and the Non-linear Matter

Power Spectrum

Abstract

We perform an extensive suite of N-body simulations of the matter power spectrum, in-
corporating massive neutrinos in the range Mν = 0.15 − 0.6 eV, and probing deep into
the non-linear regime. We compare our results with the widely used HALOFIT approxi-
mation, and find that in the strongly non-linear regime it significantly over-predicts the
suppression due to the free-streaming of neutrinos. The maximal discrepancy occurs
at k ∼ 1h Mpc−1, and is at the level of 2 − 5% of the matter power spectrum. Most
published constraints are not affected, as they have used HALOFIT only in the linear or
mildly non-linear regime. However, future galaxy and weak lensing surveys will probe
these scales, and will also require extremely accurate theoretical predictions of the matter
power spectrum in order to put robust constraints on the neutrino mass.

6.1 Introduction

A variety of solar, atmospheric, reactor and accelerator neutrino experiments have firmly
established the existence of neutrino flavour oscillations, implying that neutrinos have
at least two non-zero mass eigenstates (Becker-Szendy et al., 1992; Fukuda et al., 1998;
Ahmed et al., 2004). These experiments yield a lower limit on the sum of the neutrino
masses; Mν > 0.05 eV. Classical β-decay experiments provide an upper limit on the mass
of the electron neutrino of 2.2 eV (Lobashev, 2003), while future experiments may reach
constraints of 0.2 eV (Wolf and KATRIN collaboration, 2010). However, particle physics
constraints on the masses of the other neutrino species are much weaker; . 200 keV for
the muon neutrino (Assamagan et al., 1996) and . 20 MeV for the tau neutrino (Barate
and ALEPH collaboration, 1998).
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To distinguish the neutrino mass hierarchy, which is of particular interest when for-
mulating theories of particle physics beyond the standard model, we need far stronger
constraints on the total neutrino mass. Fortunately, these can be obtained by weighing
the cosmic neutrino background. Simply requiring Ων < 1 and fixing the Hubble constant
implies Mν . 60 eV (Gershtein and Zel’dovich, 1966). The cosmic microwave background
(CMB; e.g. Komatsu et al. (2011)) and measurements of the matter power spectrum pro-
vide more stringent constraints, presently around Mν . 0.6 eV (Reid et al., 2010). The
sensitivity of the matter power spectrum to neutrino mass comes about because the
free-streaming of the neutrino background suppresses the growth of structure. On large
scales, where the growth of structure is still linear, this effect is relatively straightforward
to quantify (see, e.g. Bond et al. (1980); Ma and Bertschinger (1994)) and thus can be
done using standard Boltzmann codes (Lewis et al., 2000). On smaller scales it is also
necessary to account for the non-linear growth of structure. This is best studied using
numerical simulations, but is often approximated analytically to facilitate marginalizing
over a wide range of cosmological parameters.

One such analytic approximation, widely used in recent years, is HALOFIT (Smith
et al., 2003). HALOFIT models the non-linear matter power spectrum by assuming that
the growth of structure is due to a combination of the density structure of individual
DM haloes and the clustering of these DM haloes relative to each other. It has been
calibrated against a wide range of CDM simulations, superseding earlier prescriptions
based on the stable clustering hypothesis (Hamilton et al., 1991; Peacock and Dodds,
1996). HALOFIT is claimed to be accurate to . 5 − 10% (Smith et al., 2003); however,
it has not been calibrated for non-zero neutrino masses. See also the purely analytic
description of Abazajian et al. (2005).

Future matter power spectrum surveys aim to make measurements accurate to a few
percent. At this level of precision, systematic error from theoretical predictions must be
tightly controlled. Fortunately, simulation technology has advanced to the point where
it is possible to model the impact of neutrinos to these accuracies, despite the difficulties
presented by the large thermal dispersion of light neutrinos (Brandbyge et al., 2008;
Viel et al., 2010). It appears thus timely to directly compare HALOFIT predictions of
the non-linear matter power spectrum with full numerical simulations including massive
neutrinos. For this purpose we use the recently developed version of the Tree-SPH code
GADGET-3 (Viel et al., 2010), which can include massive neutrinos. We will discuss our
methods in Section 6.2, present our results in 6.3, and conclude in Section 6.4.

6.2 Modelling the matter power spectrum

There has been significant work over the years developing numerical simulations and nu-
merically calibrated fitting formulae to model the non-linear matter power spectrum. In
Section 6.2.1 we will review the predicted effect of neutrinos in linear theory. Then in
Section 6.2.2 we will discuss the strategies used for simulating the effect of massive neutri-
nos, describing both particle and grid-based methods. In Section 6.2.3, we will summarise
HALOFIT, a widely used analytic model for the non-linear matter power spectrum (Smith
et al., 2003). Finally, Section 6.2.4 gives details of our numerical simulations.
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6.2.1 The effect of massive neutrinos in linear theory

In this Section, we will briefly review linear theory, which is discussed in more depth
in, for example Kolb and Turner (1990); Bond et al. (1980); Eisenstein and Hu (1999);
Lesgourgues and Pastor (2006) (and references therein). Neutrinos in the very early
universe are relativistic and tightly coupled to the primordial plasma. They decouple
while still relativistic and then redshift adiabatically. Once non-relativistic, massive,
weakly-interacting neutrinos behave qualitatively as a species of hot/warm dark matter,
suppressing fluctuations on scales smaller than their thermal free-streaming length.

This suppression has a distinctive shape in the linear regime. Consider neutrinos with
a total energy density Ων and contribution to the dark matter fν , given by

Ων =
Mν

93.8 h2eV
, fν =

Ων

ΩM

, (6.1)

where ΩM is the present day matter density, Mν is the total neutrino mass in all species,
and h is the Hubble constant.

The residual thermal velocity of the neutrinos at redshift z is

vth ≈ 150(1 + z)

[
1 eV

Mν

]
km/s . (6.2)

By analogy with the Jeans length, we can define a free-streaming scale

kFS =

√
2

3

H(t)a(t)

vth(t)
. (6.3)

Neutrinos cannot cluster on scales smaller than kFS, and the matter power spectrum is
suppressed by a constant factor proportional to the neutrino energy density, fν . The
Boltzmann equation can be solved numerically to show that the fractional change in the
power spectrum for fν < 0.07 is

δP

P
≈ −8fν . (6.4)

On larger scales, k < kFS, the neutrinos have free-streamed only for a portion of the cosmic
history, and so there is a smaller amount of suppression. The largest scales at which the
neutrinos have an effect is defined by the wave-number for which they free-streamed only
immediately after becoming non-relativistic

knr ∼ 0.018

√
ΩM

[
Mν

1 eV

]
h Mpc−1 . (6.5)

Today, neutrinos in the observationally acceptable range have knr ∼ 10−3h Mpc−1, placing
the free-streaming effect at the scales probed by galaxy and Lyman-α measurements of the
matter power spectrum. A number of bounds on the neutrino mass have been published
using this effect. See, for example Elgaroy et al. (2002); Seljak and Slosar (2006); Tegmark
et al. (2006); Mantz et al. (2010); Reid et al. (2010).
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6.2.2 Incorporating massive neutrinos into numerical simula-
tions

Numerical simulations incorporating massive neutrinos have a long history (Klypin et al.,
1993; Ma and Bertschinger, 1994), but only recently has the perturbative effect of massive
neutrinos as a component in a mainly ΛCDM universe been examined (Brandbyge et al.,
2008; Brandbyge and Hannestad, 2009, 2010; Viel et al., 2010). We shall build on the work
of Viel et al. (2010), who incorporated massive neutrinos into GADGET-3, an extended
version of the code described in Springel (2005). The methods used to simulate massive
neutrinos have been described in detail in Viel et al. (2010). Here we shall briefly review
the important points, and refer to that work for details and validation tests.

Particle-based simulations (Brandbyge et al., 2008) model neutrinos as a separate low-
mass particle species, with an initial distribution identical to that of the dark matter, but
significant thermal dispersion. The simulation box is evolved under gravity as normal,
except that the short-range tree force is not computed for the neutrino component, greatly
increasing the speed of the simulations. This does not significantly impact accuracy,
because their thermal dispersion prevents neutrinos clustering on small scales.

The neutrino species is not allowed to alter the timestep of the evolution. Thus, the
timestepping does not rigourously obey the Courant conditions for the neutrinos. The
effect of this approximation on results was examined by Brandbyge et al. (2008) and
found to be negligible. This is because structure growth is being driven by the dominant
cold dark matter component, so it is sufficient to use the timestep associated with this
species.

One potential problem with particle based simulations is thermal shot noise from
the finite sampling of the neutrino distribution (Wang and White, 2007), especially for
the higher thermal velocities encountered at high redshift or for particularly low mass
neutrinos. We deal with this by explicitly checking the effect of shot noise, and increasing
the neutrino particle number should it be non-negligible.

Alternatively, the effect of neutrinos on the dark matter can be modelled by adding
their gravitational force to that of the dark matter on the particle-mesh grid (Brand-
byge and Hannestad, 2009). In this grid-based approach, the neutrinos are not followed
directly, and their clustering is assumed to be well-described by linear theory. This al-
lows us to model the effects of neutrinos on the non-linear growth in the dark matter,
while avoiding shot noise and the need to deal directly with large thermal velocities.
However, because the neutrinos are evolved using linear theory, grid-based simulations
neglect any non-linear evolution in the neutrino component itself, including backreaction
from non-linearities in the dark matter.

One limitation of both strategies is that the effective mass of the neutrino is constant
throughout the simulation. At high redshift neutrinos may be partially relativistic, de-
creasing their effective mass. If the initial redshift is too large, simulations such as ours
which do not account for this effect will over-estimate the suppression due to neutrinos by
a constant factor in the linear regime at high redshift. This places an upper bound on the
initial redshift which depends on the neutrino mass. Our simulations aim to saturate this
bound, so that perturbations are initially in the linear regime as far as possible. Some
mechanism for incorporating relativistic corrections to our neutrinos could be useful for
future work.

94 The Matter Power with Neutrinos



6.2.3 The HALOFIT model for the non-linear matter power spec-
trum

HALOFIT is a widely used formula for estimating non-linear growth from a given linear
theory power spectrum. It has been calibrated on a wide range of numerical simulations
(Smith et al., 2003), without, however, explicitly incorporating neutrinos. In this Section
we will give a brief summary; for full details we refer to Smith et al. (2003).

HALOFIT models non-linear growth in the spirit of the stable clustering hypothesis
(Hamilton et al., 1991; Peacock and Dodds, 1996). It assumes that the non-linear growth
deep in the nonlinear regime is independent of the details of the linear power spectrum; a
reflection of the principle that the growth of halos should depend only on the local physics
at the scale of the halo, and not the internal details of the pre-collapse material, or the
larger-scale clustering of matter. Furthermore, it assumes that all redshift information is
contained within the linear growth function. The non-linear correction is assumed to be a
function of the linear power spectrum at the present, and not to depend on the historical
growth rate. Both of these approximations have been shown to be reasonably accurate for
cold dark matter by the success of fitting formulas inspired by them. However, neutrinos
may evolve separately to the CDM, meaning that the combined power spectrum should
strictly depend on non-linear growth in both components.

The ideas of stable clustering are not the only possible approach. Saito et al. (2008)
proposed a formula based on one-loop perturbation theory, while Lesgourgues et al. (2009)
have modelled the effects of neutrinos with an approach based on a time renormalisation
group flow. However, these formulae are designed for when growth is still only weakly
non-linear, k < 0.3h Mpc−1, while HALOFIT has the advantage that it may be extended
deep into the non-linear regime.

HALOFIT splits the non-linear power spectrum into two components; a quasilinear
term ∆2

Q, which is analogous to the halo correlation term, and a non-linear term ∆2
H.

The dimensionless power spectrum is defined as

∆2 =
k3P (k)

2π2
. (6.6)

We can define the non-linear scale, kσ, to be the wavenumber where the perturbation
amplitude becomes greater than unity. Non-linear growth will be important when k > kσ,
with an amplitude supposed to depend on y = k/kσ, the slope of the power spectrum,
and the matter fraction. The form of ∆H used by HALOFIT is

∆2
H(k) =

∆2′
H(k)

1 + µ(n)/y + ν(n)/y2
(6.7)

∆2′
H(k) =

a(n)y3f1(Ω)

1 + b(n)yf2(Ω) + [c(n)f3(Ω)y]3−γ(n)
(6.8)

Here 3 + n =
d ln σ2

d ln R

∣∣∣∣
k=kσ

. (6.9)

n is the effective spectral index of the power spectrum, and a, b, c, µ and ν are functions
of n. Note that ν(n) is not related to neutrinos. f1,2,3 are functions of ΩM , the total
matter energy density. We refer readers interested in the exact values of these functions
to Appendix C of Smith et al. (2003).
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As well as modelling the non-linear collapse of halos, HALOFIT incorporates a quasi-
linear term, for the regime where non-linear growth has started, but does not yet domi-
nate. This is given as an enhancement to the linear power spectrum, and incorporates an
exponential cut-off, ensuring it is negligible on small scales. The form of the quasilinear
term is

∆2
Q(k) = ∆2

L(k)

[
(1 + ∆2

L(k))β(n)

1 + α(n)∆2
L(k)

]
exp[−f(y)] , (6.10)

where β and α are again functions of n and f(y) = y/4+y2/8. ∆2
L is the dimensionless lin-

ear theory power spectrum. For the values of these functions, we again refer to Appendix
C of Smith et al. (2003). The total power is given by summing the two contributions

∆2
NL = ∆2

Q + ∆2
H . (6.11)

Massive neutrinos suppress the linear power spectrum, increasing the non-linear scale
and retarding non-linear growth. HALOFIT estimates the magnitude of this effect, , but
neglects any effect of the neutrinos on the process of halo collapse, as well as the effects
of non-linear growth on the neutrinos themselves.

6.2.4 The numerical simulations

Our fiducial simulations have 5123 dark matter particles in a box of 150Mpc h−1. We
tested Mν = 0.15 eV, 0.3 eV and 0.6 eV, running 4 simulations for each value of Mν with
different structure seeds, to suppress cosmic variance. To check we had correctly sampled
the large scale modes, to explore the linear regime and to compare directly to Viel et al.
(2010), we ran simulations with box sizes of 512Mpc h−1. To facilitate comparison with
Brandbyge et al. (2008) and Viel et al. (2010), our fiducial cosmology had ΩM = 0.3, a
spectral index ns = 1.0, the Hubble parameter h = 0.7, and amplitude of the primordial
power spectrum As = 2.27× 10−9. This implies that a simulation without neutrinos has
σ8 = 0.87 at z = 0, but a simulation with Mν = 0.3 eV has σ8 = 0.8. The effects of
varying the cosmology was checked with three pairs of grid-based simulations. Each pair
had one simulation without neutrinos, and one with Mν = 0.6 eV. Both simulations in
each pair had one of As = 2.0× 10−9, ns = 0.9 or h = 0.75.

Grid-based simulations used a grid of 5123. The initial redshifts of our simulations
were zi = 99 for Mν = 0.6 eV, zi = 49 for Mν = 0.3 eV and zi = 24 for Mν = 0.15 eV,
for the reasons discussed in Section 6.2.2. Our initial conditions were generated using
the Zel’dovich approximation, and the linear theory power spectrum as calculated by
CAMB (Lewis et al., 2000). The transfer function used for our cold dark matter (CDM)
particles was a weighted average of the linear theory transfer functions for CDM and
baryons, to account for the slight difference between them. Neutrinos and CDM had
identical initial random phase information, to simulate adiabatic initial conditions. The
realisation of neutrino structure for the grid-based simulations was identical to that in
the initial conditions for the particle simulations, and the power spectrum was given by
linear theory, calculated using CAMB.

To check the numerical convergence of our results, we ran two simulations with 2×6403

particles; one without neutrinos, and one with Mν = 0.6 eV. The effect of shot noise on
the particle based simulations was checked with two simulations using 10243 neutrino
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Figure 6.1 The difference in the matter power spectrum at z = 0 (Left) and z = 1 (Right)
between simulations with and without massive neutrinos (Mν = 0.3 eV). Solid green lines
show results for simulations using particles, while dotted red lines show results from grid-
based simulations. The black dashed lines show the predicted effect from linear theory.
Box size was 150Mpc h−1, and the initial redshift was z = 49.

particles, one with Mν = 0.15 eV, and one with Mν = 0.6 eV. The impact of the
resolution of the particle mesh grid on the grid-based simulations was checked by running
one simulation with a 10243 grid.

We checked the effect of baryonic physics with two grid-based simulations incorporat-
ing baryons, which modelled radiative cooling and star formation using the default model
of GADGET-3, described in Katz et al. (1996). Recently van Daalen et al. (2011) found
that AGN feedback can affect the matter power spectrum at the level of a few percent for
k ≈ 2h Mpc−1. We did not include this effect; however, they found it to be independent
of cosmological parameters, and thus presumably neutrino mass, so it should not affect
our results.

6.3 Results

Figure 6.1 compares our results to linear theory for a neutrino mass of Mν = 0.3 eV and a
box size of 150Mpc h−1. The numerical results shown are the average from 4 simulations
using different structure seeds. As discussed before, linear theory predicts an increasing
suppression culminating in an almost flat plateau on small scales. In the numerical
simulations, the flat plateau is replaced by a dip, with a minimum at k ∼ 1h Mpc−1.
This distinctive “spoon shape” was also found by Brandbyge et al. (2008) and Viel et al.
(2010).

We can understand this shape by considering the effect of neutrinos on non-linear
growth. The suppression caused by massive neutrinos delays the onset of non-linear
growth and increases the wave-number of the non-linear scale. Between the non-linear
scale for the simulation without neutrinos and the non-linear scale for the simulation
incorporating neutrinos, the suppression will be enhanced by the absence of non-linear
growth. On the smallest scales, the non-linear growth lost as a consequence of the mas-
sive neutrinos becomes an ever-smaller fraction of the total, and the extra suppression
decreases. Eventually non-linear growth comes to dominate the linear effect, and the
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Figure 6.2 The effect of massive neutrinos on the matter power spectrum for a neutrino
mass of Mν = 0.3 eV. Solid lines show the difference between simulations with and without
massive neutrinos, for both 512Mpc h−1 (red) and 150Mpc h−1 (orange) boxes. Initial
redshift was 49. The blue dashed line shows the estimated difference using HALOFIT,
while the black dashed line shows the prediction from linear theory.
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Figure 6.3 The effect of massive neutrinos on the matter power spectrum for a neutrino
mass of Mν = 0.6 eV. Solid lines show the difference between simulations with and without
massive neutrinos, for both 512Mpc h−1 (red) and 150Mpc h−1 (orange) boxes. Initial
redshift was 99. The blue dashed line shows the estimated difference using HALOFIT,
while the black dashed line shows the prediction from linear theory.
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Figure 6.4 The effect of massive neutrinos on the matter power spectrum for a neutrino
mass of Mν = 0.15 eV. Solid lines show the difference between simulations with and with-
out massive neutrinos, for both 512Mpc h−1 (red) and 150Mpc h−1 (orange) boxes. Initial
redshift was 24. The blue dashed line shows the estimated difference using HALOFIT,
while the black dashed line shows the prediction from linear theory.
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suppression is less than predicted by linear theory.

Our results show a slightly greater maximal suppression than found by Viel et al.
(2010) for their fiducial 60Mpc h−1 boxes. This is due to our use of a larger box; a
60Mpc h−1 box, while preferred for the Lyman-α forest, does not include the largest
non-linear scales at z = 0, and so misses some of the suppression of the matter power
spectrum. Furthermore, we have used a somewhat higher initial redshift than that work,
which also contributes.

As mentioned in Section 6.2.4, we performed checks for numerical convergence. Our
150Mpc h−1 box simulations are converged to the grid scale of k = 7 h Mpc−1. The effect
of resolution, baryons and, for grid-based simulations, the resolution of the particle-mesh
grid, all affected the matter power spectrum at the level of 1−2% on these scales. We also
simulated two different box sizes, 512 and 150Mpc h−1, which were in good agreement on
the largest scales probed by the smaller box.

6.3.1 Particle and Grid Methods

Figure 6.1 shows comparable output for particle and grid-based simulations. There is a
somewhat smaller suppression in the particle simulations, particularly near the scales of
greatest suppression, which scale roughly linearly in Mν .

This discrepancy has again a simple physical explanation; structure growth in the
dark matter induces structure growth in the neutrino component, as the less energetic
neutrinos fall into the gravitational wells created by the dark matter. This decreases the
gap between the fluctuations of the neutrinos and those of the dark matter, leading to
a reduced neutrino suppression. Essentially this is a backreaction effect, where the dark
matter drags the neutrinos with it, and because it results in part from the non-linear
growth, it is not being fully accounted for by linear theory neutrinos.

Because this effect is important at the accuracy we wish to achieve, our main results
(Figures 6.2, 6.3 and 6.4) use simulations with particles. We have run simulations with a
far higher neutrino number to check explicitly that neutrino shot noise has only a minor
impact at the relevant scales, for 150Mpc h−1 boxes.

6.3.2 Comparison to the HALOFIT model for the non-linear evo-
lution of the matter power spectrum

Figures 6.2, 6.3 and 6.4 show the main results of this Chapter. Each Figure shows the
suppression of the matter power spectrum caused by massive neutrinos at four redshift
snapshots; z = 0, 0.5, 1 and 2 and compares it to the predicted effect from HALOFIT.
Figure 6.2 shows Mν = 0.3 eV, Figure 6.3 has Mν = 0.6 eV and finally Figure 6.4 has
Mν = 0.15 eV.

HALOFIT clearly over-predicts the suppression of the matter power spectrum due to
massive neutrinos in the non-linear regime. The cause is similar to that discussed in
Section 6.3.1; HALOFIT includes the neutrinos only through the effect of linear theory
neutrinos on the non-linear scale, and neglects any back-reaction from the dark matter.
This interpretation is confirmed because HALOFIT agrees very well with the grid-based
simulations.
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The largest discrepancy, of 2 − 5%, occurs at k ∼ 1h Mpc−1. The location of the
maximal suppression in the numerical simulation moves to larger scales at lower redshifts,
an effect which is not captured by HALOFIT, although it was present to some extent in
our grid-based simulations. Furthermore, the amplitude of the suppression decreases with
redshift, which is to be expected from our discussion in 6.3.1; as non-linear growth occurs
in the dark matter more neutrinos fall into the gravity wells. A cross-over redshift occurs
at z = 1; on very small scales the suppression here is equal to that of linear theory, while at
lower redshifts it is less. Note also that in the quasilinear regime, 0.05 < k < 0.2h Mpc−1,
the simulations clearly agree with HALOFIT rather than linear theory, at redshifts where
linear theory conflicts with HALOFIT. The dependence of our results on Mν is well-
captured by a linear relation, with the maximal suppression for a given redshift being
proportional to fν , but dependent on redshift.

We have performed some simulations with parameters varied from our fiducial cos-
mology, as described in 6.2.4. The results of these simulations were similar to those for
our fiducial cosmology, and agree with the results discussed in Viel et al. (2010). As in
that work, the effect of ΩM can be incorporated wholly through fν .

6.4 Discussion

We have performed a suite of detailed simulations of the matter power spectrum, incor-
porating the effects of massive neutrinos using both particle and grid-based methods, but
focussing on particle simulations. We have compared our results to those predicted by
the widely used HALOFIT formula.

Observational constraints on the neutrino mass prior to this work have either used
linear theory (Reid et al., 2010) or HALOFIT to estimate the effect of massive neutrinos.
Thomas et al. (2010) used photometric redshifts at z = 0.45 − 0.65, on scales k .
0.2h Mpc−1. This is in the quasilinear regime, where we find HALOFIT to be accurate.
Hence our results should not significantly change their published constraints.

However, while HALOFIT performs well on quasilinear scales, in the fully non-linear
regime it significantly over-predicts the suppression due to the neutrino mass. Further-
more, it fails to capture redshift dependence in the amplitude and scale of the peak
neutrino suppression. Our improved exploration of the non-linear regime will certainly
be of importance for future galaxy (Wang et al., 2005; Schlegel et al., 2009), CMB lensing
(Gratton et al., 2008), and weak lensing (Beaulieu et al., 2010) surveys. Abazajian et al.
(2011) have published an overview of forecast constraints on the neutrino mass, many of
which reach the Mν ∼ 0.1 eV range. This will require an accuracy of around a percent in
theoretical predictions of the power spectrum, making the use of a more precise formula
than HALOFIT essential. In future work, we will develop an improved fitting formula for
the non-linear regime aimed specifically at these future surveys.
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“He first, I following; till my straining sense
Glimpsed the bright burden of the heavenly cars
Through a round hole; by this we climbed and thence
came forth, to look once more upon the stars”

– Inferno, Canto XXXIV, by Dante Alighieri

7
Conclusions

7.1 Summary

In this Thesis, I have discussed a few ways to use cosmological information to constrain
fundamental physics. In Chapters 3 and 4, I looked at inflation, while in Chapters 5 and
6, I examined two aspects of the growth of structure.

Chapter 3 examined predictions for the tensor-scalar ratio r from single field models
of inflation with a polynomial potential. The motivation for this work was a then-recent
paper (Boyle et al., 2006) claiming that a simple notion of fine-tuning, together with a few
assumptions about the inflaton potential, could be used to imply that single field inflation
models predicted an observable value for r. I examined this claim further, finding it was
sensitive both to the assumptions about the potential and the definition of fine-tuning.
Thus, an observable value of r should not be regarded as a solid prediction of single-field
inflation.

One of the definitions of fine-tuning used in Chapter 3 was the number of inflaton
trajectories which overshot the inflationary region. The need to make the initial ki-
netic energy of the inflaton small to avoid this is a common problem in inflation, called
the overshoot problem. D-brane inflation provides limits, derived from the fundamental
physics, on the allowed initial kinetic energy, and on the maximal range of the inflaton.
In Chapter 4, I examined the restrictions these limits place on the space of initial condi-
tions, and the proportion of overshoot trajectories. I found that ruling out essentially all
such trajectories, and “solving” the overshoot problem requires a tightening of the bound
on the initial kinetic energy by several orders of magnitude. This is because the tight
restrictions on the inflaton range make overshoot more likely, and this effect dominates
the decrease in overshoot from bounds on the initial kinetic energy.

In Chapter 5, I made use of the Lyman-α forest to constrain the shape of the pri-
mordial power spectrum. In this work, I did not assume any particular model for the
generation of the primordial fluctuations, instead performing a minimally parametric
model-independent reconstruction of the power spectrum. This work is a consistency
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check of the standard model; if the data is consistent with a power law power spectrum,
my more general formalism should recover a range of reconstructions containing it. I
found that current data is not sufficient to strongly constrain the power spectrum in a
minimally parametric way. However, my forecasts indicated that future data should be
able to.

Finally, in Chapter 6, I ran numerical simulations to measure the effect of massive
neutrinos on the matter power spectrum. I found that the suppression of power they
cause in the non-linear regime differs significantly from previous estimates. Future mea-
surements of the power spectrum on small scales will require this information for accurate
neutrino mass constraints.

7.2 Outlook

At present, new work on the inflationary potential is in danger of almost immediate
obsolescence by results from the Planck satellite. While there are continuing efforts to
understand and complete string theory motivated models of inflation, my future work
will be directed more towards constraints from large scale structure. In the near future, I
intend to use the simulations discussed in Chapter 6 to create a precise fitting formula for
the effect of neutrinos on the matter power spectrum in the non-linear regime, suitable
for creating forecasts for upcoming surveys.

My work in Chapter 5 used the power spectrum of the Lyman-α flux along the line
of sight to the quasar to probe structure on small scales. However, this is not the only
way of extracting information from the Lyman-α forest. With sufficient quasar spectra,
it is possible to obtain valuable cosmological information from the cross-correlation func-
tion; the correlation between absorption in different quasar sightlines. This measurement
probes the growth of structure in the z = 2 − 4 range on much larger scales than the
line of sight Lyman-α power spectrum. In particular, it probes the scales of the Baryon
Acoustic Oscillations (BAO) at ∼ 150Mpc h−1. BAO are the signature in the late time
matter power spectrum of the sound speed of oscillations in the gas of the early Universe,
and take the form of a distinctive peak. This location of this peak tracks the evolu-
tion of the Hubble flow, providing a universal standard ruler until the present day. This
standard ruler is one of the strongest probes of dark energy available. BAO have already
been detected at redshift z < 1 using galaxy data from the SDSS galaxy clustering survey
(Eisenstein et al., 2011), and making a similar measurement in the Lyman-α forest is an
important aim of the BOSS survey (Schlegel et al., 2009). The first steps towards this
were recently taken by the measurement of the cross-correlation function by Slosar et al.
(2011).

Extracting the information from this new statistic will require new simulations with
a very large dynamic range, that can simultaneously capture the BAO scale and at least
marginally resolve the Jeans scale in order to model the IGM. In collaboration with M.
Viel and M. Haehnelt, I intend to perform such simulations, investigating precisely the
signal produced in the cross-correlation function by BAO. It has recently been found that
large-scale structure, by probing the peaks of the density distribution, is sensitive to any
deviation of the primordial statistics from Gaussianity (Dalal et al., 2008). The Lyman-
α forest cross-correlation probes the density distribution excluding peaks, and so analytic
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estimates suggest that it should be sensitive to non-Gaussianity in a complementary way
(Desjacques and Seljak, 2010). I intend to include non-Gaussianity in simulations of the
cross-correlation function, in an effort to determine the effect more precisely, and discover
how it is affected by degeneracies with other parameters.

The study of the cross-correlation power spectrum from the Lyman-α forest is presently
in its infancy, and many more applications are expected. Together with the new infor-
mation shed by the Planck satellite on inflation and the many upcoming opportunities
to constrain the neutrino mass, the outlook for constraining fundamental physics from
cosmology is very promising.

Conclusions 105



106



Bibliography

Aarseth, S. J.: 2003, Gravitational N-Body Simulations, Cambridge University Press,
ADS

Abazajian, K., Switzer, E. R., Dodelson, S., Heitmann, K., and Habib, S.: 2005, Phys.
Rev. D 71(4), 043507, arXiv:astro-ph/0411552, ADS

Abazajian, K. N., Calabrese, E., Cooray, A., De Bernardis, F., Dodelson, S., Friedland,
A., and et al.: 2011, arXiv:1103.5083 , ADS

Abel, T. and Haehnelt, M. G.: 1999, Ap. J. Letters 520, L13, arXiv:astro-ph/9903102,
ADS

Agarwal, N. and Bean, R.: 2009, Phys. Rev. D79, 023503, arXiv:0809.2798

Ahmed, S. N., Anthony, A. E., Beier, E. W., Bellerive, A., Biller, S. D., Boger, J., Boulay,
M. G., Bowler, M. G., Bowles, T. J., Brice, S. J., Bullard, T. V., and Chan, Y. D.:
2004, Phys. Rev. Lett. 92(18), 181301, arXiv:nucl-ex/0309004, ADS

Alabidi, L.: 2007, JCAP 0702, 012, arXiv:astro-ph/0608287

Alabidi, L. and Lidsey, J. E.: 2008, Phys. Rev. D78, 103519, arXiv:0807.2181

Alabidi, L. and Lyth, D. H.: 2006, JCAP 0608, 013, arXiv:astro-ph/0603539

Albrecht, A., Brandenberger, R., and Matzner, R.: 1987, Phys. Rev. D 35(2), 429

Albrecht, A. and Steinhardt, P. J.: 1982, Phys. Rev. Lett. 48(17), 1220

Alexander, S. H. S.: 2001, Phys. Rev. D65, 023507, arXiv:hep-th/0105032

Alpher, R. A., Bethe, H., and Gamow, G.: 1948, Phys. Rev. 73, 803, ADS

Amarie, M., Hirata, C., and Seljak, U.: 2005, Phys. Rev. D72, 123006, arXiv:astro-
ph/0508293

Anderson, G. W. and Castano, D. J.: 1995, Phys. Lett. B347, 300, arXiv:hep-ph/9409419
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E., Mao, S., Miralda-Escudé, J., Wambsganss, J., Gaudi, B. S., Gould, A., and Dong,
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