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Superior Pinning Properties in

Nano-Engineered YBa2Cu3O7−δ

Giorgio Ercolano

Large electrical current transport in the absence of energy losses is the

key factor in commercial applications of high temperature supercon-

ductors. This thesis demonstrates an easy and inexpensive bottom-up

technique to produce self assembled nanorods, segmented nanorods

as well as nanoparticles in YBa2Cu3O7−δ thin films grown by pulsed

laser deposition. The structural and morphological characteristic of

the pinning landscapes produced are investigated and correlated to

their effects on the superconducting properties of the thin films.

In particular two pinning landscapes are investigated: Ba2YNbO6

nanorods are grown in YBa2Cu3O7−δ thin films using a Ba2YNbO6

doped YBa2Cu3O7−δ pulsed laser deposition targets and

Ba2(Y/Gd)(Nb/Ta)O6 segmented nanorods together with (Y/Gd)2O3

nanoparticles are grown in (Y/Gd)Ba2Cu3O7−δ thin films using a

Ba2YNbO6 + Gd3TaO7 doped YBa2Cu3O7−δ pulsed laser deposition

targets.

The Ba2YNbO6 + YBa2Cu3O7−δ is deeply characterised and the ef-

fects of the deposition parameters are analysed. Ba2YNbO6 is demon-

strated to be an interesting novel pinning addition capable to increase

the critical current and to reduce the YBa2Cu3O7−δ critical currents

angular dependencies anisotropy.

The Ba2YNbO6 + Gd3TaO7 + YBa2Cu3O7−δ is found to produce a

new complex pinning landscape extremely effective. At high fields

the synergetic combination of the different defects typology is shown



to generate an interesting new feature in the critical current angular

dependencies.

Chapter 1 is an introduction to superconductivity, the fundamentals of

the field are briefly presented. In chapter 2 the discussion in focused on

pinning in high temperature superconductors. Cuprates and in par-

ticular YBa2Cu3O7−δ are presented. The pinning phenomenon and

the practical pinning engineering in thin films is also discussed in this

chapter. Chapter 3 describes the thin films preparation methods and

the characterisation techniques used in the research work. Chapter 4

and 5 are focused on the Ba2YNbO6 doped YBa2Cu3O7−δ thin films.

Chapter 4 is an introduction to Ba2YNbO6 doped YBa2Cu3O7−δ, the

preliminary results obtained on Ba2YNbO6 doped YBa2Cu3O7−δ thin

films are shown in this chapter. The crystalline structure, the mor-

phology and the superconducting properties of thin films deposited

adopting different deposition parameters are analysed and discussed

in chapter 5. In chapter 6 the new complex pinning landscape of

Ba2(Y/Gd)(Nb/Ta)O6 and (Y/Gd)2O3 in (Y/Gd)Ba2Cu3O7−δ is pre-

sented. Concluding remarks on the research described in the work

ends the thesis in a brief final chapter 7.
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Chapter 1

Introduction

Superconductivity, a state of matter with a century of history. In the introduction

of this dissertation is presented a road map of the main scientific milestones

in superconductivity, from its discovery in 1911 to the latest high temperature

superconductor discovered.

1.1 The discovery of superconductivity

First discovered by the Nobel prize winner H. Kamerling Onnes [7], the supercon-

ductive state is characterized by one of the most intriguing properties of matter,

the capacity to transport an electric current without the appearance of any re-

sistive process. In other words the possibility to transfer and transform energy

with reduced losses.

H. K. Onnes was awarded the Nobel Prize in Physics in 1913 “for his inves-

tigations on the properties of matter at low temperatures which led, inter alia, to

the production of liquid helium”. In 1908 he was the first scientist able to liquefy

helium [8]; in 1911, during his following investigation on the properties of mat-

ter at low temperature, he wrote about The Disappearance of the resistance of

mercury. He discovered that the resistance of mercury becomes practically zero

when this is cooled below 4.2 K [9]. Onnes realized that zero resistance was a new

property that would have characterized a different state of matter, as a matter

of the fact in his Nobel lecture he said “the mercury at 4.2 K has entered a new
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1. Introduction

state, which owing to its particular electrical properties, can be called the state of

superconductivity.”

1.2 The Meissner effect and the London pene-

tration depth

Another milestone in the superconductivity history was the discovery of the

Meissner effect, in 1933 Walther Meissner and Robert Ochsenfeld, during their

researches on the magnetoelectric properties of matter in very low temperatures,

observed a sudden change in current distribution and in magnetic induction at

the beginning of superconductance. They discovered that tin and lead samples

expel the magnetic field when cooled below the transition temperature, in other

words when the transition from normal to superconductive state occurs [10].

One of the main implications of the Meissner effect is that superconductivity

is something different from perfect conductivity. If two different samples, a su-

perconductor and an ideal perfect conductor, are cooled in their zero resistance

state and after that an external magnetic field is applied, both the sample would

react to the external magnetic field in the same way. The rise of Faraday shielding

superficial currents would prevent the penetration of the external magnetic field

in the samples. On the other hand if the same two samples are cooled in their

zero resistance state while the field is applied, the magnetic field distribution

would not change in the perfect conductor, because there would be no induced

electromotive force, instead the superconductor will expel the flux also in this

second scenario (figure 1.1).

A superconducting phase does not allow magnetic flux density to exist whether

it is field cooled or not, even a magnetic flux preexisting the transition will be

expelled.

A few years later, in 1935, a theoretical description of the Meissner effect

was found by Fritz and Heinz London [11]. They were able to relate the current

distribution to the electromagnetic field. A key factor in the London brothers

research was the definition of the magnetic flux penetration depth. Flux expulsion

is related to the presence of screening currents. Since only a finite current density

2



1. Introduction

Figure 1.1: Differences in magnetisation behaviours of a perfect conductor and a
superconductor, the Meissner effect. a) Perfect conductor cooled in zero field; b)
Perfect conductor cooled in applied magnetic field; c) Superconductor cooled in
zero field; d) Superconductor cooled in applied magnetic field.
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1. Introduction

can be carried in a superconductor, a surface layer in which the screening currents

flow has to have a finite thickness. For this reason the magnetic flux density

does not decay abruptly at the superconductor surface, but decays gradually

penetrating the material. The flux penetration depth, λ, is commonly called the

London penetration depth. In simple geometries λ is the characteristic length

over which the field density decays exponentially.

1.3 Critical magnetic field, critical current den-

sity. Two types of superconductors

From an experimental point of view it was clear that the superconductive state

disappears when a sufficiently large magnetic field is applied. The field at which

the superconductivity is destroyed is called the critical magnetic field, and it is

usually denoted as Hc. This field value is strictly related to another fundamental

value, the critical current density. If an increasing magnetic field is applied to a

superconductor the shielding currents will also increase to produce a zero mag-

netic flux density, Hc is the value at which the shielding current density reaches

the critical value (Jc). When the applied external field strength is equal to Hc the

superconductor is incapable of carrying any transport current, this is due to the

fact that the total current is the sum of both shielding and transport currents thus

if the shielding current has reached the Jc no others current can be added without

exceed the critical current density and therefore destroy the superconductivity.

In 1950 Vitaly Lazarevich Ginzburg and Lev Davidovič Landau developed a

mathematical phenomenological theory to model superconductivity [12]. The the-

ory, describes the macroscopic phenomena in superconductivity relying on general

thermodynamics arguments. Despite the lack of explanation of the microscopic

mechanisms of superconductivity this theory was fundamental to understand the

differences between two main classes of superconductors. Based on the general

theory of the second order phase transitions proposed by Landau in 1937, the

main variable of the model is the “order parameter” ψ which has a finite value

below the transition and zero above it. One of the key results of the model is

the definition of two characteristic length: the coherence length and penetration
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depth. The coherence length ξ, expresses the distance over which the order pa-

rameters can differ by a significant amount, in other words represents the distance

over which a superconductive phase can become normal. The penetration depth

is the characteristic length over which the field density decays, the same char-

acteristic length derived in the London theory. The Ginzburg-Landau equations

allow the calculation of the energy associated to the formation of a boundary be-

tween a normal region and a superconducting region, thus it is possible to predict

at which ξ/λ ratio such a boundary is thermodynamically favored. The equations

of the theory depend only on the dimensionless material constant, κ, defined as

the ratio between λ and ξ.

The energy associated to the formation of a boundary between a normal region

and a superconductive region is at the base of Alexei A. Abrikosov prediction of a

mixed state in which superconductivity and magnetic flux coexist. It was known

that for κ values above 1/
√

2 the surface energy between the superconducting

and normal layers would have been negative. Abrikosov decided to solve the

Ginzburg-Landau equations for κ values above 1/
√

2. He found that the magnetic

flux and superconductivity could indeed coexist as an array of cylinders of normal

conducting material parallel to the field direction surrounded by shielding current

vortices in a matrix of superconducting material, the geometric features of this

array strongly depend on temperature and field strength [13]. He stated that “in

the case κ >> 1 (λ >> ξ) every vortex has a “core” of size ξ, where the order

parameter varies rapidly, and the outer region of the size λ where the magnetic

field decays to zero” [14] (figure 1.2). Between current vortices a repulsive force

arises and the normal core are usually ordered in triangular or square lattice

[15,16].

The last outstanding result of Abrikosov’s calculations was that the magnetic

flux passing through an area bounded by a superconducting electrical current is

quantized and that the quantum of magnetic flux is a constant φ0, it is indepen-

dent from the material as long as it is superconductive. This quantized flux is

normally referred as a fluxon (Φ0 ≈ 2.067× 10−15 Wb).

The presence of the mixed state is confirmed by the magnetization behaviour

of type II superconductors that is different from that of type I. A type II super-

conductor has two different critical field strength values: the lower critical field,
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Figure 1.2: Structure of an isolated Abrikosov vortex [1]

Hc1, that is the value below which the Meissner effect is present and the entire

magnetic flux is expelled, and the upper critical field, Hc2, that is the value above

which superconductivity is destroyed. For fields value between Hc1 and Hc2 a type

II superconductor is in the mixed state predicted by Abrikosov (figure 1.3).

Figure 1.3: Magnetisation curves for a type I and a type II superconductor [1]
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1.4 Finally a microscopic theory of supercon-

ductivity

Since the discovery of superconductivity most of the brilliant minds of the twen-

tieth century theoretical physics tried to find a microscopic theory to explain

the phenomenon and failed. Almost fifty years passed from the the discovery of

the phenomenon to the publication of a microscopic theory of superconductivity.

In 1957 Bardeen, Cooper and Schrieffer published their theory on a paper en-

titled “Theory of Superconductivity” [17], the theory, known as the BCS theory

after the scientist initials, explain “a second-order phase transition at the critical

temperature, Tc an electronic specific heat varying as exp(−T0/T ) near T = 0K

and other evidence for an energy gap for individual particle-like excitations, the

Meissner-Ochsenfeld effect (B = 0), effects associated with infinite conductivity

(E = 0), and the dependence of Tc on isotopic mass, Tc
√
M = const.”

The theory is based on the coupling of electrons in Cooper pairs [18] due

to phonon-electron interactions. The interactions between the vibrations of the

lattice and the electrons generate an attractive force, when this interaction over-

come the Coulomb repulsive interaction the coupling is probable. In the BCS this

coupling of the electron leads to the formation of a gap in the electrons energy

band, thus any further interactions with an associated energy lower than the gap

can not occurs. In a superconductor below Tc the scattering of coupled electron

by the lattice (dissipative process) has an associated energy that is lower than

the gap, thus it does not happen.

The BCS theory is a rigorous quantum mechanical description of the super-

conductive phenomenon, a more detailed description of the theory would require

a discussion which goes beyond the intent of this chapter.

1.5 The high temperature superconductors rev-

olution

Since Onnes discovery only metallic materials (mainly type I superconductors)

and metal alloys (mainly type II superconductors) were thought to be supercon-
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ductive. From 1986 onward an acceleration in the scientific achievements leaded

to discovery of different families of superconductors.

In 1986 Johannes Georg Bednorz and Karl Alexander Müller discovered high

Tc superconductivity in the Ba-La-Cu-O system [19], a year later they were

awarded with the Noble prize in Physics “for their important breakthrough in

the discovery of superconductivity in ceramic materials”. The discovery of the

first cuprate based ceramic superconductor with a Tc of 30 K obtained a con-

siderable interest and started an incredible and productive research race. The

result of this intellectual spring was the achievement of Tc above 100 K that were

considered impossible only a few years before. In 1987 the Y-Ba-Cu-O system

was discovered, Tc = 93 K [20], was the first material to be in a superconduc-

tive state above the liquid nitrogen boiling temperature. A year later two other

cuprates were discovered to be superconductive at even higher temperatures, the

Bi-Sr-Ca-Cu-O with a Tc of 108 K [21] and the Tl-Ca/Ba-Cu-O with a Tc of 120

K [22]. These materials are hard to process, but the high-Tc together with the

high Hc and Jc made of these materials the ideal candidates for most practical

applications. However, despite the large amount of research and published work,

a complete theoretical knowledge of this class of superconductors is still missing,

in particular the superelectron condensation mechanism is still unknown.

In the last few years other two non-cuprate materials were discovered to be

superconductive and deserve a mention for the interest that the scientific commu-

nity has shown to these newcomers. Magnesium Diboride, Tc of 39 K, discovered

in 2001 [23] is interesting for the low-cost of the raw material and for the cable

manufacturing process easy and inexpensive when compared to that of cuprates

based cables [24–27]. And last, a new family of iron-based superconductors was

discovered in 2006 [28], as with the Bednorz-Müller discovery of cuprates this

discovery started a productive race in the search of similar compounds with bet-

ter properties [29–32]. However in this case after four years the compound with

the highest Tc of the family is still below the liquid nitrogen boiling point: the

samarium-doped Sr-Fe-As-F has a Tc of 56 K [33].
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Chapter 2

Pinning in YBa2Cu3O7−δ thin

films

YBa2Cu3O7−δ is undoubtedly one the most promising materials to use in high

temperature superconducting cables. Companies and research centers are cur-

rently working and studying to achieve better performances, lower production

costs and a wider understanding of the physical processes that limit loss less

current transport capability.

2.1 Cuprates

The two most studied superconductors based on cuprate perovskites are the

YBCO (YBa2Cu3O7−δ) and the BSCCO system, the most common supercon-

ductors used from the BSCCO system are the Bi-2212 (Bi2Sr2CaCu2O8) and the

Bi-2223 (Bi2Sr2Ca2Cu3O10). Cuprates are considered as extreme type II super-

conductors and show an intrinsic anisotropy, a layered structure and an extremely

small coherence length ξ of the order of a few nm. The small ξ implies a large

upper critical field, considering that at Hc2 the normal cores are as densely packed

as the coherence length limit allows and that each core carries a quantized flux

φ it is possible to estimate the upper critical field value as:

Hc2 =
φ

πξ2
(2.1)
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2. Pinning in YBa2Cu3O7−δ thin films

On the other hand disorder on the atomic scale can influence the supercon-

ductive properties.

2.1.1 Weaklinks and the texturing of cuprates

Despite the large critical current densities measured for YBa2Cu3O7−δ single crys-

tals, or for epitaxial YBa2Cu3O7−δ films on single crystals (Jc > 106MAcm−2 at

4.2 K) [34, 35] one of the main problems that kept YBa2Cu3O7−δ, away from

the production of superconducting cables were the low Jc values measured and

in general the poor connectivity in polycrystalline samples [36]. Soon it became

clear that the critical current densities across grain boundaries are a function of

the misorientation angle of the grains’ crystalline lattices. The ratio of the grain

boundary critical current density to the critical current density in the grains

varies by two orders of magnitude, changing from almost 1 when the grain are

well aligned to a drastically reduced value of about 1
50

when the grains tilt angle

is above 20 [37].

The BSCCO cuprates show similar behaviours [38], however a self texturing

process, that aligns the grains when the BSCCO wires are produced by a simple

“powder in tube” method, minimize the problematic related to the weaklinks of

the cuprates. The self grain alignment is the reason why large critical current

densities were “easily” obtained in the BSCCO conductors [39] while, when sim-

ilar method were applied to the YBa2Cu3O7−δ, only rather low critical current

densities were achieved [40,41]. Due to this fact, despite the higher Jc, the lower

anisotropy and the better in-field performance of the epitaxial YBa2Cu3O7−δ

films [35], the first cuprate based superconductors to enter the market were the

BSCCO tapes.

Today a second generation of coated conductors is entering the scene. These

new high temperatures superconducting cables are based on YBa2Cu3O7−δ. The

texturing issues were solved adopting two new production techniques: epitax-

ial YBa2Cu3O7−δ on highly textured buffer layers deposited by using ion beam

assisted deposition (IBAD) [42] and epitaxial YBa2Cu3O7−δ on rolling-assisted

biaxially-textured substrates (RABiTS) [43]. In both the process the

YBa2Cu3O7−δ is deposited epitaxially on a textured buffer layer. In the IBAD
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technique the texturing is obtained during the buffer layer deposition while in the

RABiTS the substrate (usually a nickel alloy) is textured by a thermo-mechanical

treatment before the buffer layer deposition [44].

Once the production of long length textured YBa2Cu3O7−δ conductors was

achieved the YBa2Cu3O7−δ has become the cuprate in use in new coated super-

conductors, thus an optimisation of the material properties has become one of

the most important topics.

2.2 YBa2Cu3O7−δ

An interesting and complex crystal structure underlie the excellent YBa2Cu3O7−δ

properties. For this reason any optimal description of the material has to start

with a description of the crystalline structure.

2.2.1 Crystal structure

Figure 2.1: a) Crystal Structure of YBa2Cu3O7−δ; b) CuO2 planes; c) CuO chains.
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The YBa2Cu3O7−δ crystal structure is described in figure 2.1a, it is an or-

thorhombic, distorted, oxygen deficient perovskite [45].

The lattice parameters of this orthorhombic structure are a = 0.3822 nm, b =

0.3891 nm and c = 1.1677 nm [46,47]. The lattice difference between a and b is

small enough to allow epitaxial growth of YBa2Cu3O7−δ on cubic substrates. As a

result a large number of twin boundaries are usually formed [48,49], therefore the

results of most of the macroscopic measurements are an average of the properties

measured over the a and b directions. However since the anisotropy within the

ab-plane is small usually an uniaxial anisotropy ab-plane c-axis is assumed.

Another usual description of the crystal structure is focused on the Cu-O

system. In this description YBa2Cu3O7−δ is pictured as a layered structure made

of two distorted planes of Cu-O2 separated by Y+3 ions, and Cu-O copper chains

coordinated with Ba+2 ions at the edge of the unit cell. The Cu-O2 copper planes

are evidenced in figure 2.1b and the Cu-O copper chains in figure 2.1c.

2.2.2 Oxygen deficiency

Oxygen content is a key factor in YBa2Cu3O7−δ as it determines to the structure

and properties of the materials [2, 50, 51]. A detailed study of the effects of the

oxygen content on the superconductive properties as well as the crystal structure

was published in 1990 by Cava R J et al. [2].

The key results of their work was the discovery that on changing the oxygen

content form 7 to 6 (δ changes from 0 to 1) the YBa2Cu3O7−δ shows changes in

Tc from 92 K to 60 K followed by the disappearance of superconductivity (figure

2.2a) as well as a structural transition from orthorhombic to tetragonal (figure

2.2b). Furthermore Cava R J et al. found that the oxygen content variation

involves only the oxygen sites along the Cu-O chains.

A direct consequence of this knowledge is that good oxygenation is crucial to

achieve high Tc and that any effort to improve the YBa2Cu3O7−δ performance

has to take into account the importance of oxygen content. As a matter of fact

most of the YBa2Cu3O7−δ production processes include an annealing step in a

concentrated oxygen environment.
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Figure 2.2: a) Superconductive transition temperature Tc for ten samples of
Ba2YCuOx with varying x values; b) Refined crystallographic cell parameters
for Ba2YCuOx with varying x values; from [2].
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2.3 Pinning

In YBa2Cu3O7−δ the loss-less current transport capabilities are usually also lim-

ited by the mobility of the Abrikosov vortices. More deeply the critical current

density is determined by complex interactions between the transport currents and

the induced magnetic flux lines and the interactions between the flux lines and

the nanostructure of the materials.

Vortex phenomena is a complex field of solid state matter which is still evolv-

ing. The aim of this section is to give a brief introduction to the phenomenon

in order to understand the possible interactions, and the improvements that an

engineered nanostructure can induce on the critical currents. The following brief

introduction is based on an exhaustive description of the phenomenon that was

published in 1994 by Blatter G. et al. [52].

2.3.1 The dissipative phenomenon

When a transport current is applied, the flux lines start to move. The movement

is due to the action of the Lorentz force (note that c is a constant and η is the

friction coefficient):

FL = j ∧B/c (2.2)

fL = (Φ0/c)j ∧ n (2.3)

In the absence of external flux pinning mechanisms the only counter force is

the friction force:

Fη = −ηv (2.4)

At the equilibrium v is the steady-state velocity and FL = Fη thus v can be

derived as:

v = j ∧B/cη (2.5)

The flux motion generate a finite electric field E:
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E = B ∧ v/c (2.6)

A finite electric field coexisting with a current density generate a dissipation,

E and j are parallel thus the power dissipated is:

P = (j ∧B)2/c2η (2.7)

In a scenario where the friction force is the only force opposing the Lorentz

force it would be impossible to realize a dissipation-free current flow.

2.3.2 Dissipation-free current flow, the pinning force

To achieve a dissipation-free current flow, the flux lines have to be pinned in

place. In other words v has to be equal 0 also when FL 6= 0. An additional static

force, a pinning force Fpin, has to counter the Lorentz force and be active when

the flux lines are not moving (v = 0).

The flux lines interact with any defects in the lattice. Since the formation of

a normal region leads to the loss of the condensate state increasing the energy

associated to the system, any region of the material in which the superconducting

order parameter is already depressed constitute a region in which the presence of

a flux line is energetically favourable. Therefore any region in which the super-

conducting order parameter is depressed will contribute to a finite pinning force

density Fpin.

The critical current density is the current at which the Lorentz force is equal

to the pinning force since any further increment of the current flow would lead

to an imbalanced increment of the Lorentz force (FL > Fpin) and subsequently a

flux motion (v 6= 0) and power dissipation. Therefore assuming FL = Fpin and

j⊥B, Jc can be derived as:

jc = cFpin/B (2.8)

In order to increase Jc it is necessary to increase the pinning force Fpin.
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2.3.3 Defects as pinning centers

A single flux line can interact with different class of defects [53, 54]. Each class

is characterised by a characteristic dimension. Defects smaller than ξ in each

dimension are called point defects and the saved condensation energy is propor-

tional to the defect volume. In anisotropic materials, since ξ is a function of

direction, the pinning force provided by this class of defects is also a function of

the force direction. Defects with one dimension larger than the others are named

linear defects while defects with two dimensions larger than the other are planar

defects. In high temperature superconductors naturally occurring defects like dis-

location are linear defects and act like pinning lines while twin planes, stacking

faults are planar defects and act as pinning planes. In YBa2Cu3O7−δ and cuprates

in general the layered crystal structure and the consequent ordered stacking of

layers with different superconducting order parameter are an additional array of

pinning planes parallels to the ab-planes of the crystal figure 2.1.

Linear and planar defects, as well as defects with specific spatial arrangements

can lead to directional pinning, increasing the pinning potential with respect to a

specific direction of the applied magnetic field. As an example the pinning force

provided by a dislocation to a flux line will be higher if the flux line and the

dislocation are parallel. In the same way, an ordered array of nanoparticles can

act as a linear defect providing the higher pinning potential to flux lines that are

able to penetrate the sample in the same direction of the array.

In conventional YBa2Cu3O7−δ thin films the Jc is the highest when measured

with the applied magnetic field parallel to the ab-planes of the crystal. This is

a direct consequence of the directional planar pinning provided by the specific

cuprates layers.

A last thing to note is that, even if the single interactions between flux lines

and defects are at the base of the material response, in most field values and

temperature conditions (especially high temperatures) the materials properties

are given by the simultaneous interactions of many flux lines with many different

defects [55,56]. For this reason a theoretical approach to describe the overall ma-

terial behaviour is usually too complex, thus an experimental approach is usually

more productive when dealing with pinning engineering. Nevertheless the theo-
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retical achievements greatly enhance the understanding of the physics processes

underling the complex behaviours of pinning engineered enhanced superconduc-

tors.

2.4 Practical Pinning Engineering

Defects engineering of YBa2Cu3O7−δ to increase the Jc values has been and is

today one of the hot topics of superconductive materials science. Large electri-

cal current transport in absence of energy losses is the key factor in commer-

cial application of high temperature superconductors. Since energy losses arise

from vortices movements a solution has been researched in nanostructured defects

landscape capable to pin the vortices in place. The higher is the efficiency of the

pinning landscape the higher is the current value threshold at which the losses

appears.

Different pinning landscapes and different techniques have been adopted dur-

ing the years by researchers, in the following sections an overview of the most

interesting works is given.

2.4.1 Non superconducting secondary phase addition

The secondary phase addition is an attractive way to introduce defects. It can be

adopted both in films grown by physical processes and in films grown by chemical

processes.

The first example of pinning engineering in YBa2Cu3O7−δ thin films by the

introduction of a non superconducting epitaxial second phase is the addition of

BaZrO3 [57]. MacManus-Driscoll et al. in 2004 were able to produce high quality

YBa2Cu3O7−δ thin films with improved Jc (up to a factor of 5) in the magnetic

field by introducing BaZrO3 powder in a Pulsed Laser Deposition (PLD) target of

YBa2Cu3O7−δ. They achieved an epitaxial growth of a cubic non-superconducting

phase in an epitaxial grown high quality YBa2Cu3O7−δ thin film. An improvement

of both the random and directional pinning was obtained. In particular a large

increment of Jc was measured with the magnetic field applied parallel to the c-

axis of the film. Furthermore, by using TEM (Transmission Electron Microscopy)
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analysis, c-axis oriented columnar defects were found evidencing the correlation

between the defects landscape and the pinning potential. This pioneering work

is the first of a long series of research articles aiming to produce the ideal pinning

landscape adopting a standard industrial ready deposition technique and avoiding

technological complications [58–63].

BaZrO3 is not the only secondary phase to produce columnar defects, during

the years also BaSnO3 [64–66], RE3TaO7 [67], Ba2YTaO7 [68] where found to pro-

duce similar columnar defects. All these phases produce c-axis oriented columns,

but the mean width, the spacing and the linearity of the columnar defects pro-

duced varies. The variation is dependent on both the phase and the process

parameters adopted. A common feature of all this heteroepitaxial columnar de-

fects is the perovskite crystal structure with the only exception of a pyrochlore

phase (RE3TaO7 [67]).

In this work the same technique is used to produce nanostructured

YBa2Cu3O7−δ thin film with superior pinning properties adopting a Nb based

perovskite as secondary phase as well as in a Nb and Ta simultaneous addition

that will result in the complex ideal pinning landscape that will be described later

in the thesis.

When giving also a small overview of the milestones in the YBa2Cu3O7−δ

pinning engineering fields the achievements obtained in chemical solution nanos-

tructured YBa2Cu3O7−δ films have to be reported. Gutierrez et al., in 2007, were

able to obtain a dense nanodispersion of defects in YBa2Cu3O7−δ thin films by

introducing BaZrO3 [69]. In their work an entirely chemical process was adopted

and randomly oriented BaZrO3 nanoparticles were reported as the basis of a

strong isotropic pinning.

Another widely used technique used to produce pinning enhanced

YBa2Cu3O7−δ is the multiple target ablation in pulsed laser deposition [70–73].

A secondary phase can be introduced by ablating multiple targets in a so called

pseudo-multilayer deposition [70,71]. Haugan et al. were able to improve the pin-

ning properties of YBa2Cu3O7−δ by introducing particles of nanometric size of

YBa2CuO5 (referred as 211) by growth of alternating layers of ultra thin 221 and

YBa2Cu3O7−δ [70]. This multiple bilayer structures were obtained by ablating in

sequence a target made of pure YBa2Cu3O7−δ and a target of pure YBa2CuO5 us-
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ing a computer driven target’s carousel. Adopting the same technique Campbell

et al. deposited Y2O3 - YBa2Cu3O7−δ pseudo-multilayer films achieving similar

results to Haugan [71].

Recently a Nb doped YBa2Cu3O7−δ was also produced adopting the multiple

target deposition [74].

Multiple target ablation, when compared to single composite target ablation,

has the advantage of having a certain degree of control over some dispersion

parameters allowing a change in the number of laser pulses for each layer (the

amount of material deposited from each target), and, in theory some control can

also be achieved on the deposition parameters adopted for each target. In prac-

tice the change of certain deposition parameters like oxygen pressure or substrate

temperature during the film deposition would over complicate the deposition pro-

cess, therefore in almost all the works adopting this technique the only parameters

that are tuned during the secondary phase target ablation are pulse frequency

and laser energy.

2.4.2 Alternative routes

Other possible routes to increase defects concentration in YBa2Cu3O7−δ thin films

have been experimented in recent years and deserve citation. The first is substrate

decoration which can be achieved adopting different techniques. The idea is to

deposit nanoparticles or nanoislands on the substrate before the YBa2Cu3O7−δ

film []. The nanoparticles can be deposited by pulsed laser deposition [75–80],

sputtering [81–84] or even with gas-phase prepared nanoparticles [85] and TFA-

MOD [86]. These particles will then induce stresses and therefore defects in the

film by introducing distortions at the substrate-film interface.

The last two techniques differ from the others as they are not based on the

addition of a secondary phase. Improved pinning can be achieved by exchanging

a certain amount of Y with different rare-earth elements [87]. Enhanced low-

field pinning is shown by mixed rare-earth barium cuprate films, while Y based

film with large radius rare-earth elements substitution have improved pinning up

to at least 7 T. Irradiation with high energy heavy ions has also been adopted

in YBa2Cu3O7−δ single crystal pinning research [88–93] and in thin film studies
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[94–99] for its capability to introduce linear defects along the ballistic directions.

Despite the interesting and unique features of this technique its high complexity

make the irradiation process unpractical.
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Chapter 3

Experimental Techniques

This chapter describes the experimental techniques adopted in the sample prepa-

ration and characterisation. The first section will focus on the sample deposition

followed by a description of the micro bridge patterning together with the elec-

trode deposition. The structural and morphological characterisation techniques

are described in the second section. These measurements are mainly performed on

unpatterned samples (as deposited samples), and with the only exception of the

TEM are non destructive measures. The last section of the chapter describes the

transport measures, these are the main characterisation of the superconducting

properties.

3.1 Sample Preparation

As anticipated in the previous chapter, the nanostructuring technique adopted in

this thesis is the introduction of one or more secondary phases in the YBa2Cu3O7−δ.

These additional phases are included in the films by introducing the materials

directly to the targets used in the pulsed laser deposition.

The collection of experimental techniques used to prepare the samples anal-

ysed in this work are presented in this section. Below is given a description of the

pulsed laser deposition system utilized and a discussion of the technical solutions

adopted to obtain the best possible control of the process parameters. A tight

control of process parameters is crucial in obtaining a good repeatability. The
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sintering procedure applied to the pulsed laser deposition target preparation is

described after the deposition technique while the photolithographic process per-

formed to obtain the micro bridge patterning and the electrodes deposition are

explained at the end of the section.

3.1.1 Pulsed Laser Deposition

Pulsed laser deposition (PLD) is a valuable choice for depositing extremely pure

films because it reproduces exactly the target composition, multilayer materials

can be done rather easily, it is the fastest route to prototyping any thin film

coating and, most importantly, very high quality YBa2Cu3O7−δ thin films can be

easily produced. As a matter of the fact of its extreme versatility, a considerable

amount of research work in YBa2Cu3O7−δ pinning engineering has been carried

out adopting pulsed laser deposition as deposition technique [100–104].

Pulsed laser deposition is one of the physical vapor deposition (PVD) adopted

to grow high quality thin films. A target of the desired composition is ablated by

a high power pulsed laser, the material ablated from the target forms a plasma

plume of energized ions that after traveling though a controlled atmosphere are

deposited on an heated substrate forming a thin coating film. Once these ions

reach the film surface thay are usually referred to as adatoms. In particular

adatom is the term used to describe a single atom adsorbed on a surface. To

obtain high quality thin films it is necessary to control several parameters during

the deposition. These parameters are the substrate temperature, the oxygen

pressure in the chamber, the laser energy and the frequency of the laser pulses

[105,106].

All the samples in this work were deposited in a YBa2Cu3O7−δ dedicated de-

position system to minimize contamination issues. This system is equipped with

a Lambda Physik KrF excimer laser (λ = 248 nm, fluence = 2 mJcm−2) and the

laser beam is admitted to a ultra high vacuum (UHV) chamber through a quartz

window. Periodic cleaning of the window as well as a constant monitoring of the

energy admitted in chamber ensure homogeneity of the ablating energies over the

time. Others quartz windows are mounted on the sides of the UHV chamber and

are generally used for growth and plume monitoring, secondary substrate surface

22



3. Experimental Techniques

temperature monitoring and for laser-target-substrate alignment.

A focal lens is positioned outside the chamber and it is used to focus the laser

on the targer in order to form a 2 mm x 3 mm rectangular spot on the target

surface. The laser spot geometry influence the plume geometry: a large spot

generates a small plume thus a small region in which the deposition is uniform;

a small spot generates a large plume and a large region in which the deposition

is uniform but as a consequence the deposition rate is reduced. The laser spot

geometry adopted in this work allows a uniform deposition in a region ≈ 1.4 cm

x 1.4 cm at ≈ 5 cm away from the target surface and uniform films are easily

obtained on 1 cm x 0.5 cm substrates.

The substrate surface temperature is monitored using an external pyrometer

while a secondary visible light laser, aligned to the primary excimer laser, is used

during the aligning task. Figure 3.1 shows a schematic of a typical pulsed laser

deposition system.

Figure 3.1: Schematic of a typical pulsed laser deposition system [3]

The substrates used are (001) aligned single crystals of SrTiO3 (STO), these
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are glued to an heater/holder with an high thermal conducting silver paste. The

temperature of the heater is controlled using a PID controller that controls the

power supply of the heating elements measuring the internal temperature of the

heater block with a thermocouple. Since the thermocouple is inserted in the

heater the use of the external pyrometer to monitor the substrate surface tem-

perature is adopted to avoid substrate temperature variations between different

depositions. This variations could rise from unavoidable differences in the ther-

mal conductivity between the heater and the substrate. A variable ∆T between

the thermocouple the pyrometer measure is usually present. This ∆T is mainly

due to the position of the thermocouple. The thermocouple is placed inside the

heater and at high temperatures a large energy dissipation due to radiating pro-

cesses generates large thermal gradients between the center of the heater, where

the thermocouple is positioned, and its surface, where the substrate is glued.

Furthermore the impossibility to reproduce the same thermal contact in every

deposition adds a variability to the discussed ∆T . This variable ∆T and the fact

that the substrate surface temperature is the one that determines the atoms mo-

bility, make the substrate surface temperature directly measured by the external

pyrometer the only possible choice as reference temperature.

The target is mounted on a rotating carousel equipped with a plume shutter.

The target is rotated to provide a uniform ablation. while the shutter is used

to protect the substrate from the plume during a pre-deposition ablation pro-

cess. This pre-ablation process is adopted to remove the target surface layer and

to ensure that the entire deposition is realized under similar target conditions.

The laser ablation induces modification to the surface morphology of the target

inducing a continuous fusion-recrystallization cycle. It is important to induce

these morphologic modifications before starting the thin film deposition without

allowing the plume to reach the substrate.

The vacuum system is a common two stage system equipped with a rotary

pump and turbomolecular pump, an additional multi channel mass flow controller

is also present. The rotary pump is used to pump down the chamber pressure

from ambient pressure to mid vacuum (∼ 103 mbar to ∼ 10−3 mbar) and to

provide a backing pressure ≤ 10−3 mbar to the turbomolecular pump. The tur-

bomolecular pump is used from mid vacuum to high vacuum (∼ 10−3 mbar to
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≤ 10−6 mbar). Depositions are performed in a pure oxygen atmosphere with

an oxygen pressure of 0.3 mbar. These pure oxygen deposition atmospheres are

realized by first reaching high vacuum (≤ 10−6 mbar) using the turbomolecular

pump and then venting oxygen while controlling the chamber pressure by simul-

taneously controlling the oxygen incoming flow with the mass controller and the

extraction pump power.

In a typical deposition the laser is operated in constant energy mode and the

fluence is monitored and kept at ≈ 2 mJcm−2, the pulse frequencies adopted are

between 1 and 10 Hz. Usually each deposition is performed using ∼ 4500 pulses

to obtain a film thickness of ∼ 500 nm. The distance between the target and the

substrate is ∼ 5 cm. An optimal oxygenation of the samples is obtained with

an in situ low temperature annealing of 1 hr. This step is realized cooling the

sample to ≈ 520 ◦C and raising the oxygen pressure to 500 mbar.

All thin films produced in this research work were deposited on SrTiO3 (001)

single crystal substrates. This substrate is commonly used in YBa2Cu3O7−δ epi-

taxial growth by pulsed laser deposition. It allows high quality films to be de-

posited and it was chosen for ease of comparison with previous work. In particular

the use of SrTiO3 (001) allows the comparison of the properties of the sample

produced with a large amount of existing data without introducing unnecessary

variables.

Oxygen content, grain orientation and film morphology are determinant pa-

rameters of the films superconducting properties. All these features are strongly

influenced by the deposition parameters adopted. Almost twenty years of research

in the field has provided a good knowledge of the processability windows of pure

YBa2Cu3O7−δ. High quality YBa2Cu3O7−δ thin films deposition is technological

knowledge already acquired and thus will not be discussed. An exhaustive re-

view on pulsed laser deposition of pure YBa2Cu3O7−δ thin films was published

by Singh et al. [3].

3.1.2 Target Preparation

All the pulsed laser deposition targets used to produce the samples used in

this work were prepared from sintered powders. Although commercial pure
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YBa2Cu3O7−δ targets are available it was chosen to produce pure YBa2Cu3O7−δ

targets in laboratory in order to avoid differences in the superconducting prop-

erties which may arise from different target quality rather than different targets

composition.

The process adopted to produce the targets is the same for both the pure and

the composite ones. Powder are pressed in the form of a cylindrical target and

the sintered at 950 ◦C in oxygen flow for 12hr in a dedicated tubular furnace. A

detailed scheme of the thermal process is reported in figure 3.2.

Figure 3.2: The target sintering thermal process

Pure YBa2Cu3O7−δ powder (SCI Engineered Materials 99.999%) is used in

both pure and composite targets. The secondary phases used in this work are

Ba2YNbO6 and Gd3TaO7. Targets produced by mixing pure YBa2Cu3O7−δ with

5 mol% of Ba2YNbO6 powder were adopted in the deposition of the samples

discussed in the next chapter. Targets produced by mixing pure YBa2Cu3O7−δ

with 2.5 mol% of Ba2YNbO6 powder and 2.5 mol% of Gd3TaO7 precursor were

used in the deposition of the samples discussed in the last chapter.

The Gd3TaO7 precursor mixed with the pure YBa2Cu3O7−δ and the Ba2YNbO6

in the target were 99.99% Gd2O3 and Ta2O5.
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3.1.3 Sample Patterning

While measuring the critical current density Jc a limited critical current Ic is

desired. A low Ic reduce a series of problematic side effects and technological

complication during the measure. A large Ic would require large current transfer,

this implies powerful currents sources, large conducting cables connecting the

sample and large electrodes trough which transfer the currents to the sample.

Further more since it is impossible to eliminate the contact resistances a large

transfer current passing trough any residual contact resistance will cause the

dissipation of large energies. To avoid an increment of the sample temperature,

caused by the heat generated in the dissipations at the contact, a powerful cooling

system should also be provided.

Considering equation 3.1 the easiest way to reduce Ic is the reduction of the

superconductor’s cross section.

Ic = jcSSupercond. (3.1)

A reduction of the cross section Ssupercond. simplifies the measure of the large Jc

typical of the YBa2Cu3O7−δ thin films (usually Jc > 106 MAcm−2) and is obtained

by introducing current tracks of micrometric width with a lithographic process.

A reduction of the contact resistances can be obtained with the deposition of an

electrode array through which the currents are transferred to the sample. Also

the electrodes are deposited with a lithographic process.

The electrode deposition is realized with the lift-off process described below.

First a layer of a commercial positive photoresist (AZ 4533) is spin coated on

the sample (spin at 6000 rpm for 45 s), then the resist layer is baked at 110 ◦C

for 1 minute to allow the resist network reticulation (figure 3.3b).

An intense blue light is projected on the coated sample surface using a pro-

jection mask aligner for 24 s, the mask projected at this stage is composed of two

rows of six square holes, the intense blue light is projected on the sample only

through these twelve squares.

The exposed regions of the positive photoresist become soluble to a developing

solution while the unexposed regions remain insoluble, thus after a developing

stage the two rows of six square holes printed on the mask are transferred to
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the photoresist coating layer. The developing stage is realized by the submersion

of the samples in a 3vol : 1vol H2O:AZ351B developing solution (AZ351B is a

commercial developer). The duration of the developing stage is a key factor not

always predictable: it has to be long enough to ensure that the resist layer is

completely removed in the areas that were exposed to the light but at the same

time an over lasting developing stage is to be avoided since it can cause resist

removal from the unexposed zones. In order to optimally time the duration, the

developing step is divided in several steps of reduced duration followed by the

observation of the sample surface with an optical microscope until the resist layer

is completely removed from the exposed areas (figure 3.3c).

Once the developing stage is successfully completed a silver layer and a gold

layer are deposited on the sample surface in an ion milling magnetron sputtering

hybrid system. The Ag / Au bilayer deposition is preceded by an ion milling step

to remove the passivated layer on the superconducting film ensuring the optimal

connectivity between the Ag layer and the YBa2Cu3O7−δ surface (figure 3.3d).

The last step of the lift-off process, which gives the name to the technique,

is realized by submerging the samples in acetone in an ultrasonic bath. The

acetone dissolves the photoresist layer and the resist removal causes the lift-off

(delamination) of the Ag / Au bilayer deposited on it while the metals deposited

directly on the YBa2Cu3O7−δ surface in the areas that were not covered by the

resist forms the electrodes. In this way two rows of six Ag / Au electrodes are

deposited on the films (figure 3.3e).

The track pattern transfer (the micro bridge formation) is obtained with a

process similar to the electrode deposition until the developing stage. In this

process the mask used project the light in the areas of the samples from which

is necessary to remove the superconducting material. Thus after the developing

stage, the resist layer is the exact copy of the desired tracks pattern (figure 3.3g),

the effective film etching can then by realized either by a physical or chemical

process (dry etching or wet etching). Very small features ( ≤ 10 µm) are usually

realized with a dry etching because the chemical etching could blur the features.

Since the smallest feature in this work, the tracks width, is ≈ 50 µm both

processes are equally effective. The dry etching is performed in an argon ion

milling system where energized ions removes material from the sample surfaces.
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The wet etching is realized by submerging the sample in a HCl diluted solution

(0.01M) with the acid dissolving the unprotected YBa2Cu3O7−δ from the sample

(figure 3.3h).

A schematic of the sample at the different stages of the process is reported

in figure 3.3 while a micrography showing a single track and fractions of two

electrodes in shown in figure 3.4

Five tracks (≈ 50 µm in width), each one connected to four Ag / Au elec-

trodes, are patterned on the samples using the described techniques.

3.2 Structural Morphological characterisation

In this section are listed the scientific investigation techniques adopted to charac-

terise the crystal structures and the morphology at the nanoscale of the samples.

Since these techniques are commonly adopted by materials scientists working in

thin films, as well as different fields, they will not be discussed in detail. In this

section only a presentation of the answers that can be achieved with the analysis

performed is given.

3.2.1 Structural Analysis

Phase and orientation analysis are performed using x-ray diffraction. Performing

this non destructive technique it is possible to gather information on the crystal

phases present in the thin films and their orientation. The distribution of grain

orientations is described by the crystalline texture. Random texture describes

films with randomly oriented grains, fibre texture is a term used to describe films

in which grains have one crystallographic axis parallel to the substrate normal

but are randomly oriented in plane, and epitaxial growth (or epitaxial alignment)

describes films made of grains that have a fixed orientation in plane. A scan in

Bragg-Brentano geometry will give information on the spacing of the crystalline

planes that are oriented perpendicularly to the substrate surface. The analysis

are usually performed in the geometrical configuration reported in figure 3.5, and

in this configuration only the diffraction peaks associated to the planes with the

normal oriented perpendicular to the substrate surface will be registered.
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Figure 3.3: Sketches of a sample at the different stages of a photolithographic
process. a) As deposited sample; b) Sample after the first spin coating of the
photoresist; c) Sample after the developing of the electrode mask; d) Sample
after the silver layer and gold layer deposition. e) Sample after the lift-off process;
f) Sample after the second spin caoting of the photoresist; g) Sample after the
developing of the trak mask; h) Sample after the milling/cleaning process.
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Figure 3.4: Micrography of the surface of a patterned sample

Figure 3.5: Schematic of a diffractometer operated in the Bragg-Brentano Geom-
etry
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The possible presence of an epitaxial growth is easily evidenced by the presence

of only the peaks indexed (00l) since this will be the experimental proof that the

crystalline c-axis is the only crystal axis oriented perpendicular to the substrate

surface. The analysis of the diffraction peaks gathered in this geometry allows the

determination of the crystalline composition of the samples and a first information

on the orientation of the phases. A limitation of this typology of x-ray diffraction

analysis is to only gather information of the so called out of planes diffraction.

The determination of the out of plane orientations allows to distinguish a random

texture from a fibre texture or an epitaxial growth.

In order to determine whether a film can be described by a fiber texture

or an epitaxial growth it is necessary to analyse the in plane orientation of the

crystalline phases. The in plane orientation analysis is performed with the so

called φ scan. In figure 3.6 a sketch of the geometrical configuration in which the

φ scans are done is reported.

Figure 3.6: Schematic of a diffractometer geometry operating a φ scan

In a φ scan the sample orientation χ, the tube and detectors position θ are

predetermined to focus the machinery on a specific in plane diffraction peak. The

scan is then performed varying the sample φ angle and measuring the intensity
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of the diffracted x-rays at the different φ values. In this way it is possible to asses

the in plane orientation of a given crystalline phase and determine whether that

specific crystalline phase is growing following the orientation of the substrate

crystalline axis or is growing with a determined offset or is not following any

specific orientation. This technique is valid if the phases were rightly determined

and if the peaks on which the analysis system is focused are unique.

These first two x-ray diffraction techniques described are an optimal solution

in the determination of the crystalline phases and their orientation but are limited

when determining the epitaxy quality. They give little to no information on the on

the spread of the orientation angles that is usually below the resolution of systems

adopted when operated in the geometrical configuration described. Further more

the presence of small fraction of randomly oriented crystalline phases could easily

remain undetermined by these analysis. A randomly oriented fraction of a given

oriented phase could be interpreted as noise when performing a φ scan.

Figure 3.7: Schematic of a diffractometer geometry operating a rocking curve
scan

In order to address the epitaxy quality and the strain levels rocking curves

and reciprocal space maps are gathered.

A rocking curve (ω scan) is an analysis of the angular spread of a determined

33



3. Experimental Techniques

planar direction. It is realised by scanning with a fixed 2θ (a fixed π − 2θ) a

small windows of positive and negative offsets ω (figure 5.2). The full width half

maximum of the peaks measured gives an indication of the angular spread of the

planar direction analysed.

Figure 3.8: Schematic of a diffractometer geometry scanning a reciprocal space
map

A reciprocal space map is the detailed study of the x-ray diffraction in a

small window of 2θ and ω angles. A reciprocal space map can be obtained by

measuring a set of ω/2θ scans with different ω-offset angles around a specific

reciprocal space reflection, determined by ω and 2θ (figure 3.8). The intensity of

the diffracted signal is then plotted on a map with coordinates qz and qx that are

the reciprocal of the spacing dz and dx thus it is possible to directly calculate the

lattice parameters. The position of the diffraction peaks and their shape gives

information on the mean lattice spacing and on the strain of the phase analysed.

It is also possible to establish if a phase is relaxed or strained with respect to

the substrate. As a downside the reciprocal space maps are time consuming mea-

sures and therefore the windows around a specific diffraction angles are usually

the smallest possible. Even if in theory it would be possible to gather a complete

maps this are always avoided for the impracticality of the time required.
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3.2.2 Microscopy

The knowledge of the crystalline phases, their orientation and strains level rep-

resents only a partial knowledge of a film quality. Furthermore since the pinning

potential is related to the nanostructuration of the phases, a study of the mor-

phology on the nanometric scale is fundamental. Only by knowing the grain mor-

phology and the shape, spacing and orientation of a secondary phase it is then

possible to relate the defect landscape to the pinning properties. Furthermore it

is possible to evaluate the strength and weaknesses of a defects distribution in

order to improve the properties increasing the points of strength and decreasing

the weaknesses of a pinning landscape generating ideals defects distribution.

There are two main scientific investigation tools capable to fulfill the task:

the atomic force microscopy (AFM) and the transmission electron microscopy

(TEM).

AFM [107] is used to investigate the surface topography of the samples, from

the topography is possible to evaluate the homogeneity of a film and the roughness

of the surface. In addition to shapes and dimensions of the grain in samples

characterised by a smooth surface is also possible to investigate the presence

and distribution of secondary phases. The technique is non destructive and it is

also fast and reliable, unfortunately the only information gathered concern the

samples surface, thus only a partial information of the defects distribution can be

obtained. As an example it would be impossible from an AFM only investigation

to establish whether a secondary phase particle is a c-axis oriented defects or

a plate like ab-planes oriented particles. For these reasons it is necessary to

complete the information with TEM.

TEM gives information on the distribution and orientation of the phases in the

sample. It is a powerful tool but is a time consuming and destructive technique.

Nevertheless it is fundamental when picturing the pinning landscapes produced

in the films. Essentially with this technique are taken images of the samples

cross-section at the nanometric scale. A direct observation of the nanoparticles

introduced in the samples is obtained. Furthermore analysing the electron diffrac-

tion pattern taken with the same technique it is possible to confirm and complete

the phase and orientation analysis produced the the x-ray diffraction. A TEM
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allows to take different electron diffraction patterns from different locations of

the sample thus allows to gather separated electron diffraction pattern from the

different phases present in the sample. TEM is also adopted to perform local

strain analysis to complete the information on the average strain obtained with

the reciprocal space maps.

Cross-section TEM images were taken by JEOL 2010 analytical microscope

with a point-to-point resolution of 0.20 nm. High resolution TEM and scanning

transmission electron microscopy analysis was conducted using FEI Tecnai F20

with a point-to-point resolution of 0.18 nm. Cross-sectional samples for TEM

analysis were prepared by a standard manual grinding and thinning procedure

followed by a final ion polishing step (Gatan PIPS 691 precision ion polishing

system).

3.3 Superconductivity Properties characterisa-

tion

The final part of this chapter is dedicated to on overview of the techniques adopted

to characterize the superconducting transport properties of the sample produced.

The three main properties analysed are the transition temperature Tc, the critical

current density as a function of the applied magnetic field value Jc(B) and the

critical current density as a function of the direction of the applied magnetic field

Jc(B, θ). It is evident that the target is to achieve the highest possible Jc and

Tc and to minimize the detrimental effect of an increasing value of the applied

magnetic field on Jc. This set of measurements gives complete information on

the quality and effectiveness of the defects landscape in the creation of an ideal

pinning enhanced thin film YBa2Cu3O7−δ based superconductors.

The first measure always performed is the determination of the transition

temperature Tc. This measure is performed by a straight forward technique. A

4 point resistance measure is realized applying the smallest transport current

possible that minimize the noise while not affecting the transition temperature

(usually I ≤ 10−6 A). The resistance is measured while reducing the tempera-

ture from TAmb to 77 K. The transition temperature is then associated with the
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temperature at which the resistance disappears. The attribution of Tc is not

unique, in some work it is attributed to the temperature with the maximum of

the ∂ρ
∂T

or with the mean point of the transition, in this work the most restrictive

condition is chosen. The reason to chose the most restrictive condition for the

determination of Tc is that this condition takes into account the homogeneity of a

sample and that a sample will not be considered superconductive until a complete

superconductive link is generated between the probing electrodes.

The critical current density as a function of the applied magnetic field value

Jc(B) and the critical current density as a function of the direction of the applied

magnetic field Jc(B, θ) are measured with the same technique. The only difference

is the parameter that is changing during the measurement. In the Jc(B) measure

the direction of the applied magnetic field is constant (usually B‖ c-axis and B

‖ ab-planes) and the applied magnetic field value is increased. In the Jc(B, θ)

measurement the applied magnetic field value is constant and the direction is

changed.

The core of the measurement is the individuation of the critical transport

current Ic. To fulfill this task the current is increased in small step and a voltage

value is measured for each current value until the voltage reaches a maximum

value (V = 10−5V ), from the I−V curve obtained the current value at which the

voltage is equal to a defined criterion (Vc = 10−6V cm−1) is derived and that value

is defined as the Ic value. Knowing the Ic and the geometry of the micro bridge

the Jc is easily calculated using equation 3.1. The derivation of the Ic value can

be achieved by adopting different technique: a linear interpolation around the

criterion voltage, a polynomial interpolation over a n-point windows around the

criterion or fitting the I − V data with the following equation:

I = Ic(
V

Vc
)n (3.2)

The different Ic derivation techniques lead to little or no variation of the value

derived. Never the less the technique adopted in the work is the fitting with the

equation 3.2 since it is more reliable in the case of noisy measures.

The Jc(B) and the Jc(B, θ) measurements are basically realised with a set of

I − V measures in different magnetic fields intensity and geometry. Both Jc(B)
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3. Experimental Techniques

Figure 3.9: Schematic of the geometry for the determination of Jc(B, θ)

and Jc(B, θ) measurements are performed in maximum Lorentz force configura-

tion (I ⊥ B) figure 3.9.
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Chapter 4

Ba2YNbO6 doped YBa2Cu3O7−δ:

preliminary results

In this chapter are reported the results of the study of the Nb doping of

YBa2Cu3O7−δ thin films. The effects on the nanostructure of the films as well as

the superconducting properties are discussed. The study in this chapter includes

the preliminary results obtained on Ba2YNbO6 doped YBa2Cu3O7−δ thin films

deposited by pulsed laser deposition.

4.1 The Nb introduction in the YBa2Cu3O7−δ

The introduction of a secondary phase in the YBa2Cu3O7−δ that has been de-

scribed in the previous chapter is now a widely used tool to increase the pinning

properties of commercial conductor as well as research labs advanced materials.

When introducing new pinning additions to YBa2Cu3O7−δ adopting the pulsed

laser deposition technique, it is important to consider that the phase which forms

may not be the one which is added to the YBa2Cu3O7−δ in the target. The

phase that forms is the most thermodynamically and epitaxially stable. As a

matter of the fact if Zr4+ is added to the YBa2Cu3O7−δ the phase that forms is

Ba(Zr,Y)O3 [57] while when Sn4+ is added BaSnO3 forms [64–66]. The addition

of Ta5+ was reported to form both RE3TaO7 [67] and Ba2YTaO7 [68]. Consid-

ering the optimal results obtained with the Ta5+ in this chapter the effects of
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another large, highly charged ion, Nb5+, are presented.

4.1.1 Nb doped ceramic samples

The first introduction of Nb in YBa2Cu3O7−δ was reported soon after the dis-

covery of the YBa2Cu3O7−δ. In 1988 Kuwabara M et al. reported an increased

Jc value in Nb2O5 doped YBa2Cu3O7−δ ceramic samples [108]. The effects of Nb

was unclear but the authors reported that almost all the Nb added was not in-

corporated in the YBa2Cu3O7−δ and was instead segregated to form a secondary

phase. An elemental distribution map showing that the Cu element did not co-

exist with the Nb while both Y and Ba did and the discovery that Nb was no

longer in the from of oxide made the authors claim the formation of a secondary

compound with Y and Ba.

In 1989 Greaves C. and Slater P.R. published a study on the Nb and Ta

substitution in the REBa2Cu3O7 (RE = Y, Eu, La) [109]. They suggest the

presence of two possible products, the REBa2Cu2MO8 and the Ba2REMO6 +

CuO (M = Nb, Ta). They observed that the energy difference between the two

possible products is small and that, since in the double perovskite structure the

rare earth cation is in the small octahedral site, the stability of the perovskite

structure is reduced when large RE3+ ions are used. The authors observed that

for RE = Y, Eu the phases formed where REBa2Cu3O7, Ba2REMO6 and CuO

while a substitution and the consequent formation of the REBa2Cu2MO8 phase

was only observed for RE = La. From their studies it is evident that doping

YBa2Cu3O7−δ (RE = Y) with Nb or Ta leads to the formation of the Ba2YNbO6

and Ba2YTaO6.

A few years later, in 1993, the diffraction pattern of a sample with composition

YBa2Cu2.95Nb0.005O7−δ was reported in a paper from Strukova G. K. et al.

[110,111]. They also found the presence of an YBa2Cu3O7−δ orthorhombic phase

(a = 0.3827 nm, b = 0.3894 nm, c = 1.1718 nm), a Ba2YNbO6 cubic perovskite

phase (a = 0.4218 nm) and a small amount of CuO. They also reported that the

intensity of the lines corresponding to the Ba2YNbO6 increased with increasing

the Nb content. They attributed a greater stability of the Ba2YNbO6 secondary

phase when compared to YBa2Cu3−xNbxO7−δ to the low solubility of the Nb in
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the YBa2Cu3O7−δ.

Recently, in 2003, Babu N. H. et al. reported the presence of

Y2Ba4CuxNb1−xOy, a phase similar to Ba2YNbO6 with Cu partially substituting

Nb, in YBa2Cu3O7−δ bulk doped with Nb [112]. Improved Jc was observed in

the doped samples [113]. In 2009 Yeoh W. K. et al. reported enhanced flux pin-

ning at high field in YBa2Cu3O7−δ single grain bulk samples doped with NbO2

and related the improved pinning to the formation of a Nb rich phase within the

YBa2Cu3O7−δ [114].

4.1.2 Ba2YNbO6 use in YBa2Cu3O7−δ thin film

The stability and compatibility of the Nb-based double perovskite Ba2YNbO6

with the YBa2Cu3O7−δ was studied by Paulose K V et al. in 1992 [4]. They

found that annealing a 1:1 mole mixture of YBa2Cu3O7−δ and Ba2YNbO6 for 16

hr at 950 ◦C there was absolutely no reaction (figure 4.1).

The stability and compatibility of the Ba2YNbO6 with the YBa2Cu3O7−δ

made it a candidate for a novel substrate in the YBa2Cu3O7−δ thin film depo-

sition. The difficulties encountered in the production of large Ba2YNbO6 single

crystal have prevented the use this material as a substrate, nevertheless high

quality high temperature superconductor thin films and electronic devices were

fabricated adopting Ba2YNbO6 as a new buffer layer [115,116].

The only early report on the use of Ba2YNbO6 to enhance flux pinning in

YBa2Cu3O7−δ thin film is a work published in 1995 from Jia J. H. et al. [117].

The authors report on thin Nb added YBa2Cu3O7−δ deposited on ZrO2 substrates

by a dc magnetron sputtering method. The secondary phase formed in the film

is reported to be the Ba2YNbO6 perovskite but the effects on the critical current

registered were negative. The conclusions of this early research were that the

Ba2YNbO6 secondary phase does not play a role in the flux pinning process.

More then 10 years later, in 2007, Nb doped ErBa2Cu3O7−δ was successfully

produced by pulsed laser deposition [118–122], in this work the authors report

that c-axis oriented nanorods of Ba2ErNbO6 were formed in the ErBa2Cu3O7−δ.

However the effects of the nanorods on the critical current values were not clearly

explained. The presence on these c-axis oriented nanorods seemed to have effects
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Figure 4.1: Powder diffraction patter for a) pure Ba2YNbO6, b) pure
YBa2Cu3O7−δ, c) 1:1 mole mixture of YBa2Cu3O7−δ:Ba2YNbO6 heated at 950
◦C for 15 hr. [4]
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on the pinning performances of the films only when the latter were grown under

certain condition and a window of processability was undefined.

Recently, successful formation of Ba2YNbO6 nanorods in YBa2Cu3O7−δ thin

films grown by pulsed laser deposition has been reported by several authors [5,

74,123,124]. The article [5] is part of this thesis, it is the first attempt to produce

Ba2YNbO6 - YBa2Cu3O7−δ thin films by pulsed laser ablation of a mixed target,

and contains the first results obtained. These results will be described in the

following section of this chapter. In conclusion Ba2YNbO6 is a good pinning

phase candidate for the following reasons:

• The large Nb+5 does not substitute the Cu in YBa2Cu3O7−δ

• Ba2YNbO6 is the most stable Nb compound in a YBa2Cu3O7−δ matrix

• Ba2YNbO6 forms in a wide processing window

• Ba2YNbO6 nanoparticles forms self-assemble in nanorods in a similar man-

ner to BaZrO3

• The large lattice mismatch between Ba2YNbO6 and YBa2Cu3O7−δ should

provide additional pinning inducing lattice distortion in YBa2Cu3O7−δ

4.2 Ba2YNbO6 perovskite additions to YBa2Cu3O7−δ:

the preliminary results

In this section is reported the first results obtained by the addition of the Ba2YNbO6

perovskite pinning phase to the YBa2Cu3O7−δ. The results were discussed in a

feasibility study published in early 2010 in Superconductor Science and Technol-

ogy [5].

4.2.1 The Ba2YNbO6 synthesis, the pulsed laser deposi-

tion target preparation and thin films deposition

The technique adopted to produce the single phase Ba2YNbO6 powder is the

same described and successfully used by Paulose K V et al. [4]. Ba2YNbO6
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powder were produced mixing and grinding stoichiometric quantity of 99.99%

Y2O3, Ba(NO3)2, Nb2O5 and a minimal amount of CuO2 followed by a solid

state reaction at 1450 ◦C for 24 h in flowing O2. In order to achieve a complete

reaction and thus produce a single phase Ba2YNbO6 two successive grinding and

reaction were needed. The minimal amount of CuO2 (≈ 0.5%wt.) was added to the

oxides mixture because it is described to greatly enhance the powder reactivity.

The reaction enhancing effect of the CuO2 is explained by the fact that CuO2

presence introduce in the system a low energy reaction intermediate lowering the

energy barrier of the overall reaction [4].

Figure 4.2: Powder diffraction patter for Ba2YNbO6powder produced. Adapted
from [5].

In the figure 4.2 are shown the results of an x-ray analysis in the Bragg-

Brentano geometry (θ − 2θ scan) of the Ba2YNbO6 powder produced by the

described solid state reaction. No impurities or secondary phase peaks are found,

given the minimal amount of CuO2 that was added is not expected to be easily

evidenced. The quantity involved is too small to be separated from the noise levels

that are usually present in this typologies of measures. The lattice parameters

calculated form the x-ray data is a = 0.844 nm ± 0.001 nm. The lattice parameter

derived is in agreement with the data recorded in the Joint Committee on Powder
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Diffraction Standards database (JCPDS) as well as the data presented in more

recent studies [125].

The Ba2YNbO6 production process described constitutes a reliable source

of pure single phase Ba2YNbO6 to use, together the YBa2Cu3O7−δ commercial

powder, in the pulsed laser deposition target preparation.

The target sintering procedure adopted for the samples discussed in this

section is exactly the general procedure described in the previous chapter, the

Ba2YNbO6 doping amount in the target adopted in this study is 5%mol. The

control pure YBa2Cu3O7−δ target is sintered adopting the same technique. More

sophisticated procedures were also adopted to produce advanced targets, the

modification to the processes will be described in the appropriate spaces.

The pulsed laser deposition parameters adopted for both pure YBa2Cu3O7−δ

control thin films and the Ba2YNbO6 added samples are summarized in table 4.1.

Parameter Value
Substrate Temperature 770 ◦C

Chamber Pressure 0.3 mbar flowing O2

Laser Fluence 2 Jcm−2

Repetition Rate 5 Hz
Number of Pulses 4500
Annealing Time 1 hr

Annealing Temperature 520 ◦C
Annealing Pressure 500 mbar O2

Table 4.1: Pulsed laser deposition parameters

All the thin films deposited were measured to be of ≈ 0.5 µm thickness.

4.2.2 Crystalline structure analysis: x-ray diffraction data

The first analysis realized on deposited films when using a new target composi-

tion are usually x-ray diffraction structural analysis to investigate the crystalline

phases produced in the samples, their orientation and possibly the strains and

lattice distortions arising form the large interfaces of nanostructured composite

materials.
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4.2.2.1 Crystalline phases identification

Figure 4.3: X-ray diffraction data for undoped YBa2Cu3O7−δ and 5%mol
Ba2YNbO6 doped film deposited on SrTiO3. Adapted from [5].

The first relevant results reported in figure 4.3 is that the x-ray diffraction data

collected in the Bragg-Brentano geometry from the deposited thin films (both

doped and pure) shows only the diffraction peaks related to the (00l) planes from

the YBa2Cu3O7−δ, the Ba2YNbO6 and the SrTiO3. This is evidence that also

the doped thin films have the usual c-axis orientation of pure YBa2Cu3O7−δ thin

films deposited on (001) SrTiO3 single crystal.

The only difference evidenced by the comparison of the diffraction data gath-

ered from the pure YBa2Cu3O7−δ control thin films and the Ba2YNbO6 doped

ones is the presence of the peaks related to the (00l) planes of the Ba2YNbO6. It

is possible to conclude that the stability of the Ba2YNbO6 - YBa2Cu3O7−δ sys-

tem during the pulsed laser deposition does not differ from the proved stability at

high temperatures [4], thus the only secondary crystalline phase introduced in the

thin films deposited is the Ba2YNbO6. Furthermore a first hint of the Ba2YNbO6

orientation is revealed by the presence of only the (00l) planes diffraction peaks,

the non superconducting phase is aligned out-of-plane with the YBa2Cu3O7−δ
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matrix.

To conclude the crystalline phases identification a small discussion has to be

given about a small peak at 2θ ≈ 34◦. This peak is present in both the pure

YBa2Cu3O7−δ and the Ba2YNbO6 doped thin films thus its presence can not be

associated with the Ba2YNbO6 doping. The intensity is lower than that from

the (004) and (008) Ba2YNbO6 peaks, and the Ba2YNbO6 doping level is only

5%mol. A peak at 2θ ≈ 34◦ in the YBa2Cu3O7−δ system could be associated

with the (111) YBa2Cu3O7−δ peaks or with the (004) Y2O3. The first could be

due to a minimal fraction of misaligned grains, a small fraction a grown grains

can explain the peaks presence and it is commonly found at lower deposition

temperature that the one adopted in these films. The second could be formed

starting from a minimal Y imbalance in the target and considering that the peaks

is also present in the pure YBa2Cu3O7−δ control sample, this minimal imbalance

should be in the commercial pure YBa2Cu3O7−δ powder adopted in the target

sintering process. Nevertheless, since the intensity is very small and the peak is

not related to the Ba2YNbO6 doping, its presence does not influence the results.

4.2.2.2 Crystalline phases orientation

The assessment of the in-plane texture is realized by φ scans. The technique is

described in the previous chapter and the results obtained analysing a 5%mol

Ba2YNbO6 doped film are summarized in figure 4.4.

The (202) Ba2YNbO6 peak (χ = 45◦, 2θ = 30.03◦) reveal an in-plane align-

ment since it matches both the (101) SrTiO3 (χ = 45◦, 2θ = 32.46◦) and the

(202) YBa2Cu3O7−δ (χ = 57.06◦, 2θ = 27.62◦) peaks. This direct observation

of a cube on cube growth of the Ba2YNbO6 with the YBa2Cu3O7−δ combined

with the out-of-plane c-axis homogeneous orientation demonstrated in figure 4.3

suggest full heteroepitaxy between the YBa2Cu3O7−δ, the Ba2YNbO6 and the

SrTiO3.

A last point should be made on the diffraction peaks choice for the φ scans.

Some authors perform the analysis on the (103) YBa2Cu3O7−δ (χ = 45◦, 2θ =

32.8◦) peak and not the (102) YBa2Cu3O7−δ used in this work. Unfortunately

the first is extremely close to (101) SrTiO3 and in most analysers the two peaks
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Figure 4.4: X-ray diffraction data from φ scans of (101) SrTiO3, (102)
YBa2Cu3O7−δ, (202) Ba2YNbO6from a 5%mol Ba2YNbO6 doped film. Adapted
from [5].

overlap. Since the intensity of the (101) SrTiO3 peak in much higher that the

intensity of the (103) YBa2Cu3O7−δ peak choosing the latter as reference peak

for the YBa2Cu3O7−δ in-plane orientation assessment could lead to misinterpre-

tation.

4.2.2.3 Crystallographic matching and strain

Once the phase orientations are known it is possible to propose a crystallo-

graphic matching model and to evaluate the lattice mismatch of Ba2YNbO6 with

YBa2Cu3O7−δ.

In figure 4.5a is presented the matching of YBa2Cu3O7−δ with Ba2YNbO6

viewed along the b-axis ([010]Y BCO direction). In this view 3 unit cells of the cubic

Ba2YNbO6 match 2 unit cells of YBa2Cu3O7−δ. The c-axis mismatch (related to

YBa2Cu3O7−δ) can be calculated with the following equation:

3aBY NO − 2cY BCO
2cY BCO

= +8.34% (4.1)
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Figure 4.5: Crystallographic matching of YBa2Cu3O7−δ with Ba2YNbO6. a) b-
axis view and b) c-axis view [5].
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In order to have a perfect lattice match along the c-axis the Ba2YNbO6 lattice

should be compressed along the c-axis. In the doped film the (00l) peaks from the

Ba2YNbO6 are indeed shifted to higher angles compared to the bulk values (figure

4.3). The resulting lattice parameter is of 0.830 nm ± 0.001 nm instead of the

0.844 nm ± 0.001 nm resulting from the powder scan (figure 4.2). This confirms

the presence of a compressive strain of ≈ 1.7%, this strain is much lower than the

theoretically derived mismatch. In addition the (00l) YBa2Cu3O7−δ diffraction

peaks are slightly shifted towards lower 2θ values (in the opposite direction of the

Ba2YNbO6 diffraction peaks) thus the YBa2Cu3O7−δ c-axis lattice parameter

seems to be extended to higher values. A tensile strain of ≈ 0.4% can be derived

from the lattice value of 1.173 nm calculated from the diffraction data presented in

figure 4.3. Nevertheless the overall strain given by the Ba2YNbO6 contraction and

the YBa2Cu3O7−δ extension is lower than the theoretical value thus an additional

strain relief mechanism is most likely to be playing a matching role. The formation

of misfit dislocations is one the possible strain relief mechanism and such defects

formation has been previously reported in BaZrO3 doped YBa2Cu3O7−δ [126]. A

semicoherent interface could also be responsible of the reduced strain levels in

the crystalline structures.

In figure 4.5b the matching of YBa2Cu3O7−δ with Ba2YNbO6 looking along

the c-axis ([001]Y BCO direction) is presented. The matching between the

YBa2Cu3O7−δ and the Ba2YNbO6 crystalline lattices is realised with 1 unit cell

of Ba2YNbO6 and 2 unit cell of YBa2Cu3O7−δ. The averaged in-plane lattice

mismatch (averaged along the a-axis and b-axis) is given by the following equa-

tion:

aBY NO − 2aY BCO
4aY BCO

+
aBY NO − 2bY BCO

4bY BCO
= +9.42% (4.2)

This large lattice mismatch, larger than the others studied non superconduct-

ing phase additions, should be beneficial for low field pinning thanks to possible

localized strain fields at the Ba2YNbO6-YBa2Cu3O7−δ interface [127], but it likely

to produce self-assembled columnar arrays of defects that are shorter and wider

than those produced with pinning addition with lower lattice mismatch [64], and

similar to those produced with BaZrO3 addition [57].
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4.2.3 Nanostructure analysis: Atomic Force Microscopy

and Transmission Electron Microscopy

X-ray diffraction analysis is a powerful tool to investigate the crystalline struc-

tures and their orientation but they reveals little information on the nanostruc-

turing of these phases. To investigate the nanostructure nanoscale microscopy has

to be performed. In this section the surface topography is discussed by analysing

atomic force microscopy images while the morphological distribution of the sec-

ondary pinning phase and the distortion in the YBa2Cu3O7−δ lattice are studied

with cross-section transmission electron microscopy.

4.2.3.1 Surface topography (Atomic Force Microscopy)

In figure 4.6 are reported atomic force micrographs of a pure YBa2Cu3O7−δ and

a 5%mol Ba2YNbO6 doped film surface.

An analysis of the root mean square roughness performed on the surface to-

pography of the 5 µm × 5 µm scans gives information on the quality of the two

films in examination. The root main square roughness of the pure YBa2Cu3O7−δ

thin film is ≈ 9.1 nm (figure 4.6a), a slightly lower value of ≈ 7.8 nm was calcu-

lated for the 5%mol Ba2YNbO6 doped thin film (figure 4.6c).

Carefully analysing both the 5 µm × 5 µm images it is evident that a small

amount of particulate is present on the surfaces of both thin films, these superficial

particles of diameter ≥ 250 nm were deposited on the growing film during the

deposition and are a well known and studied in consequence of a pulsed laser

deposition process in which the substrate is perpendicular to the plume and the

target density is not optimal [105, 128]. Improved techniques could be adopted

to reduce and eliminate this phenomenon [128–132]; in applications that require

a perfectly clean surface adopting these methods is recommended. In this case

the presence of the particulate is not a major issue and as shown later is not

evidently reducing the overall superconducting properties. Furthermore since the

particulate is present on the surfaces of both doped and undoped thin films it

should not be related to the Ba2YNbO6 doping. Nevertheless in the next section

higher quality films obtained from higher density target are discussed.

The grain growth morphology is affected by the Ba2YNbO6 presence in the
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Figure 4.6: Atomic Force Microscopy surface image of a pure YBa2Cu3O7−δ and
a 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin films. a) 5 µm × 5 µm surface
area of pure YBa2Cu3O7−δ; b) 1 µm × 1 µm surface area of pure YBa2Cu3O7−δ;
c) 5 µm × 5 µm surface area of 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ; d) 1
µm × 1 µm surface area of 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ
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doped YBa2Cu3O7−δ thin film. The first difference is the fact that in the Ba2YNbO6

sample the diameter of the growth grains appear to be slightly larger, the mean

diameter measured in the undoped YBa2Cu3O7−δ film in ≈ 500 nm while the

one measured in the Ba2YNbO6 doped YBa2Cu3O7−δ is ≈ 1 µm. This can be

explained by a lower nucleation rate in the Ba2YNbO6 doped film. The second

difference is the grain boundary shape, rough in Ba2YNbO6 doped YBa2Cu3O7−δ

films and smooth in undoped YBa2Cu3O7−δ films.

The main difference between the surface morphology of the doped film and

that of the pure YBa2Cu3O7−δ is evidenced by the comparison of the 1µm ×1µm

scans, figure 4.6b and 4.6d. The latter shows superficial particles of ≈ 15-20 nm

in diameter that are absent in the image of taken from the pure YBa2Cu3O7−δ

thin film. These superficial particles, that are to be attributed to the Ba2YNbO6

presence, are uniformly distributed over the sample surface and are not segre-

gated at the grain boundary. This is a first experimental evidence that a uni-

formly distributed array of defects based on Ba2YNbO6 is possibile given that the

Ba2YNbO6 is able to grow inside a YBa2Cu3O7−δ crystal in the form of nanomet-

ric inclusion and is not expelled from the growing YBa2Cu3O7−δ grains during

the deposition (figure 4.6d).

4.2.3.2 Cross-section transmission electron microscopy

The morphology of the Ba2YNbO6 inclusions was studied with the use of cross

sectional imaging of the sample by transmission electron microscopy. In figure 4.7

is shown cross-section transmission micrography of a 5%mol Ba2YNbO6 doped

thin film. Nanorods aligned with the c-axis of the films are evidently shown.

The nanorods imaged are ≈ 10 nm in diameter and the spacing between two

adjoining rods is ≈ 40 nm. A similar spacing is observed in the superficial par-

ticles shown by the atomic force microscopy scan reported in figure 4.6d. These

similar spacing values is a validation of the assumption that the particles observed

on the surface by using the atomic force microscopy are related to the nanorods

terminating at the film surface. The diameter of the particles observed on the

surface with the atomic force microscopy appears to be larger then the diameter

of the nanorods observed with the transmission electron microscopy. There are
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Figure 4.7: Transmission electron microscope cross-sectional image of a 5%mol
Ba2YNbO6 doped YBa2Cu3O7−δ thin film. White arrows in the direction of the
c-axis mark the position of self assembled Ba2YNbO6 nanorods parallel to the
c-axis. Larger white arrows parallel to the YBa2Cu3O7−δ ab-planes mark the
position of nanoparticles and of the interface between the substrate and the thin
film. Inset shows selected area electron diffraction pattern taken from a region
in proximity of a Ba2YNbO6 inclusion showing diffraction spot of Ba2YNbO6

YBa2Cu3O7−δ and SrTiO3. (TEM images from Prof. H Wang research group at
Texas A&M University).
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two plausible explanations that are not mutually exclusive but may be jointly

responsible for the observed difference. The first explanation is found in the fact

that the superficial particles might actually have a larger diameter because at the

surface the ions mobility is higher and there may also be further agglomeration

immediately after the deposition is terminated. The second possible explanation

is related to differences in the resolution of the two methods of analysis used. In

particular, the resolution of the atomic force microscopy depends on the diam-

eter of the tip adopted. Tips with a larger diameter can make features appear

larger than they are in reality. This aberration is absent in the transmission elec-

tron microscopy where the captured images are not subjected to the described

deformation.

Additional information that can be derived from the nanorods spacing is the

matching field. The matching field is the field value at which the spatial density

of defects is equal to that of the flux lines passing through the superconductor. At

this field value the pinning potential is the highest since in theory each and every

flux line should be pinned by a single nanorod. Unfortunately, unlike a perfect

Abrikosov lattice, it is not possible to identify a triangular or square arrangement

of flux lines in superconductors with defects. In fact, the flux lines tend to change

their spatial arrangement to overlap the defects distribution. Nevertheless it is

at least possible to have an estimation of the matching field by using the mean

spacing of the nanorods noticing that for a random distribution this tends to

be higher than that derived for a square distribution and lower that that of a

triangular distribution. The equations reported below refer to the matching field

calculation derived for a square and a triangular distribution (note that Φ0 is the

quantized flux ≈ 2.067× 10−15 Wb and d is the defects average spacing)

H∗ =
Φ0

d2
(4.3)

H∗ =
2
√

3Φ0

3d2
(4.4)

Calculating the matching field for a defects average spacing of ≈ 40 nm

applying the formula derived for a square distribution 4.3 gives a matching field

H∗ ≈ 1.29 T. Applying the formula derived for triangular distribution 4.4 the
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calculated matching field H∗ is ≈ 1.49 T. The applied magnetic field value in

which the pinning potential of the analysed thin films should be higher is between

1.29 T and 1.49 T.

In order to validate and complete the x-ray diffraction data reported in the

previous section an electron diffraction pattern of the cross section is shown in

the inset to figure 4.7. It is possible to observe a set of streaky diffraction dots for

the (004) Ba2YNbO6. The presence of streaky dots is related to large Ba2YNbO6

c-axis distortions. These distortions were expected due to the fact that the x-

ray analysis reported a compressive strain along the c-axis of the Ba2YNbO6 in

the order of ≈ 1.7%. The lattice spacing d (004) calculated from the electron

diffraction pattern is ≈ 0.214 nm, indicating a lattice parameter a ≈ 0.856

nm. This lattice parameter value, while being broadly consistent with the x-

ray measurements and confirming the secondary phase as the Ba2YNbO6 double

perovskite, does not confirm the compressive nature of the strain.

In the cross sectional images the nanorod inclusions are not the only nanoin-

clusions evidenced. A small fraction of nanoparticles are evidenced by the white

arrows parallel to the ab-planes. The presence of both self assembled nanorods

and nanoparticles is a feature which was already observed in BaZrO3 added

YBa2Cu3O7−δ as well as RETa3O7 added YBa2Cu3O7−δ, the amount of nanopar-

ticles is related to the deposition condition [133,134]. In the work of Boris Maiorov

et al., published in 2009, an interesting discussion of the beneficial effects result-

ing from simultaneous presence of both nanorods and nanoparticles is reported.

In their work it is shows how the synergetic combination of such 1D defects

(nanorods) and point defects (nanoparticles) can strongly enhance the flux pin-

ning by preventing some low energy depinning mechanism to take place. In

particular it is discussed how the flux jump from two adjacent nanorods with a

double kink propagation mechanism is associated with a higher energetic barrier

when a nanoparticle is introduced between the two adjacent nanorods or when

the nanorods are not highly linear, continuous and are not all perfectly parallel

to the c-axis.

Analysing the higher magnification images (figure 4.8a and 4.8b) it is clear how

the nanorods formed by the Ba2YNbO6 are wider (≈ 10 nm) than the RETa3O7

(≈ 5 nm) and BaZrO3 (≈ 7-8 nm), with a larger angle spread around the c-
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Figure 4.8: Transmission electron microscope cross-sectional image of a 5%mol
Ba2YNbO6 doped YBa2Cu3O7−δ thin film. White arrows in the direction of the
YBa2Cu3O7−δ c-axis mark the position of self assembled Ba2YNbO6 nanorods
parallel to the c-axis. Arrows parallel to the YBa2Cu3O7−δ ab-planes mark
the position of nanoparticles. The Ba2YNbO6 nanorods presence is indicated
by the Moire fringes arising from lattice mismatch between Ba2YNbO6 and
YBa2Cu3O7−δ. (TEM images from Prof. H Wang research group at Texas A&M
University).
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axis and shorter ≈ 100 nm as opposed to whole film thickness. Furthermore

adding the simultaneous presence of nanoparticles and nanorods the resulting

pinning landscape should be optimal in minimizing the low energy depinning

mechanism efficiency. On the downside the fact that the nanorods tend to be

wider indicates a lower rate of nucleation than RETa3O7, BaZrO3 and BaSnO3.

The main consequence is a lower defects density at equal volumetric doping that

should result in a lower pinning efficiency at high field values.

One last thing to notice in this transmission electron microscopy study of the

Ba2YNbO6 doped YBa2Cu3O7−δ sample is the evidence of how the YBa2Cu3O7−δ

lattice is deformed by the nanorod inclusions. As perfectly pictured in figure

4.8b the YBa2Cu3O7−δ ab-planes are curved around the nanorods. The lattice

mismatch between the YBa2Cu3O7−δ and the Ba2YNbO6 induce buckling of the

YBa2Cu3O7−δ crystalline planes around the nanorods. Superconductivity is then

expected to be depressed in the region surrounding the Ba2YNbO6 nanorods.

The high possibility of additional pinning from strain fields in the vicinity of

Ba2YNbO6-YBa2Cu3O7−δ interfacial regions is once more evidenced.

4.2.4 The superconducting properties: Tc, Jc(B) and Jc(B, θ)

A preliminary study of the effects of Ba2YNbO6 inclusions in YBa2Cu3O7−δ can

not be considered complete without the analysis of the main superconducting

properties. Once the crystalline structure and the nanostructure of the sam-

ple have been discussed it is necessary, in order to have an overall picture of

Ba2YNbO6 performance, to evaluate the effective superconducting properties.

Considering a power application such as superconducting cable or a more sophis-

ticated application such as superconducting coils for magnets, the most important

properties to evaluate are the transition temperature Tc, the variation of the crit-

ical current density as a function of the applied magnetic field value Jc(B) and

the variation of the critical current density as a function of the direction at which

the magnetic field is applied Jc(B, θ).
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Figure 4.9: Resistance variation with the temperature measured on a 5%mol
Ba2YNbO6 doped YBa2Cu3O7−δ thin film. The inset shows the region of the
superconducting transition magnified.

4.2.4.1 Transition temperature, Tc

In figure 4.9 is reported the resistance measured on a 50 µm width current track

patterned on 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin film. The transition

temperature Tc measured as the temperature at which the resistance disappears

is Tc = 89 K. The reduction in the Tc is lower than expected. Reduced Tcs have

been reported for most of the doped YBa2Cu3O7−δ films produced [57,68,118,119].

The Tc reduction is usually a function of the volumetric amount of the doping and

the lattice distortion induced. It is important to notice that similar Tc reductions

were observed in 5%mol BaZrO3 doped YBa2Cu3O7−δ thin films [67], but the

volumetric amount of Ba2YNbO6 in 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin

films is higher than that of BaZrO3 in a 5%mol BaZrO3 doped YBa2Cu3O7−δ thin

film. In particular a 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin film contains a

4.2%vol of Ba2YNbO6 while a BaZrO3 in a 5%mol BaZrO3 doped YBa2Cu3O7−δ

thin film contains a 1.8%vol of BaZrO3 thus the Tc reduction registered in the

Ba2YNbO6 doped scenario is lower than explected.

59



4. Ba2YNbO6 doped YBa2Cu3O7−δ: preliminary results

Two main informations can be derived from the observation of this small Tc

reduction. First, the YBa2Cu3O7−δ planes buckling around the nanorods (pic-

tured in the transmission electron microscopy figure 4.8b) is an effective strain

sink capable of limiting the strain field propagation in a region close to the

nanorods, for this reason the detrimental effects of the strain on the transition

temperature are minimal. Second, as it was expected from earlier report on Nb

doped YBa2Cu3O7−δ ceramics, the Nb do not substitute in the YBa2Cu3O7−δ

and the Ba2YNbO6 do not react with the superconducting lattice. In other

words the Nb remains enclosed in the stable Ba2YNbO6 and the only effects on

the YBa2Cu3O7−δ crystalline structure are related to the lattice accommodation

of the mismatch.

4.2.4.2 The critical current density

Despite the slightly reduced Tc the critical current density Jc is improved over

the whole field values window analysed.

In figure 4.10 is reported Jc(B) measurements up to 1 T with the field applied

parallel to the c-axis (B‖c) at 77 K for a pure YBa2Cu3O7−δ thin film and a

5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin film. It is evident that the Jc is

higher for the doped thin film and that at 1 T the Jc is a higher by a factor of

≈ 2.

In the Jc(B) measurements there is a region for low values of the applied

magnetic field in which the critical current Jc can be approximated with the

following equation:

Jc(B) ≈ Jc(0)−α∗B (4.5)

The lower the α value the lower is the Jc reduction with increasing the applied

magnetic field value. In the log-log plot shown in the inset are reported the calcu-

tad α values for both the films. The lower α value calculated for the Ba2YNbO6

doped YBa2Cu3O7−δ thin film is an indication of a higher pinning potential. The

calculated α value for the Ba2YNbO6 doped YBa2Cu3O7−δ sample is α = 0.37

that is lower than the α = 0.51 calculated for YBa2Cu3O7−δ films of this study.

The measurements shown in figure 4.10 are exhaustive in describing the Ba2YNbO6
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effects when the field is applied parallel to the c-axis, but in order to have a more

complete picture of the Ba2YNbO6 efficiency as a pinning additive it is necessary

to investigate the angular dependence of Jc. The angular dependence of the criti-

cal current density at 77 K for an applied field value of 0.5 T is reported in figure

4.11.

Figure 4.10: Critical current density variation with the applied magnetic field
value measured on a pure YBa2Cu3O7−δ and a 5%mol Ba2YNbO6 doped
YBa2Cu3O7−δ thin films at 77 K and field applied parallel to the c-axis of the
YBa2Cu3O7−δ. The inset shows data on a logaritmic axis and the calculated α
values.

The main characteristic of the Jc(B, θ) measured for the 5%mol Ba2YNbO6

doped YBa2Cu3O7−δ thin film is a strongly reduced anisotropy compared to

the Jc(B, θ) measured for the undoped YBa2Cu3O7−δ thin film. The reduced

anisotropy is related to an increase of the pinning potential when field is applied

parallel to the Ba2YNbO6 nanorods. Since the nanorods are growing parallel to

the c-axis of the YBa2Cu3O7−δ (figure 4.7) the pinning potential, and thus the

Jc, is increased when the field is applied parallel to the c-axis of the thin film,
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Figure 4.11: Critical current density variation with the direction of the applied
magnetic field measured on a pure YBa2Cu3O7−δ and a 5%mol Ba2YNbO6 doped
YBa2Cu3O7−δ thin films at 77 K and magnetic flux density = 0.5 T

which is orthogonal to the sample surface. Furthermore the anisotropy is reduced

also by a reduction of the Jc when the field is applied parallel to the ab-plane of

the YBa2Cu3O7−δ.

The two changes in the pinning potential described can be related to the

presence of Ba2YNbO6. The increment of the critical current density, Jc, when

the field is applied parallel to the Ba2YNbO6 nanorods was expected and has been

described for all the secondary phases forming c-axis aligned nanorods. In general

when the field is applied parallel to the direction of any form of one dimensional

defects, such as Ba2YNbO6 nanorods, the interaction between the flux lines and

the defects is maximized and for this reason the pinning effectiveness of the defects

is optimal. At the same time the interruption of the intrinsic pinning layer of

the YBa2Cu3O7−δ (ab-planes) generated by the introduction of the Ba2YNbO6

nanorods together with the induced buckling of the YBa2Cu3O7−δ crystalline

planes around the nanorods could be responsible for the observed reduction of

the critical current density when the field is applied parallel to the ab-planes of

the YBa2Cu3O7−δ.
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An interesting feature that can be observed when comparing the effects of

the Ba2YNbO6 introduction in the YBa2Cu3O7−δ to the angular dependence

of the critical current density with the effects of the other pinning secondary

phases (Ba(Zr,Y)O3, RETa3O7, BaSnO3 and Ba2YTaO7) is that the Ba2YNbO6

nanorods appears to be effective over a larger angular range producing a broader

c-axis peak. The formation of shorted nanorods not perfectly oriented parallel to

the c-axis of the YBa2Cu3O7−δ (discussed in the transmission electron microscopy

analysis) could be the reason behind this increased effectiveness over the angles

the magnetic field application.

To conclude the Jc(B, θ) analysis a small discussion on the effects of the

Ba2YNbO6 nanoparticles observed in transmission electron microscopy of the

thin film cross-section (figure 4.8a) has to be done. Nanoparticles are usually

related to an increase of the isotropic pinning [69]. A strong additional isotropic

pinning increases the critical current density, Jc, independently of the angle at

which the magnetic field is applied. Thus the presence of nanoparticles would

have no effect on the shape of the Jc(B, θ). On the other hand the reduced

pinning potential observed when the magnetic field is applied parallel to the ab-

planes of YBa2Cu3O7−δ would suggest that an addition of isotropic pinning is

absent. In reality the conclusion that can be made is that if nanoparticles are

effectively adding an isotropic pinning to the Ba2YNbO6 doped YBa2Cu3O7−δ

thin film this is lower than the reduction of the ab-pinning potential generated by

the Ba2YNbO6 introduction. Furthermore it is important to remember that the

synergetic combination of Ba2YNbO6 nanorods and nanoparticles can strongly

enhance the pinning provided by the Ba2YNbO6 nanorods to the fields applied

parallel to the c-axis of the YBa2Cu3O7−δ [134].

4.2.5 Concluding remarks to the preliminary results

In this section were reported the first results obtained by the addition of the

Ba2YNbO6 perovskite pinning phase to YBa2Cu3O7−δ. The double perovskite

Ba2YNbO6 results as a stable secondary phase that can be used with positive

results as a pinning additive. Ba2YNbO6 is capable of forming c-axis oriented

nanorods which result in shorter, wider nanorods than those generated by the
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other known pinning additives; furthermore the Ba2YNbO6 nanorods are oriented

parallel to the c-axis of the YBa2Cu3O7−δ but with a larger splay angles range.

For these reason the Ba2YNbO6 nanorods appear to be effective over a relatively

large angular range of magnetic field application and not only when the field is

applied parallel to c-axis of the YBa2Cu3O7−δ.
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Chapter 5

Ba2YNbO6 doped YBa2Cu3O7−δ:

the deposition parameters

The study in this chapter is an evaluation of how the production process param-

eters affect the formation of the secondary phase and the overall epitaxial quality

of the thin films. Furthermore it is discussed how the epitaxial quality of the

film and the morphology of the secondary phase influence the superconductive

properties.

5.1 Ba2YNbO6 perovskite additions to YBa2Cu3O7−δ:

the effects of the deposition rate on the nanos-

tructure and the superconducting proper-

ties

The results obtained from the preliminary study on Ba2YNbO6 doped

YBa2Cu3O7−δ thin films showed that the secondary phase Ba2YNbO6 can be

added into a mixed YBa2Cu3O7−δ-Ba2YNbO6 pulsed laser deposition target to

obtain pinning enhanced superconducting thin films. In order to investigate the

real potential of the double perovskite Ba2YNbO6 a study of the influence of

the two principal deposition parameters on the nanostructure and the supercon-

ducting properties of Ba2YNbO6 doped YBa2Cu3O7−δ thin films was performed.
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A set of 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin films was deposited by

varying the deposition rate. The crystalline structure, nanostructure and su-

perconducting properties of the thin films produced were analyzed. In this sec-

tion are reported the analysis results that allows a better understanding of the

Ba2YNbO6-YBa2Cu3O7−δ system overall and they demonstrate the possibility

to tune the nano structure and the pinning properties of the Ba2YNbO6 doped

YBa2Cu3O7−δ thin films by adjusting the deposition parameters.

5.1.1 Ba2YNbO6 doped YBa2Cu3O7−δ target preparation

and thin film deposition

The target used in the pulsed laser deposition of Ba2YNbO6 doped thin films

analysed in this section is similar to the one that was described in the previous

section. Since the preliminary study reported in the previous section evidenced

a small fraction of particulates on the thin film surfaces (see 4.2.3.1), a variation

to the production process of the target adopted for the analysis described in this

section was implemented. Densification of the pulsed laser deposition target is

a first countermeasure to the formation of particulate on the deposited thin film

surface. In order to achieve a more dense target, once sintered a first time it

was subjected to a subsequent regrinding. The powders obtained by the second

grinding were again pressed in the form of a cylindrical target and the sintered

at 950 ◦C in oxygen flow for additional 12hr.

The laser pulses repetition rate was systematically modified to study its ef-

fects on the nanostructure and pinning properties of the deposited thin films. The

laser pulse repetition rate variation changes the maximum time allowed to the

ions migration on the surface of a growing film before new higher energy ions are

deposited from a subsequent laser pulse. A higher rate increases the deposition

rate but lowers the “free migration” time. This parameter has a direct effect on

the migration time and thus a direct effect on the crystalline and nanostructure

of the growing films. In particular repetition rates of 1, and 10 Hz and substrate

temperatures of 780 ◦C were investigated. In the table below 5.1 are summa-

rized the pulsed laser deposition parameters adopted for the deposition of the

Ba2YNbO6 doped YBa2Cu3O7−δ thin films analysed in this section.
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Parameter Value
Substrate Temperature 780 ◦C

Chamber Pressure 0.3 mbar flowing O2

Laser Fluence 2 Jcm−2

Repetition Rate 1, 10 Hz
Number of Pulses 4500
Annealing Time 1 hr

Annealing Temperature 520 ◦C
Annealing Pressure 500 mbar O2

Table 5.1: Pulsed laser deposition parameters

All the Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited were measured

to be of ≈ 0.4 µm thickness. Some additional thicker samples of ≈ 0.7 µm

thickness where also deposited using 8000 laser pulses.

5.1.2 Crystalline structure analysis: x-ray diffraction data

Similarly to the crystalline phases characterization realised for the first Ba2YNbO6

doped YBa2Cu3O7−δ system, reported in the previous section, the crystalline

structures of all the samples produced for the study of the effects of the depo-

sition parameters were analysed with an extensive use of the x-ray diffraction

technique.

5.1.2.1 Crystalline phases identification, phases orientation

The x-ray diffraction data collected in the Bragg-Brentano geometry to identify

the crystalline phases as well as the in-plane texture analysis by examination of

φ scans don’t add additional information to the ones gathered in the previous

section. The results obtained at the different growth condition closely matches

each other. For this reason it is hard to understand if there are differences in the

crystalline structures of the Ba2YNbO6 doped YBa2Cu3O7−δ thin films that were

deposited in the different conditions described.

At a first x-ray diffraction analysis all the samples appears to have similar

crystalline features. The only diffraction peaks evidenced by x-ray diffraction

analysis in the Bragg-Brentano geometry (θ − 2θ scan) are those related to the
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(00l) planes from the YBa2Cu3O7−δ, the Ba2YNbO6 and the SrTiO3. Further-

more also the φ scans closely matches for the different thin films and confirms

the in-plane orientation discussed in the previous section.

In conclusion the θ− 2θ and the φ scans are not capable at identifying differ-

ences in the crystalline structures and varying laser pulses repetition rate do not

change the fact that the Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited

con be mainly described as epitaxial YBa2Cu3O7−δ films with the presence of a

cube on cube oriented Ba2YNbO6 perovskite within the YBa2Cu3O7−δ.

5.1.2.2 Epitaxy quality: rocking curve

Even if the standard x-ray diffraction analysis does not detect differences in the

crystalline structure, a first classification can be made on the basis of the epitaxial

quality. The quality of the YBa2Cu3O7−δ epitaxy with the SrTiO3 can be anal-

ysed by the rocking curve detection. The half maximum width of the diffraction

peaks resulting from a rocking curve scan is an indication of the angular spread of

the c-axis orientation. The lower the spread, the higher is the c-axis alignment.

Thin Film SrTiO3 YBa2Cu3O7−δ Ba2YNbO6

(002) (005) (004)
YBa2Cu3O7−δ (1 Hz) 0.10 0.18
YBa2Cu3O7−δ (10 Hz) 0.12 0.18

doped YBa2Cu3O7−δ (1 Hz) 0.11 0.15 1.0
doped YBa2Cu3O7−δ (10 Hz) 0.10 0.20 2.1

Table 5.2: Full Width Half Maximum values of the SrTiO3 (002), YBa2Cu3O7−δ
(005) and Ba2YNbO6 (004) rocking curves measured on pure YBa2Cu3O7−δ and
5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a substrate tem-
perature of 780 ◦C and repetition rate of 1 and 10 Hz.

In the table 5.2 is reported the full width half maximum (FWHM) val-

ues of the rocking curves around the (002) SrTiO3, (005) YBa2Cu3O7−δ and

(004) Ba2YNbO6 planes of the different samples. The FWHM values of the

YBa2Cu3O7−δ do not reveal an evident pattern and the most relevant informa-

tion is that the YBa2Cu3O7−δ c-axis orientation do not appear to be influenced by

the deposition rate in absence of the Ba2YNbO6 phase. The Ba2YNbO6 FWHM

values instead shows that the sample deposited at higher deposition rate (higher
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laser repetition rate) shows a larger FWHM value than the one obtained for the

sample deposited at lower deposition rate. Larger “free migration” time allow the

formation of a Ba2YNbO6 crystalline lattice with a higher c-axis alignment.

One thing to notice is that since the Ba2YNbO6 is growing inside a

YBa2Cu3O7−δ lattice its orientation quality is strictly related to YBa2Cu3O7−δ.

More precisely the Ba2YNbO6 lattice does not present a better c-axis orientation

alignment than the YBa2Cu3O7−δ lattice in which it is formed, on the other hand

it is also true that a poorly oriented Ba2YNbO6 can be formed in a perfectly

oriented YBa2Cu3O7−δ matrix.

While it is possible to use a technique developed to investigate the c-axis

alignment quality of thin films to also analyse that of the Ba2YNbO6 nanopar-

ticles and nanorods it is not possible to directly compare the FWHM obtained

for the Ba2YNbO6 nanoinclusions with those obtained with the YBa2Cu3O7−δ

thin films. In general, since the Ba2YNbO6 is a dopant and its quantity is

only a fraction of the YBa2Cu3O7−δ, the intensity x-ray diffraction peaks re-

lated to the Ba2YNbO6 are ≈ 2 orders of magnitude lowers than those related

to the YBa2Cu3O7−δ. Furthermore the morphological nature of the Ba2YNbO6,

nanorods and nanoparticles, is responsible for an additional broadening of the

Ba2YNbO6 peaks in the diffraction pattern that is related to the size of the phase

and not the strain or orientation. For these reason the FWHM values obtained

from the Ba2YNbO6 should be taken as a comparison between the different c-axis

degrees of the Ba2YNbO6 phase only.

5.1.2.3 Epitaxy quality: reciprocal space maps

The rocking curve were used to investigate the quality of the c-axis alignment for

both the Ba2YNbO6 and YBa2Cu3O7−δ separately but while a first information

on the Ba2YNbO6 phase was revealed it was impossible to obtain additional

information on the YBa2Cu3O7−δ . In order to further investigate the effects of

the deposition parameters on the overall epitaxial quality of the YBa2Cu3O7−δ

and Ba2YNbO6 nanoparticles reciprocal space maps were gathered for a pure

YBa2Cu3O7−δ thin film, and two Ba2YNbO6 doped YBa2Cu3O7−δ thin films. In

particular the Ba2YNbO6 doped films were deposited adopting different repetition
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rate of the ablating pulsed laser, 1 and 10 Hz, but maintaining the same substrate

temperature of 780 ◦C; the pure YBa2Cu3O7−δ was deposited at 1 Hz and the

same substrate temperature.

Figure 5.1: X-ray diffraction reciprocal space map measured on a pure
YBa2Cu3O7−δ thin film.

In figure 5.1 is reported the reciprocal space map gathered from a pure

YBa2Cu3O7−δ sample. There are three main diffraction peaks, the (103) of the

SrTiO3 and the (109) - (019) of the YBa2Cu3O7−δ are overlapping each other

while is clearly visible the (108) - (018) of the YBa2Cu3O7−δ. The YBa2Cu3O7−δ

peaks are actually formed by two different peaks related to the inevitable twins

formation. It is impossible to distinguish between the (108) and the (018)

YBa2Cu3O7−δ peaks because the two peaks are too close in the reciprocal space

that they appear as a single large peak, the theoretical peaks position indicated in

the reciprocal space maps are well between the peaks boundary and the center of

the peak is between this two theoretical position as expected in twin formations.

It is possible from the reciprocal space maps to calculate the lattice parameters

directly from the coordinate of a peak in the reciprocal space if the (h,k,l) index

is known. Remembering that the reciprocal space coordinates (qx and qz) are the

reciprocal of the lattice spacing (dx and dz) the lattice parameters a,b and c for
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a (h,0,l) and a (0,k,l) can be calculated applying the following formulas:

for a (h,0,l) peak

a =
h

qx
(5.1)

c =
l

qz
(5.2)

for a (0,k,l) peak

b =
k

qx
(5.3)

c =
l

qz
(5.4)

In figure 5.1 it is easier to calculate the YBa2Cu3O7−δ lattice parameters from

the (108)-(018) peaks since these are not overlapping with the any other phases

peak. Its important to notice that similarly to the lattice mismatch calculated in

the last section since it not possible to separate the (108) peak from the (018) the

lattice parameter calculated from the qx coordinate of the reciprocal space map

refers to an average value between the a and b lattice parameters. The average

ab calculated from the a and b bulk values (a = 0.382 nm and b = 0.388 nm), is

abbulk = 0.385 nm and it is perfectly in line with the average value calculated from

the (108)-(018) YBa2Cu3O7−δ taken from the reciprocal space map in figure 5.1

where a qx = 2.60 nm−1 also gives a ab = 0.385 nm. Similarly the YBa2Cu3O7−δ

c lattice parameter bulk value is c = 1.168 nm and from a qz = 6.85 nm−1 a c =

1.168 nm is calculated. The YBa2Cu3O7−δ thin film while being epitaxial with

the SrTiO3 substrate it is relaxed and the lattice parameters have the same value

reported in literature for bulk YBa2Cu3O7−δ.

Focusing on the (103) SrTiO3 diffraction peak at qx = 2.56 nm−1 and qz = 7.68

nm−1, it is evident that additional diffraction peaks of (103) are present. The

presence of these additional peaks is related to the use of a x-ray incident beam

that is not monochrome and, even if the main quantity of x-rays are the Cu Kα

with λ = 0.15405 nm, there are also secondary x-rays generated at different λ that

are the cause of the additional diffraction peaks presence. The intensity of the

secondary peaks is lower and these are only visible for the high intensity SrTiO3
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diffraction peaks. Another feature related to the (103) SrTiO3 is a diagonal line

also only visible for the high intensity diffraction generated by the substrate, also

this line is an artifact generated by the absence of a monochromator in particular

the line is generated by non copper x-rays emissions.

Figure 5.2: X-ray diffraction reciprocal space map measured on 5%mol Ba2YNbO6

doped YBa2Cu3O7−δ thin films. a) Film deposition rate of 1 Hz; b) Film deposi-
tion rate of 10 Hz.
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In figure 5.2 are reported the reciprocal space map gathered from a Ba2YNbO6

doped YBa2Cu3O7−δ sample deposited at 1 Hz repetition rate (figure 5.2a) and

a Ba2YNbO6 doped YBa2Cu3O7−δ thin film deposited at 10 Hz repetition rate

(figure 5.2b). In addition to the three main diffraction peaks also present in figure

5.1, that are related to the YBa2Cu3O7−δ and the substrate, the (103) Ba2YNbO6

peak is also present. Comparing the image in figure 5.1 with the images in figure

5.2 the (103) Ba2YNbO6 peak is not the only evident difference, a broadening of

the YBa2Cu3O7−δ related peaks is a second clear effect of the Ba2YNbO6 doping.

The broadening of the YBa2Cu3O7−δ peaks in the Ba2YNbO6 doped samples

could be related to the buckling of the crystalline YBa2Cu3O7−δ planes around

Ba2YNbO6 nanoinclusion discussed in the last section. The fact that overall the

lattice parameter of the YBa2Cu3O7−δ does not seem to change confirms that the

broadening is related to a local distortion, like planes buckling.

Finally a direct indication of the effects of the deposition parameters on the

crystalline structure can be obtained by the comparison of the reciprocal space

maps of the two different Ba2YNbO6 doped YBa2Cu3O7−δ thin films (figure 5.2a

and 5.2b). First the (103) Ba2YNbO6 peak shape and intensity appear to be

different in the two samples. In particular the Ba2YNbO6 peak of the 10 Hz

sample (figure 5.2b) has a lower intensity and a long tail is present. These two

features could be evidence of the existence of a fraction of randomly oriented

Ba2YNbO6 that is absent in the 1 Hz sample (figure 5.2a). From the (103)

Ba2YNbO6 peak of the 1 Hz sample it is possible to calculate the lattice param-

eters a of the Ba2YNbO6 phase in the planar direction and in the YBa2Cu3O7−δ

c-axis direction from the qx and qz values respectively. Applying the equations

5.1 and 5.2 on the qx = 2.32 nm−1 and qz = 7.22 nm−1 taken from figure 5.2a the

lattice parameters a = 0.430 nm along the planar direction and c = 0.415 nm

are calculated. The Ba2YNbO6 phase lattice parameter bulk value is a = 0.422

nm, and comparing this value with those calculated from the reciprocal space

map it is clear that the Ba2YNbO6 is subjected to a compressive strain along the

YBa2Cu3O7−δ c-axis direction and an elongation strain along the YBa2Cu3O7−δ

ab-planes direction. The deformation calculated for the two different direction

are + 1.9 % along the ab-planes direction and - 1.66 % along the c-axis direction.

Considering the morphological nature of the Ba2YNbO6 inclusions it is possible
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to explain why the compressive strain is only acting in the c-axis direction even if

the lattice mismatch calculated from the bulk values (in-plane lattice mismatch =

+ 9.42 % and c-axis lattice mismatch = + 8.34 %) indicate a compressive strain

in all directions. The Ba2YNbO6 is mainly forming nanorods aligned parallel to

the c-axis of the YBa2Cu3O7−δ thus the interface between the Ba2YNbO6 and

the YBa2Cu3O7−δ is developing prevalentely along the c-axis direction; for this

reason the minimization of the mismatch along the c-axis direction is energeti-

cally more relevant. The difficulty to identify unique qx and qz values in the low

intensity peak of the Ba2YNbO6 measured from the the 10 Hz deposited thin

film makes not possible the repetition of the calculations performed on the 1 Hz

deposited sample.

Analysing the (108)-(018) YBa2Cu3O7−δ peaks in figure 5.2 additional infor-

mation on the effects of the deposition rate on the YBa2Cu3O7−δ lattice is ob-

tained. The broadening of the peak related to the Ba2YNbO6 doping is slightly

more relevant in the Ba2YNbO6 doped YBa2Cu3O7−δ thin film deposited with

a laser repetition rate of 10 Hz. This indicates that the YBa2Cu3O7−δ region

affected by lattice distortions (buckling of the crystalline planes) is larger when

the deposition rate is higher. There are two possible explanation of this evidence,

in particular either a larger region of YBa2Cu3O7−δ may be affected by lattice

distortions around each nanoinclusion or the Ba2YNbO6 nanoinclusions density

may be higher. The phase that is more directly affected by diffusion processes,

and thus by the deposition rate, is the Ba2YNbO6. The Nb ions must in fact

diffuse on larger region of the surface in order to form the Ba2YNbO6 nanoinclu-

sions. For this reason the higher density of Ba2YNbO6 inclusions is more likely

the cause of the increased lattice distortion.

In figure ?? is shown a direct comparison of the (108)-(018) YBa2Cu3O7−δ

peaks in the different films, the indication of the peaks’ position as well as the

half maximum intensity isolines allow direct visualization of the effects of the

presence of Ba2YNbO6 on the YBa2Cu3O7−δ crystalline structure.

The broadening of the YBa2Cu3O7−δ peaks is not the only difference, the lat-

tice parameters measured from the reciprocal space map of the Ba2YNbO6 doped

YBa2Cu3O7−δ thin film deposited at 10 Hz is different from the one measured from

the film deposited at 1 Hz. In particular, from the (108)-(018) YBa2Cu3O7−δ peak
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Figure 5.3: Half maximum intesity insoline and peak position comparison for the
(108)(018) YBa2Cu3O7−δ peaks from figure 5.1 and 5.2.

of the reciprocal space map measured on the film deposited at 1 Hz (qx = 2.58

nm−1 and qz = 6.85 nm−1) the lattice parameters ab = 0.388 nm and c = 1.168

nm are calculated, while from the (108)-(018) YBa2Cu3O7−δ peak of the recip-

rocal space map measured on the film deposited at 10 Hz (qx = 2.60 nm−1 and

qz = 6.83 nm−1) are calculated the lattice parameters ab = 0.385 nm and c =

1.171 nm. In conclusion the YBa2Cu3O7−δ in the film deposited at 1 Hz appears

to better match the SrTiO3 substrate while not being affected on the overall c-axis

spacing by the Ba2YNbO6 presence at all. On the other hand the YBa2Cu3O7−δ

in the film deposited at 10 Hz maintains the ab bulk value (complete relaxation)

but the c lattice parameter is slightly larger. This is an indication that the

lattice distortion generated by the Ba2YNbO6 doping is influencing a region of

the YBa2Cu3O7−δ lattice that is large enough to be noticed when measuring the

overall c lattice parameter value.

The information obtained from the analysis of the (108)-(018) YBa2Cu3O7−δ

peak measured in the reciprocal space is summarised in table 5.3.
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Sample Peak coordinates Lattice parameters
qx / qz ab
2θ / ω c

Undoped YBa2Cu3O7−δ 2.60 nm−1 / 6.85 nm−1 0.385 nm
68.69 ◦ / 13.58 ◦ 1.168 nm

Doped YBa2Cu3O7−δ (1 HZ) 2.58 nm−1 / 6.85 nm−1 0.388 nm
68.60 ◦ / 13.66 ◦ 1.168 nm

Doped YBa2Cu3O7−δ (10 Hz) 2.60 nm−1 / 6.83 nm−1 0.385 nm
68.59 ◦ / 13.42 ◦ 1.171 nm

Table 5.3: (108)-(018) YBa2Cu3O7−δ peak analysis.

5.1.3 Nanostructure analysis: Atomic Force Microscopy

and Transmission Electron Microscopy

The analysis of the nanostructure reveals interesting differences between the

Ba2YNbO6 doped YBa2Cu3O7−δ thin film deposited at 10 Hz and those de-

posited at 1 Hz. Similarly to what was done in the previous section the sur-

face topography is discussed by analysing atomic force microscopy images while

the morphological distribution of the secondary pinning phase and the distortion

in the YBa2Cu3O7−δ lattice are studied with cross-section transmission electron

micrography.

5.1.3.1 Surface topography (Atomic Force Microscopy)

A comparison between the surface topography of samples deposited at different

rates is reported in figure 5.4, in particular the surfaces of samples of different

thickness (≈ 700 nm and 400 nm) deposited at 1 and 10 Hz are investigated.

The first evident effect of increasing the laser repetition rate is a the presence of

smaller growth grains. Comparing the surfaces of sample with similar thickness

(figure 5.4a and 5.4b or 5.4c and 5.4d) it is clearly shown that the crystalline

grains are smaller in the samples grown at 10 Hz repetition rate. As expected,

a reduced “free migration” time can then be associated with a reduced accretion

of the grains. The first result is that the thin film deposited with a repetition

rate of 10 Hz is formed of a higher number of smaller grains when compared to

a thin film deposited with a repetition rate of 1 Hz. The direct consequence of
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Figure 5.4: Atomic Force Microscopy surface image (5 µm × 5 µm) of 5%mol

Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a substrate temperature
of 780 ◦C, repetition rate of 1 Hz and 10 Hz with a thickness of 700 nm and 400
nm. a) 1 Hz and 700 nm; b) 10 Hz and 700 nm; c) 1 Hz and 400 nm; d) 10 Hz
and 400 nm.
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the morphology described is clearly shown by the comparison of the thicker films

surfaces, figure 5.4a and 5.4b. It is in fact clear that the connectivity shown

by the grains in figure 5.4b is reduced. Furthermore by the same comparison it

appears that the surfacial morphology of the thin film deposited at the higher

repetition rate is a scaled down version of the one shown by the film deposited

at 1 Hz. A similar analysis could be made comparing the surface morphologies

of the thinner films (figure 5.4c and 5.4d) but it is difficult to visualise the grains

boundaries in the smooth surface of the thinner film deposited at 1 Hz.

With a more accurate analysis of the images another feature can be deduced.

In particular, as expected, the grain dimension is not affected by the film thick-

ness. Focusing on the thin films deposited with a repetition rate of 10 Hz (figure

5.4b and 5.4d) the grains dimension appears to be similar. However the shape of

the boundaries turn from the well defined straight lines of the thinner film (figure

5.4d) to the more chaotic boundaries of the thicker sample (figure 5.4b). This

is a evidence that the grains connectivity is also reduced when the thickness is

increased.

A fine dispersion of superficial nanoparticles is shown in figure 5.4c. Simi-

lar nanoparticles where also evidenced in the previous section (figure 4.6d) and

where attributed to the Ba2YNbO6 presence. It is impossible to picture the same

small nanoparticles in atomic force micrography taken on samples with a higher

roughness (figure 5.4a and 5.4b) because the increased scale flatten the small

topographic features. It is unclear why the superficial nanoparticles are absent

(or invisible) in the thinner film deposited with a repetition rate of 10 Hz (figure

5.4d). Since its surface is shown in a similar scale to the 1 Hz film the absence of

the nanoparticles is an additional indication of a morphological difference induced

by the different deposition rate.

The root mean square roughness values calculated from the surface topogra-

phies shown in figure 5.4 are reported in table 5.4. The calculated roughness

values are higher in the 700 nm thick films then in the 400 nm thick films. How-

ever, there is no evidence of a direct influence of the repetition rate on these

values.

A last note on this surface topography study has to be made on the target

improved quality. As stated earlier a densified target was prepared to avoid the
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Repetition Rate, Thickness Root mean square roughness
1 Hz, 400 nm 2.12 nm
10 Hz, 400 nm 7.12 nm
1 Hz, 700 nm 34.14 nm
10 Hz, 700 nm 21.41 nm

Table 5.4: Root mean square roughness calculated from the surface topography
of 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a substrate
temperature of 780 ◦C, repetition rate of 1 Hz and 10 Hz with a thickness of 700
nm and 400 nm.

presence of particulates on the film surface. Comparing the surface topographies

shows in this section with the earlier study reported (section 4.2.3.1) it is evident

that the changes in the production process of the pulsed laser deposition targets

solved the particulate issue.

5.1.3.2 Cross-section transmission electron microscopy

The cross-section images taken using the transmission electron microscopy clearly

show the strong influence of the laser pulse repetition rate on the nanostructure

of the Ba2YNbO6 doped YBa2Cu3O7−δ thin films.

In figure 5.5 are reported the transmission electron micrographs taken on

the films grown at 1 Hz and 10 Hz at different magnification. Columnar de-

fects are shown with a good contrast only in the film deposited at 1 Hz (fig-

ure 5.5a and 5.5b) and are indicated by arrows parallel to the c-axis of the

YBa2Cu3O7−δ. In the film deposited at 10 Hz some shadows parallel to the c-

axis of the YBa2Cu3O7−δ are present and could be related to the presence of

Ba2YNbO6 nanorods. Nevertheless the contrast in figure 5.5c and 5.5d is lower

and these columnar defects are not clearly identified. The reduced contrast can

be related to a lower orientation degree as well as to larger distortion. Once more

the Ba2YNbO6 inclusions nanostructure is shown to be the phase influenced more

by the deposition rate.

Focusing on the images related to the Ba2YNbO6 doped YBa2Cu3O7−δ thin

film deposited at laser pulse rate of 1 Hz, it is possible to analyse the morphology

of the nanorods parallel to the c-axis of the YBa2Cu3O7−δ. The nanorods diam-

eter is ≈ 10 nm and their spacing is ≈ 40 nm. Similarly to the case reported in
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Figure 5.5: Transmission electron microscope cross-sectional image of a 5%mol
Ba2YNbO6 doped YBa2Cu3O7−δ thin film deposited with a laser pulse rates of 1
Hz (a, b) and 10 Hz (c, d). White arrows in the direction of the YBa2Cu3O7−δ
c-axis mark the position of self assembled Ba2YNbO6 nanorods parallel to the
c-axis. Arrows parallel to the YBa2Cu3O7−δ ab-planes mark the position of
nanoparticles. (TEM images from Prof. H Wang research group at Texas A&M
University).
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the last section where a Ba2YNbO6 doped YBa2Cu3O7−δ deposited with a laser

pulse rate of 5 Hz showed same structures with similar spacing. Repeating once

more the matching field calculation also the films deposited at 1 Hz should have

a matching field value between 1.29 T and 1.49 T. Comparing figure 5.5a with

figure 4.8a two differences are evident: the nanorods in the film deposited at a

laser pulse rate of 1 Hz appears to be continuous and longer than the ≈ 100 nm

length of the nanorods showed in the film deposited at 5 Hz; in the film deposited

at 1 Hz there is no sign of the nanoparticles that where shown in the 5 Hz case.

The film deposited at a laser pulses rate of 10 Hz (figure 5.5c and 5.5d) is the

one that differs the most. The nanorods are not clearly visible but a large number

of nanoparticles is present. In general from the transmission electron microscopy

analysis this film appears to have the less ordered YBa2Cu3O7−δ lattice and an

almost completely disordered Ba2YNbO6 nanostructure.

It is interesting to see that the nanoparticles and nanorods presence is largely

influenced by the laser pulses rate. The nanoparticles are absent in the 1 Hz films,

their presence increase increasing the laser pulse rate up to the 10 Hz film where

they appear to be the dominant nanoinclusion. On the other hand the nanorods

are long, linear and almost perfectly parallel to the YBa2Cu3O7−δ c-axis in the

film deposited at a laser pulse of 1 Hz; are shorter (≈ 100 nm) with a large angle

spread to the YBa2Cu3O7−δ c-axis in the film deposited at a laser pulse of 5 Hz

(see section 4.2.3.2); are distorted and not clearly imaged in the film deposited

at a laser pulse of 10 Hz.

The Ba2YNbO6 inclusions generate distortion in the YBa2Cu3O7−δ lattice.

The influence of the laser pulse rate on the nanostructure of the Ba2YNbO6

inclusions is then transferred to the YBa2Cu3O7−δ lattice distorted by those in-

clusions. In transmission electron microscope images of the Ba2YNbO6 doped

YBa2Cu3O7−δ films deposited at pulse rates of 1 Hz and 5 Hz the YBa2Cu3O7−δ

crystalline planes parallel to the ab direction appear to be distorted only in the re-

gions close the nanorods and the planes buckling in this small region appear as an

effective strain sink. On the other hand a similar buckling of the planes does not

appear to be effective in respect of the high density of the nanoparticles growing

in the Ba2YNbO6 doped YBa2Cu3O7−δ deposited at 10 Hz. The YBa2Cu3O7−δ

lattice appears to be distorted with continuity and the entire lattice seems to be
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affected by the Ba2YNbO6 presence. The high density of nanoparticles appears

to be the most likely cause. In particular, the reduced distance between the

Ba2YNbO6 inclusions do not allow full relaxation of the YBa2Cu3O7−δ lattice.

5.1.4 The superconducting properties: Tc, Jc(B) and Jc(B, θ)

The crystalline structure and the nanostructure of Ba2YNbO6 doped YBa2Cu3O7−δ

thin films deposited at different rates have been analysed. In particular the nanos-

tructure was found to be heavily influenced by the laser pulse rate. In this sec-

tion the superconducting transport properties (Tc, Jc(B) and the Jc(B, θ)) are

analysed and related to the nanostructural feature evidenced. In addition to the

Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at 1 Hz and 10 Hz also films

deposited at 5 Hz where characterized. The crystalline structure and nanostruc-

ture morphology of Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at 5 Hz

was analysed in the preliminary study. Nevertheless, since the transport proper-

ties characterisation performed in the preliminary study presented was limited to

low field values (Jc(B) up to 1 T and Jc(B, θ) measured at 0.5 T), the transport

properties of new films deposited at laser pulses repetition rate of 5 Hz adopting

the densified pulsed laser deposition target are characterised in order to obtain a

more complete picture of the effects of the deposition rate.

5.1.4.1 Transition temperature, Tc

The transition temperature does not appear to be effected by the laser pulses repe-

tition rate adopted. The Tc measured from all the Ba2YNbO6 doped YBa2Cu3O7−δ

thin films produced is reduced by a small amount (≈ 3 K) when compared to

the Tc measured from a pure YBa2Cu3O7−δ thin film.

In figure 5.6 are reported the resistance measured on a 50 µm width current

track patterned on pure YBa2Cu3O7−δ thin film and 5%mol Ba2YNbO6 doped

YBa2Cu3O7−δ thin films deposited at a laser pulses repetition rate of 1, 5 and 10

Hz. The transition temperature Tc, measured as the temperature at which the

resistance disappears, is reported in table 5.5.

The Tc reduction is in line with the one measured in the preliminary study

(section 4.2.4.1), thus the same considerations can be done and the Ba2YNbO6
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Figure 5.6: Resistance variation with the temperature measured on a pure
YBa2Cu3O7−δ thin film deposited at a substrate temperature of 780 ◦C and laser
pulses repetition rates of 1 Hz and on 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ
thin films deposited at a substrate temperature of 780 ◦C and laser pulses repe-
tition rates of 1, 5 and 10 Hz.
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stability within the YBa2Cu3O7−δ matrix is confirmed. Furthermore it is impor-

tant to notice that despite the higher disorder pictured by the transmission elec-

tron microscopy the transition temperature measured on the Ba2YNbO6 doped

YBa2Cu3O7−δ thin film deposited at 10 Hz is almost equal to the one measured

on the thin film deposited at a laser pulses repetition rate of 1 Hz. In conclusion

the fact that the higher defects density is not related to a further reduction of

the transition temperature could be the evidence that connected regions of the

YBa2Cu3O7−δ lattice only marginally distorted by the Ba2YNbO6 inclusion may

be present also in the thin films deposited at laser pulses repetition rate of 10 Hz.

Thin Film Transition Temperature Tc
pure YBa2Cu3O7−δ (1 Hz) 91.5 K

Ba2YNbO6 doped YBa2Cu3O7−δ (1 Hz) 87.8 K
Ba2YNbO6 doped YBa2Cu3O7−δ (5 Hz) 88.8 K
Ba2YNbO6 doped YBa2Cu3O7−δ (10 Hz) 88.0 K

Table 5.5: Transition Temperature Tc collected from the resistance variation with
temperature measurements shown in figure 5.6.

5.1.4.2 The critical current density

Once again despite the slightly reduced transition temperatures Tc the first ev-

ident effect of the Ba2YNbO6 doping is improved critical current densities Jc

values over the whole field range analysed.

In figure 5.7 are reported Jc(B) measurements up to 6 T with the field applied

parallel to the c-axis (B‖c) at 77 K for a pure YBa2Cu3O7−δ thin film and 5%mol

Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a laser pulses repetition

rate of 1, 5 and 10 Hz. The Jc(B) values measured on the Ba2YNbO6 doped

YBa2Cu3O7−δ thin films deposited at laser pulses repetition rate of 1 and 5 Hz

are similar. This is an evidence that the pinning potential is similar when the

field is applied parallel to the YBa2Cu3O7−δ c-axis.

The Jc values measured on the film deposited at 10 Hz are lower then those

measured on the other Ba2YNbO6 doped YBa2Cu3O7−δ films in the low field

region (B ≤ 2 T) but are the highest when the applied field is above 2 T. A

possible explanation can be found in the higher density of Ba2YNbO6 nanoinclu-
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Figure 5.7: Critical current density variation with the applied magnetic field value
measured on a pure YBa2Cu3O7−δ thin film deposited at a substrate temperature
of 780 ◦C and laser pulses repetition rates of 1 Hz and on 5%mol Ba2YNbO6

doped YBa2Cu3O7−δ thin films deposited at a substrate temperature of 780 ◦C
and laser pulses repetition rates of 1, 5 and 10 Hz. The field is applied parallel
to the c-axis of the YBa2Cu3O7−δ, T = 77 K. The data are on a log-linear plot
(a) and a log-log plot (b).
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sions. The matching field values (1.29 T ≤ H∗ ≤ 1.59 T) calculated from the

Ba2YNbO6 nanorods were similar in the 1 Hz and 5 Hz films. Unfortunately, due

to the high distortions resulting in low transmission electron image contrast it

was not possible to calculate a matching field for the 10 Hz film. However, since

the lower spacing of the inclusion was evidenced, a higher matching field value

was expected.

Figure 5.8: Pinning force calculated from data reported in figure 5.7

To better visualize the effect of different matching field values in figure 5.8

is reported the pinning force calculated as Jc(B) × B from the data reported in

figure 5.7. The pinning force maximum for the Ba2YNbO6 doped YBa2Cu3O7−δ

thin films deposited at 1 and 5 Hz are located at a field valued of ≈ 1.4 T.

It is worth noticing that this value is perfectly in line with the matching field

values predicted from the nanorods spacing measured on the images acquired

with the electron transmission microscopy. The fact that the pinning force max-

imum for the Ba2YNbO6 doped YBa2Cu3O7−δ thin film deposited at 10 Hz is

shifted towards higher field values confirm the higher matching field value that

was expected from the higher Ba2YNbO6 inclusion density.

Table 5.6 reporting the α values calculated from data in figure 5.7 complete
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Thin Film α
pure YBa2Cu3O7−δ (1 Hz) 0.47

Ba2YNbO6 doped YBa2Cu3O7−δ (1 Hz) 0.32
Ba2YNbO6 doped YBa2Cu3O7−δ (5 Hz) 0.37
Ba2YNbO6 doped YBa2Cu3O7−δ (10 Hz) 0.39

Table 5.6: α calculated from the data reported in figure 5.7.

the Jc(B) analysis. The α values are reduced when the Ba2YNbO6 is added

to YBa2Cu3O7−δ and the higher value is the one calculated for the Ba2YNbO6

doped YBa2Cu3O7−δ deposited at a laser pulse repetition rate of 10 Hz is α = 0.39

which is lower than α = 0.47 calculated for the pure YBa2Cu3O7−δ sample. The

reason why the highest α value is the one calculated the 10 Hz Ba2YNbO6 doped

YBa2Cu3O7−δ film is that the pinning landscape generated in this film is effective

at high field more then it is at low field and that α is calculated in the very low field

regime (B ≤ 1 T). At low field values the pinning potential is not fully developed

since the high density of nanoinclusions may reduce the energy associated with

flux jumps between adjoining defects reducing the pinning potential.

To complete the analysis of the effects that different laser pulses repetition

rates have on the nanostructure and properties of Ba2YNbO6 doped YBa2Cu3O7−δ

thin films the critical current density variation as a function of the external mag-

netic field direction is measured. In figure 5.9 are reported Jc(B, θ) measurements

at 77 K and 0.5, 1 T for a pure YBa2Cu3O7−δ thin film and 5%mol Ba2YNbO6

doped YBa2Cu3O7−δ thin films deposited at a laser pulses repetition rate of 1, 5

and 10 Hz.

The first important result is that even if all the Ba2YNbO6 doped YBa2Cu3O7−δ

thin films shows an higher Jc value when the field is applied parallel to the

YBa2Cu3O7−δ c-axis the only thin film that shows higher Jc values than pure

YBa2Cu3O7−δ when the field is applied parallel to the ab-planes is the thin film

deposited at a laser pulses repetition rate of 1 Hz. It is evident that the pinning

potential along the ab-planes of the Ba2YNbO6 doped YBa2Cu3O7−δ thin film de-

posited at 5 and 10 Hz is reduced. The cause of this reduction can not be indicated

in the nanorods inclusion because these are the dominant inclusion type in the

Ba2YNbO6 doped YBa2Cu3O7−δ deposited at 1 Hz and its ab-direction pinning
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Figure 5.9: Critical current density variation with the direction of the applied
magnetic field measured on a pure YBa2Cu3O7−δ thin film deposited at a sub-
strate temperature of 780 ◦C and laser pulses repetition rates of 1 Hz and on
5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a substrate tem-
perature of 780 ◦C and laser pulses repetition rates of 1, 5 and 10 Hz. a) Applied
magnetic flux density = 0.5 T, T = 77 K; b) Applied magnetic flux density = 1
T, T = 77 K.
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potential is similar if not better then the one shown by the pure YBa2Cu3O7−δ

film. The ab-direction reduction of the Jc could be associated with the lower con-

nectivity evidenced in the Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited

at 5 Hz and 10 Hz. It is certain that the loss of pinning capability when the

field is applied parallel to the YBa2Cu3O7−δ ab-planar direction is related to the

interruption of the crystalline ab-planes continuity. There are two main sources

of planar continuity interruption: the nanorods and the grain boundaries. The

nanorods generate a local hole through the planes and a possible loss of conti-

nuity in the small region around them that is affected by planar buckling. The

grain boundaries are a two dimensional interruption of the planar continuity that

is extended over lengths that are order of magnitude larger that the nanorods

interruption. This together with the evidence that one of the main effects of

higher repetition rates is the reduction of the growth grains dimension (figure

5.4) suggest that the deficient pinning potential measured when the field is ap-

plied parallel to the ab-planar direction is caused by the interruption of the ab

crystalline planes occurring at the grain boundaries.

It is worth remembering that the scenario presented for the Ba2YNbO6 doped

YBa2Cu3O7−δ deposited at laser pulses repetition rates of 5 and 10 Hz is com-

mon in pinning enhanced YBa2Cu3O7−δ thin films in which the secondary phases

forms heteroepitaxial nanorods [57, 65, 74, 118] while the presence of a strong c-

axis pinning without a reduction of the ab-planes pinning was achieved only in

carefully tuned BaZrO3 doped YBa2Cu3O7−δ [6, 134]. In general while it is com-

mon to increase the isotropic pinning without disrupting the ab-planar continuity,

it is complex to introduce a strong anisotropic pinning along the c-axis direction

without depressing the planar Jc.

The Ba2YNbO6 doped YBa2Cu3O7−δ thin film deposited at a laser pulses

repetition rate of 10 Hz shows a strong c-axis pinning potential revealing the

presence of c-axis directional defects that were not clearly shown by the trans-

mission electron microscopy. Furthermore the isotropic pinning introduced by

the densely packed nanoparticles is not effective at low field (B ≤ 1 T) and

at these field values the connectivity issues and low energies flux jumps nullify

the pinning effects. Similarly the pinning enhancement that should be provided

by the simultaneous presence of nanorods and nanoparticles in the Ba2YNbO6
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doped YBa2Cu3O7−δ deposited at 5 Hz are also probably denied by the reduced

connectivity.

5.1.5 Concluding remarks to the analysis of the effects of

the deposition rate on the nanostructure and the

superconducting properties

The analysis performed in this section demonstrated that the laser pulses repeti-

tion rate heavily influence the YBa2Cu3O7−δ grains morphology and consequently

the overall connectivity and continuity of the ab crystalline planes. Higher repe-

tition rates generates smaller growth grains with reduced connectivity and planar

continuity. Such reduced connectivity and continuity is found to generate a re-

duction of the critical current values Jc when the field is applied parallel to the

YBa2Cu3O7−δ ab-planes.

The laser pulses repetition rate influences also the nanostructure of the

Ba2YNbO6. Long linear nanorods are obtained at low deposition rates (1 Hz), at 5

Hz are obtained shorter nanorods and simultaneously nanoparticles and at 10 Hz

the nanoparticles are the dominant Ba2YNbO6 nanostructure. It would be pos-

sible to tune the Ba2YNbO6 nanorods-nanoparticles ratio to achieve an optimal

pinning landscape by tuning the repetition rate as done with the BaZrO3 [134] but

the connectivity issues evidenced have a larger detrimental effect on the pinning

properties than the enhancing effect expected from the sinergetic combination of

0D nanoparticles and 1D c-axis oriented nanorods.

The best results in mid-low field (0 T to 2 T) values where obtained by

Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at 1 Hz. On the other

hand the high density pinning landscape generated in the Ba2YNbO6 doped

YBa2Cu3O7−δ thin film deposited at 10 Hz provides enough pinning force to

overcome the related connectivity issue when the field applied is above 2 T; a

possible application niche for the 10 Hz thin films could then be found in special-

ized equipment for high magnetic field.
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5.2 Ba2YNbO6 perovskite additions to YBa2Cu3O7−δ:

deposition parameter optimization

There are several parameters that define the process in a pulsed laser deposition.

The substrate - target distance, the laser fluence, the oxygen pressure, the sub-

strate temperature and the laser pulse repetition rate all influence the quality of

the deposited thin film. The substrate - target distance, the laser fluence and

the oxygen pressure are related more to the target ablation and plume diffusion

process than to the film growth, furthermore they have been optimized over the

years. The last two are the parameters that directly influence the film growth

process. A complete study on the effects of the laser puses repetition rate is

discussed in the previous section, while in this brief final section of the chapter

the study of the properties of the Ba2YNbO6 doped YBa2Cu3O7−δ thin film is

concluded with the optimisation of the substrate temperature in the pulsed laser

deposition. This final section will not include an in depth study of the nanos-

tructure similar to the one reported in the previous sections of the chapter but

will focus on the grain connectivity and the superconducting properties of a large

number of films.

5.2.1 Ba2YNbO6 doped YBa2Cu3O7−δ pulsed laser depo-

sition target preparation and thin films deposition

The target used in the pulsed laser deposition is the one that was ablated to

deposit the thin films analysed in the previous section.

The substrate temperature was modified to study its effects on the growth and

the superconducting properties of Ba2YNbO6 doped YBa2Cu3O7−δ thin films

deposited at different laser pulses repetition rate. It is difficult to predict the

effects of the substrate temperatures on the film growth as it simultaneously

affects multiple mechanism of the process. As an example an higher substrate

temperature is certainly related to higher mobility of the ions moving on the

growing film surface and at the same time high substrate temperatures in a low

oxygen pressure environment may speed up an oxygen content reduction process.

Thus in order to identify a processability window, if not the optimum, a set
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of Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at different substrate

temperatures and different laser pulse repetition rate were grown. In particular

repetition rate of 1, 5 and 10 Hz and substrate temperatures of 740 and 760 ◦C

were investigated and compared to the results obtained on thin films deposited

at a substrate temperature of 780 ◦C. In the table 5.7 below are summarized the

pulsed laser deposition parameters adopted for the deposition of the Ba2YNbO6

doped YBa2Cu3O7−δ thin films analysed in this section.

Parameter Value
Substrate Temperature 740,760,780 ◦C

Chamber Pressure 0.3 mbar flowing O2

Laser Fluence 2 Jcm−2

Repetition Rate 1, 5, 10 Hz
Number of Pulses 4500
Annealing Time 1 hr

Annealing Temperature 520 ◦C
Annealing Pressure 500 mbar O2

Table 5.7: Pulsed laser deposition parameters

All the Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited were measured

to be of ≈ 0.4 µm thickness.

5.2.2 Surface Topology: Grain Connectivity

The analysis discussed in the previous section showed that the grain connectivity

has a major influence on the superconducting properties, in particular when the

magnetic field is applied parallel to the YBa2Cu3O7−δ ab-planar direction the crit-

ical current values appear to be reduced in the Ba2YNbO6 doped YBa2Cu3O7−δ

thin films featuring small growth grains. For this reason a study of surface to-

pography can not be neglected even in this brief analysis of the superconducting

properties.

In order to provide clear visual impact the images of the surface topography

were separated into three. In figure 5.10 are reported the surface topographies for

all the thin films produced with a substrate temperature of 740 ◦C, in figure 5.11

those deposited at 760 ◦C and in figure 5.12 those at 780 ◦C. In all the figures

from top to down the laser pulses rate varies from 1 Hz to 10 Hz.
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Figure 5.10: Atomic Force Microscopy surface image (5 µm × 5 µm) of 5%mol
Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a substrate temperature
of 740 ◦C; a) repetition rate of 1 Hz; b) repetition rate of 5 Hz; c) repetition rate
of 10 Hz;
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Figure 5.11: Atomic Force Microscopy surface image (5 µm × 5 µm) of 5%mol
Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a substrate temperature
of 760 ◦C; a) repetition rate of 1 Hz; b) repetition rate of 5 Hz; c) repetition rate
of 10 Hz;
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Figure 5.12: Atomic Force Microscopy surface image (5 µm × 5 µm) of 5%mol
Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a substrate temperature
of 780 ◦C; a) repetition rate of 1 Hz; b) repetition rate of 5 Hz; c) repetition rate
of 10 Hz;

95



5. Ba2YNbO6 doped YBa2Cu3O7−δ: the deposition parameters

The first clear feature evidenced by these atomic force microscopy study is the

presence of outgrowths on the surfaces of the thin films deposited at a substrate

temperature of 740 ◦C (figure 5.10). These outgrowths where recently reported

in the case of pure YBa2Cu3O7−δ on RABiTS for substrate temperatures from

740 ◦C and below [135]. Nevertheless several authors have investigated and char-

acterized the outgrowths on the surface of pulsed laser ablated YBa2Cu3O7−δ on

different substrates [136,137].

The outgrowths are reported to be a-axis YBa2Cu3O7−δ grains, misaligned c-

axis grains and non superconducting grains made by Y2BaCuO5, CuYO2, CuO,

BaCuO2 and Ba2CuO3. It is possible to distinguish between the outgrowths

formed by superconducting YBa2Cu3O7−δ grains and those formed by non su-

perconducting phases with the atomic force microscopy. The outgrowths formed

by YBa2Cu3O7−δ (a-axis YBa2Cu3O7−δ and misaligned c-axis YBa2Cu3O7−δ) are

reported as block-shaped while those formed by non superconducting phases are

semi-spherical. From the images reported in figure 5.10 it is evident the out-

growths are block-shaped thus are YBa2Cu3O7−δ grains. The superconducting

outgrowths are described as predominantly c-axis YBa2Cu3O7−δ grains paral-

lel to the substrate surface that nucleate on the substrate at the same time of

the desired c-axis YBa2Cu3O7−δ perpendicular to the substrate surface when the

substrate temperature is below a certain threshold.

In the present case this lower temperature limit is found to be 740 ◦C. Further-

more a significant increase in the size of the outgrowths is also reported to occurs

during long deposition. This size increment is related to precipitates formation

at the edge of the outgrowths as well as to the merging of neighboring c-axis

parallel grains. A similar behaviour is found in figure 5.10 where the size of the

outgrowths on the surface of the thin film deposited at a laser pulses repetition

rate of 1 Hz is much larger than that observed for the thin films deposited at 5

and 10 Hz. Although the quality of these films is reduced by the presence of these

outgrowths, it is significant to make a final comment on the dimension and shape

of the c-axis perpendicular grains that are visible below the outgrowths. These

grains are almost perfectly rectangular, their size is ≈ 300 nm and do not seem

to change with the variation of laser pulses repetition rate. From the images in

figure 5.11 and 5.12 it is evident that the outgrowths are absent.
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Figure 5.13: Average grain size measured from AFM analysis of 5%mol
Ba2YNbO6 doped YBa2Cu3O7−δ thin film deposited at a substrate temperature
of 740, 760 and 780 ◦C as a function of laser pulse rate

Figure 5.13 compares the average grain size measured from the AFM in figure

5.10, 5.11 and 5.12, which shows a well defined trend. The size of the grains and

thus the connectivity increases when the substrate temperature is increased and

when the laser pulses repetition rate is decreased. It is important remembering

that a reduction of the pulses laser repetition rate corresponds to an increase in

the maximum time allowed to the ions migration on the surface. Referring to

a standard model of nucleation and growth, the grain size analysis shows that

an increase in ions mobility as well as the time allowed to their migration shifts

the balance between nucleation and growth towards the latter. In the previous

section it was shown that thin films composed of larger grains have better super-

conducting properties than films composed by smaller grains. Therefore, if this

trend were to be confirmed, the films with the best superconducting properties

should be those deposited with a substrate temperature of 780 ◦C.

A last consideration can be made comparing the surface topographies of the

thin film deposited at 1 Hz and 760 ◦C (figure 5.11a) with the one deposited at 5

Hz and 780 ◦C (figure 5.12b). It is evident that the two images are similar thus

indicating the possibility to achieve similar results with lower mobility (lower

substrate temperature) and longer migration times (lower laser pulse repetition
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rate) or higher mobility and smaller migration times.

5.2.3 The superconducting properties: Tc, Jc(B) and Jc(B, θ)

To conclude the last section of the chapter are shown the results obtained from

the analysis of the superconducting properties. The variation of transition tem-

perature Tc and critical current density as a function of the applied magnetic field

intensity Jc(B) and as a function of the applied magnetic field direction Jc(B, θ)

are reported.

5.2.3.1 Transition temperature, Tc

In figure 5.14 is visualized the Tc variation with the substrate temperature. Each

curve is referred to a laser pulse repetition rate. The Tc values are also summarized

in tabular form in table 5.8.

Figure 5.14: Visualisation of the transition temperature values measured for
5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a substrate tem-
perature of 740, 760 and 780 ◦C and laser pulses repetition rates of 1, 5 and 10
Hz

The transition temperature values measured for the thin films deposited at a

98



5. Ba2YNbO6 doped YBa2Cu3O7−δ: the deposition parameters

substrate temperature of 760 ◦C has the same behaviuor discussed in the previous

section for the thin films deposited on the substrate kept at 780 ◦C. The Tc

reduction is ≈ 3 K as Tc ≈ 88 K are measured for all the samples.

A different Tc trend is observed in thin films deposited on substrates kept at

740 ◦C. In these thin films the Tc values appears to be influenced by the laser

pulses repetition rate and the Tc measured for the thin films deposited at 10 Hz

shows a severe reduction down to ≈ 79 K. The main difference in these films is

the presence of the outgrowths discussed earlier in the section. It is possible that

the YBa2Cu3O7−δ c-axis grains aligned parallel to the substrate surface introduce

high levels of strain and distortion reducing the Tc. The fact that the size of these

outgrowths changes with the variation of the laser pulses repetition rate could

be the reason why only in when these outgrowth are present the Tc values also

changes with the variation of the repetition rate.

A possible explanation to the Tc variation with the laser pulses repetition rate

can be found considering that the strain and distortion are responsible for the

reduced Tc values. These are generated at the interfaces between two phases (or c-

axis parallel YBa2Cu3O7−δ grains and c-axis perpendicular YBa2Cu3O7−δ grains)

thus larger interfaces induce larger Tc reduction. Taking into account that the

an increase of the laser pulses repetition rate decrease the sizes of the outgrowths

but at same time increase their density and thus increase the interfacial area

(figure 5.10), the relation between Tc values and the laser pulses repetition rates

is evident.

1 Hz 5 Hz 10 Hz
740 ◦C 87.8 K 85K 79 K
760 ◦C 87.9 K 89 K 88.2 K
780 ◦C 87.8 K 88.8 K 88.8 K

Table 5.8: Transition temperature values for 5%mol Ba2YNbO6 doped
YBa2Cu3O7−δ thin films deposited at a substrate temperature of 740, 760 and
780 ◦C and laser pulses repetition rates of 1, 5 and 10 Hz.
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5.2.3.2 The critical current density

The critical current values measured on thin films deposited on substrate kept at

temperature values smaller then 780 ◦C are all reduced (figure 5.15). A reduction

of the substrate temperatures appears to reduce the critical current values regard-

less of the repetition rate. As a matter of the fact that the detrimental effects

generated by connectivity issues has been evidenced and discussed in the previous

section and that the atomic force microscopy analysis revealed that larger grains

(better connectivity) where generated at high substrate temperatures a similar

behaviour of the critical current values was expected.

Figure 5.15: Critical current density variation with the applied magnetic field
value measured on 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited
at a substrate temperature of 760 and 780 ◦C and laser pulses repetition rates of
1, 5 and 10 Hz. The field is applied parallel to the c-axis of the YBa2Cu3O7−δ,
T = 77 K.

A self explanatory summary plot is reported in figure 5.16, the critical current

density values measured at 0.5 T and 1 T are plotted as a function of the pulse

rate and for the samples deposited at a substrate temperature of 760 ◦C and 780
◦C.

In figure 5.17 the critical current density variation with direction of the applied
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Figure 5.16: Critical current density measured at 0.5 T and 1 T on 5%mol
Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited at a substrate tempera-
ture of 760 and 780 ◦C as a function of laser pulse rate. The field is applied
parallel to the c-axis of the YBa2Cu3O7−δ, T = 77 K.

magnetic field is reported. These data do not add new knowledge on the system

analysed and the consideration done in the last section could be repeated. Once

again the relevant results is that the best performances are obtained by the thin

films deposited on substrate kept at 780 ◦C.

An interesting observation is obtained by the comparison of the Jc(B) and

the Jc(B, θ) of the thin film deposited at 760 ◦C and 1 Hz with those of the thin

film deposited at 780 ◦C and 5 Hz. The Jc values obtained in these films are

similar and also the topographies were similar. This is an important evidence

that, as stated before, it is possible to reduce the deposition time (increase the

laser pulses repetition rate) without affecting the superconducting properties in-

creasing the ions mobility (increase the substrate temperature). Unfortunately,

even if the above is true, the substrate temperature (mobility) has an upper limit.

When temperatures above 780 ◦C are used new phenomena are introduced and

the superconductive properties are worsened probably by reductions in oxygen

content. In particular Ba2YNbO6 doped YBa2Cu3O7−δ thin films deposited on

substrate kept at temperatures of 800 and 820 ◦C shows Tc values below 80 K.

101



5. Ba2YNbO6 doped YBa2Cu3O7−δ: the deposition parameters

Figure 5.17: Critical current density variation with the direction of the applied
magnetic field measured on 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ thin films
deposited at a substrate temperature of 760 and 780 ◦C and laser pulses repetition
rates of 1, 5 and 10 Hz. a) Applied magnetic flux density = 0.5 T, T = 77 K; b)
Applied magnetic flux density = 1 T, T = 77 K.
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5.2.4 Concluding remarks to the deposition parameters

optimization

In this last section the relevance of grain size on the Ba2YNbO6 doped YBa2Cu3O7−δ

thin films is once again evidenced. The connection between the temperature at

which the substrate is kept during the deposition with the films grains morphol-

ogy is analysed.

Within the parameter range analysed the optimal superconducting properties

for the Ba2YNbO6 doped YBa2Cu3O7−δ system are found in the thin films that

are deposited on substrates kept at 780 ◦C with a laser pulse repetition rate of 1

Hz.

A temperature of ≈ 780 ◦C seems to be an optimal value since further

increments require additional processing to equilibrate the oxygen content. If post

annealing processes are not considered a substrate temperature ≈ 780 ◦C is an

upper limit on the processability parameter variation range. On the other hand,

the laser pulses repetition rate of 1 Hz is the lowest rate analysed and the trend

observed indicated that reducing the repetition rate would lead to larger growth

grains and more ordered nanorods arrays. However, it is important to notice

that even if there is not lower limit of processability for the laser pulse repetition

rate, there is a lower efficacy limit. In other words adopting increasingly smaller

repetition rate at a certain point will cease to be beneficial and from industry

point of view will start to be disadvantageous. In fact, once the process ceases

to be kinetically limited and reaches the thermodynamic equilibrium any further

reductions in the repetition rate would have no influence.
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Chapter 6

Ba2YNbO6 and Gd3TaO7

simultaneous doping of

YBa2Cu3O7−δ

In the previous chapter an in-depth analysis of the effects of Nb addition to

YBa2Cu3O7−δ is presented. It is proved that niobium additions to YBa2Cu3O7−δ

produce Ba2YNbO6 nanorods and that in general additions to REBa2Cu3O7−δ

produce Ba2RENbO6 nanorods [5,118,138] which are similar to BaZrO3 nanorods,

≈ 10 nm in diameter and ≈ 100 nm in length but with a larger splay than

BaZrO3 around the c-axis.

Another element, the tantallum, also showed similar properties to the nio-

bium. Both niobium and tantallum are highly charged ions and do not substitute

in the YBa2Cu3O7−δ lattice but form non superconducting phases. One of the

phases that has been reported to form in the YBa2Cu3O7−δ doped with tanta-

llum is the Ba2YTaO6 perovskite with a crystalline lattice that is identical to the

Ba2YNbO6 [124]. Referring to the Ba2YNbO6 and Ba2YTaO6 perovskites the Nb

and Ta are present as Nb+4 and Ta+4 coordinating 6 oxygen in an octahedral

lattice site and the ionic radius of both the element is 0.082 nm. As a matter of

the fact the Ba2YNbO6 and Ba2YTaO6 have identical crystalline lattices.

On the other hand Ba2YTaO6 is not the only phase reported to be gener-

ated by the tantallum addition, a defective pyrochlore RE3TaO7 has also been
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reported [67]. Despite the different chemical composition and crystalline struc-

ture attributed to the nanorods formed by the addition of tantallum these have

been described as very fine (≈ 5 nm in diameter), continuous over the entire film

thickness, highly linear and densely distributed thus different from the wider (≈
10 nm in diameter), shorter and less linear nanorods which are formed by the

niobium addition.

Since the niobate and tantalate nanorods in YBa2Cu3O7−δ are of rather dif-

ferent morphology the YBa2Cu3O7−δ doped with niobium and the YBa2Cu3O7−δ

doped with tantallum have different superconducting properties. It is interest-

ing to evaluate whether the addition of both niobium and tantallum of the same

overall doping level results in an averaging effects or in an increased complexity

of the system that could yield to an entirely different and new pinning landscape.

In this chapter is reported a study of simultaneous doping of YBa2Cu3O7−δ

with both Ba2YNbO6 and Gd3TaO7. The reason tantallum was added in the

form of RE3TaO7 is that this was previously studied in our group as a pinning

additive to YBa2Cu3O7−δ thin films.

6.1 Ba2YNbO6 and Gd3TaO7 doped YBa2Cu3O7−δ

target preparation and thin films deposition

The Ba2YNbO6 and Gd3TaO7 doped YBa2Cu3O7−δ target for the pulsed laser

deposition was sintered adopting the process described in the previous chapter to

produce densified target and minimize the particulate amount deposited on film

surfaces (section 5.1.1). As anticipated in chapter 3, unlike the Ba2YNbO6 per-

ovskite, the Gd3TaO7 powders were not prepared prior to the target sintering and

the desired amount of 99.99% Gd2O3 and 99.99% Ta2O5 powders were directly

added to a mixture of YBa2Cu3O7−δ and Ba2YNbO6 powders. The final target

stochiometry is 2.5%mol Ba2YNbO6 + 2.5%mol Gd3TaO7 doped YBa2Cu3O7−δ

doped YBa2Cu3O7−δ.

The pulsed laser deposition parameters chosen for the thin films analysed in

this chapter are those that showed optimised growth for the 5%mol Ba2YNbO6

doped YBa2Cu3O7−δ. In particular, the substrate temperature was kept at 780
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◦C and the laser pulses repetition rate was set at 1 Hz. In table 6.1 is summarized

the complete set of deposition parameters studied.

Parameter Value
Substrate Temperature 780 ◦C

Chamber Pressure 0.3 mbar flowing O2

Laser Fluence 2 Jcm−2

Repetition Rate 1 Hz
Number of Pulses 4500
Annealing Time 1 hr

Annealing Temperature 520 ◦C
Annealing Pressure 500 mbar O2

Table 6.1: Pulsed laser deposition parameters

The Ba2YNbO6 + Gd3TaO7 doped YBa2Cu3O7−δ thin films deposited were

measured to be of ≈ 0.35 µm thickness.

6.2 Crystalline structure analysis: x-ray diffrac-

tion data

Similarly to the crystalline structure characterisation performed on the first

Ba2YNbO6 doped YBa2Cu3O7−δ thin films produced the first results presented

in this chapter are those obtained from the x-ray diffraction analysis. It is funda-

mental to investigate the crystalline structure and the orientation of the phases

introduced in the thin films.

6.2.0.1 Crystalline phases identification

Figure 6.1 shows the x-ray diffraction pattern of a typical thin film.

The (00l) peaks of YBa2Cu3O7−δ (or (Y/Gd)Ba2Cu3O7−δ) as well as the

(002), (004) and (008) peaks of Ba2(Y/Gd)(Nb/Ta)O6 are labeled. A peak at

2θ = 33.3◦ can be identified as the (004) diffraction peak of (Y/Gd)2O3. Further-

more traces of a copper rich cuprate are also present as indicated by the diffraction

peaks (008),(0010) and (0012) at 2θ = 25.9◦, 2θ = 33.2◦ and 2θ = 41.4◦ that can

be associated to (Y/Gd)Ba2Cu4O8.

106



6. Ba2YNbO6 and Gd3TaO7 simultaneous doping of YBa2Cu3O7−δ

Figure 6.1: Bragg-Brentano scan of a YBa2Cu3O7−δ + 2.5%mol Ba2YNbO6 +
2.5%mol Gd3TaO7 thin film deposited on SrTiO3.

It is evident that Gd3TaO7 is absent and that a chemical reaction has gen-

erated new phases. It is possible to express a balanced chemical reaction that

summarize the phases transformation and that is consistent with the phases ob-

served by the x-ray diffraction reported in figure 6.1.

0.95 YBa2Cu3O7−δ + 0.025 Ba2YNbO6 + 0.025 Gd3TaO7

↓
0.85 (Y/Gd)Ba2Cu3O7−δ+ 0.05 Ba2(Y/Gd)(Nb/Ta)O6 + 0.0375 (Y/Gd)2O3

+ 0.075 (Y/Gd)Ba2Cu4O8

Considering the nature of the ions present in the system is easy to understand

the phases evolution observed. Gd can substitute onto the Y site since they

have similar ionic radii. For the same reason Nb and Ta can cross-substitute.

This allows Ta and Gd introduced as Gd3TaO7 together with the Ba2YNbO6

and Ba ions subtracted to the YBa2Cu3O7−δ to form the complex perovskite

Ba2(Y/Gd)(Nb/Ta)O6. Furthermore the Gd3TaO7 → Ba2(Y/Gd)(Nb/Ta)O6

transformation generates a Gd excess and a Ba deficiency that together with

the Gd ↔ Y mutual substitution could be at the origin of the (Y/Gd)2O3 and
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(Y/Gd)Ba2Cu4O8 particles formation.

The previously reported [67] Gd3TaO7 phase does not form and the Ta partic-

ipate to the formation of a perovskite structure similar to the reported Ba2YTaO6

[68, 109]. Ba2YNbO6 and Ba2YTaO6 have identical crystalline structure and the

newly formed Ba2(Y/Gd)(Nb/Ta)O6 do not shows evident differences.

(Y/Gd)Ba2Cu4O8 formation has been previously observed in coated

YBa2Cu3O7−δ superconductors affected by barium deficiency. In particular a bar-

ium depletion by reaction with a CeO2 buffer layer has been reported to generate

(Y/Gd)Ba2Cu4O8 [139]. In the Ba2YNbO6 + Gd3TaO7 doped YBa2Cu3O7−δ

the (Y/Gd)Ba2Cu4O8 formation can be related to the barium deficiency in the

Gd3TaO7 reactant. (Y/Gd)Ba2Cu4O8 has been reported also in films grown by

metal-organic deposition, where it is described to be in the form of stacking fault

defects [140].

Concluding the phase identification it is clear that the Ba2YNbO6 + Gd3TaO7

doped YBa2Cu3O7−δ is a Ba2(Y/Gd)(Nb/Ta)O6 + (Y/Gd)2O3 doped

(Y/Gd)Ba2Cu3O7−δ thin film with additional traces of (Y/Gd)Ba2Cu4O8.

6.2.1 Crystalline phases orientation

The phase orientation analysis is reported in figure 6.2. The SrTiO3 curve is

omitted since the (Y/Gd)Ba2Cu3O7−δ can be taken as an orientation reference.

The cube on cube growth of the Ba2(Y/Gd)(Nb/Ta)O6 in the

(Y/Gd)Ba2Cu3O7−δ is evidenced by the x-ray φ scans: the (202)

Ba2(Y/Gd)(Nb/Ta)O6 peak (χ = 45◦, 2θ = 30.03◦) matches the (102) (Y/Gd)Ba2Cu3O7−δ

(χ = 57.06◦, 2θ = 27.62◦) peaks. Furthermore considering the out-of-plane c-axis

homogeneous orientation a full heteroepitaxy between the (Y/Gd)Ba2Cu3O7−δ,

the Ba2(Y/Gd)(Nb/Ta)O6 and the SrTiO3 substrate is estabilished.

The φ scan performed on the (404) peak (χ = 45◦, 2θ = 48.518◦) is evidence

that the (Y/Gd)2O3 is rotated 45◦ in-plane, as previously reported [141]. At a

more accurate analysis a small fraction of the (Y/Gd)2O3 particles appears to

be oriented with a minimum offset from the a and b crystalline directions of

the (Y/Gd)Ba2Cu3O7−δ, a few degrees away from a cube on cube orientation.

These broad (Y/Gd)2O3 φ peaks have been explained as a near coincidence site
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Figure 6.2: X-ray diffraction data from φ scans of (102) YBa2Cu3O7−δ, (202)
Ba2YNbO6 and (404) (Y/Gd)2O3 from a 2.5%mol Ba2YNbO6 + 2.5%mol
Gd3TaO7 doped YBa2Cu3O7−δ thin film.

lattice matching that can possibly accommodate the large strain and structural

differences between (Y/Gd)2O3 and YBa2Cu3O7−δ [142]. However observing the

intensity ratio between the peaks related to the (Y/Gd)2O3 rotated 45◦ and those

related to the (Y/Gd)2O3 in a near coincidence matching it is evident that only

traces of the latter can be found and that the (Y/Gd)2O3 can be considered as a

rotated 45◦ in plane.

6.3 Cross-section transmission electron microscopy

Transmission electron microscopy cross-sectional images are reported in figure

6.3. At least two different nanostructural features can be clearly observed.

The first and more obvious feature is a set of fine segmented nanorods of ≈
7 nm in diameter parallel to the (Y/Gd)Ba2Cu3O7−δ c-axis. These nanorods are

smaller than the Ba2YNbO6 nanorods which are ≈ 10 nm in diameter [5, 124],

but larger than the nanorods of Gd3TaO7 [67] and Ba2YTaO6 [68] which are ≈
5 nm in diameter. It is important to notice that while in the case of Gd3TaO7
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Figure 6.3: a) TEM image of a YBa2Cu3O7−δ + 2.5%mol Ba2YNbO6 + 2.5%mol
Gd3TaO7 thin film cross section; b) TEM image of plate-like nanoparticleof
(Y/Gd)2O3 nucleated between two Ba2(Y/Gd)(Nb/Ta)O6 nanorods segments;
c) Selected area electron diffraction pattern of the image in (a); d) TEM imafe
of plate-like nanoparticle of (Y/Gd)2O3, inset (d) Fourier transform of the par-
ticle image. (TEM images from Prof. H Wang research group at Texas A&M
University).
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nanorods different nanostructural features could be related to different strains and

lattice mismatch in the case of Ba2YTaO6 this is not possible because Ba2YTaO6

and Ba2YNbO6 have the identical crystalline lattice. However despite having the

same crystalline lattice the Ba2YNbO6 forms nanorods larger in diameter than

the Ba2YTaO6 hence this has to be related to different kinetics of the niobium

and the tantallum. Ba2(Y/Gd)(Nb/Ta)O6 could be described as a mixture of

Ba2YNbO6 and Ba2YTaO6 (with an additional Gd ↔ Y substitution), hence an

averaged growth kinetics of Ba2YNbO6 and Ba2YTaO6 is obtained , as might be

expected. The average nanorod segment length is ≈ 30 nm, this is shorter than

both the continuous Ba2YTaO6 that are long the entire film thickness and the

short Ba2YNbO6 that are ≈ 80-100 nm. An average nanorods spacing of ≈ 28

nm nm can be calculated from image in figure 6.3a. Calculating the matching

field for a triangular and a quadratic rods distribution (see section 4.2.3.2) the

applied magnetic field value in which the pinning potential of the analysed thin

films should be higher is between 2.64 T and 3 T, these values are larger than

those reported for the Ba2YNbO6 inclusion with the same overall doping level.

A second nanostructural feature is clearly shown in figure 6.3b: a plate-like

nanoparticle of RE2O3 (indicated as (Y/Gd)2O3) parallel to the

(Y/Gd)Ba2Cu3O7−δ ab-planes is connecting two adjoining Ba2(Y/Gd)(Nb/Ta)O6

nanorods segments. To confirm the crystalline nature of this plate-like nanopar-

ticles as RE2O3 a Fourier transform confirming the structure of a (Y/Gd)2O3

particle is shown in figure 6.3d. These plate-like particles of (Y/Gd)2O3 are in

the 25-30 nm width range and their extensions along the (Y/Gd)Ba2Cu3O7−δ

c-axis is ≈ 7 nm.

In order to confirm the phases identification obtained with the x-ray diffraction

analysis in figure 6.3c is reported a selected area electron diffraction pattern

of a large cross-sectional region. Diffraction spots that can related to SrTiO3,

(Y/Gd)Ba2Cu3O7−δ, Ba2(Y/Gd)(Nb/Ta)O6, (Y/Gd)Ba2Cu4O8 are labeled and

are consistent with the x-ray diffraction pattern reported in figure 6.1.

To conclude, the nanostructure investigation reported in this section is impor-

tant to emphasize that the nanorods segmentation is a new structural feature, and

that this is the first time it has been observed. The segmentation of the nanorods

yields to an average segment length of ≈ 30 nm. An explanation of the phe-
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nomenon may be in kinetic terms: the tantallum ion is heavier than the niobium

thus it has a slower diffusion, this may generate a shortage in the tantallum sup-

ply as a reactant for the nanorods’ growth thus preventing these from maintaining

continuity as the film growth progresses. A new segment nucleates aligned along

the (Y/Gd)Ba2Cu3O7−δ c-axis with a preexisting segment thanks to the presence

of a nucleation enhancing strain field generated within the (Y/Gd)Ba2Cu3O7−δ

by the nanoinclusion similarly to the BaZrO3 and Ba2YNbO6 [133].

6.4 The superconducting properties: Tc, Jc(B)

and Jc(B, θ)

The complex thin film crystalline structure composition made of three different

nanoinclusion phases ((Y/Gd)2O3, Ba2(Y/Gd)(Nb/Ta)O6, (Y/Gd)Ba2Cu4O8) and

a possible RE (Gd ↔ Y) variation do not influence the transition temperature.

No suppression of the superconducting transition temperature was observed, the

Tc values measured were ≈ 89 K.

Similarly to what observed in Ba2YNbO6 doped YBa2Cu3O7−δ thin films a

small reduction of the transition temperature values from the transition of the

pure YBa2Cu3O7−δ thin films is expected [5,57,68,118,119], when this is limited to

a few Kelvin (≈ 2 K), it is evident that the secondary non superconducting phases

are stable and that the only source of Tc reduction are the induced YBa2Cu3O7−δ

lattice distortions.

6.4.1 The critical current density

In this section are compared the effects on the critical current density of Ba2YNbO6,

BaZrO3, and simultaneous Ba2YNbO6 - Gd3TaO7 doping. The critical cur-

rent density reported are all measured on thin films of ≈ 300 nm thickness.

The BaZrO3 doped YBa2Cu3O7−δ data are taken from one of the best per-

forming films in literature deposited adopting a YBa2Cu3O7−δ target covered

by yttria-stabilized zirconia on 2% of the surface area [6] while a Ba2YNbO6

doped YBa2Cu3O7−δ thin films of ≈ 350 nm thickness was specifically grown

and measured for this comparison.
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6.4.1.1 The critical current density: Jc(B)

Figure 6.4: Critical current density variation with the applied magnetic field value
measured on a pure YBa2Cu3O7−δ, a 5%mol Ba2YNbO6 doped YBa2Cu3O7−δ,
a 2.5%mol Ba2YNbO6 - 2.5%mol Gd3TaO7 doped YBa2Cu3O7−δ and a BaZrO3

doped YBa2Cu3O7−δ thin films [6]. The field is applied parallel to the c-axis of
the YBa2Cu3O7−δ, T = 77 K. the data are on a log-linear plot (a) and a log-log
plot (b).

113



6. Ba2YNbO6 and Gd3TaO7 simultaneous doping of YBa2Cu3O7−δ

In figure 6.4 is reported Jc(B) measurements up to 4 T with the field ap-

plied parallel to the c-axis (B‖c) at 77 K for a pure YBa2Cu3O7−δ, a 5%mol

Ba2YNbO6 doped YBa2Cu3O7−δ, a 2.5%mol Ba2YNbO6 - 2.5%mol Gd3TaO7

doped YBa2Cu3O7−δ and a BaZrO3 doped YBa2Cu3O7−δ thin films. The thin

films with the simultaneous doping of Ba2YNbO6 and Gd3TaO7 show the highest

Jc of all the films studied in the entire field range analysed. An outstanding Jc

value of 1.8 MAcm−2 at 1 T and values above 1 MAcm−2 up to 2.5 T are the best

indications of the excellent potential of this new pinning landscape. Furthermore,

from the data shown in figure 6.4b it is clear that the exponential Jc decay range

(linear on double logaritmic axis) is extended to fields values above 2 T.

Another unusual feature related to this new pinning landscape is the net

change in the slope of Jc(B) that occurs as the field intensity approaches the

value of matching fields (≈ 2.6 T). This could be an indication of the effective

defusing of the low energy depinning mechanisms and of a strong pinning capacity

of the single nanorods. The Jc, in fact, start to decrease only when the fluxons

are about to saturate the pinning sites.

The high pinning capacity of the Ba2YNbO6 + Gd3TaO7 doped YBa2Cu3O7−δ

thin films can also be deduced by the α values reported in table 6.2.

Dopant α
YBa2Cu3O7−δ 0.47

Ba2YNbO6 doped YBa2Cu3O7−δ 0.35
BaZrO3 doped YBa2Cu3O7−δ 0.25

Ba2YNbO6 + Gd3TaO7 doped YBa2Cu3O7−δ 0.14

Table 6.2: α values calculated from the Jc(B) curves shown in figure 6.4.

The α value ≈ 0.14 calculated for the Ba2YNbO6 + Gd3TaO7 doped

YBa2Cu3O7−δ thin film is lower than the lowest previously reported value, an

α ≈ 0.19 reported in a specially grown BaZrO3 doped YBa2Cu3O7−δ where it

was shown that an optimisation of the deposition process could produce a mixture

of BaZrO3 randomly distributed nanoparticles and splayed columnar defects that

could synergetically reduce the depinning mechanism effectiveness [134]. In fact,

the new pinning landscape produced by the Ba2YNbO6 + Gd3TaO7 simultaneous

doping consists of segmented nanorods and plate-like nanoparticles that form a
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synergetic pinning landscape similar to the one produce in the specially grown

BaZrO3 doped YBa2Cu3O7−δ. The two pinning landscapes show two key differ-

ences: the Ba2(Y/Gd)(Nb/Ta)O6 nanorods are smaller in diameter (≈ 7 nm)

than the BaZrO3 nanorods (≈ 10-15 nm); the Ba2(Y/Gd)(Nb/Ta)O6 nanorods

are segmented while the BaZrO3, similarly to the Ba2YNbO6, while not being

continuous have an average length of ≈ 100 nm. The segmentation could be

the key factor to explain the lower α, segmented rods could in fact gave rise to

strongly pinned staircase vortices.

6.4.1.2 The critical current density angular dependence: Jc(B, θ)

Investigating the angular dependence of Jc (figure 6.5) it is evident that the

Ba2YNbO6 + Gd3TaO7 doped YBa2Cu3O7−δ thin film shows superior pinning

properties over a large angle ranges and not only when the field is applied parallel

the YBa2Cu3O7−δ c-axis.

The Ba2YNbO6 + Gd3TaO7 doped YBa2Cu3O7−δ films show at low field val-

ues (figure 6.5a) a strong, narrow c-axis pinning peak and no variation of critical

current respect the pure YBa2Cu3O7−δ thin film is measured when the field is

applied parallel to the YBa2Cu3O7−δ ab-planes. The Jc values measured for this

new pinning landscape with the field applied parallel to the YBa2Cu3O7−δ c-

axis of 1.8 MAcm−2 is 3 times higher then the one measured for the Ba2YNbO6

doped YBa2Cu3O7−δ and 6 times higher then the one measured for the undoped

YBa2Cu3O7−δ.

The Ba2YNbO6 doped YBa2Cu3O7−δ thin film shows results that are identical

to those reported in the previous chapter: a noticeable Jc increase when the field

is applied parallel to the YBa2Cu3O7−δ c-axis together with a small Jc increase

with fields applied parallel to the YBa2Cu3O7−δ ab-planes.

Increasing the field intensity the strong, narrow c-axis pinning peaks of the

Ba2YNbO6 + Gd3TaO7 doped YBa2Cu3O7−δ films changes to a strong and broad

peak. The segmented nanorods provide strong pinning to the vortices over a

wide range of angular directions. The Jc values measured on the Ba2YNbO6

+ Gd3TaO7 doped YBa2Cu3O7−δ are higher then those measured on Ba2YNbO6

doped YBa2Cu3O7−δ indicating that the pinning of the finer, segmented
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Figure 6.5: Critical current density variation with the direction of the applied
magnetic field measured on a pure YBa2Cu3O7−δ, a 5%mol Ba2YNbO6 doped
YBa2Cu3O7−δ, a 2.5%mol Ba2YNbO6 - 2.5%mol Gd3TaO7 doped YBa2Cu3O7−δ
and a BaZrO3 doped YBa2Cu3O7−δ thin films [6]. The field is applied parallel to
the c-axis of the YBa2Cu3O7−δ. a) Applied magnetic flux density = 1 T, T = 77
K; b) Applied magnetic flux density = 3 T, T = 77 K.
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Ba2(Y/Gd)(Nb/Ta)O6 nanorods together with (Y/Gd)2O3 plate-like nanopar-

ticles is more effective compared to the coarser, non segmented Ba2YNbO6 rods.

6.4.1.3 A new pinning feature

A last interesting piece of information is the evolution of the angular Jc increasing

the field (figure 6.6a). If a low field the most prominent feature is the strong

c-axis pinning peak and substantially unmodified ab-planes peaks (figure 6.5a)

increasing the field values a new feature start to become visible. This new pinning

feature can be initially observed at 3 T and it appears as shoulders on the broad

c-axis peak and increasing the field value these shoulders resolves into distinct

peaks around ± 60◦. The magnitude of this two peaks increases with increasing

the field values and for field values of 5 T and above they become the dominant

pinning peaks.

This additional pinning preferential direction is a new feature that is directly

related to the new pinning landscape generated in the Ba2YNbO6 + Gd3TaO7

doped YBa2Cu3O7−δ thin films. The existence of this additional preferential pin-

ning direction can be explained using the vortex path model [143]. In this model

the combination of c-axis pinning structures (segmented Ba2(Y/Gd)(Nb/Ta)O6

nanorods) and ab-planes structures (plate-like (Y/Gd)2O3 nanoparticles and

YBa2Cu3O7−δ ab-planes) results in staircase vortices that are pinned simulta-

neously by the different structures. These vortices are subjected to the strongest

pinning at a characteristic angle determined by the distribution of defects and

defects length (figure 6.6b). Since in this type of pinning are involved both the

available species of additional pinning structure (Ba2(Y/Gd)(Nb/Ta)O6 nanorods

and (Y/Gd)2O3 nanoparticles) the hypothetical matching field would have an

higher value thus this pinning is more effective at high field values.

6.4.2 Concluding remarks to Ba2YNbO6 and Gd3TaO7 si-

multaneous doping of YBa2Cu3O7−δ

The study reported in this chapter is on the Ba2YNbO6 and Gd3TaO7 simul-

taneous doping of YBa2Cu3O7−δ. The expected mixture of Ba2YNbO6 coarse

splayed nanorods and Gd3TaO7 fine dense linear nanorods was not generated.
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Figure 6.6: a) High field critical current density variation with the direction of the
applied magnetic field measured on a 2.5%mol Ba2YNbO6 - 2.5%mol Gd3TaO7

doped YBa2Cu3O7−δ. Applied magnetic flux density = 3 T to 6 T, T = 77 K;
b) sketch of vortices interacting simultaneously with nanorod segments along the
c-axis and intrinsic and extrinsic defects along ab-planes.
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Combining Ba2YNbO6 and Gd3TaO7, two well studied phases, a completely new

self-assembled pinning landscape was generated instead. This pinning landscape

is not a mere mixture of the landscape generated by Ba2YNbO6 and Gd3TaO7

but presents an optimal nanorods’ architecture of fine, straight, segmented rods.

Furthermore (Y/Gd)2O3 nanoparticles were fortuitously generated because the

nanorods of Ba2(Y/Gd)(Nb/Ta)O6 formed were of different composition (poorer

in rare earth, richer in barium) than the reactants Ba2YNbO6 and Gd3TaO7 that

were added to the YBa2Cu3O7−δ pulsed laser deposition target.

The critical current densities measured at 77 K are greatly enhanced com-

pared to previously studied pinning additives. In particular Jc values above 1

MAcm−2 for fields up to 2.5 T were achieved and this is a new benchmark in the

YBa2Cu3O7−δ thin films properties. Furthermore new pinning features around

60◦ were observed for the first time proving the possibility of tuning the pinning

landscape in order to generate thin films with an arbitrary preferential pinning

direction. Applications where the magnetic field is applied obliquely to the su-

perconductor could greatly benefit from the use of this new pinning landascape.

119



Chapter 7

Conclusions and further work

The study presented in this thesis investigated the use of novel secondary non

superconducting phases to generate nanostructured YBa2Cu3O7−δ thin films pro-

duced by pulsed laser deposition from a single composite target with enhanced

flux pinning and improved performance in applied magnetic fields.

First an intensive study on the addition of a niobium based non superconduct-

ing phase was completed. At the time the pinning additive known to be effective

for the production of nanorods and the creation of a c-axis pinning peak were

BaZrO3 (a zirconium based perovskite) [57], RE3TaO7 (tantallum based pyro-

chore) [67] and BaSnO3 (a tin based perovskite) [64]. With the exception of the

RE3TaO7 all the other phases are barium based perovskites. These perovskites

form a different pinning landscape thanks to different ions kinetics and differ-

ent lattice mismatches. Thus the YBa2Cu3O7−δ thin films doped with different

perovskites have different properties.

It was known that in bulk samples adding niobium or tantallum to

YBa2Cu3O7−δ forms Ba2YNbO6 or Ba2YTaO6 [109] but at the time of that study

RE3TaO7 was the only phases reported in pulsed laser deposited YBa2Cu3O7−δ

thin films doped with tantallum while an early study reported the successfull

production of Ba2NbErO6 perovskite in ErBa2Cu3O(7−δ) [118,119].

The first step of the research work reported in this thesis is the demonstration

of the possibility to introduce Ba2YNbO6 nanorods in YBa2Cu3O7−δ together

with providing the experimental evidence of the potential of broad c-axis pinning

peaks. The broad c-axis pinning peak was related to the morphology of the novel
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Ba2YNbO6 nanorods, that was found to be different from those reported before.

The nanorods resulted to be shorter, wider and with a larger c-axis splay than

the those generated by the other known pinning additives [5].

Once discovered, the potential of Ba2YNbO6 as pinning additive, a study

of the effects of the deposition rate and substrate temperatures on Ba2YNbO6

doped YBa2Cu3O7−δ thin films was performed. The study demonstrated that fast

deposition rates induce smaller growth grains and the formation of Ba2YNbO6

nanoparticles togheter with the ordered Ba2YNbO6 nanorods. The thin films

produced adopting high deposition rates while proved to be highly effective at

high field values show a severe reduction of the intrinsic YBa2Cu3O7−δ ab-planes

pinning. This reduction is related to the large amount of discontinuity intro-

duced to the YBa2Cu3O7−δ crystall ab-planes. On the other hand Ba2YNbO6

doped YBa2Cu3O7−δ thin films deposited at low deposition rate showed that it is

possible to introduce Ba2YNbO6 and increase the pinning potential along the c-

axis without reducing the connectivity or the YBa2Cu3O7−δ crystall quality thus

without reducing the ab-plane pinning potential. In conclusion Ba2YNbO6 doped

YBa2Cu3O7−δ thin films with enanched c-axis togheter with good ab-planes pin-

ning potential were succesfully deposited. These Ba2YNbO6 doped YBa2Cu3O7−δ

thin films stand out because they show a low anisotropy of the angular depen-

dence of the critical current greatly reducing the design difficulties encountered

in many coated conductors applications.

The last part of the thesis is devoted at a new research that arises from

the desire to investigate the effects on the pinning of a synergistic combination

of morphologically different nanoinclusions. In particular the combination of the

wide, short splayed Ba2YNbO6 nanorods and the fine, long, higly linear Gd3TaO7

nanorods was investigated. This work demonstrated that in a niobium and tan-

tallum combined scenario the tantallum partecipate to the formation of a per-

ovskyte and do not form Gd3TaO7. A tantallum based perovskite Ba2YTaO6

was also recently reported in tantallum doped YBa2Cu3O7−δ [68], however also

the Ba2YTaO6 perovskite is morphologically different from the Ba2YNbO6 being

fine, long and highly linear like the previously reported Gd3TaO7 nanorods.

A completely new pinning landscape was produced by depositing thin films

from a Ba2YNbO6 + Gd3TaO7 + YBa2Cu3O7−δ PLD target. The structural

121



7. Conclusions and further work

and morphological characterization of these films showed that the these films

are mainly made of (Y/Gd)Ba2Cu3O7−δ with fine, linear, segmented nanorods of

Ba2(Y/Gd)(Nb/Ta)O6 and (Y/Gd)2O3 plate-like nanoparticles inclusions. This

new defect landscape produced in the thin films is capable of generating state-of-

the-art pinning properties. Astonishingly high critical currents are not the only

effect: for the first time possibility to achieve self segmentation of nanorods was

demostrated, and for the first time additional new pinning features around 60◦

were observed.

Owing to the very high critical currents obtained, exceeding the industry

standard BaZrO3, it is likely that the results obtained in this work will at-

tract the interest of many research groups from different area of the field. Fur-

thermore, modifying the ratio of niobium and tantallum and the ratio between

Ba2(Y/Gd)(Nb/Ta)O6 and (Y/Gd)2O3 will almost certanly demonstrate the tun-

ability of the pinning landscape, and a new era will begin in which it will be

possible to produce superconductors specifically designed for pinning in a prede-

termined direction.

A direct continuation of this work should investigate the effects of the simul-

taneous niobium tantallum doping in a simplified system. At first YBa2Cu3O7−δ

films doped only with Ba2YNbO6 and Ba2YTaO6 produced with different of

Nb:Ta ratios could be grown in order to investigate the tunability of the seg-

mentation. In a second stage (Y/Gd)2O3 could be added to the Ba2YNbO6 and

Ba2YTaO6 doping to evaluate the importance of the synergistic combination,

and find the optimal balance between plate like nanoparticles and segmented

nanorods. In a last stage Gd, as well as other rare earths, could be used to

partially substitue the Y riproducing the otpimal pinning landscape obtained in

this work but with an increased knoledge of the single constituent effects and

increased freedom on the composition of the films.

In addition a study of the pinning properties at temperatures below 77 K of

the system demonstrated in this dissertation could provide additional evidence

of the effective possibility of tuning nanoengineered YBa2Cu3O7−δ in order to

achieve optimal pinning along arbitrary directions.

122



Appendix

Publications related to the research described in this dissertation are presented

in this section. The publications order is the following:

• Ercolano G et al. “Enhanced flux pinning in YBa2Cu3O7−δ thin films

using Nb-based double perovskite additions”. Supercond. Sci. Technol.,

23:022003, 2010.

• MacManus-Driscoll J L et al. “High current, low cost YBCO conductors-

what’s next?”. Supercond. Sci. Technol., 23:034009, 2010.

• Ercolano G et al. “State-of-the-art flux pinning in YBa2Cu3O7−delta by

the creation of highly linear, segmented nanorods of Ba2(Y/Gd)(Nb/Ta)O6

together with nanoparticles of (Y/Gd)2O3 and (Y/Gd)Ba2Cu4O8”. Sub-

mitted to Supercond. Sci. Technol.
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Abstract
The addition of a new niobate double perovskite pinning phase to YBa2Cu3O7−δ thin films
grown by pulsed laser deposition is reported. The YBa2NbO6 phase self-assembles into stacks
of ∼10 nm second phase particles, aligned with the c-axis of the YBa2Cu3O7−δ. The
YBa2Cu3O7−δ/YBa2NbO6 composite thin films have enhanced critical current, by a factor of 2,
at 1 T (H ‖ c) over the pure YBa2Cu3O7−δ, whilst maintaining a high transition temperature.
Niobium does not substitute in the YBa2Cu3O7−δ matrix. This, together with the high stability
of the second phase formed, makes it an ideal pinning additive.

1. Introduction

Improved performance of high temperature superconductors
(HTS) in magnetic fields is a highly sought after goal to
make HTS conductors commercially viable. There are
two routes to achieve higher current carrying performance,
(a) controlled nano-engineering of superconducting materials
to enhance flux pinning [1–8] and (b) growth of thicker
highly epitaxial material in a simple and cost-effective manner
through applying novel processing routes. With industrial
applications in mind, the current focus should now be to
produce efficient, reproducible and cost-effective nanopinning
defect arrays. To achieve these end goals it is necessary to:
(1) select an ion or phase addition which produces a secondary
pinning phase which forms in a wide processing window,
and (2) to understand and hence control the second phase
assemblage. The group IV and group V ion additions, more
specifically Zr4+, Hf4, Ta5+ and, as shown in this work, Nb5+,
appear to be the best to meet the first goal [9] and we are now
at the stage of beginning to understanding the second one.

YBa2Cu3O7−δ (YBCO) thin films containing such
additions with improved Jc (up to a factor of 5) in magnetic

field was first demonstrated by the introduction of BaZrO3

(BZO) [10]. Through careful process optimization, the results
with BZO have been further substantially improved over the
last 5 years [11, 12]. More recently, with the aim of producing
minimally chemically and structural perturbative effects, rare
earth tantalates (RE3TaO7, RTO) have been studied. Compared
to BZO, these have been found to yield greater tunability of
particle assemblage, and no Tc reduction. In a short space of
time, this has led to a Jc increase by up to a factor of 10 [13].
Further studies on the RTO addition effects and on the process
optimization have been performed and will be published in the
future.

It is important to note that for the PLD technique, when
deciding on new pinning additions to YBCO the phase which
forms is not necessarily the one which is added to the
YBCO, but is the one which is the most thermodynamically
and epitaxially stable. Hence, if Zr4+ is added to YBCO,
Ba(Zr, Y)O3 forms [10]. In this paper we present the results
of addition of another large, highly charged ion, Nb5+, (see
table 1) which does not substitute for the Cu site in YBCO
and hence which has great potential to form a benign second

0953-2048/10/022003+06$30.00 © 2010 IOP Publishing Ltd Printed in the UK1
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Table 1. Ionic charge and radius of critical ion additions for second
phase formation, and percentage lattice mismatch with respect to
YBCO (along ab and c). Critical pinning ion addition indicates that
the ion is not a component of the YBCO phase and that addition of
the pure element to YBCO will, for reasons of thermodynamic
stability and epitaxial stabilisation, lead to the pinning addition phase
in column 1.

Critical ion pinning
addition/ionic radius (Å)
for 6 fold co-ordination

% Misfit to
YBCO ab

% Misfit to
YBCO c

YBa2NbO6 Nb5+/0.78 9.42 8.34
BaZrO3 Zr4+/0.86 8.11 7.03
BaSnO3 Sn4+/0.83 6.77 5.72
Sm3TaO7 Ta5+/0.78 −2.33 −7.99
Yb3TaO7 Ta5+/0.78 −4.74 −11.04

phase addition. The charge and size of the ion are important for
minimizing the level of substitution in the YBCO lattice. Zr4+
and Sn4+ (table 1) can substitute for Y3+ (whose ion radius is
1.159 Å for 8 fold co-ordination), whereas Ta5+ and Nb5+ are
less likely to substitute for Y3+ because of the more dissimilar
ion sizes and ion valences.

We study the addition of a double perovskite Nb-based
phase (YBa2NbO6) to YBCO. This phase is the most stable
Nb-related compound when in equilibrium with YBCO,
explaining why when we add Nb2O5 or BaNbO3 to YBCO, the
double perovskite YBa2NbO6 still forms [14–16]. We find that
nanoparticles of the phase self-assemble in a manner similar
to the tantalates [13] and BZO [17]. Addition of Nb2O5 to
bulk YBCO has been shown to enhance Jc [18]. However this
enhanced material was not well understood until later [14–16]
when segregation into YBCO + YBa2NbO6 was observed.
The stability and compatibility of the YBa2NbO6 compound
with YBCO made it a candidate for novel substrates [19],
as well as for new buffer layers for high quality HTS thin
films and electronic devices [20, 21]. Double perovskites,
of general formula A2BB′O6, have attracted much interest in
other research fields because their high flexibility in lattice
parameter and magnetic behaviour [22–25]. YBa2NbO6 has
the advantage over many of the double perovskite phases,
e.g. the well studied FeSr2MoO6 phase, in that there is less
propensity for the cations to have a mixed valence [26],
which would then cause unwanted local oxygen stoichiometry
changes in the YBCO lattice.

The use of YBa2NbO6 as a secondary phase to improve
pinning in YBCO epitaxial films on ZrO2 single crystalline
substrates has been reported with negative results [27].
The physical properties and chemical compatibility make
YBa2NbO6 an ideal candidate as a pinning addition to YBCO.
However, difficulty in obtaining adequate oxygenation of
composite bulk material [28] resulted in depressed transport
properties. This is not an obstacle to YBa2NbO6 doped
thin film growth as high surface to volume ratio and
small grain size allows full oxygenation in a rapid manner.
Here we present success in producing pinning engineered
YBa2Cu3O7−δ/YBa2NbO6 thin films with high critical currents
grown by pulsed laser deposition.

2. Experimental methods

PLD targets were made by mixing and grinding pure YBCO
powder (SCI Engineered Materials) (99.999%) with the
desired amount of YBa2NbO6 powder in an agate mortar, the
latter were produced as single phase by the solid state reaction
method, namely mixing, grinding of 99.99% Y2O3, Ba(NO3)2,
and Nb2O5 powders followed by reaction at 1450 ◦C for 24 h.
The mixed powders were pressed in the form of a cylindrical
target and sintered at 950 ◦C for 12 h in flowing O2 in a
dedicated tubular furnace. Films were grown by PLD on (001)
SrTiO3 (5 mm × 10 mm) single crystal substrate (Pi-Kem
Ltd). Deposition were performed with a Lambda Physik KrF
excimer laser (λ = 248 nm) in 30 Pa flowing O2, and the
substrate temperature was kept at 770 ◦C. A repetition rate
of 5 Hz and 4500 pulses were used for all films, which were
measured to be of 0.5 μm thickness.

The transport critical current density was measured using
a conventional four-point probe method and a ∼1 μV cm−1

criterion on photolithographically patterned bridges of 250 μm
width. The angular dependence of Jc at 77 K and 0.5 T was
measured with the applied magnetic field rotated in a plane
perpendicular to the current flow direction to an angle θ with
the c-axis of the film.

The crystallographic structure and orientation of the
films were studied using x-ray diffraction in Bragg–Brentano
geometry. Lattice parameters were refined using eva software,
using the positions of high angle peaks to minimize errors.
Cross-sectional transmission electron microscopy (TEM) and
selected area electron diffraction patterns (SADP) were also
undertaken to determine the crystal structure and sizes of the
nanoparticles formed within the YBCO matrix.

3. Results and discussion

Figure 1(a) displays the results of x-ray analysis of the
YBa2NbO6 powder produced by solid state reaction. These
results agree with the data recorded in the JCPDS or in more
recent studies [29]. No impurities or secondary phases peaks
are found. The lattice parameter calculated from the x-ray data
is 0.844 nm ± 0.001 nm.

The x-ray diffraction data from the deposited films
(figure 1(b)) shows peaks related to (00l) planes from the
YBCO and the SrTiO3 for both undoped and doped samples.
This means that the films are c-axis oriented, which is the
standard orientation for YBCO thin films on (001) SrTiO3.
Additionally, the data from the doped sample only shows the
peaks related to the (00l) planes of YBa2NbO6, indicating that
the additive phase is aligned out-of-plane with the YBCO. A
small peak at 34◦, possibly arising from the (111) planes of
YBCO is present in both the undoped and doped sample data.
No other secondary phases were present.

The (00l) orientations of both phases is expected from the
crystallographic matching of these double and triple perovskite
cells (shown schematically in figure 2(a)). Looking along the
[010]YBCO direction, 3 unit cells of the cubic YBa2NbO6 match
2 unit cells of YBCO giving a lattice mismatch strain along the
c-axis of YBCO, ((3aYBa2NbO6 −2cYBCO)/2cYBCO), of +8.34%.
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Figure 1. X-ray diffraction data for YBa2NbO6 in the form of pure
precursor powder and when embedded within YBCO films. (a) X-ray
diffraction spectrum of YBa2NbO6 powder reacted at 1450 ◦C. (b)
X-ray diffraction data for undoped YBa2Cu3O7−δ and a 5 mol%
YBa2NbO6 doped film grown on SrTiO3; (c) φ scan of (101) SrTiO3,
(102) YBCO, (202) YBa2NbO6 from a 5 mol% YBa2NbO6 doped
film.

In the doped film all the (00l) peaks from the YBa2NbO6

are shifted to higher angles compared to the bulk values giving
a lattice parameter of 0.830 nm ± 0.001 nm compared to
the bulk value of 0.844 nm ± 0.001 nm. Hence, there is a
compressive strain of 1.7% along the c-axis, much lower than
the theoretical value of 8.34% assuming the YBCO lattice is
not distorted (table 1). The YBCO (00l) peaks are shifted to
in the opposite direction to the YBa2NbO6 peaks, i.e. to lower
angles, and the ‘c’-axis is extended to a value of 11.73 Å giving

Figure 2. Crystallographic matching of YBCO with YBa2NbO6. (a)
b-axis view and (b) c-axis view.

a tensile strain of 0.4%. The extended c-axis is not likely to
arise from reduced oxygen content since the sample Tc is not
reduced, as shown later. The overall strain is lower than the
theoretical value and indicates partial strain relief by formation
of misfit dislocations. Dislocation formation has previously
been reported in BZO doped YBCO [17]. Nevertheless, the
fact that the YBCO is locally partially strained in tension gives
the possibility of additional pinning from strain fields in the
vicinity of the YBCO/YBa2NbO6 interfacial regions.

To assess the in-plane texture, phi scans were recorded
as shown in figure 1(c). The (202) YBa2NbO6 peaks
reveal in-plane alignment and match both the (101) STO and
(102) YBCO peaks, confirming that the perovskite particles
have grown aligned ‘cube on cube’ with the YBCO. These
results combined with the out-of-plane x-ray data suggest
full heteroepitaxy between the YBCO, YBa2NbO6 and the
substrate.

The cube-on-cube in-plane orientation determined from
the phi scan is represented in the crystallographic model of
figure 2(b). Looking down the [001]YBCO direction, 1 unit
cell of YBa2NbO6 matches 2 unit cells of YBCO giving
an in-plane lattice mismatch (a and b average) strain of
+9.42%. The lattice mismatch of YBa2NbO6 with YBCO
is larger than other widely studied pinning phases additions
(table 1). This large mismatch should be beneficial for low field
(<1 T, 77 K) pinning due the localized strain fields that will
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arise [30] but likely produces shorter and wider self-assembled
columnar array, contrasting with tantalate columns where the
lattice mismatch is very small and long, narrow columns are
produced [13]. They are more similar to BaZrO3 nanorods
which have similar lattice mismatch with YBCO [17, 31].
The next basic research challenges to be addressed for niobate
pinning additions to YBCO are (a) determining the optimum
level of niobate addition, (b) tuning the column sizes and
distributions.

Cross-section transmission electron micrographs of a
5 mol% YBa2NbO6 doped sample (figures 3(a) and (b)) show
nanorods aligned along the c-axis of the YBCO. The rods are
10–15 nm in diameter and their spacing is roughly 40 nm,
giving a matching field of 1.3 T. Some random particles were
also observed as indicated by the white arrows drawn along
the ab planes. The inset to figure 3(a) shows a selected area
diffraction pattern of a region around the nanoparticles. A set
of streaky diffraction dots for (004) YBa2NbO6 is observed.
Streaky dots rather than clearly distinguished spots has been
reported in similar systems previously [33] and is an indication
of a large YBCO c-plane distortion created by the YBa2NbO6

nanorod additions. d(004) estimated from the diffraction
pattern is ∼0.214 nm, indicating a ∼ 0.856 nm, broadly
consistent with the x-ray measurements.

Figure 3(b) shows a higher magnification image revealing
fringes arising from the lattice mismatch between the
YBa2NbO6 and YBCO lattices. Since a relatively slow growth
rate, 5 Hz, was used, the appearance of both self-assembled
columns and random particles are anticipated, similar to the
case of RETa3O7 additions [32]. The rods are wider (up 15 nm
as opposed to 5 nm) and shorter (∼100 nm as opposed to the
whole film thickness) than tantalate rods, most likely because
of the large mismatch strain which enhances the self-assembly
kinetics [13].

At the interface between the film and substrate, a dark
layer (about 10–20 nm thick) is observed which clearly shows
different contrast than the rest of the film. This is in agreement
with previous observations of asymmetric in-plane Jc seen in
YBCO + RETa3O7 films arising from interface disorder [34].
It is not clear if the nanorods nucleated within this darker layer
or on the substrate surface.

An atomic force micrograph of the film surface
(figure 3(c)) shows superficial particles ∼15–20 nm in
diameter uniformly distributed over the surface. These
particles are consistent with the nanorods terminating at the
sample surface. The size of the particles observed with the
AFM is larger than the rods observed with the TEM. This
could be due to the fact that we are observing the surface where
there is higher mobility and possible agglomeration of surface
particles immediately after the growth is terminated.

Despite the 5 mol% doping level and the large lattice
mismatch between the phases, only a minimal reduction of
the transition temperature is observed (figure 4(a)), with a
transition temperature of 89 K. This value indicates that the
Nb does not poison the YBCO, but remains ‘locked’ in the
second phase. In addition, the 0.4% strain level measured in the
YBCO does not lead to any significant Tc reduction. Similar
Tc reductions were also observed in ∼5 mol% BZO doped

Figure 3. Microstructures of YBCO + 5 mol%YBa2NbO6 films.
(a) and (b) TEM cross-sectional images (lower and higher
magnifications, respectively). White arrows in the direction of the
c-axis mark the positions of self-assembled nanorods along c. White
arrows perpendicular to the c-axis indicate the positions of random
nanoparticles as well as the interface between the substrate and the
film. Inset to (a) shows selected area diffraction pattern of region in
vicinity of nanoparticles. Moire fringes arising from lattice mismatch
between YBa2NbO6 and YBCO are observed in (b); (c) AFM image
showing nanoparticles at the surface.

systems [13]. However, in this case, since we are forming a
double perovskite instead of a single perovskite as for BZO,
the same mol% addition of double perovskite yields twice the
volume of inclusions as the single perovskite. Hence, the
small Tc reduction is, in fact, less than might be expected.
Jc versus magnetic field measurements up to 1 T (H ‖ c) at
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Figure 4. Transport properties of 0.5 μm micron thick
YBCO + 5 mol%YBa2NbO6 films on STO. (a) Resistance versus
temperature for a thin film doped with 5 mol% YBa2NbO6. Inset
shows magnified region of the superconducting transition; (b) critical
current density versus applied magnetic field at 77 K, H ‖ c. Inset
shows data on log–log axis; (c) angular dependence of the critical
current density at 77 K, 0.5 T.

77 K (figure 4(b), with log–log plot shown inset) indicates that
the doped sample has better performance over the whole field
regime analysed, with Jc of the doped sample being by a factor
of ∼2 higher at 1 T.

The improved angular dependence of Jc in the YBa2NbO6

doped sample compared with pure YBCO, measured at 0.5 T
and 77 K, is shown in figure 4(c). The doped sample
shows a reduced anisotropy compared with the pure YBCO.
This lower anisotropy results from the increased Jc when
the field is aligned with the YBa2NbO6 nanorods. The ab
peak is depressed somewhat presumably by the interruption
of the intrinsic layer pinning by the highly continuous niobate
nanorods. Compared with the typical shape of the angular
dependence of pinning enhanced YBCO, for example in
YBCO + BZO and YBCO + RTO, the YBa2NbO6 nanorods
produce a very broad ‘c’-axis peak which make the particles
effective over a relatively large angular range. The large
breadth of the peak is possibly related to the large mismatch
strain which produces relatively short and wide rods (figure 3).
A significant fraction of random isotropic pinning which would
improve Jc for all angles but have little effect on the shape of
the angular dependence of Jc with magnetic field does not seem
to be present as the ab peak is lower in the doped sample than
in the pure YBCO.

In conclusion a new pinning additive, the double
perovskite YBa2NbO6, was used to produce self-assembled
non-superconducting nanorods within YBCO thin films.
Additional flux pinning was observed not only when the
magnetic field was aligned along the c-axis but also over
a relatively large angular range. Improvements in Jc of a
factor ∼2 at 1 T at 77 K were measured. The minimal
poisoning and potential for high tunability of YBa2NbO6

puts it in a similar category to RE3TaO7 pinning additions
(which has distinct advantages to BZO). The higher lattice
mismatch of YBa2NbO6 with YBCO also gives potential to
induce extra pinning from strain effects. Further optimization
of growth conditions starting from our preliminary results will
almost certainly lead to further enhancements of critical current
density.
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Abstract
The Holy Grail for high temperature superconducting conductors is achieving high current
material in a simple and cost-effective way. The current status is encouraging but even after
more than twenty years of intense worldwide research, there are still many new avenues to be
explored. Innovative functional oxide materials science is central to future progress. This paper
discusses three key areas of our research focusing on new directions: highly tailored flux
pinning using the new core pinning additives R3TaO7 and RBa2NbO6 for control of
nanostructure formation; pinning using magnetic phase additives such as RFeO3 with the
potential for a magnetic contribution to the flux pinning; and the use of liquid assisted growth
enabling very high growth rates leading to thick films with no critical current degradation.

1. Introduction

Over the last decade, progress in the manufacture of high
quality, long length, high current coated conductors based on
the second generation superconducting material YBa2Cu3O7−δ

(YBCO) for a variety of transport and magnetic applications
has been impressive [1]. In particular, in just the past few
years, great progress has been made with practical flux pinning
approaches [2, 3]. There has also been some success in
minimizing the complicated series of buffer and seed layers
required between metal substrate and YBCO coating [4]. Less
attention has been paid to exploring radical new routes to
forming conductors by fast, more cost-effective routes. Of
course, the weak link problem of YBCO grains [5] means
that high angle grain boundaries need to be circumvented and
this is no mean feat. The future for coated conductors will
involve attaining the required performance at minimal cost.
Approaches involving both optimization and further scaling
up of the current processing routes as well as exploring new
horizons for achieving higher performance by more scalable
routes are required.

The areas which we believe represent new frontiers and
could ultimately lead to a step-change include highly tailored

core pinning, practical magnetic pinning, and the use of rapid
liquid assisted growth [6].

2. Experimental details

Composite deposition targets were prepared in-house from
commercial YBa2Cu3Ox powder (SCI Engineered Materials,
99.99%) together with the appropriate additives of R2O3 and
Ta2O5 (for R3TaO7 where R is a rare earth) or Y2O3, BaCO3

and Nb2O5 (for YBa2NbO6) or Y2O3 and FeO (for YFeO3).
Targets of varying compositions from 0.5 to 10 mol% were
prepared by mixing, pressing and sintering at 985 ◦C in flowing
oxygen for 12–24 h. A pure YBCO target was also prepared
under the same conditions for control purposes.

The substrates used were single crystal SrTiO3(001)

or buffered metallic tapes (∼150 nm La2Zr2O7 grown on
RABiTS Ni–W by dip coating and ex situ processing [7]).
Samples were grown in a deposition atmosphere of 30 Pa
of flowing oxygen at either 760–795 ◦C by standard pulsed
laser deposition (PLD) or at 815 ◦C by PLD incorporating
hybrid liquid phase epitaxy (HLPE). In the HLPE process, a
sub-micron thick BaO–CuO liquid layer is first deposited and

0953-2048/10/034009+05$30.00 © 2010 IOP Publishing Ltd Printed in the UK1
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Figure 1. Cross-sectional TEM of films of YBCO + 5 mol% Gd3TaO7 and YBCO + 5 mol% YBa2NbO6 pinning additions grown under
similar conditions, namely 770 ◦C and 790 ◦C respectively at 5 Hz on SrTiO3. Self-assembled nanocolumns of the respective pinning addition
are indicated with arrows.

growth of the YBCO occurs under this layer [8]. Subsequent to
deposition, all samples were annealed in situ in a static oxygen
pressure of 50 kPa to achieve optimum oxygenation. Film
thicknesses were typically in the range 0.5–2.5 μm.

Films were structurally characterized by x-ray diffraction
(XRD) and transmission electron microscopy (TEM). Mag-
netic properties were measured in a cryogenic vibrating sample
magnetometer (VSM) equipped with a 1 T electromagnet.
Electrical properties were measured by a standard four-
probe technique in an 8 T superconducting magnet following
photolithographic patterning and ion beam etching to form
bridge structures of typically 50–125 μm width and 1 mm
length. For angular measurements of the critical current
density, Jc, the field was applied in the maximum Lorentz
force configuration and rotated from normal to the film surface
(θ = 0◦) to parallel to it (θ = 90◦).

3. Results

3.1. Core pinning

Several new approaches to the enhancement of core pinning
in YBCO through the incorporation of novel nanostructural
inclusions have been tested and developed. The most widely
studied and successful method so far involves incorporation
of BaZrO3 nanoparticles but there are many other additions
which are also effective [9]. The current research focus
should now be on tailoring nanopinning additions to achieve
desired and controlled arrays, the optimal array (whether it
be random, correlated or a combination of both geometries)
being dependent on the application field and temperature, and
the growth method to be used. In order to nanoengineer the
materials, the kinetics and thermodynamics of phase formation
of the particular phase(s) formed when additions are made
to YBCO films needs to be understood. The mechanism of
formation of the nanostructured inclusions depends on the
lattice mismatch with the YBCO and the kinetics of self-
assembly (mobility of the constituent ions) which depend on
the growth temperature relative to the melting point of the
phase, but is also readily controllable by PLD by altering the
growth rate.

Table 1. Pinning ion additions made to YBCO films, stable phases
formed, and lattice misfits to YBCO.

Pinning ion
addition

Stable phase in
YBCO film

Misfit to
YBCO ab

Misfit to
YBCO c

Ta5+ Yb3TaO7 −4.8%a −10.9%
Ta5+ Gd3TaO7 −2.4%a −8.7%
Zr4+ BaZrO3 +8.4%b +7.5%
Nb5+ YBa2NbO6 +9.3%b +8.5%

a Rotated 45◦ to cube-on-cube.
b Cube-on-cube.

With the knowledge that Group IV and Group V ions do
not readily substitute into the YBCO lattice, but instead form
stable heteroepitaxial second phases [10], we have investigated
Ta5+ and Nb5+ additions to YBCO films [11–13] in the form
of Yb3TaO7 (a = 1.039 nm), Gd3TaO7 (a = 1.065 nm) and
YBa2NbO6 (a = 0.8436 nm), as alternatives to the common
Zr4+ ion addition in the form of BaZrO3 (a = 0.4181 nm).
The lattice mismatches of each of these phases to YBCO
(a = 0.3828 nm, b = 0.3887 nm, c = 1.1665 nm), calculated
from the bulk lattice parameters, for the most promising core
pinning additions we have developed are shown in table 1.

Figure 1 compares TEM images of nanocolumns of
Gd3TaO7 and YBa2NbO6, showing Gd3TaO7 nanocolumns
to be straighter and more continuous than YBa2NbO6

nanocolumns. If we also consider the known form of BaZrO3

nanocolumns [14], we find that lattice misfit and nanocolumn
size and perfection are interrelated, the finest and most
continuous columns arising from lower in-plane lattice misfit
to YBCO [11].

Angular critical current measurements of so far optimized
R3TaO7-added samples show the superior flux pinning
obtained with these additives compared to pure films. By
growing under conditions which produce a composite random
nanoparticle/correlated nanocolumn microstructure, Jc values
of 1.1 MA cm−2 at 1 T (figure 2(a)) and 0.7 MA cm−2 at 3 T
were obtained compared to 0.2 MA cm−2 and 0.04 MA cm−2

at the same fields for pure YBCO (all at 77 K, H ‖ c).
The YBa2NbO6-added samples generally show broader c-
axis peaks which are consistent with the more discontinuous
columns obtained (figure 2(b)).
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Figure 2. Angular Jc data at 77 K for 0.5 μm thick YBCO films with additions of Yb3TaO7 or YBa2NbO6. (a) Data at 1 T for 5 mol%
Yb3TaO7 additions compared to pure YBCO showing a large enhancement in Jc, particularly for fields applied in the c direction. (b) Data at
0.5 T comparing 1.5 mol% Yb3TaO7 and 5 mol% YBa2NbO6 additions normalized to Jc ‖ c in order to emphasize the broader c-axis peak
obtained for YBa2NbO6.

3.2. Pinning by magnetic phase additions

In practical high temperature superconductors, even with the
introduction of artificial pinning centres, the self-field Jc

is still 5–10 times lower than the theoretical limit. The
realizable advantages of magnetic pinning over ‘standard’
non-magnetic pinning originate from the additional magnetic
interaction that this provides [15]. Whereas normal materials
interact with the superconducting order parameter via the
coherence length ξ (on the order of nanometres in the high-
Tc materials), magnetic materials have a potential interaction
over length scales of the penetration depth λ which is much
larger (hundreds of nanometres). This larger interaction
volume implies that a lower density of pinning centres will
be required to achieve effective pinning and that consequently
the disruption to the superconducting phase (and its resultant
properties) will be minimized. Beyond the basic studies of
magnetic pinning [16–18], the main hurdle to overcome is
to introduce magnetic material in such a way as to avoid
significant ‘poisoning’ of the superconducting phase. This
requires forming very stable second phases that effectively
‘lock away’ the magnetic ion addition while remaining
magnetic themselves. Our exploratory studies [19] have
indicated YFeO3 to be a suitable addition. YFeO3 belongs
to the family of rare earth orthoferrites, RFeO3, which
exhibit weak ferromagnetism as a result of a slight canting
of their predominantly antiferromagnetically coupled Fe3+
moments [20]. Their structure is that of four distorted
perovskite units assembled into an orthorhombic unit cell (a =
0.5282 nm, b = 0.5596 nm, c = 0.7605 nm) [21], thereby
suggesting a high likelihood of structural compatibility with
YBCO.

There is no measurable reduction in the superconducting
critical temperature Tc for a 1 mol% YFeO3 addition [22, 23],
indicating an effective segregation of the magnetic species.
Randomly dispersed magnetic nanoparticles of sub-5 nm size
(upper right panel of figure 3) were observed leading to a 2–
3 times increase in Jc at self-field and a 10 times increase at
6 T compared to pure YBCO. Increasing the dopant amount
leads to a slight suppression of Tc and consequent reduction in

Figure 3. Angular Jc measurements at 77 K, 1 T of a 1 μm thick
film of YBCO with 1 mol% YFeO3 additions compared with a
control sample of pure YBCO. Upper right panel shows a
cross-sectional TEM image of a 1 mol% magnetically doped film,
with arrows indicating the positions of several sub-5 nm dopant
nanoparticles. Lower right panel is the room temperature (RT)
magnetic hysteresis loop (magnetic moment m versus applied field
H ) of a sample with 5 mol% YFeO3 additions.

the Jc enhancement. The particles have a good in-plane lattice
parameter match to YBCO resulting in a strain of just 0.12%
in-plane (for a 45◦ in-plane rotation of the YFeO3 unit cell
relative to the YBCO) and 2.4% out-of-plane. The coercivity
μ0 Hc is found to be rather small at around 6 mT (lower right
panel of figure 3), due to the small particle size causing a
superparamagnetic response at the temperatures of interest,
and the measured saturation field is around 0.2 T. The random
particle arrangement results in random pinning producing an
upwards shift in Jc for all field angles (figure 3).

3.3. Rapid, innovative growth of coated conductors

Rapid liquid assisted growth of YBCO + 5 mol% BaZrO3

coated conductors was achieved on metallic substrates by
HLPE. Samples of two different thicknesses were grown in
4 min (1 μm film) and 10 min (2.5 μm film). The XRD
rocking curves of the (004) peak of the La2Zr2O7 buffer
gave a rolling direction FWHM of 5.4◦ and a perpendicular
direction FWHM of 9.1◦. The XRD rocking curves for the
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Figure 4. Characterization of coated conductors of YBCO + 5 mol% BaZrO3 grown by HLPE on ∼100 nm dip-coated La2Zr2O7-buffered
RABiTS Ni-W. (a) X-ray rocking curves of YBCO layer and La2Zr2O7 buffer layer, and (b) Jc as a function of field applied parallel to c and
(inset) as a function of applied field angle θ at 1 T.

(005) peak of the YBCO layer grown on the buffer by HLPE
are improved over the buffer by approximately 0.7◦ in each
case, to 4.7◦ and 8.3◦, respectively (figure 4(a)). Transport
measurements (figure 4(b)) show that high Jc material can be
achieved on a rapidly grown, dip-coated buffer and that there is
no degradation in the Jc of the superconductor with thickness.
Hence, it is relatively easy to grow 5 μm thick material in
situ in under 20 min and still achieve self-field Jcs of around
1 MA cm−2. The several advantages of the HLPE method can
be summarized as follows: (a) the film texture is improved
over the substrate and so the method allows for the use of
much cheaper, rapidly grown substrate-buffer materials; (b) the
growth rate is several times faster than standard methods;
(c) there is no degradation in Jc with thickness. Finally, we
note that for a given Ic, a potential advantage in being able to
grow thick material having a moderate Jc over thinner material
with higher Jc is that preliminary investigations indicate that
flux creep rates are lower in thicker material [24].

4. Conclusions

There are several potential new avenues to be explored
for achieving low cost, high performance superconducting
conductors. Highly tailored core pinning, practical magnetic
pinning, and rapid liquid assisted growth are key areas. Phases
formed from Group IV and V ion additions are ideal for
achieving strong, tunable core pinning. The strain between
the particles and the YBCO matrix influences the form of their
distribution which directly impacts on the field and temperature
dependent pinning behaviour. The main challenge for practical
magnetic pinning is to form stable, non-poisoning phases.
YFeO3 is one such phase and has been shown to enhance
pinning at low (1 mol%) levels. Finally, rapid, easy growth
of thick YBCO by HLPE on ∼100 nm dip-coated La2Zr2O7-
buffered RABiTS Ni–W gives conductors with Ic > 250 A
grown in a matter of minutes.
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Abstract. Self-assembled, segmented nanorods of c-axis aligned Ba2(Y/Gd)(Nb/Ta)O6 as well as
randomly-distributed nanoparticles of (Y/Gd)2O3 and (Y/Gd)Ba2Cu4O8 were grown into
YBa2Cu3O7-δ (YBCO) thin films by pulsed laser deposition. The complex pinning landscape
proves to be extremely effective, particularly at higher fields where the segmented vortices yield a
plateau in critical current density (Jc) with field angle around 60°. In 0.3 µm thick films, the Jc

values are higher than 1 MAcm-2 at 2.5 T (H||c-axis). Owing to the combined interactions of the
vortices with the different pinning centres, interesting new features are observed at high fields in
the angle-dependence of Jc.

1. Introduction
Even though conductors based on YBa2Cu3O7-δ (YBCO) have reached an extremely sophisticated stage of
technological development with exemplary critical current performance arising from nanoengineering of
pinning centres [1-8], since higher current conductors mean lower production costs, achieving even stronger
flux pinning by simple means is still a highly sought-after goal.
Probably the most successful method for engineering flux pinning in YBCO is by the introduction of an
epitaxial non-superconducting secondary phase, e.g. BaZrO3 [9-11]. Ta and Nb additions to YBCO have
more recently been studied based on the fact that they are highly charged (5+) ions that should perform in a
similar way to Zr and not substitute into the YBCO lattice. Tantalate additions to YBCO produce excellent
pinning performance via the formation of very fine, dense nanorods whose composition has been ascribed to
either a defective pyrochlore, RE3TaO7 (RE = rare earth, Gd being the most widely studied) [12], or to the
double perovskite, Ba2YTaO6 [13]. Niobate additions produce Ba2RENbO6 nanorods [14-17] which are
similar to BaZrO3 nanorods — wider, shorter and less linear than the tantalate rods [14] (diameter ~ 10–15
nm, splayed around the c-axis). The niobate rods remain highly effective pinning centres at low fields
aligned along the c-axis, although considering the entire field range tantalate rods are superior overall.
Since the niobate and tantalate nanorods in YBCO are of rather different morphology and hence give
different performance characteristics, it is interesting to consider whether addition of both of these second
phases of the same overall level results in an averaging effect or whether further complexity is induced in the
system, thereby yielding an entirely different pinning landscape. In fact, the situation is a mix of the former
and the latter with the final result that the nanostructure created fortuitously yields an overall superior
pinning performance, particularly at higher fields.

2. Experimental methods
Films were grown by pulsed laser ablation of a composite target of appropriate composition. Targets were
prepared by mixing and grinding pure YBa2Cu3O7-δ powder (SCI Engineered Materials 99.99%) with 2.5
mol% of Ba2YNbO6 powder and 2.5 mol% of Gd3TaO7. Ba2YNbO6 powder was produced by mixing and
grinding stoichiometric quantities of 99.99% Y2O3, Ba(NO3)2 and Nb2O5 followed by solid state reaction at
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1450°C for 24 h in flowing O2. Gd3TaO7 was introduced in the target by adding the desired amount of
99.99% Gd2O3 and 99.99% Ta2O5 powders to the YBa2Cu3O7-δ powder. The target mixture was pressed in a
cylindrical die (diameter = 2 cm) and sintered at 950°C for 12 h in flowing O2. Pulsed laser ablation was
performed using a Lambda Physik KrF excimer laser (λ = 248 nm). The substrates were single crystal
SrTiO3 (100) held at 780°C, and the substrate temperature was monitored using a pyrometer. 4500 laser
pulses at a 1 Hz repetition rate were used to produce 0.3 µm thick films. Films where post-annealed in situ at
520°C for 1 h in 500 mbar O2 atmosphere.
Phase and orientation analysis were performed using x-ray diffraction. Cross sectional transmission electron
microscopy (TEM) was used to determine the size, distribution and structure of the nanoparticles and
nanorods. A conventional four-point electrical measurement on photolithographically patterned bridges of 50
µm width was used to determine the critical current density, Jc, using a 1 µVcm-1 criterion. The angular
dependence of Jc was measured by rotating the applied magnetic field in a plane perpendicular to the current
direction (maximum Lorentz force configuration).

3. Results and discussion

Figure 1. Bragg-Brentano scan of a YBa2Cu3O7-δ + 2.5 mol% Gd3TaO7 + 2.5 mol% Ba2YNbO6 sample.

Figure 1 shows the x-ray diffraction pattern of a typical film. The (00l) peaks of YBCO as well as the (002)
and (004) peaks of Ba2(Y/Gd)(Nb/Ta)O6 (2θ = 21.5°, 2θ = 43.2°) are labelled. A peak at 2θ = 33.3° is
identified as the (004) peak of (Y/Gd)2O3. (Y/Gd)Ba2Cu4O8 is also present as evidenced by the (008), (0010),
and (0012) peaks (2θ = 25.9°, 2θ = 33.2°, 2θ = 41.4°).
A balanced chemical reaction consistent with the phases observed by XRD is shown below:

0.95 YBa2Cu3O7-δ + 0.025 Ba2YNbO6 + 0.025 Gd3TaO7 → 0.85 (Y/Gd)Ba2Cu3O7-δ + 0.05
Ba2(Y/Gd)(Nb/Ta)O6 + 0.0375 (Y/Gd)2O3 + 0.075 (Y/Gd)Ba2Cu4O8

Gd and Y can easily cross-substitute for one another since they have similar ionic radii. For the same reason,
Nb and Ta can also cross-substitute. This allows the double perovskite Ba2(Y/Gd)(Nb/Ta)O6 to grow within
the (Y/Gd)Ba2Cu3O7-δ lattice. Furthermore the excess Gd and the Ba deficiency produced by the Gd3TaO7 →
Ba2(Y/Gd)(Nb/Ta)O6 transformation together with the Gd ↔ Y cross-substitution is the origin of the
(Y/Gd)2O3 and (Y/Gd)Ba2Cu4O8 formation. The previously reported [12] Gd3TaO7 phase does not form here
because in the presence of Nb the Ba2(Y/Gd)(Nb/Ta)O6 phase is more stable. (Y/Gd)Ba2Cu4O8 forms



because of the barium deficiency in the Gd3TaO7 reactant. YBa2Cu4O8 has previously been observed
in coated conductors where there is barium deficiency owing to its depletion by reaction with CeO2 [18].
Also YBa2Cu4O8 has been reported in films grown by metal-organic deposition, where it is in the form of
stacking fault defects [19].

Figure 2. X-ray φscans of the (202) Ba2(Y/Gd)(Nb/Ta)O6 and the (404) (Y/Gd)2O3 peaks from a
YBa2Cu3O7-δ + 2.5 mol% Gd3TaO7 + 2.5 mol% Ba2YNbO6 sample.

Ba2(Y/Gd)(Nb/Ta)O6 is aligned cube-on-cube with the (Y/Gd)Ba2Cu3O(7-δ) as shown in the x-ray φscans of
figure 2. The (Y/Gd)2O3 is rotated both 45° in-plane, as previously reported [20] but also a few degrees away
(with a broad range of angles) from the cube-on-cube orientation. These broader rotations are consistent with
near coincidence site lattice matching to accommodate the very large strains and structural difference
between (Y/Gd)2O3 and YBCO [21]. 
 



Figure 3. a) TEM image of the YBa2Cu3O7-δ + 2.5 mol% Gd3TaO7 + 2.5 mol% Ba2YNbO6 sample cross
section; b) TEM image of a plate-like nanoparticle nucleated between two rod segments; c) Selected area
electron diffraction pattern of the image in (a); d) TEM image of a plate-like nanoparticles of (Y/Gd)2O3.

Fourier transform of the image of particle.

TEM cross-sections show that there are at least two different nanoscale structural features present. Firstly,
there is a set of c-axis aligned fine rods of ~7 nm in diameter, significantly smaller than the pure niobate rods
of Ba2YNbO6 which are ~15 nm in diameter [14, 15], but larger than the pure tantalate rods of Gd3TaO7

which are ~5 nm in diameter [12]. Hence, the averaged growth kinetics of pure niobate and pure tantalate
rods is obtained, as might be expected. Secondly, figure 3b shows a plate-like nanoparticle of RE2O3

nucleated along the ab-plane between two Ba2(Y/Gd)(Nb/Ta)O6 nanorods. Fig. 3c shows a selected area
diffraction pattern of a region of the matrix and inclusions. Ba2(Y/Gd)(Nb/Ta)O6, (Y/Gd)2O3 and YBa2Cu4O8

are present, consistent with the x-ray diffraction pattern of figure 1. A Fourier transform confirming the
structure of a (Y/Gd)2O3 particle of 25 nm width is shown in figure 3d inset. Other particles of (Y/Gd)2O3

were observed to be in the 25 – 30 nm width range.
A fundamentally new structural feature, which has not been observed before, is the self-segmentation of the
nanorods, yielding an average rod segment length of 30 nm. Kinetic effects of slower diffusion of the heavy
Ta5+ ion compared to the Bb5+ ion may prevent rods from maintaining continuity as the film growth



progresses. Similar to BaZrO3 and Ba2YNbO6 rods and because of the nucleation enhancing strain field
generated within the YBCO, a new segment nucleates aligned along the c-axis with a segment below it [22].
The average rod length (30 nm) is shorter than both the continuous tantalate rod length (hundreds of nm) and
the short niobate rods (~80-100 nm).
Despite the complexity of sample composition, the possibility of varying RE concentration across samples,
as well as the three different nanoinclusion phases observed, no suppression of the superconducting
transition temperature was observed. The Tc of ~ 89 K for all the samples indicates no substitution of Nb or
Ta into the YBCO matrix, as might be expected for these higher valence ions.

Figure 4. Jc versus applied magnetic field at 77 K, H || c for samples with Nb, Ta, Nb-Ta and Zr doping
compared to a pure YBCO sample. Data on a log-linear plot (a) and a log-log plot (b). The (Zr) YBCO data

is taken from [23].



Jc(H) for fields applied parallel to the c-axis for the films of this study compared with the best reported films
[23] of similar thickness (0.3µm) with other additions (Ta, Nb or Zr) is shown in figure 4. The sample with
simultaneous addition of Nb and Ta has the highest Jc across the entire field range measured with a value of
1.8 MAcm-2 at 1 T and values above 1 MAcm-2 up to 2.5 T. Furthermore, as shown in figure 4b, the linear Jc

decay range is increased from less than 1 T for pure YBCO, YBCO + 5 mol% Ba2YNbO6 ((Nb) YBCO) and
YBCO + 5 mol% Gd3TaO7 ((Ta) YBCO) to ~2 T for combined Nb+Ta ((Nb-Ta) YBCO) samples, exceeding
even that of YBCO + BaZrO3 ((Zr) YBCO) (2% of the YBCO target surface area made of YSZ [23]). The
matching field value calculated from the nanorod spacing of ~28 nm observed in the TEM image of figure 3a
is ~2.6 T, consistent with the Jc plateau up to 2.5 T of figure 4. The α values calculated for the different
additions are reported in table 1. The value of 0.14 for the (Nb-Ta) YBCO samples is lower than the best
previously reported value which was 0.19 in a specially grown YBCO + BaZrO3 sample where it was shown
that optimisation of the pinning landscape could produce both randomly distributed nanoparticles and
splayed columnar defects which together strongly reduce the depinning [24]. In fact, segmented rods were
produced which gave rise to staircase vortices.

Table 1. Calculated α values for the different additions.

Sample α
YBCO

(Nb) YBCO
(Ta) YBCO

(Nb-Ta) YBCO
(Zr) YBCO

0.47
0.35
0.26
0.14
0.25



Figure 5. Angular dependence of Jc measured at 77 K for samples with Nb, Ta, and Nb-Ta doping compared
to a pure YBCO sample at 1 T (a) and 3 T (b).

Superior properties were also found in the angular dependence of Jc of the (Nb-Ta) YBCO samples of this
study. A strong, narrow c-axis pinning peak at low fields (1 T, figure 5a) changed to a strong, broad c-axis
peak as the applied field increased (3 T, figure 5b). The broad peak is a feature already observed in (Nb)
YBCO [14]. However the Jc values of the samples prepared in this work are higher than previously observed
indicating more effective pinning by the finer, segmented rods compared to the coarser, shorter, non-
segmented rods observed in the (Nb) YBCO samples.



Figure 6. a) High field angular dependence of Jc measured at 77 K for a sample with (Nb-Ta) doping,
applied fields ranging from 3 T to 6 T; b) A sketch of vortices interacting simultaneously with rod segments

along the c-axis and intrinsic and extrinsic defects along the ab-planes.

Figure 6a shows the evolution of the angular Jc with increasing field. At low fields, the most prominent
feature is the strong c-axis pinning peak contrasted with relatively weak ab-plane peaks (figure 5a). A
shoulder initially observed on the c-axis peak resolves itself at fields beyond 3 T into distinct peaks at around
+/- 60 degrees, that grow in magnitude with increasing field to dominate all other types of pinning at fields
above 5 T. The existence of this additional preferential pinning direction is an interesting new feature arising
from the novel pinning landscape that has been established in these samples. It can be explained in terms of a
vortex path model [25] in which the combination of c-axis pinning structures (segmented
Ba2(Y/Gd)(Nb/Ta)O6 nanorods) and ab-plane pinning structures (plate-like (Y/Gd)2O3 particles) results in
staircase vortices that experience the strongest pinning at a characteristic angle determined by the particular
distribution of defect lengths present (figure 6b). This type of pinning is most effective at high fields because



it utilises both available species of pinning structure and therefore has the capacity to strongly pin a greater
overall vortex length.

4. Conclusion
A completely new self-assembled pinning landscape was produced in laser deposited YBCO films by
combining the synergistic effects from both Ta and Nb additions which together yield an optimal nanorod
architecture of fine, straight, segmented rods. (Y/Gd)2O3 nanoparticles were also generated in the matrix for
reasons of cation compensation, namely because the rods of Ba2(Y/Gd)(Nb/Ta)O6 formed were of different
average composition (poorer in rare earth, richer in barium) than the reactants of Ba2YNbO6 and Gd3TaO7

which were added to the YBCO PLD target. Greatly enhanced current densities were achieved at 77 K for
applied fields higher than 2 T compared to previously studied pinning additives. A Jc of 1 MAcm-2 was
achieved at 2.5 T and 77 K in 0.3 µm thick films which is a new performance benchmark. In addition, new
pinning features around 60° field angle were observed at > 3 T with the potential to extend the angular range
of operation of YBCO-based coated conductors.
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Pinning Stable Lattice Lattice Lattice Ref.
ion Phase Parameter misfit misfit

addition in YBa2Cu3O7−δ [nm] to abY BCO to cY BCO
Nb+4 Ba2YNbO6 0.422 +9.4%a +8.4% [5,74]

[123,124]
Ta+4 Ba2YTaO6 0.422 +9.4%a +8.4% [68]
Zr+4 BaZrO3 0.419 +8.8%a +7.6% [57–63]
Sn+4 BaSnO3 0.411 +6.8%a +5.6% [64–66]
Hf+4 BaHfO3 0.417 +8.3%a +7.1% [144]
Ir+4 BaIrO3 0.410 +6.5%a +5.3% [145]
Ti+4 BaTiO3 0.402 +4.4%a +3.2% [146,147]
Y+3 Y2O3 1.060 -2.8%b -9.2% [78,142]

[141,148]
Ta+5 Gd3TaO7 1.065 -2.4%b -8.7% [67]
Ta+5 Yb3TaO7 1.039 -4.8%b -10.9% [67]

Table 1: Crystallographic parameters of non-superconductive second phase ma-
terials used as pinning phases in YBa2Cu3O7−δ films (a cube-on-cube, b rotated
45◦ to cube-on-cube).
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