
Automated Analysis and Validation of

Open Chemical Data

Nicholas Elliot Day
Emmanuel College

A dissertation submitted to the University of Cambridge

for the degree of Doctor of Philosophy

Unilever Centre for Molecular Science Informatics

Department of Chemistry

Lensfield Road,

Cambridge, CB2 1EW,

United Kingdom.

November 20, 2008

Disclaimer

This thesis is the result of my own work and includes nothing which is the

outcome of work done in collaboration, except where specifically indicated.

This thesis does not exceed the specified word limit (60000) as defined by

the Chemistry Degree Committee.

This thesis has been typeset in 12pt font using LATEX2ε according to the

specifications defined by the Board of Graduate Studies and the Chemistry

Degree Committee.

Abstract

Methods to automatically extract Open Data from the chemical literature,

validate it, and use it to validate theory are examined.

Chemical identifiers which assist the automatic location of chemical struc-

tures using commercial Web search engines are investigated. The IUPAC

International Chemical Idenfitifer (InChI) gives almost 100% recall and pre-

cision, though is shown to be too long for present search engines. A com-

bination of InChI and InChIKey, a shorter, fixed-length hash of the InChI

string, is concluded to be the best current method of identifying structures.

The proportion of published, Open Crystallographic Information Files

(CIFs) that are valid with respect to the specification is shown to be im-

proving, and is around 99% in 2007. The error rate in the conversion of valid

CIFs to Chemical Markup Language (CML) is less than 0.2%. The machine

generation of connection tables from CIFs requires many heuristics, and in

some cases it is impossible to deduce the exact connection table.

CrystalEye, a fully-automated system for the reformulation of the frag-

mented crystallographic Web into a structured XML-based repository is de-

scribed. Published, Open CIFs can be located and aggregated programmat-

ically with almost 100% recall. It is shown that, by converting CIF data

to CML, software can be created to use the latest Web standards and tech-

nologies to enhance the ability of Web users to browse, find, keep updated,

download and reuse the latest published crystallography.

A workflow for the high-throughput calculation of solid-state geometry

using a semi-empirical method is described. A wide-range of organic and

inorganic systems provided by CrystalEye are used to test both the data and

the method. Several errors in the method are discovered, many of which can

be attributed to the parameterization process.

An Open NMR experiment to perform high-throughput prediction of 13C

chemical shifts using a GIAO protocol is described. The data and analysis

were provided on publicly-available webpages to enable crowdsourcing, which

assisted in discovering an error rate of 6.1% in the starting data. The protocol

was refined during the work and shown to have an average unsigned error

of 2.24ppm for 13C nuclei of small, rigid molecules; comparable to the errors

observed elsewhere for general structures using HOSE and Neural Network

methods.

iii

Acknowledgments

I would like to thank Dr Peter Murray-Rust for his advice and guidance

throughout this work. Dr Joe Townsend, Jim Downing, Dr Yong Zhang, Dr

Andrew Walkingshaw, Dr Nico Adams and Dr Simon Tyrrell are thanked for

useful discussions and advice throughout the course of my PhD. I would also

like to thank the UCC computing staff, particularly Dr Charlotte Bolton,

without which this work would not have been possible. The EPSRC is

thanked for funding.

Cheers also to Dan, Andy, Rob and Jon for providing copious amounts of

tea and distracting ‘activities’. As always, thanks most to Mum, Dad, Vick

and Anna.

iv

Contents

Disclaimer i

Abstract ii

Acknowledgements iv

Table of contents viii

List of tables ix

List of figures xv

Glossary xvi

1 Introduction 1
1.1 Chemical identification . 2
1.2 Open Data . 2
1.3 Data and Metadata . 4
1.4 Machine-understandable chemical data 5

1.4.1 The Semantic Web . 6
1.5 Open Source software . 8
1.6 e-Science . 8
1.7 Aims . 9

2 Locating chemical data on the Web 11
2.1 Introduction . 11
2.2 Web search-engines . 11

2.2.1 Sitemaps . 12
2.3 Representing chemical entities as strings 13
2.4 The IUPAC International Chemical Identifier 16

2.4.1 InChI creation and structure 17
2.4.2 Searching for InChIs on the Web 22
2.4.3 The Google-InChI Web Service 25
2.4.4 Staurosporine - an InChI case study 26

v

2.5 Conclusions . 38

3 Creating and deriving data in CML from CIF 39
3.1 Introduction . 39
3.2 Why convert CIF to CML? 40
3.3 The Crystallographic Information Framework 42

3.3.1 STAR file concepts and syntax 42
3.3.2 CIF syntax . 44
3.3.3 CIF dictionaries . 46
3.3.4 checkCIF . 47

3.4 CIFXML: converting CIF to XML 49
3.4.1 Conformance to CIF 52
3.4.2 CIFXML-J functionality 53
3.4.3 Representation of CIFs in XML 54
3.4.4 CIFXML-J architecture 57
3.4.5 Using CIFXML-J . 60
3.4.6 CIF to CIFXML conversion statistics 64

3.5 CIFConverter: converting CIF to CML 67
3.5.1 Handling multiple datablocks 72
3.5.2 Building the CML . 72
3.5.3 Adding symmetry elements 76
3.5.4 Dictionary validation 76
3.5.5 Using CIFConverter 78
3.5.6 CIFXML to CML conversion statistics 80

3.6 Enhancing the CML . 82
3.6.1 Creating the connection table 84
3.6.2 Adding canonical identifiers 98

3.7 Current usage . 99
3.8 Conclusions . 99

4 Automating the aggregation, creation and dissemination of
semantic crystallography 101
4.1 Introduction . 101
4.2 Implementing a workflow system 103

4.2.1 The Taverna Workbench 103
4.2.2 Component development and workflows 107
4.2.3 Developing under Taverna 111

4.3 CrystalEye . 114
4.3.1 Implementation . 116
4.3.2 Aggregation . 116
4.3.3 Processing the data . 129
4.3.4 The website . 134
4.3.5 Services . 140

vi

4.3.6 Database distribution 151
4.3.7 CrystalEye data in RDF 156
4.3.8 Further work . 158

4.4 Conclusions . 160

5 High-throughput prediction of solid-state geometry using semi-
empirical methods 161
5.1 Introduction . 161
5.2 MOPAC-CML . 163

5.2.1 FoX . 163
5.2.2 MOPAC and FoX . 165
5.2.3 MOPAC-CML and Jmol 167

5.3 High-throughput computing 167
5.3.1 Condor . 170
5.3.2 CamGrid . 170

5.4 The calculation workflow . 171
5.4.1 Structure selection . 171
5.4.2 MOPAC input . 172
5.4.3 Condor input . 175
5.4.4 Job submission and retrieval 177
5.4.5 The overall workflow 178

5.5 The first protocol . 178
5.5.1 Organic structures . 181
5.5.2 Inorganic structures . 182

5.6 The second protocol . 184
5.6.1 The data . 186
5.6.2 Inorganic structures . 187
5.6.3 Organic structures . 198

5.7 Conclusions . 212

6 High-throughput prediction of 13C NMR chemical shifts by
quantum-mechanical GIAO calculations 215
6.1 Introduction . 215
6.2 Nuclear Magnetic Resonance 215
6.3 Computational NMR . 216

6.3.1 The Rzepa Protocol 218
6.3.2 NMRShiftDB . 219

6.4 Calculations . 222
6.4.1 Structure selection . 222
6.4.2 Gaussian03 input . 223
6.4.3 Condor input . 224
6.4.4 TMS . 225

6.5 Open Computational NMR 226

vii

6.6 Analysis . 227
6.6.1 Preparing the output 227
6.6.2 Initial results . 229
6.6.3 Sources of error . 230
6.6.4 Cleaning the dataset 233
6.6.5 Conformational issues 237
6.6.6 HSR1 . 239
6.6.7 Conclusions . 244

7 Conclusions 246

A Analysis of the efficacy of Web search engines for chemical
search 252
A.1 Search-engines and strategy 252
A.2 Search terms and metrics . 256
A.3 Searching for CAS numbers 257
A.4 Searching for InChIs . 259

A.4.1 The InChI architecture and implications 259
A.4.2 Results . 260

A.5 Searching for SMILES . 261
A.6 Searching for InChI strings from the KEGG collection using

Google . 262

B MOPAC calculation references 270
B.1 Second-protocol inorganic calculations 270

B.1.1 Short atom-atom distances 270
B.1.2 Silicas . 271
B.1.3 Errors in the data . 272
B.1.4 Errors in modeling . 272

B.2 Organic calculations . 273
B.2.1 Calculations that terminated with controlled errors . . 273
B.2.2 Calculations containing radicals that converged suc-

cessful . 276
B.2.3 Changes in connection table 276
B.2.4 Density change outliers 277

C Published Work 282

Bibliography 284

viii

List of Tables

3.1 Example of applying the canonicalization algorithm 61
3.2 Proportion of error occurrences in CIF to CML conversion . . 82

5.1 Table showing the density change mean and standard devia-
tion for structures with various minimum translation vectors. . 211

6.1 Comparison of the linear fitting statistics for HSR0 and HSR1 242
6.2 Linear fitting coefficients and average absolute shift deviation

using only those spectra which were taken at fields of over 25Hz244

A.1 Selection of search engines used in the analysis 252
A.2 Number of query results viewable for a selection of commercial

Web search engines . 256
A.3 Searching for CAS numbers with various strings 258
A.4 Recall of InChI strings from the Crystal Structure Report

Archive . 261
A.5 Searching for SMILES representations of caffeine in Web search

engines . 262
A.6 Collisions in web queries for InChI representations of Kegg

molecules . 263

B.1 The structures for the major components of the 18 calculations
that threw the “all convergers are now forced on” error
and didn’t have bad starting geometry 274

B.2 The organic structures which were predicted to have a density
change of <-20% . 277

B.3 The organic structures which were predicted to have a density
change of >20% . 279

ix

List of Figures

1.1 The Semantic Web Stack . 7

2.1 Different representations of the same compound have the same
InChI . 18

2.2 The classes of structural information that can currently be
represented in an InChI . 19

2.3 The InChI layer structure allows chemical entities to be rep-
resented to the known level of detail 21

2.4 The InChI representation of caffeine 21
2.5 GDP-D-mannose (top) and GDP-L-mannose and their corre-

sponding InChI representations 23
2.6 The Google-InChI webpage with naphthalene drawn in the

structure editor. 27
2.7 The results page for the Google-InChI service after naphtha-

lene was submitted. 28
2.8 Structure of Staurosporine in 2D showing absolute stereo-

chemistry . 29
2.9 Conformation of Staurosporine in the solid state 30
2.10 Representations of Staurosporine found on the Web with no

stereochemical information provided 31
2.11 Representations of Staurosporine found on the Web with some

stereocentres defined, but incorrectly 31
2.12 Representations of Staurosporine found on the Web with all

stereocentres defined, but incorrectly 32
2.13 Representations of Staurosporine found on the Web with in-

correct connectivity . 33
2.14 Representations of Staurosporine found on the Web with im-

possible stereochemistry . 33
2.15 Staurosporine as it appears in the wInChI program 34

3.1 Comparison between the Crystallographic Information Frame-
work and XML . 41

3.2 Example STAR file data block 44
3.3 Example data name definition in the coreCIF dictionary . . . 46

x

3.4 The checkCIF service homepage 48
3.5 Alert section from a checkCIF report 50
3.6 The CIFXML-J inheritance hierarchy 59
3.7 Plot showing the percentage of failures in parsing CIFs to

CIFXML using all CIFs aggregated by CrystalEye from 2001-7 65
3.8 Plot showing the percentage of failures in parsing CIFs to

CIFXML using CIFs aggregated by CrystalEye from ACS,
Acta Cryst. and RSC from 2001-7 66

3.9 Number of CIFXML-J parsing errors per year by cause for RSC
CIFs . 68

3.10 Number of CIFXML-J parsing errors per year by cause for ACS
CIFs . 69

3.11 CIFConverter’s method of handling CIFs containing more
than one structure datablock 73

3.12 Plot showing the percentage of failures in converting CIFs to
CML using all CIFs aggregated by CrystalEye from 2001-7 . . 81

3.13 Rendering of structural data contained within a CIF 83
3.14 Disordered methyl group represented in CIF 85
3.15 Rendering of the CML documents showing the removal of mi-

nor disordered structural components 86
3.16 Examples of published representations of invalid CIF disorder. 87
3.17 The creation of the complete unit cell for an inorganic crystal

structure . 88
3.18 Images showing the creation of a complete molecular skeleton

from non-disordered atom sites 89
3.19 . 90
3.20 Finding the sets of bond orders and charges for a crystal with

multiple moieties where no moiety charges have been provided 92
3.21 The process of adding bond orders and charges to a molecular

skeleton. 93
3.22 Adding BOACs to an organometallic moiety where both the

moiety charge and metal charge are known 95
3.23 Attempt to add BOACs to a Copper-Terbium complex where

no moiety or metal charges have been provided 96

4.1 Article summary in the table of contents from Acta Crystal-
lographica Section E . 102

4.2 The Taverna Workbench GUI 106
4.3 Key for the workflow components as rendered in the Taverna

GUI . 107
4.4 Examples of workflow data visualization offered by the enactor

invocation window . 108
4.5 WWMM LocalWorkers in the available services panel in Taverna109

xi

4.6 WWMM WSs shown in the available services panel of Taverna 110
4.7 Workflow to find and aggregate CIFs from IUCr journals . . . 112
4.8 Workflow to convert CIFs to enhanced CML 113
4.9 Enactor invocation window highlighting the lack of detail shown

of the components of nested workflows 115
4.10 The route from a journal TOC to the CIFs for each publisher

scraped by CrystalEye . 120
4.11 The steps taken by the spider for RSC journals to find CIFs . 121
4.12 Plot showing the number of CIFs aggregated by CrystalEye

from publisher’s websites between 1990 and 2007 125
4.13 Plot showing the number of CIFs aggregated by CrystalEye

from each publisher from 1990 to 2007 126
4.14 Number of articles published in ACS journals from which over

500 CIFs have been aggregated between 2001-7 127
4.15 The number of CIFs provided per article in ACS journals from

which over 500 CIFs have been aggregated between 2001-7 . . 128
4.16 The relationship between checkCIF report HTML and check-

CIF XML . 131
4.17 Example 2D images generated from CrystalEye CML 134
4.18 Example of overlapping atoms and bonds in 2D structure gen-

eration in CrystalEye . 135
4.19 Fragment types generated for each moiety in CrystalEye . . . 136
4.20 Example of a ring-nucleus fragment that has been singly and

doubly sprouted . 136
4.21 Browsing the crystallography in CrystalEye by journal issue . 137
4.22 Browsing the crystallography from an issue of Organic and

Biomolecular Chemistry in CrystalEye 138
4.23 Full CrystalEye crystal summary webpage 139
4.24 CrystalEye search page . 140
4.25 Example substructure search of CrystalEye 142
4.26 Example cell parameter search of CrystalEye 143
4.27 The different types of RSS and CMLRSS feed available in

CrystalEye . 144
4.28 RSS feed for structures containing carbon-silicon bonds 145
4.29 Image on the interactive histogram of the lengths of all nickel-

nitrogen bonds in the structures in CrystalEye 149
4.30 List of links to the bond-length histograms for carbon 150
4.31 Example of the CrystalEye Greasemonkey script in action . . 152
4.32 Results page of an SPARQL query of bibliographic data from

CrystalEye in RDF . 158

5.1 MOPAC input file to calculate the solid-state geometry of Albite164

xii

5.2 MOPAC output file from the calculation of the solid-state ge-
ometry of Albite . 164

5.3 Section of a MOPAC-CML output file showing the structure
geometry being output every 25th cycle 168

5.4 Figure showing the use of Jmol to view the geometry of a struc-
ture at various points during a calculation from the MOPAC-
CML output file. 169

5.5 Example input file for a MOPAC solid-state calculation 173
5.6 Example submit file for the submission of a MOPAC job to

Condor . 176
5.7 The workflow for performing high-throughput solid-state MOPAC

calculations . 179
5.8 Figure showing an experimentally observed charge-transfer com-

plex of N -Iodosuccinimide and an imine 180
5.9 Plot showing the experimentally observed densities against the

change in density predicted by MOPAC for the set of con-
verged organic structure calculations 182

5.10 Plot showing the experimentally observed densities against the
change in density predicted by MOPAC for the set of success-
fully converged inorganic structure calculations 184

5.11 Plot showing the experimentally observed densities against the
change in density predicted by MOPAC for the set of 1258
successfully converged inorganic structure calculations 189

5.12 Figure showing the creation of a spurious Ca-Na bond in prober-
tite . 190

5.13 Figure showing the starting cluster of potassium dinitramide
displayed in Jmol . 191

5.14 Plot showing the experimentally observed densities against the
change in density predicted by MOPAC for the set of 393
remaining inorganic structure calculations 192

5.15 Density plot of the RMS atomic deviations for the 393 remain-
ing calculations . 193

5.16 Figure showing the erroneous starting structure of SiF4 con-
taining F-F bonds . 195

5.17 Figure showing the large expansion in geometry predicted for
NiF2 . 197

5.18 Figure showing the large loss of symmetry predicted during
the calculation for Ag2O . 198

5.19 Figure showing the data in the CIF for erucic acid rendered
in Jmol . 200

5.20 Figure showing the formation of an N-I bond by contraction
of the cell . 202

5.21 Figure showing the formation of an S-S bond 203

xiii

5.22 Figure showing two structures in which the formation of a new
S-N bond is predicted . 204

5.23 Plot of all observed O-I distances of less than 5Å against the
calculated distance . 205

5.24 Plot of all observed N-Br distances of less than 5Å against the
calculated distance . 206

5.25 Density plot of the RMS atomic deviations for the 4237 re-
maining calculations . 207

5.26 Figure showing the rotating geometry of α-(2-pyridine)-2,4-
dinitrophenylethenyl at various stages during calculation . . . 208

5.27 Plot of the angle of rotation of each structure against its RMS
deviation . 209

5.28 Plot of the minimum translation vector against the change in
density during calculation for each structure 210

6.1 Gaussian03 workflow implementing HSR0 219
6.2 Gaussian03 workflow template for HSR0 224
6.3 Condor submit file for Gaussian03 jobs 225
6.4 Webpage showing an interactive graph linked to a Jmol applet

of NMR calculation result . 228
6.5 Section of the output of a Gaussian03 GIAO-based calculation

of NMR shifts . 229
6.6 Plot showing all calculated versus observed 13C shifts for the

295 successfully completed calculations using HSR0 230
6.7 Plot showing all calculated versus observed 13C shifts for the

295 successfully completed calculations using HSR0 after spin-
orbit offsets have been applied 231

6.8 Webpage showing an interactive graph of RMS deviation vs.
mean deviation for all structures calculated with HSR0 after
spin-orbit offsets have been applied 235

6.9 Webpage showing an interactive graph of a ‘misassignment’
plot of difference between observed and calculated shifts against
the average of the two . 236

6.10 Plot showing the shifts for chemically equivalent atoms being
inequivalent due to the geometry of the optimized structure. . 238

6.11 Figure showing averaging of shifts for Morgan equivalent atoms
in styrene . 238

6.12 Template for Gaussian03 input files implementing HSR0 . . . 240
6.13 Calculated vs. observed chemical shifts for the HSR1 protocol

after spin-orbit offsets and averaging of the shifts for topolog-
ically equivalent atoms have been applied 241

6.14 Calculated vs. observed shifts for HSR1 for those structures
with spectra determined at a field of over 25Hz 243

xiv

7.1 Screenshot of the C3DE application. 250

xv

Glossary

API Applicaton Programming Interface

ACS American Chemical Society

CAS Chemical Abstracts Service

CCDC Cambridge Crystallographic Data Centre

CDK Chemistry Development Kit

CIF Crystallographic Information File

CML Chemical Markup Language

COD Crystallography Open Database

COMCIFS Committee for the Maintenance of the CIF Standard

CSD Cambridge Structural Database

CT Connection Table

DDL Dictionary Definition Language

DFT Density Functional Theory

DOI Digital Object Identifier

DOM Document Object Model

DTD Document Type Definition

GIAO Gauge-Including Atomic Orbitals

GUI Graphical User Interface

H-M Hermann-Mauguin

HOSE Hierarchical Organisation of Spherical Environments

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ICSD Inorganic Crystal Structure Database

IDE Integrated Development Environment

IETF Internet Engineering Task Force

xvi

InChI IUPAC International Chemical Identifier

IUCr International Union of Crystallography

IUPAC International Union of Pure and Applied Chemistry

JAR Java Archive

MIME Multipurpose Internet Mail Extension

MM Molecular Mechanics

MSDS Material Safety Data Sheets

NLP Natural Language Parsing

NMR Nuclear Magnetic Resonance

NN Neural Networks

ONS Open Notebook Science

PM6 Parametric Method number 6

QM Quantum Mechanics

RDF Resource Description Framework

RDFa Resource Description Framework attributes

REST Representational State Transfer

RHF Restricted Hartree-Fock

RMS Root Mean Squared

RSC Royal Society of Chemistry

RSS Rich Site Summary

RTECS Registry of Toxic Effects of Chemical Substances

SAX Simple API for XML

SMILES Simplified Molecular Input Line Entry Specification

SPARQL SPARQL Protocol and RDF Query Language

SPECTRa Submission, Preservation and Exposure of Chemistry Teaching and
Research Data

STAR Self-defining Text Archival and Retrieval

xvii

StAX Streaming API for XML

STO Slater-Type Orbital

SVG Scalable Vector Graphics

TOC Table of Contents

TMS Tetramethylsilane

UCC Unilever Centre for Molecular Informatics

UHF Unrestricted Hartree-Fock

URL Uniform Resource Locator

VM Virtual Machine

W3C World Wide Web Consortium

WS Web Service

WSDL Web Services Description Language

WWMM World-Wide Molecular Matrix

XML eXtensible Markup Language

XSD XML Schema Definition

xviii

Chapter 1

Introduction

Data is seen as an integral part of any scientific discipline, and the ability to

view and analyse another scientist’s data is essential. Much classical chem-

ical knowledge was discovered as a result of humans gathering data from

published literature, e.g. the Periodic Table and the Bürgi-Dunitz angle[1].

There are huge amounts of undiscovered science in the scientific literature,

and this thesis is aimed at examining if and how we can perform data-driven

science using data contained in the current literature.

The introduction of computers into science has had a profound effect on

the way data is created and gathered, giving rise to what has been termed as

a data deluge[2]. Scientists can now produce much more data than ever feasi-

ble before, e.g. through mechanisation enabling automated high-throughput

experimental procedures, or through faster and more widely distributed com-

puters letting us perform more, and bigger, simulations. As a result, it is

now common for the Chemical Abstracts Service (CAS) to report well over

1 million new structures per year[3]. It is likely that the volume of data

generated in research and by scientific instruments will soon dwarf all the

technical and scientific data collected in the history of research.

With such a large volume of data being produced, it is becoming less and

less feasible to manually process and examine data to identify potentially

interesting features and discover significant relationships. Instead, it is nec-

essary to automate the process, though this is predicated on:

1

� the ability to programmatically identify all potentially interesting doc-

uments or items of data,� the ability to gain automated access to data,� that data items are provided with enough metadata to judge whether

they are suitable and of sufficient quality,� that data items be in a form that a machine can be taught to under-

stand.

1.1 Chemical identification

Chemistry is based on the synthesis, structure and properties of molecules;

therefore it is imperative that a molecule can be uniquely and globally identi-

fied. IUPAC nomenclature has long been the standard identification mecha-

nism, and in principle it identifies chemical structures uniquely. However, in

practice this is not the case, and there may also be many ways of representing

the same structure (e.g. tautomers).

Human chemists are trained to recognise these implicit equivalences, but

it is difficult to provide a computer with the same ability. Thus, it is impor-

tant that another unique identifier is used which removes the need to provide

machines with a high-level of chemical perception. Machine-understandable

chemical identification and methods of locating chemical structures in elec-

tronic form are discussed further throughout chapter 2.

1.2 Open Data

The traditional method of disseminating chemical information has been through

peer-reviewed literature. The majority of this, however, is Closed (i.e. be-

hind toll or permission barriers), as are the collections of data abstracted

by secondary publishers such as CAS. Machines cannot make payments or

ask for permission for reuse of data, so to enable automated data-driven sci-

ence, data must be made Open (i.e. where toll and some or all permission

2

barriers are removed) and provided with an explicit machine-understandable

declaration stating its level of Openness.

Open Access, as defined in the Budapest[4], Bethesda[5] and Berlin[6] dec-

larations, is the free, unrestricted access for download and reuse of data. The

Open Access movement promotes making information Open through two

mechanisms, deposition into Institutional Repositories (e.g. DSpace[7] or

ePrints[8]), or by publishing in Open Access peer-reviewed literature. How-

ever, as currently implemented, the level of access provided by Open Access

is often unclear, and commonly refers to the fact that the data is freely read-

able, but gives no permission for downloading and reuse. This has led to the

definition of another term, Open Data, as:

. . . a philosophy and practice requiring that certain data are freely

available to everyone, without restrictions from copyright, patents

or other mechanisms of control.[9]

A number of Open Data licenses have been developed, including Science

Commons[10] and Open Data Commons[11], which data providers can use

to tag their data.

We now see several different steps being taken to provide Open Access

data by publishers and institutions, for instance:� the creation of fully Open Access journals(e.g. Nucleic Acids Research[12]),� the conversion of Closed Access journals to fully Open Access (e.g.

Acta Crystallographica Structure Reports[13]),� Closed journals adopting a mixed-access model, where authors can pay

a fee to make their article Open Access,� mandates for Open Access to NIH-funded research, and for research

performed at the universities of Harvard[14], Stirling and Southampton.

3

It is unclear how much of this Open Access data will be provided as Open

Data, though the movement toward the former is clearly an important check-

point toward the latter. The number of Open Data collections in chemistry

is still small, though those provided by PubChem[15] and Wikipedia[16] are

already being used for exciting projects (e.g. wichempedia[17]). CrystalEye,

a collection of Open crystallographic data was created during the work for

this thesis, and is described in chapter 4.

1.3 Data and Metadata

Metadata is data about data. Examples of metadata concerning a scientfic

experiment might include the temperature and pressure at which the experi-

ment was performed, who performed it and the equipment used. Metadata is

vital to assess the suitability and quality of data, and hence vital to discovery

within data and its subsequent exploitation.

The publication process in many areas of science forces a decoupling of

the interpretation and analysis, which is published, from the data and meta-

data, which is often not published in full. It should now be possible to

publish a fairly complete scientific record of an experiment, yet the current

publication process continues to emphasize the article at the expense of the

data. However, some communities insist on data being published, including

much of bioscience (e.g. protein sequences are deposited with NCBI[18] and

structures with PDB[19])and crystallography.

Many journals now require that a CIF[21] (Crystallographic Information

File) be provided as supplementary data to any article describing a crys-

tal structure. These CIFs contain the complete output of a crystallographic

experiment in a machine-understandable format, and thousands are now pub-

lished each month, a large number of which are Open. Data and metadata

contained within CIF files are used extensively throughout this thesis, and

are discussed at length throughout chapters 3, 4 and 5.

4

1.4 Machine-understandable chemical data

When we refer data as being machine-understandable, we are stating that

the data is in a format for which we can teach a machine to understand the

following:� syntax - how the document byte stream should be tokenized,� semantics - the meaning that has been provided for tokens or larger

components of documents.

Electronic chemical publications currently available are essentially elec-

tronic analogues of their paper counterparts, and are designed to be read

solely by humans. Thus, they are not condusive for automated parsing, e.g.

a text string such as:

Compound 2a melted at 119◦C.

is simple for a human to understand, but requires much effort to allow a

machine to extract the data items and their meaning, i.e. that 119 ◦C is

recognised as a temperature with units, and that it is associated with com-

pound 2a. However, there are several ways of stating the same information

using natural language, and creating software that would correctly parse each

one is difficult. There are also other complexities such as how the reference

to compound 2a would be associated to a chemical structure.

Natural language parsing (NLP) is a very difficult task, and is being in-

vestigated in chemistry in the SciBorg project[22]. While this work is vital

to create data from historical chemical documents, it is important that NLP

is not relied upon for the future extraction of data.

Providing data in formats such as CIF is an important step, but it is

equally necessary to take advantage of the hyperlinking afforded by the Web.

This way, articles and data can be published together in a coherent format,

where there is no separation between the document and the data. Such

5

a composition has already been described as a datument [23]. A first step

towards this has been taken by the RSC in their work on Project Prospect[24].

1.4.1 The Semantic Web

To assist the description and machine-extraction of data, we can take advan-

tage of the technologies created for the Semantic Web (SW), which has been

described as:

. . . an extension of the current Web in which information is given

well-defined meaning, better enabling computers and people to

work in cooperation.[25]

In the SW, all data is described using highly-structured markup, where

layers of semantics are provided by successive standards. The SW comprises

the following standards (which are organized in the Semantic Web Stack -

see figure 1.1):

XML provides an elemental syntax for content structure within documents,

yet associates no semantics with the meaning of the content contained

within,

XML Schema a language for providing and restricting the structure and

content of elements contained within XML documents,

RDF a language for expressing data models, which refer to objects (often

web resources) and their relationships,

RDF Schema a vocabulary for describing properties and classes of RDF-

based resources, with semantics for generalized-hierarchies of such prop-

erties and classes,

OWL adds more vocabulary for describing properties and classes.

6

Figure 1.1: The Semantic Web Stack[26]. Note that standards and technolo-
gies have yet to be implemented for some aspects of the stack.

An XML language for chemistry, CML (Chemical Markup Language) has

been described by Murray-Rust and Rzepa[27, 28]. The core of CML is aimed

at describing molecules and their properties, though a number of modules

have been developed to describe other aspects of chemistry, such as crystal-

lography (CMLCryst) and spectra (CMLSpect[29]).

To highlight the power of CML for representing chemical data, we can

markup the earlier natural language example with CML:

<cml:molecule ref=’2a’>

<cml:property>

<cml:scalar dictRef=’prop:mpt’

units=’units:celsius’

dataType=’xsd:float’

>119</cml:scalar>

</cml:property>

7

</cml:molecule>

Here, the data is surrounded by CML tags, enabling easy programmatic

access to each item, while the addition of semantics is enabled through tag

names and references to dictionaries in element attributes.

A benefit afforded by using SW protocols to represent data is that we

can use Open Source (see below) tools created by others for manipulation,

querying and visualization of data in these formats in our own work. It is

common for these tools to have large user and developer communities, and

as a result are robust and have many useful features. For instance XOM, a

popular Open Source library for reading, manipulating, querying and writing

XML documents, is used as a base for JUMBO, the Java library for CML, and

other software described during this work.

1.5 Open Source software

Open Source software (OSS) is software for which the human-readable source

code is made available under a copyright license that meets the Open Source

definition[38]. The availability of OSS reduces the duplication of effort and

allows developers to build on the work of others.

There are many examples of OSS in cheminformatics, a number of which

are used in this thesis, such as the CDK (Chemistry Development Kit)[39]

(for 2D structure generation), OpenBabel[40] (for substructure search) and

Jmol[41] (for 3D structure visualization). All of the software libraries used

in this work are OSS, and in turn all of the software created is provided as

OSS.

1.6 e-Science

If we have access to large amounts of Open, machine-understandable data,

then a problem emerges as to how we can store, retrieve and process it with

8

low expenditure and in reasonable time frames. In order to engage the prob-

lem of managing and processing the large quantity of data being produced,

the UK e-Science Programme began in 2001 as a five-year coordinated ini-

tiative involving all the Research Councils and the Department of Trade and

Industry. The term e-Science has been described as:

. . . the large scale science that will increasingly be carried out

through distributed global collaborations enabled by the Internet.

Typically, a feature of such collaborative scientific enterprises is

that they will require access to very large data collections, very

large scale computing resources and high performance visualisa-

tion back to the individual user scientists.[31]

These large scale resources are provided by what have been termed as grids,

so called because they consist of a computer cluster of multiple, possibly geo-

graphically dispersed, nodes. The power of grid computing is highlighted by

the Folding@home project[32] which, on 2007-11-30, has over 264,000 active

distributed processing units[33]. These have combined to give a performance

level of over 1.3 petaFLOPS∗, more powerful than any supercomputer in the

world[34].

As well as a National e-Science Centre[35], the UK e-Science programme

consists of a wide range of resources, including various regional e-Science cen-

tres. We have access to the Cambridge e-Science Centre[36], which provides

the computational grid, CamGrid[37], which is used heavily in chapters 5

and 6 of this thesis.

1.7 Aims

The goals of this work were to:� help extend Tim Berners-Lee’s vision for the Semantic Web to chem-

istry, where chemical information on the Web is made Open and given

well-defined meaning,

∗FLoating point Operations Per Second

9

� show how Open, semantic data assists e-Science.

The work can be split into three sections:

1. Chapters 2, 3 and 4 describe the work undertaken to create a visible,

Web-based, Open collection of semantic crystallographic data.

2. Chapter 5 shows how this collection enabled the performance of high-

throughput calculations to validate both the data and a semi-empirical

method for calculating solid-state geometry.

3. Chapter 6 provides another example of using Open Data to validate the

data and a computational NMR method. This work also highlights the

collaborative effect of making data and analysis Openly available. By

providing up-to-date webpages summarizing the work, interested users

were able to take part in crowdsourcing, which helped in the discovery

of several data errors.

10

Chapter 2

Locating chemical data on the
Web

2.1 Introduction

As the amount of chemical information on the Web increases and the num-

ber of chemical sites grows, a single entry-point to search over all available

data becomes a necessity. A possible solution for this is to use commercial

search engines, which provide text-based searches over large portions of Web

content. These have no native functionality to assist chemical search, and so

chemical identifiers must be made available to their indexes and queried like

any other web content, i.e. as text strings.

The work contained in this chapter examines the aspects of the ideal string

representation of chemical structures, and discusses the different identifiers

currently in use. Investigations are made into the ability of these identifiers to

represent chemical structures uniquely, as well as providing details of their

efficacy as Web queries. Also contained is the discussion of generic Web

technologies which aid the use of commercial search engines for chemical

search.

2.2 Web search-engines

Web search engines consist of three major elements:

11

1. A spider (also known as a crawler or robot). The spider works by

visiting a webpage, reading it and then following links to the other

pages within the site. A spider will return to a site on a regular basis

to look for changes.

2. An index. A copy of every page the spider finds will be inserted into

the index.

3. A search interface. This is the software that will search through the

pages recorded in the index to find matches to a search, and rank them

in order of what it believes is most relevant before returning the results

to the querier.

The majority of today’s web searches are performed by a user supplying a

series of keywords as a query on a search engine homepage. The engine will

then examine its index for pages containing some or all of those keywords

and will provided the user with a listing of best-matching pages according

to its criteria (e.g. taking into account the occurrence and proximity of the

keywords on those pages).

2.2.1 Sitemaps

If commercial search engines are to be relied on for universal chemical Web

searches, it is necessary for their spiders to index all webpages that are chem-

ically interesting. For sites containing very large collections of webpages (e.g.

PubChem[15]), these spiders do not try to index the whole site in one go,

as they have many millions of other sites to index. Instead they will index

a small portion at a time, working their way down and along the page hier-

archy, whilst also checking all previous pages that have been indexed. This

can lead to long delays between a page being published and being indexed.

Indeed, sites whose pages change often, or those that grow rapidly may never

be indexed completely[42].

In order to counter this problem, the major search engines have united

to support the Sitemaps Protocol[43], which is an XML format that allows

12

webmasters to inform spiders of vital information, such as which pages of a

site are available for crawling and when they were last changed. It is clearly

important for rapidly growing, large online chemical databases to adopt this

if search engines are to provide exhaustive chemical Web searches.

2.3 Representing chemical entities as strings

As engines index the complete text of webpages, regardless of content, pages

containing chemical terms can be retrieved by these textual searches. Thus,

providing a search engine with the query iodomethane would theoretically

return all webpages containing a reference to that compound.

In order to make chemical entities indexable and retrievable by Web search

engines, we must represent them as strings in webpage text. In addition to

this, it is essential to use string identifiers that,� are unique, so multiple searches are not required to retrieve all in-

stances,� are available to anyone i.e. everyone should be able to derive the iden-

tifier for a particular entity,� return few or no false positives (caused by the query string being found

in a non-chemical context, or in another chemical name as a substring).

There are several ways of representing chemical entities as strings, here we

discuss how well they match the criteria described above.

Chemical formulae

Almost all molecules have isomers e.g. C2H6O could represent ethanol or

dimethyl ether. Hence a web query using only the chemical formula therefore

often retrieves many webpages for unwanted isomers.

13

Systematic chemical names

An IUPAC (International Union of Pure and Applied Chemistry) name

should, in principle, be unique, but it is rarely used outside patent and regu-

latory submissions. Thus, for a given compound there will be many different

names on the Web e.g. ‘methanol’ can also be found as ‘methyl alcohol’ or

‘methyl hydroxide’. To find all information about a compound on the Web

using this method would require a lookup and querying using all possible

systematic chemical synonyms.

Arbitrary chemical names

Many compounds possess more than one arbitrary name. Methanol is also

known as ‘wood alcohol’, ‘wood spirit’ and ‘colonial spirit’[44]. As with

systematic chemical names a lookup is required to ascertain all arbitrary

names of a compound.

Semantically-free identifiers

Examples of these identifiers are any registry number systems such as CAS[45]

or RTECS[46]. While it is possible to uniquely identify all chemical structures

with such identifiers, they bear no relation to the structure they represent.

Such systems rely on a lookup of the registry number, which first requires

knowledge of a matching systematic or arbitrary chemical name. I have

shown that such identifiers are liable to retrieve many false positives when

used as web based queries (appendix A.3).

Linear connection tables

Some covalent molecules can be well defined by a labelled graph of the atoms

(nodes) and bonds (edges) between them. For example propane will always

be written CH3-CH2-CH3. For such molecules the bond positions, bond

orders, hydrogen atoms and formal charges are absolute. For other molecules

the ordering of atoms can differ e.g. propan-1-al could be represented by

CH(=O)-CH2-CH3 or CH3-CH2-C(=O)H. Other problems include

14

� arbitrary multiple bond position, as in resonance structures of aromatic

systems,� mobile hydrogen atoms (tautomerism),� formal charges that can be redistributed.

Therefore, for most molecules this type of connection table is not a unique

identifier.

Canonical identifiers

These identifiers aim to address the problems of connection table (CT) rep-

resentation by converting the chemical structure (in the form of its CT) to a

semantically-rich, unique canonical serialization of characters by fixed algo-

rithms. Two requirements must be fulfilled in doing this:� Different compounds must have different identifiers, with all the infor-

mation needed to distinguish the structures.� Any one compound has only one identifier, including only the necessary

information to identify that compound.

An example of such an identifier is SMILES[47][48] (Simplified Molecular

Input Line Entry Specification) notation. SMILES does not solve all prob-

lematic aspects of CT representation (e.g. mixtures of stereoisomers), but

does provide a method for canonicalizing the ordering of heavy atoms and

representation of stereochemistry. For instance L-glutamic acid is denoted

as

C(CC(=O)O)[C@@H](C(=O)O)N

where the @ symbols denote the stereochemistry of the chiral centre. SMILES

is widely used on websites containing chemical information and in online

chemical databases, and as I have shown has high precision when used as a

web based query (appendix A.5). However, as SMILES is proprietary and is

a Closed project, different implementations of the generation algorithm are

15

in use, leading to different SMILES versions of the same compound. In fact,

I found seven different SMILES representations for caffeine on webpages∗:� [c]1([n+]([CH3])[c]([c]2([c]([n+]1[CH3])[n][cH][n+]2[CH3]))[O-])

[O-]� CN1C(=O)N(C)C(=O)C(N(C)C=N2)=C12� Cn1cnc2n(C)c(=O)n(C)c(=O)c12� Cn1cnc2c1c(=O)n(C)c(=O)n2C� N1(C)C(=O)N(C)C2=C(C1=O)N(C)C=N2� O=C1C2=C(N=CN2C)N(C(=O)N1C)C� CN1C=NC2=C1C(=O)N(C)C(=O)N2C

So, to perform a global Web search for a chemical structure using SMILES

notation you would need access to all implementations of the generation

algorithm.

Another example of such an identifier was officially released in April 2005,

the IUPAC International Chemical Identifier[50], which is described below.

2.4 The IUPAC International Chemical Iden-

tifier

The aim of the IUPAC International Chemical Identifier (InChI) project is

to:

. . . establish a unique label, the [InChI], which would be a non-

proprietary identifier for chemical substances that could be used

in printed and electronic data sources thus enabling easier linking

of diverse data compilations.[51]

∗Throughout this chapter, examples are used from the Unofficial InChI FAQ[49], which
I have written.

16

The current InChI version expresses chemical structures in a standard machine-

readable (ASCII) format, in terms of atomic connectivity, tautomeric state,

isotopic enrichment, stereochemistry and electronic charge. It can represent

neutral and ionic well-defined covalently bonded organic molecules, and also,

with straightforward extension, inorganic, organometallic and coordination

compounds.

2.4.1 InChI creation and structure

An InChI identifier is created from an input CT (in MOL, SDF or CML

format) in three steps� Normalization — conventions are removed while maintaining a com-

plete description of the compound. Steps involved are

– Ignore electron density and use simple atom connectivity only.

– Disconnect salts and metal atoms in organometallic compounds.

– Normalise mobile-hydrogens, variable protonation and charge.� Canonicalization — a set of atom labels are algorithmically generated

that do not depend on how the structure was initially drawn.� Serialization — the set of labels derived during canonicalization are

converted into a string of characters, the InChI.

The ability of InChI to provide one identifier for different representations of

the same compound is highlighted in figure 2.1.

The serialized InChI string is composed of layers and sub-layers (but no

sub-sub-layers – figure 2.2). Each layer holds a distinct and separable class of

structural information, with the layers ordered to provide successive struc-

tural refinement. All layers and sub-layers start with /? (except for the

chemical formula sub-layer of the Main Layer which starts with ‘/’) where ?

is a lower-case letter to indicate the type of information held in that layer. For

instance, atom connection starts with /c and the hydrogen/mobile-hydrogen

sub-layer starts with /h.

17

Figure 2.1: Different representations of the same compound have the same
InChI, such as for the different resonance forms of the munchnones (top) and
the tautomers of guanine (bottom).

18

Figure 2.2: The classes of structural information that can currently be rep-
resented in an InChI

19

� Main layer - holding chemical formula, heavy atom connection and

hydrogen/mobile-hydrogen connection sub-layers� Charge layer - holding protonation level and charge sub-layers� Stereochemical layer - holding sp2 and sp3 stereochemistry sub-layers

(which include whether chirality is relative, absolute or racemic)� Isotopic layer - the position and isotopic number of any atoms of a

specific isotope.� Fixed-H layer - an optional layer appended to the normalized InChI

of a structure containing mobile-hydrogens to represent a particular

tautomer.� Reconnected layer an optional layer appended to the normalized InChI

of an organometallic compound to represent the structure using the

conventions in the input CT.

The layered structure of the InChI allows future extensions for the rep-

resentation of new classes of structural information with no change to the

layers currently used. Work by the InChI task group has already begun on

the inclusion of layers to represent polymeric structures and Markush struc-

tures.

The layered model allows chemists to represent chemical substances at a

level of detail of their choosing. Except for the Main layer, the presence of a

layer is not required and appears only when corresponding input information

has been provided (figure 2.3).

As the InChI generation software is Openly available, anyone with an In-

ternet connection can download it and generate InChI identifiers, or perhaps

use it as an extension to their software (see section 2.4.3). This means that

there will only ever be one implementation of the algorithm, and hence only

one identifier per compound (see figure 2.4, as opposed to the earlier SMILES

caffeine example).

20

Figure 2.3: The InChI layer structure allows chemical entities to be repre-
sented to the known level of detail

Figure 2.4: The InChI representation of caffeine.

21

2.4.2 Searching for InChIs on the Web

Using InChIs provided for structures in the eCrystals archive[52] at the Uni-

versity of Southampton, I have shown that Web search engines can index and

retrieve InChIs contained in webpages with almost 100% recall and 100%

precision (appendix A.4). This can be attributed to the unusual form of an

InChI, which includes a mix of letters, digits and generic punctuation.

It was also shown (appendix A.6) that the length of InChIs is a problem

when used as a query in current Web search engines. Many InChI strings

contain more tokens than the engines will currently search for e.g. Google

limits queries to 32 tokens and AltaVista to 20. Thus when searching for the

InChI of a large molecule, it is possible for structural isomers to be returned

(unrelated compounds will not match, as the empirical formula is one of the

first tokens in an InChI string). This in effect reduces the uniqueness of the

InChI, and means that some post-processing would need to be performed on

the returned pages to find only the correct matches. Figure 2.5 highlights this

by showing that, as Google would not include the stereochemical layer when

searching for GDP-D-mannose, that its InChI would be seen as identical to

that of GDP-L-mannose.

InChIKey

As a result of InChIs being shown to be generally too long to use as exact

queries with Web search engines, the InChIKey was developed by the InChI

team[53]. This is a 25 character hash code of the InChI string based on a

truncated SHA-256 cryptographic hash function. It is made up of 4 parts

AAAAAAAAAAAAAA-BBBBBBBBCD

(A) 14 characters for the basic structure

(B) 8 characters for the layers

(C) 1 character is a ‘check’ character

22

Figure 2.5: GDP-D-mannose (top) and GDP-L-mannose (bottom) and their
corresponding InChI representations. The bold text shows the parts of the
InChIs after the 32nd token (as defined by Google) and hence those parts
that would not be used if the string were to be entered as a Google query.

23

(D) 1 character is a flag indicating certain features (e.g. fixed or not-fixed

hydrogens)

For instance, the InChIKey representation of caffeine is

InChIKey=RYYVLZVUVIJVGH-UHFFFAOYAW� First block (14 characters) encodes molecular skeleton – RYYVLZVUVIJVGH� Second block (8 characters) encodes proton positions, stereochemistry,

isotopes, reconnected layer – UHFFFAOY� Flag character indicates InChI version, presence/absence of fixed-H

layer, isotopes and stereochemistry – A� Check character – W

While the form of the InChIKey is different to that of an InChI string, it

is expected that its unusual form will lead to similar performance when used

as a query in Web search engines (i.e. high recall and precision), though no

formal investigations have yet been made into this.

The use of InChIKey rather than InChI removes the possibility of searching

for structures at differing levels of detail, e.g. by removing the stereochemical

layer of the GDP-mannoses (figure 2.5), you could use the remaining string

to do a search for either (though as discussed, this is not currently possible

for long InChIs due to search engine limitations). The InChIKey aids exact

structure searching at present, though if the search engine token limits were

removed, it would be preferable to revert to using InChI for chemical search.

InChI/InChIKey adoption

The fact that the InChI generation software is Openly available has led to

widespread adoption by the chemical community. Rather than adopt one or

the other, members of the chemical community generally provide both for

their structures. Examples of databases which use InChI/InChIKey are[54]:

24

� PubChem – 11 million structures� NCI DTP – 30 million structures� ChemSpider – 17 million structures� CrossFire BeilStein Database – 10 million structures� ChemSure Patents – 10 million structures

InChI/InChIKey has also been adopted by many bloggers, who tag each

entry with identifiers for the structures discussed within, e.g. Chem-bla-

ics[55], Totally Synthetic[56] and Useful Chemistry[57]. The RSC’s Project

Prospect[24] has shown how InChI/InChIKey can be embedded into article

full-text and RSS feeds.

The InChI generation software has now been adopted into chemical draw-

ing packages such as ChemDraw, ChemSketch and Marvin. Providing this

capability directly into the chemist’s workflow is an important step, as it

requires little effort to generate an InChI for each structure drawn.

2.4.3 The Google-InChI Web Service

In early 2005, Yong Zhang and I created the Google-InChI Web Service,

which uses InChI to provide a method of performing chemical Web searches

by drawing the structure you wish to find.

To do this, we provided a webpage that incorporates a Marvin[58] applet,

into which a chemical structure can be drawn (figure 2.6). On clicking the

‘Search’ button, the following steps are performed

1. The drawn structure is output as a MOL file by Marvin.†

2. The MOL file is passed to the InChI executable and converted into an

InChI string.

†This work was undertaken before the incorporation of the InChI software in ChemAxon
products.

25

3. The InChI is submitted as a query to Google using the Google SOAP

Search API[59].

4. The results are retrieved from Google as a SOAP response[60] and

converted into a webpage.

5. The results webpage is displayed in the users browser (figure 2.7).

The example in figures 2.6 and 2.7 shows 51 different webpages that contain

the InChI for naphthalene are retrieved. This shows how ‘Googling’ for

InChIs in this way could provide a robust method for searching for chemistry

on the Web in the future.

The Google SOAP Search API has now been deprecated, however, it is

still possible to programmatically submit InChI queries to Google by con-

catenating the InChI string to:

http://www.google.com/search?q=

and submitting it as a URL. For instance, the Google query URL for naph-

thalene is:

http://www.google.com/search?q=%22InChI%3D1%2FC10H8%2Fc1-2-6-10-8-

4-3-7-9%2810%295-1%2Fh1-8H%22

which will return the same page as if you were to go to the Google homepage

and enter the naphthalene InChI string as a query. This technique can be

used for all search engines, and has subsequently been implemented at the

InChImatic website[61], which provides the same kind of 2D structure search

as the Google-InChI service.

2.4.4 Staurosporine - an InChI case study

Staurosporine is a natural product originally isolated in 1977 from the bac-

terium Streptomyces staurosporeus by Omura et al [62]. Later it was found to

show strong inhibitory activity against protein kinases. The chemical struc-

ture of Staurosporine was elucidated by X-ray analysis of a single crystal[63]

26

Figure 2.6: The Google-InChI webpage with naphthalene drawn in the struc-
ture editor.

27

Figure 2.7: The results page for the Google-InChI service after naphthalene
was submitted.

28

Figure 2.8: Structure of Staurosporine showing the absolute stereochemical
configuration of the 4 chiral centres.

and the absolute stereochemical configuration by the same method in 1994[64]

(figure 2.8).

In the crystal structure, the pyran ring adopts the boat conformation. The

indole carbazole group is planar and sits either completely above or below

the plane of the tetrahydropyran ring (figure 2.9).

Staurosporine has 4 chiral centres, the atom arrangement around each

of which is critical to the activity of the compound. Thus, a correct rep-

resentation of Staurosporine must not only have identical atoms and atom

connections, but also identical descriptions of the 4 chiral centres.

However, during a search of the Web I investigated 19 different sites con-

taining 24 examples of Staurosporine. Of these 24 examples, only 5 had

the correct complete representation of Staurosporine[65][66][67][68][69]. The

other 19 incorrect representations can be divided into the following categories� No stereochemical information provided — 3 examples (figure 2.10)

29

Figure 2.9: Conformation of Staurosporine in the solid state� Partial incorrect stereochemical information provided — 2 examples

(figure 2.11)� All chiral centres defined, but incorrectly — 10 examples (figure 2.12)� Incorrect atom connectivity — 2 examples (figure 2.13)� Impossible stereochemistry — 2 examples (figure 2.14)

Interestingly, it seems as though the incorrect representation of Stau-

rosporine has not propagated from one site through to others. In fact, every

one has been drawn differently.

The InChI generated for the correct representation of Staurosporine is as

below (see also figure 2.15).

InChI=1/C28H26N4O3/c1-28-26(34-3)17(29-2)12-20(35-28)31-18-

10-6-4-8-14(18)22-23-16(13-30-27(23)33)21-15-9-5-7-11-19(15)

30

Figure 2.10: Representations of Staurosporine found on the Web with no
stereochemical information provided[70][71][72]

Figure 2.11: Representations of Staurosporine found on the Web with some
stereocentres defined, but incorrectly[73][74]

31

Figure 2.12: Representations of Staurosporine found on the Web with
all stereocentres defined, but incorrectly (from left to right, top to
bottom[75][76][77][78][79][80][81][82][83][84])

32

Figure 2.13: Representations of Staurosporine found on the Web with incor-
rect connectivity[85][86]

Figure 2.14: Representations of Staurosporine found on the Web with im-
possible stereochemistry[87][88]

33

Figure 2.15: Staurosporine as it appears in the wInChI program. The num-
bers beside each atom represent the atomic canonical numbering. If there
are two numbers beside an atom, the right-hand one denotes that a mobile-H
is shared between atoms of the same number (i.e. 30 and 33)

34

32(28)25(21)24(22)31/h4-11,17,20,26,29H,12-13H2,1-3H3,(H,

30,33)/t17-,20-,26-,28+/m1/s1

Note that numbers in an InChI string refer to the canonical numbering of

all the atoms except non-bridging H. When broken up into its component

layers this is� InChI version layer: InChI=1� Main layer, consisting of sub-layers

– Chemical Formula: C28H26N4O3

– Atom Connection: c1-28-26(34-3)17(29-2)12-20(35-28)31-18-

10-6-4-8-14(18)22-23-16(13-30-27(23)33)21-15-9-5-7-11-19(15)

32(28)25(21)24(22)31

– Hydrogen/mobile hydrogen layer: h4-11,17,20,26,29H,12-13H2,

1-3H3,(H,30,33) note that the mobile hydrogens are denoted in

parentheses at the end of the sub-layer.� sp3 stereochemistry layer: t17-,20-,26-,28+/m1/s1 note that com-

pounds with identical stereochemical layers that differ only in contain-

ing m1 or m0 are enantiomers.

InChIs for the incorrect representations of Staurosporine

The InChI below represents those structures with no stereochemical infor-

mation given. All three of these structures give identical InChIs, which are

the same as the InChI for Staurosporine minus the stereochemical layer.

InChI=1/C28H26N4O3/c1-28-26(34-3)17(29-2)12-20(35-28)31-18-

10-6-4-8-14(18)22-23-16(13-30-27(23)33)21-15-9-5-7-11-19(15)

32(28)25(21)24(22)31/h4-11,17,20,26,29H,12-13H2,1-3H3,(H,

30,33)

35

The two InChIs below represent those structures with partial incorrect

stereochemical information. As the previous structures, these have exactly

the same InChI as the correct representation except for the stereochemical

layer. In each of the structures the InChI generation program has noted that

there are two chiral centres for which no stereochemical information is given

and thus represents them with a ‘?’ in the InChI.

InChI=1/C28H26N4O3/c1-28-26(34-3)17(29-2)12-20(35-28)31-18-

10-6-4-8-14(18)22-23-16(13-30-27(23)33)21-15-9-5-7-11-19(15)

32(28)25(21)24(22)31/h4-11,17,20,26,29H,12-13H2,1-3H3,(H,

30,33)/t17?,20-,26?,28+/m0/s1

InChI=1/C28H26N4O3/c1-28-26(34-3)17(29-2)12-20(35-28)31-18-

10-6-4-8-14(18)22-23-16(13-30-27(23)33)21-15-9-5-7-11-19(15)

32(28)25(21)24(22)31/h4-11,17,20,26,29H,12-13H2,1-3H3,(H,

30,33)/t17-,20?,26-,28?/m0/s1

The InChIs for structures with incorrect stereochemistry again differ from

that of the correct representation only in the stereochemical layer. For these

structures, all chiral centres have been defined, but they have different labels

to the correct chirality. For example, the InChI for the structure in the

top-left structure in figure 2.12 is

InChI=1/C28H26N4O3/c1-28-26(34-3)17(29-2)12-20(35-28)31-18-

10-6-4-8-14(18)22-23-16(13-30-27(23)33)21-15-9-5-7-11-19(15)

32(28)25(21)24(22)31/h4-11,17,20,26,29H,12-13H2,1-3H3,(H,

30,33)/t17-,20+,26-,28-/m0/s1

The two structures with incorrect connectivity are identical, with the Me

group and H in the alpha position to the oxygen in the pyran ring being

in each others respective correct position. Thus the InChIs for these two

structures differs from the correct representation in atom connection sub-

layer of the main layer.

36

InChI=1/C28H26N4O3/c1-28-12-17(29-2)25(34-3)27(35-28)31-18-

10-6-4-8-14(18)20-16-13-30-26(33)22(16)21-15-9-5-7-11-19(15)

32(28)24(21)23(20)31/h4-11,17,25,27,29H,12-13H2,1-3H3,(H,

30,33)/t17-,25-,27+,28-/m1/s1

The structures in figure 2.14 have impossible stereochemistry as the planar

group attached to the pyran ring would have to be both above and below the

ring to have such a structure. Interestingly, both these structures were found

on the PubChem website which also provides the InChIs (as well as the SDF

file from which the InChI is created). The InChIs given for the structures

are

InChI=1/C28H26N4O3/c1-28-26(34-3)17(29-2)12-20(35-28)31-18-

10-6-4-8-14(18)22-23-16(13-30-27(23)33)21-15-9-5-7-11-19(15)

32(28)25(21)24(22)31/h4-11,17,20,26,29H,12-13H2,1-3H3,(H,

30,33)/t17-,20-,26-,28+/m0/s1

InChI=1/C28H26N4O3/c1-28-26(34-3)17(29-2)12-20(35-28)31-18-

10-6-4-8-14(18)22-23-16(13-30-27(23)33)21-15-9-5-7-11-19(15)

32(28)25(21)24(22)31/h4-11,17,20,26,29H,12-13H2,1-3H3,(H,

30,33)/t17-,20-,26-,28+/m1/s1

These InChIs are consistent with the structures in the SDF files, and show

that the latter structure should actually be the correct representation of

Staurosporine with the former being its enantiomer. This discrepancy could

be caused by bugs in the image generation software, or perhaps the images

are generated from a connection table other than that given in the attached

SDF file.

This demonstration shows ability of InChI to distinguish between different

chemical structures and the same structure with differing levels of detail. Due

to the kind of inaccuracies shown, it is critical for chemical data providers

to use technologies like InChI to perform internal and external consistency

checking. Current work at ChemSpider[89] is investigating the efficacy of

37

community annotation and validation of errors in online chemical collections,

and we have begun investigations with CrystalEye (section 4.3.8).

2.5 Conclusions

The InChI team has provided an excellent method for the unique representa-

tion of chemical structures as strings, with an important decision being made

in making the InChI software Openly available. Not only has this led to the

rapid and widespread adoption of InChI among the online chemical commu-

nity, but it ensures that there need be only one generation tool, which means

there should be no future issues as to the ‘correct’ InChI representation of a

structure.

The unusual form of the InChI makes it a good choice for high recall and

precision exact searches for chemical structures on the Web. However, cur-

rent search engine limitations, such as the number of query tokens used and

keyword breaking on punctuation, mean that many InChIs are not suitable

in this manner. The InChIKey solves these problems by providing a fixed

length hash of the InChI string, and so makes it the best choice at present

for chemical structure search using commercial search engines.

38

Chapter 3

Creating and deriving data in
CML from CIF

3.1 Introduction

The CIF[21] (Crystallographic Information File) is a community standard

for exchanging and publishing crystallographic data. CIFs are routinely pro-

vided as supplemental data to published articles describing crystal structures,

and as such there is a large volume of Open crystallgraphic data published

in this way, albeit in a diffuse manner.

CIF has a well-defined syntax and set of extensible, machine-accessible

dictionaries to define the data terms within. CIF documents are able to

describe:� crystal structure and composition (e.g. cell parameters, symmetry ele-

ments and atom site descriptions),� experimental metadata (e.g. information about the measurement strat-

egy, reduction methodology and solution and refinement procedures),� researcher metadata (e.g. researcher names and institutions, contact

details).

A public robotic CIF referee named checkCIF (further discussed in section

3.3.4) is used to validate the quality and completeness of data given in a high

39

percentage of published CIFs. Thus CIFs are a source of high quality, Open,

machine-understandable data, and so ideal documents to use for automated

validation of both data and theory. In order to assist reuse of data from

CIFs, two tasks must be performed:

1. convert the data in the CIF format to CML,

2. derive the connection tables of the chemical structures contained with

each CIF (unfortunately this is not provided explicitly at present).

This chapter details the software created to convert data in the CIF format

to CML. This conversion is a three-step process:

1. convert the data in the CIF to an XML format (which is named CIFXML),

2. convert the CIFXML data to CML,

3. derive the connection table and other data from this CML and merge

the two to create an ‘enhanced’ CML document.

As the software is all Open Source, by splitting the process up, users can

choose which parts they wish to adopt. For instance, if a user disagrees with

the methods of deriving data from the CML and wishes to do it themselves,

then they can just use the libraries for performing the first two steps. The

three steps are discussed in separate sections later in this chapter.

3.2 Why convert CIF to CML?

The CIF standard was developed before XML became a mainstream tech-

nology, though it has since been stated by the IUCr that

If the [CIF] standard were being developed afresh nowadays, it

would probably have an underlying XML representation.[90]

The CIF structure is almost isomorphous to XML (there is no equivalent

to the loop construct in XML), and the relationship between CIF and the

40

Figure 3.1: Diagram showing the similarity between the Crystallographic In-
formation Framework and XML. The data items in a CIF document are de-
fined in a CIF dictionary, the items of which are defined in a CIF Dictionary-
Definition Language (DDL). Similarly, the data items in an XML document
are defined in an XML Schema, which in turn is defined by the XML Schema
Definition (XSD).

CIF dictionaries is analogous to that of XML and XML Schema/DTD (figure

3.1). A semantically lossless conversion of the CIF data into CML can be

performed, which will subsequently give the benefits of being able to:� use the large variety of tools available to process, manipulate, store,

search and share XML documents. XML is the base language of the

Semantic Web and there is a huge community continually creating and

developing new generations of these tools.� use chemically aware tools for CML (e.g. JUMBO, OpenBabel) to derive

data,� store data from more than one domain in the same file through the use

of namespaces. Thus, we can store crystallographic data in CML along

with MathML or include the CML in an RSS newsfeed.

41

3.3 The Crystallographic Information Frame-

work

The Crystallographic Information Framework[91] provides a file structure

and extensible domain ontology for crystallographic information. It consists

of the Crystallographic Information File, whose syntax is a superset of the

STAR file structure[92] and whose data items are defined by a set of CIF

dictionaries, which are in turn described by dictionary definition languages

(DDLs). It is important to note that the CIF has been designed to separate

form (the syntax and document structure) from content (the terms, their

meaning and the relationships between them).

The CIF was adopted in 1990 by the International Union of Crystallogra-

phy (IUCr) to

. . . ensure that the information on crystal structures could be

archived without introducing the keyboarding errors that are in-

evitable in a system requiring that tables of coordinates be re-

typed at least three times, as was [previously the case].[93]

CIFs are now produced by crystallographic laboratory equipment and are

the de facto method for publishing crystallography, where they are provided

as supplemental data to articles describing crystal structures.

3.3.1 STAR file concepts and syntax

The construction of a STAR file is based on the following:� Each file contains a sequence of data blocks.� Each data block contains a sequence of individual data items.� There may be any number of data blocks and any number of data items

within each data block.� The data block represents a logical grouping of data, e.g. the data to

describe a particular crystal structure.

42

� The identity of each data item within a data block is determined by a

unique data name which precedes it in the file.� Data items may be repeated in lists by placing them within a simple

data loop structure.

The STAR file syntax and terminology is defined by six rules:

text string : a string of characters bounded by blanks, single quotes (’),

double quotes (”), or by semi-colons (;) as the first character of a line.

Any text string that contains spaces must be delimited with single or

double quotes, otherwise spaces will be interpreted as delimiters. If

the string extends over more than one line, it must be delimited by a

semicolon appearing as the first character on the line.

data name : a text string starting with an underline () character.

data item : a text string not starting with an underline, but preceded by a

data name to identify it (a tag-value pair).

data loop : a list of data names, preceded by loop and followed by a re-

peated list of data items.

data block : a collection of data names (looped or not) and data items that

are preceded by a data code record. A data name must be unique

within a data block. A data block is terminated by another data

statement or the end of file.

data file : a collection of data blocks, the block codes must be unique within

a data file.

No assumptions are made about the order of the data blocks or data items,

other than the requirement that the character strings which identify data

blocks, or data names within a block, must be unique. There are no restric-

tions regarding the placement of data names or data items within a data

block, other than the requirement that the name must precede the item.

43

Figure 3.2: An example STAR file data block showing typical tag-value data
items and a loop construct

The STAR syntax makes no distinction between the type of a data item

(i.e. number or string). The order and format of these strings in the file are

irrelevant, except for the requirement that the data name precede the data

item. Data on a line following a hash character ‘#’ is considered to be a

comment, except if it is contained within a text string.

A data item, or a set of data items, may be repeated in a list. Such data

items are preceded by a loop keyword. Any data item, independent of its

type, may be included in a loop. The only requirement is that the number

of data items in a loop must be an exact multiple of the number of data

names in the loop definition. Figure 3.2 shows an example data block with

the various constructs that constitute ths STAR syntax.

3.3.2 CIF syntax

The CIF syntax is defined by imposing restrictions on the STAR syntax.

These are:� Lines may not exceed 80 characters.

44

� Data names and block codes may not exceed 32 characters and are case

insensitive.� While data items in a STAR file may be of any type, the CIF Dictionary

identifies whether a CIF data item is a number or a character.� A data item is assumed to be a number if it starts with a digit, ‘+’, ‘-’

or a period ‘.’ and is not bounded by matching single or double quotes

or semicolons as the first character on a line.� A number may be supplied as an integer, as a floating-point number, or

in scientific notation. For example: 34.6, 3.45E1, 34.5(12), 3.45E1(12)

are all versions of 34.5 with and without an estimated standard devia-

tion (esd) of 1.2.� A data item is assumed to be of data type text if it extends over more

than one line, i.e. it starts and ends with a semicolon as the first

character of a line.� A data item is assumed to be of data type character if it is not a number

or text.� Only one level of loop is permitted. Additional levels of repeated data

must be stored as lists within a text field.� Each CIF item has a default units code which is stated in the CIF

Dictionary. If a data item is not stored in the default units, the units

code is appended to the data name.

Data names defined for use in a CIF are separated into components to

represent an internal hierarchy of data categories. The data names are of

the form <category> <topic> <subtopic>, though more than three levels

of hierarchy may exist in a given category. For example, data referring to

atoms in the crystal structure are in the atom category, which has two topics:

one which describes atoms sites in the structure, site, and one which de-

scribes properties of the atom types that occupy these sites, type. These two

45

Figure 3.3: A data block from the coreCIF dictionary containing the defini-
tion of a measured crystal density data item

topics each have many subtopics, e.g. atom site type symbol identifies the

chemical symbol of the atom occupying a particular site in the crystal.

3.3.3 CIF dictionaries

The set of data names, items and definitions that are fundamental to crys-

tallgraphy are described by the CIF Core Dictionary (coreCIF)[94]. This

dictionary is intended for use in the description of small-molecule and inor-

ganic structures. Dictionaries have also been provided to extend this core

dictionary to describe more specific areas of crystallography, e.g. mmCIF for

macromolecular structures[95]. A data name definition taken from coreCIF

is shown in figure 3.3.

The formalisms employed to record CIF data names and their definitions

and properties within the CIF dictionaries are described by two Dictionary

Definition Languages, DDL1[96][97] and DDL2[98].

. . . [DDL1 is] used to define the dictionary of basic crystallo-

graphic items known as [coreCIF]. DDL2 was developed in order

to provide the much tighter definitions needed for macromolecular

crystallography where automatic computer handling of informa-

tion is required. . . [99]

46

The relationship between CIF and CIF Dictionaries is analogous to the rela-

tionship between XML and XMLSchema/DTD.

The dictionaries and DDLs conform to the CIF syntax. This allows pro-

grams to be written to compare CIFs to their dictionaries and check whether

the data names and value types used in the CIF were defined in the dictio-

nary and whether the data values lay within the prescribed ranges, e.g. it

could check that the density is given as a positive number (this has been

implemented, as shown in section 3.5).

To maintain and develop the CIF standards, a committee (COMCIFS) has

been appointed to ensure that all extensions to the CIF dicionary conform

to the STAR syntax and do not violate any of the conventions of the current

dictionary.

3.3.4 checkCIF

checkCIF[100] is a web service provided by the IUCr (see figure 3.4) which

validates the data held in a CIF. The service subjects a CIF to a large col-

lection of algorithmic tests (there are 346 currently listed[101]) which check:� internal consistency of data dependencies,� scientific plausibility of the model,� completeness of experimental metadata,� quality of the derived structural model.[90]

checkCIF is an integral part of the submission and review cycle for IUCr

journals. Authors use it as a ‘robotic referee’ prior to formal submission to

ensure that their files are free from syntax errors and gross crystallographic

errors. Human referees use the warnings raised by checkCIF to assess the

overall scientific argument presented in an article.

47

Figure 3.4: The checkCIF service homepage. The submission form is shown
in the bottom-left.

48

The service is used through a webpage form, where a CIF can be uploaded

from a remote computer and run through checkCIF at the click of a button.

The checkCIF report is returned optionally as either a PDF or HTML page.

Data that do not pass a test are reported as alerts of differing levels (A,

B, C and G, from most to least severe). Authors are encouraged to fix as

many problems highlighted by the alerts as possible. Any alert with level A

must either be corrected, or the author must provide a valid explanation for

its occurrence. Acta Crystallographica Section E now routinely provides the

checkCIF report for each CIF published (an example is shown in figure 3.5).

Other publishers use checkCIF as part of the publishing process (as shown

by the sponsors in figure 3.4), though it is not required for all journals. It

has been noticeable during this work that the rate of syntatical and other

errors in CIFs from the IUCr is far lower than that of other publishers.

3.4 CIFXML: converting CIF to XML

Programming libraries for working with CIFs have already been described

for Fortran[102] and C, or variants[103][104], Python[105][106] and Perl[107].

We∗ have created CIFXML, an XML dialect with a corresponding XML DTD

and Schema. Alongside this, we have developed CIFXML-J, a Java library for

converting CIFs to valid CIFXML and vice versa.

CIFXML-J allows CIFs to be read, edited, syntactically validated, sorted,

normalised, filtered, stored as an XML DOM, transformed and output. It

is based on the two main strategies for processing structured documents in

XML, SAX[108] and DOM[109].� SAX. After lexical processing, a document is broken into chunks, which

fire events in a linear order. In XML this is normally for start and end

tags and contained text.

∗The work on CIFXML was collaborative; Peter Murray-Rust, Simon Tyrrell and this
author have all been involved; overall, this author contributed around 50% of the work.
Where work was performed by a specific individual, this is indicated.

49

Figure 3.5: The alert section of a checkCIF report (in HTML) from Acta
Crystallographica Section E. Note the author comments explaining the alerts
with level ‘A’.

50

� DOM. The document is converted into a tree structure (often repre-

sentable by a DTD or XML Schema). The tree is held in memory and

can be navigated, and transformed in many ways.

SAX and DOM are complementary. SAX has the advantage of being rapid

and not limited by memory. DOM preserves the context of every piece of

information. In practice many XML parsers provide both strategies and use

SAX to build a DOM. A brief description of the use of SAX, DOM and

callbacks is given later.

The CIF standard requires that data instances are valid against one or

more dictionaries. In practice few tools validate CIFs against any dictionary,

though certain semantics can only be applied if a dictionary is available

(e.g. the requirement that elements in a loop must belong to the same

category). Dictionary validation is omitted from the core CIFXML-J engine.

The dictionary validated transformation of CIFXML documents into CML

will be described in section 3.5

CIFXML currently supports the CIF syntax and DDL1[97]-based dictio-

naries (but not STAR or DDL2[98]). It interprets any CIF as a structured

document (CIF), which may contain� datablocks: these must have unique ids and may contain items, loops

and comments� items: all item names must be unique within a datablock� loops: all loops within a datablock must belong to different cate-

gories, and all names in the loop should be unique� comments: comments can occur anywhere within a CIF as long as they

do not break items or loops. It is unclear whether comments are tech-

nically part of the content of a CIF or simply annotations for human

readers only. We deprecate their use for holding information but since

they are often used for metadata we retain them in the CIFXML model

51

� Whitespace: CIF elements can be separated by inline and interline

whitespace but this is not included in CIFXML data model.

The CIF syntax allows for a small number of syntactic variants such as

delimiters on values or token used for whitespace. These are not held in the

data model so will not be recovered in roundtrips.

As there is no formal concept of ordering in CIF, the data blocks, the

elements within each and the components of a loop can be reordered without

affecting the CIF. According to the specification the ordering of “rows” in

a loop is not significant. However, XML supports the order of document

elements and CIFXML preserves precisely all order in the input document.

This allows CIFs to be ”roundtripped” (i.e. read into the DOM and re-output

without loss). In addition, the order of the components can be canonicalized

so that it is possible to compare documents with arbitrary ordering but

identical semantic content.

3.4.1 Conformance to CIF

CIFXML-J is used to establish the correctness of CIFXML to the XML Schema

or DTD and to act as a CIF validator. CIFXML-J has been designed to

implement the CIF standard as described in the specification. I have noticed,

however, that a small but significant fraction of CIFs do not adhere to the

specification precisely. The commonest deviations (which probably arise from

using normal text-editors rather than CIF-aware ones) are� Duplication of items� Duplicate datablock names� Incorrect use of delimiters� Improper insertion of ”comments” (sometimes apparently added by

technical editors) which do not start with ”#”� Illegal characters (especially non-printing characters)

52

� The number of items in a loop not being exactly divisible by the number

of data names provided

CIFXML-J provides optional heuristics to attempt recovery from these (see the

example in section 3.4.5), but cannot, of course, guarantee that the result is

what was intended. The first two points above can always be recovered from

by taking the first item, or renaming the datablock respectively. The middle

two points are dealt with only in certain cases, such as comments that appear

before the start of the first datablock, or simple errors in the use of delimiters,

e.g. it is common in early CIFs to see single quote delimited items spill

over into a second line (which should then be delimited with ;). Comments

appearing within loops, or missing delimiters are very difficult to deal with

confidently, and so CIFXML-J will throw an error on encountering them. The

latter two points should not be attempted to be fixed programmatically, and

thus always cause errors to be thrown by the parser.

3.4.2 CIFXML-J functionality

CIFXML-J supports the following operations:� Complete syntactic validation of CIFs� Dictionary-free semantic validation against the CIF standard� Conversion of escaped characters to their UNICODE equivalents� Reporting of errors and warnings with original line numbers. Further

processing after warnings. Attempted recovery from errors� Optional parsing of numbers with standard uncertainty fields (e.g.

123.45(6))� Choice of DOM or SAX strategies and choice of parsers� Creation of a CIFXML object from CIF or XML� Normalization of document structure

53

� Canonicalization of document structure� Optional sorting of part or whole document� Differences between data models for two CIFs (i.e. independent of

syntax and ordering)� Output as XML, HTML or CIF for round-tripping

3.4.3 Representation of CIFs in XML

We have created an XML DTD to which the CIFXML serialization of CIFs

must conform:

<!DOCTYPE cif [

<!ELEMENT cif (datablock | comment)*>

<!ELEMENT datablock (comment | item | loop)*>

<!ATTLIST datablock

id CDATA #REQUIRED>

<!ELEMENT comment (#PCDATA)>

<!ELEMENT item (#PCDATA)>

<!ATTLIST item

name CDATA #REQUIRED

su CDATA #IMPLIED

numericValue CDATA #IMPLIED

dataType CDATA #IMPLIED>

<!ELEMENT loop (row+)>

<!ATTLIST loop

names CDATA #REQUIRED>

<!ELEMENT row (cell+)>

<!ELEMENT cell (#PCDATA)>

<!ATTLIST cell

su CDATA #IMPLIED>

]>

which also closely reflects the data structure of the CIFXML. I have also

created an XML Schema representation of this DTD:

<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’>

<xs:element name=’cell’>

<xs:complexType mixed=’true’>

<xs:attribute name=’su’/>

</xs:complexType>

</xs:element>

<xs:element name=’cif’>

<xs:complexType>

<xs:choice minOccurs=’0’ maxOccurs=’unbounded’>

<xs:element ref=’datablock’/>

<xs:element ref=’comment’/>

</xs:choice>

</xs:complexType>

</xs:element>

54

<xs:element name=’comment’>

<xs:complexType mixed=’true’>

</xs:complexType>

</xs:element>

<xs:element name=’datablock’>

<xs:complexType>

<xs:choice minOccurs=’0’ maxOccurs=’unbounded’>

<xs:element ref=’comment’/>

<xs:element ref=’item’/>

<xs:element ref=’loop’/>

</xs:choice>

<xs:attribute name=’id’ use=’required’/>

</xs:complexType>

</xs:element>

<xs:element name=’item’>

<xs:complexType mixed=’true’>

<xs:attribute name=’name’ use=’required’/>

<xs:attribute name=’su’/>

<xs:attribute name=’numericValue’/>

<xs:attribute name=’dataType’/>

</xs:complexType>

</xs:element>

<xs:element name=’loop’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’row’ maxOccurs=’unbounded’/>

</xs:sequence>

<xs:attribute name=’names’ use=’required’/>

</xs:complexType>

</xs:element>

<xs:element name=’row’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’cell’ maxOccurs=’unbounded’/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

A typical example of a CIF is:

data_global

loop_

_publ_author_name

_publ_author_address

‘A. Person’

;

University of Crystalville

Anycity

Anyland 1234

;

‘A. N. Other’

;

CrystalTown University

AnotherCity

Anotherlanbd 5678

;

data_I

55

_audit_creation_method SHELXL-97

_chemical_formula_sum

‘C93 H84 Cl3 Co Fe N8 O2’

_chemical_formula_weight 1566.81

_symmetry_cell_setting ‘Triclinic’

_symmetry_space_group_name_H-M ‘P -1’

loop_

_symmetry_equiv_pos_as_xyz

‘x, y, z’

‘-x, -y, -z’

_cell_length_a 13.8463(3)

_cell_length_b 16.8164(5)

_cell_length_c 17.9072(6)

_cell_angle_alpha 93.7800(10)

_cell_angle_beta 111.1430(10)

_cell_angle_gamma 97.4630(10)

_cell_volume 3827.19(19)

_cell_formula_units_Z 2

_cell_measurement_temperature 110(2)

When expressed as CIFXML, this would be:

<cif>

<datablock id="global">

<loop names="_publ_author_name _publ_author_address">

<row>

<cell>

A. Person

</cell>

<cell>

University of Crystalville Anycity Anyland 1234

</cell>

</row>

<row>

<cell>

A. N. Other

</cell>

<cell>

CrystalTown University AnotherCity Anotherland 5678

</cell>

</row>

</loop>

</datablock>

<datablock id="I">

<item name="_audit_creation_method">SHELXL-97</item>

<item name="_chemical_formula_sum">C93 H84 Cl3 Co Fe N8 O2</item>

<item name="_chemical_formula_weight">1566.81</item>

<item name="_symmetry_cell_setting">Triclinic</item>

<item name="_symmetry_space_group_name_h-m">P -1</item>

<loop names="_symmetry_equiv_pos_as_xyz">

<row>

<cell>x, y, z</cell>

</row>

<row>

<cell>-x, -y, -z</cell>

</row>

56

</loop>

<item name="_cell_length_a">13.8463(3)</item>

<item name="_cell_length_b">16.8164(5)</item>

<item name="_cell_length_c">17.9072(6)</item>

<item name="_cell_angle_alpha">93.7800(10)</item>

<item name="_cell_angle_beta">111.1430(10)</item>

<item name="_cell_angle_gamma">97.4630(10)</item>

<item name="_cell_volume">3827.19(19)</item>

<item name="_cell_formula_units_z">2</item>

<item name="_cell_measurement_temperature">110(2)</item>

</datablock>

</cif>

An alternative syntax for the numeric fields is exemplified by:

<item name="_cell_length_a" su="0.0003"

numericValue="13.8463" dataType="numb">13.8463(3)</item>

<item name="_cell_length_b" su="0.0005"

numericValue="16.8164" dataType="numb">16.8164(5)</item>

<item name="_cell_length_c" su="0.0006"

numericValue="17.9072" dataType="numb">17.9072(6)</item>

<item name="_cell_angle_alpha" su="0.0010"

numericValue="93.7800" dataType="numb">93.7800(10)</item>

<item name="_cell_angle_beta" su="0.0010"

numericValue="111.1430" dataType="numb">111.1430(10)</item>

<item name="_cell_angle_gamma" su="0.0010"

numericValue="97.4630" dataType="numb">97.4630(10)</item>

<item name="_cell_volume" su="0.19"

numericValue="3827.19" dataType="numb">3827.19(19)</item>

<item name="_cell_formula_units_z">2</item>

<item name="_cell_measurement_temperature" su="2.0"

numericValue="110" dataType="numb">110(2)</item>

3.4.4 CIFXML-J architecture

CIFXML-J is a single package based closely on the SAX model. It contains

the following main classes:� AbstractBlock.java� AbstractTextElement.java� AbstractValueElement.java� CIF.java� CIFComment.java� CIFContentHandler.java� CIFDataBlock.java

57

� CIFElement.java� CIFErrorHandler.java� CIFException.java� CIFItem.java� CIFLoop.java� CIFParser.java� CIFRow.java� CIFSaveFrame.java� CIFTableCell.java� DOMBuilderContentHandler.java� DefaultContentHandler.java� DefaultErrorHandler.java

The CIF parsing uses a SAX-like model where events cause callbacks to

the Content- or ErrorHandlers. Classes that represent the basic elements of

a CIF (as defined in the specification) have the element name prefixed by

CIF, e.g. CIFLoop or CIFDataBlock. The inheritance hierarchy of the main

CIFXML-J concrete classes is shown in figure 3.6. All CIFXML-J elements are

descendants of the XOM[30] Element class.

The base class is CIFElement which defines a basic API for processes com-

mon to all subclasses.� String toCIFString ()

This returns the CIFElement as a CIF-formatted String.

58

Figure 3.6: The CIFXML-J inheritance hierarchy (the CIFSaveFrame is re-
served for expansion)� void writeXML (Writer w) throws IOException

This will output the CIFElement and all of its children in an XML

format.� void writeHTML (Writer w) throws IOException

This will output the CIFElement and all of its children in an HTML

format with lists converted into HTML tables.� void writeCIF (Writer w) throws IOException

This will output the CIFElement and all of its children in CIF format

thus showing that CIFXML-J is a semantically lossless library. It uses

the toCIFString() method described above.� void normalize ()

This will attempt to remove any lexical variants.� void canonicalize ()

59

Within a CIF the order of the datablocks, items and loops (including

the row/column ordering) are all arbitrary. This will reorganise the

order of the various CIFElements within a CIFDocument into a lexical

order.

The default behaviour of canonicalize() is to apply the following

heuristics during its reordering

– CIFItems occur lexically before CIFLoops.

– All CIFItems are sorted alphabetically by name.

– The columns of each CIFLoop are sorted alphabetically by namelist,

then the rows are sorted upon their lexical ordering

– The CIFLoops are sorted alphabetically using the name of their

first column.� void processSu (boolean b)

Determines whether numeric variables with esds in brackets should be

parsed.

To illustrate this further an example of the canonicalization algorithm for

a small set of CIF data is given in Table 3.4.4.

3.4.5 Using CIFXML-J

CIFXML-J is a toolkit and can be used for many purposes. As all CIFXML-J

elements are subclassed from the XOM Element class, CIFXML-J uses many

XML functions from the XOM library.

Implementations

Each of the CIF classes has an API to facilitate the programmatic adding,

removing, setting and getting of its particular data fields. For example, some

of the methods of CIFItem are:

60

Before canonicalization After canonicalization
data xY data xY

ITEM2 1.2 item1 1.1

item2 1.2

loop

col2 col1 loop

99 4 aaa zzz

101 3 z 1

q 99

item1 1.1

loop

loop col1 col2

zzz aaa 4 99

1 z 3 101

99 q

Table 3.1: Example of applying the canonicalization algorithm

/** set the name for a data item.

* normally used when building a CIFXML.

* data names should never be reset

* implementers may check the value of a name or whether it

* violates any CIF syntax or dictionary restrictions.

*@param name (should be compliant with CIF syntax)

*@throws CIFException syntax violation or ontology/dictionary

* violation

*/

public void setItemName(String name) throws CIFException;

/** set the value for a data item.

* normally used when building a CIFXML.

* implementers may check the value to see whether it violates

* any CIF syntax or dictionary restrictions.

*@param value (should be compliant with CIF syntax). No

* quotes are permitted unless part of the value

*@throws CIFException syntax violation or ontology/dictionary

* violation

*/

public void setItemValue(String value) throws CIFException;

/** get the name for a data item.

*@return the name (should never be null)

*/

public String getItemName();

/** get the value for a data item.

*@return the value

*/

public String getItemValue();

/** get the standard uncertainty for a data item.

61

* CIF parsers should ensure that if SU is non-blank then

* the data value should not contain a bracketed SU.

*@return the SU (null if not present).

*/

public Double getSU();

Parsing, callbacks and DOM

CIFXML-J has a default parsing system which can be subclassed should a

different parsing mechanism be needed. This allows the implementer or user

to choose between parsers (including at runtime) perhaps on the basis of

speed or conformance. In practice most programmers will use the default.

The SAX strategy is that a Parser provides callbacks when lexical/document

events are fired. This means that the user delegates the parsing process to

a Parser and only regains control after a complete parse (unless exceptions

are thrown). The user provides callbacks to trap the events so that any that

are not required can be ignored.

The following code is an excerpt from the readToken method of the CIFParser

class, which shows a callback to the CIFContentHandler (contentHandler) to

add a CIFItem (item) to the current instance of a CIFDataBlock. If there is

an error during this method call, there is a callback to the CIFErrorHandler

(errorHandler) to provide the error message.

ParserMessage m = contentHandler.addItem(item);

if (m != null) {

errorHandler.error(m.getMessage(), this);

}

While CIFXML-J parsing is based on SAX, once the parsing is complete

the in-memory representation of the CIFXML is a DOM (represented by

an instance of the CIF class). It is then possible to manipulate this DOM

using those CIFXML-J classes that represent the CIF elements (as described

earlier).

62

Example use of the CIFParser class

The following code will read a CIF into CIFXML, canonicalize it and then

write out the CIFXML.

package sandbox;

import java.io.IOException;

import nu.xom.Document;

import uk.co.demon.ursus.cif.CIF;

import uk.co.demon.ursus.cif.CIFException;

import uk.co.demon.ursus.cif.CIFParser;

public class ParseIntoCifDom {

public static void main(String[] args) {

String filename = "C:/path/to/your/cif/file.cif";

try {

CIFParser parser = new CIFParser();

// Set ‘skip errors’ option. Applies heuristics

// telling the parser to fix or skip CIF

// sections with recoverable errors.

parser.setSkipErrors(true);

// Set ‘skip header’ option. Tells the parser to

// skip any comments that occur before the first

// datablock.

parser.setHeader(true);

// Parse CIF into XML document using XOM

Document doc = parser.parse(filename);

// Root element is always a CIF object

CIF cif = (CIF) doc.getRootElement();

// Apply canonicalization algorithm to CIF object.

cif.canonicalize();

String outfile = "C:/path/to/write/to.xml";

// Write CIFXML to path specified as ‘outfile’

FileWriter fw = new FileWriter(outfile);

cif.writeXML(fw);

fw.close();

} catch (Exception e) {

System.err.println(‘‘Error processing CIF file: ’’+filename);

}

}

}

A simple CIF editor

The following code shows how to read a CIF into CIFXML and to ma-

nipulate it through DOM-like calls, thus providing some of the features of

a simple editing system. After creating the CIF, the process iterates over

the datablocks and as an example manipulate the cell mesurement temp

item. In this case it will either add a new item or change the value of the

current one.

String file = "C:/path/to/your/cif/file.cif";

63

try {

String tempItemName = "_cell_measurement_temperature";

// values for the new temperature, standard uncertainty

// and the number of decimal places to be used.

double newTemp = 205.0;

double newSu = 1.0;

int dps = 1;

// parse the CIF and get the root CIF element

CIF cif = (CIF) new CIFParser().parse(file)

.getRootElement();

// for each datablock in the CIF

for (CIFDataBlock block : cif.getDataBlockList()) {

// try to find the cell measurement temperature item

CIFItem temp = block.getChildItem(tempItemName);

if (temp == null) {

// if one doesn’t exist then create a new one with

// the values above, and add to the datablock

temp = new CIFItem(tempItemName, newTemp,

newSu, dps);

block.appendChild(temp);

} else {

// if one does exist, then change its values to

// those specified above

temp.setValueAndSu(newTemp, newSu, dps);

}

}

// write the CIF back out over the old file

FileWriter fw = new FileWriter(file);

cif.writeCIF(fw);

fw.close();

} catch (Exception e) {

System.err.println(‘‘Error processing CIF file: ’’+filename);

}

3.4.6 CIF to CIFXML conversion statistics

To investigate the conformance of published CIFs to the CIF standard, all

CIF documents aggregated by CrystalEye (see section 4.3) between 2001-7

were parsed using CIFXML-J. The optional heuristics were used to fix minor

deviations from the standard (see section 3.4.1), though more serious errors

caused the parser to fail with controlled errors. Each CIF may contain more

than one error, though here only the first unrecoverable error that the parser

encountered is noted.

Figure 3.7 shows the percentage of parsing failures for CIFs from all pub-

lishers, highlighting the rapid decline in the publication of invalid CIFs. Fig-

ure 3.8 shows the percentage of failures per publisher (using only those pub-

lishers for which CIFs have been provided throughout the period). For CIFs

from Acta Cryst. there were no errors throughout the entire period, while

64

Figure 3.7: Plot showing the percentage of failures in parsing CIFs to
CIFXML using all CIFs aggregated by CrystalEye from 2001-7.

RSC has had an almost 0% failure rate since 2004. There is still a higher

proportion of failures with CIFs from ACS, though the rate is steadily de-

creasing. Presumably these effects are due to the greater use of checkCIF

(which Acta Cryst. uses for every CIF it publishes), conformance in software

and the greater familiarity with CIF in the editing processes.

By using the error messages produced by CIFXML-J and some manual

inspection, the causes of errors were seen to fall into five categories (all of

which could easily be avoided by submitting the CIF to checkCIF):

1. Incorrect use of delimiters

2. Absence of the first data token

65

Figure 3.8: Plot showing the percentage of failures in parsing CIFs to
CIFXML using CIFs aggregated by CrystalEye from ACS, Acta Cryst. and
RSC from 2001-7.

66

3. Improper insertion of comments

4. Illegal characters

5. The number of items in a loop not being exactly divisible by the number

of data names provided

Figures 3.9 and 3.10 show the number of each of these errors for each year

from RSC and ACS journals respectively. The most common error from both

sources is consistently the incorrect use of delimiters, though the proportion

of invalid CIFs containing illegal characters has risen considerably throughout

the period. It is noted that the majority of those loops with an invalid number

of items were caused by the CIF being published in a truncated form.

3.5 CIFConverter: converting CIF to CML

The legacy2cml Java library is part of the CML project at Sourceforge[114]

and provides functionality to convert several legacy chemical document for-

mats into CML (e.g. MOL, SDF, ChemDraw CDX, MSDS). To allow the

semantically lossless, dictionary validated conversion of CIFs into CML, I

have added the CIFConverter class to the library. This section describes the

process CIFConverter uses to convert CIF to CML before giving examples

of its use in Java code.

The first step CIFConverter performs when invoked is use the CIFXML-J

library to convert the supplied CIF into CIFXML. Thus, a CIF such as:

data_global

_publ_contact_author_name ‘A. Person’

_publ_contact_author_address

;

University of Crystalville

Anycity

Anyland 1234

;

data_I

_chemical_formula_sum ‘As Cu S’

_symmetry_space_group_name_H-M ‘P n m a’

loop_

_symmetry_equiv_pos_as_xyz

67

Figure 3.9: Number of CIFXML-J parsing errors per year by cause for RSC
CIFs.

68

Figure 3.10: Number of CIFXML-J parsing errors per year by cause for ACS
CIFs.

69

‘x, y, z’

‘-x+1/2, -y, z+1/2’

‘x+1/2, -y+1/2, -z+1/2’

‘-x, y+1/2, -z’

‘-x, -y, -z’

‘x-1/2, y, -z-1/2’

‘-x-1/2, y-1/2, z-1/2’

‘x, -y-1/2, z’

_cell_length_a 11.347(4)

_cell_length_b 3.7533(7)

_cell_length_c 5.4530(10)

_cell_angle_alpha 90.00

_cell_angle_beta 90.00

_cell_angle_gamma 90.00

_cell_formula_units_Z 4

loop_

_atom_site_type_symbol

_atom_site_label

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_occupancy

_atom_site_disorder_assembly

_atom_site_disorder_group

Cu Cu 0.17454(7) 0.2500 0.06264(18) 0.0165(2) Uani d S 1 . .

As As 0.01373(5) 0.2500 0.35177(11) 0.00894(18) Uani d S 1 . .

S S 0.16576(12) 0.7500 0.8196(3) 0.0100(3) Uani d S 1 . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_12

_atom_site_aniso_U_13

_atom_site_aniso_U_23

Cu 0.0171(3) 0.0168(4) 0.0157(4) 0.000 -0.0015(3) 0.000

As 0.0105(3) 0.0084(3) 0.0080(3) 0.000 0.00083(17) 0.000

S 0.0108(5) 0.0114(5) 0.0079(5) 0.000 -0.0005(4) 0.000

is converted into an in-memory CIFXML DOM, which, when serialized would

look as below (note that some sections have been truncated for brevity):

<cif>

<datablock id="global">

<item name="_publ_contact_author_name">A. Person</item>

<item name="_publ_contact_author_address">

University of Crystalville Anycity Anyland 1234

</item>

</datablock>

<datablock id="I">

<item name="_chemical_formula_sum">As Cu S</item>

<item name="_symmetry_space_group_name_h-m">P n m a</item>

<loop names="_symmetry_equiv_pos_as_xyz">

<row>

<cell>x, y, z</cell>

70

</row>

<row>

<cell>-x+1/2, -y, z+1/2</cell>

</row>

...rest of rows...

</loop>

<item name="_cell_length_a">11.347(4)</item>

<item name="_cell_length_b">3.7533(7)</item>

<item name="_cell_length_c">5.4530(10)</item>

...rest of cell parameters...

<item name="_cell_formula_units_z">4</item>

<loop names="_atom_site_type_symbol

_atom_site_label

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_occupancy

_atom_site_disorder_assembly

_atom_site_disorder_group">

<row>

<cell>Cu</cell>

<cell>Cu</cell>

<cell>0.17454(7)</cell>

<cell>0.2500</cell>

<cell>0.06264(18)</cell>

<cell>0.0165(2)</cell>

<cell>Uani</cell>

<cell>d</cell>

<cell>S</cell>

<cell>1</cell>

<cell>.</cell>

<cell>.</cell>

</row>

...rest of rows...

</loop>

<loop names="_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_12

_atom_site_aniso_U_13

_atom_site_aniso_U_23">

<row>

<cell>Cu</cell>

<cell>0.0171(3)</cell>

<cell>0.0168(4)</cell>

<cell>0.0157(4)</cell>

<cell>0.000</cell>

<cell>-0.0015(3)</cell>

<cell>0.000</cell>

</row>

...rest of rows...

</loop>

</datablock>

</cif>

71

The processing performed by CIFConverter is then done by acting on this

DOM.

3.5.1 Handling multiple datablocks

The CIF example above contains two datablocks, one named global that

contains researcher metadata and one named I which contains the crystal

structure data and metadata. While not in the specification, this method of

having the researcher metadata in one datablock (usually named global†)

and then having one arbitrarily named datablock per crystal structure is used

almost universally.

CIFConverter’s method of handling a CIF with more than one structure

datablock is to produce one CML document for each. As there is just one

global datablock, the data from this is copied to each of the created CML

documents (as shown in figure 3.11). An example of the conversion of a CIF

containing more than one structure datablock is contained within section

3.5.5.

3.5.2 Building the CML

After the CIFXML has been created, CIFConverter will then iterate through

the child elements of each structure datablock and convert them into CML.

This is subsequently merged with the CML created from the global dat-

ablock.

Where there is no direct semantic conversion from CIF to CML, references

to the CIF dictionary are made through dictRef attributes. XML Schema

data types are referenced through dataType attributes.

The CML created from the previous CIFXML document is (again, trun-

cated for brevity):

†hence it will be referred to as the global datablock from now on.

72

Figure 3.11: For each structure datablock (red) in the supplied CIF,
CIFConverter will produce one CML document. Each of these will also
contain the data from the CIF’s global datablock (green).

<cml id="I" title="I" xmlns="http://www.xml-cml.org/schema">

<scalar dictRef="iucr:_publ_contact_author_name" dataType="xsd:string">

A. Person

</scalar>

<scalar dictRef="iucr:_publ_contact_author_address" dataType="xsd:string">

University of Crystalville Anycity Anyland 1234

</scalar>

<formula concise="As 1 Cu 1 S 1"

dictRef="iucr:_chemical_formula_sum" inline="As Cu S">

<atomArray elementType="As Cu S" count="1.0 1.0 1.0"/>

</formula>

<molecule>

<crystal z="4">

<scalar dictRef="iucr:_cell_length_a"

dataType="xsd:double" errorValue="0.0040">

11.347

</scalar>

<scalar dictRef="iucr:_cell_length_b"

dataType="xsd:double" errorValue="7.0E-4">

3.7533

</scalar>

<scalar dictRef="iucr:_cell_length_c"

dataType="xsd:double" errorValue="0.0010">

5.453

</scalar>

...rest of cell parameters...

<symmetry spaceGroup="P n m a">

<transform3>

1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0

</transform3>

<transform3>

-1.0 0.0 0.0 0.5 0.0 -1.0 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.0 1.0

</transform3>

73

...rest of symmetry elements...

</symmetry>

</crystal>

<atomArray>

<atom id="a1" elementType="Cu" xFract="0.17454" yFract="0.25" zFract="0.06264"

occupancy="1.0">

<scalar dictRef="iucr:_atom_site_u_iso_or_equiv" dataType="xsd:double">

0.0165

</scalar>

<scalar dictRef="iucr:_atom_site_adp_type" dataType="xsd:string">

Uani

</scalar>

<scalar dictRef="iucr:_atom_site_label" dataType="xsd:string">

Cu

</scalar>

<scalar dictRef="iucr:_atom_site_refinement_flags" dataType="xsd:string">

S

</scalar>

</atom>

...rest of atoms...

</atomArray>

</molecule>

<table tableType="columnBased" dictRef="iucr:_atom_site_[]">

<arrayList>

<array dataType="xsd:string" dictRef="iucr:_atom_site_aniso_label" delimiter="|">

|Cu|As|S|

</array>

<array dataType="xsd:double" dictRef="iucr:_atom_site_aniso_U_11" delimiter="|">

|0.0171|0.0105|0.0108|

</array>

...rest of arrays...

</arrayList>

</table>

</cml>

Creating the molecule

During the conversion, those CIFXML items and loops that describe the unit

cell and the atom sites are brought together to create a CML molecule. By

doing this, the distributed data structure inherited from the CIF is converted

into a hierarchical structure, i.e. all data describing a particular atom site

is contained as attributes or child elements of a CML atom. As shown, the

molecule has two child elements:� crystal — contains an attribute created from the

cell formula units z item, plus the following child elements:

– six scalar elements — representing the cell parameters, created

from the cell length [] and cell angle [] items,

74

– a symmetry element — which has an attribute created from the

symmetry space group name h-m item and child transform3 el-

ements to represent the 4×4 matrix equivalents of the cell sym-

metry elements in the symmetry equiv pos as xyz loop.� atomArray — contains atoms created from the data in the

atom site [] loop.

Note that data with the inapplicable value (see point 23 in Common Semantic

Features of the CIF specification[117]) not in a table will be omitted from

the CML output (shown by the data for atom site disorder assembly in

the above CIF).

The chemical validation steps performed during this conversion are:

1. checking element types are valid,

2. asserting that the six cell parameters have been provided,

3. checking that the symmetry elements and/or space group have been

provided.

If any of these checks fail there is no way to confidently construct the crystal

from the data provided, and an error will be thrown. If the unit cell symmetry

elements are missing, then they can be deduced from the space group symbol,

as described in the next subsection.

Converting everything else

The other items and loops are processed in the following way:� chemical formula [] – converted into a CML formula element, e.g.

the chemical formula sum item in the above example,� items – converted into scalar elements,� loops – converted into table elements.

Note that all formula, scalar and table elements have the appropriate

dictionary and data type reference attributes.

75

3.5.3 Adding symmetry elements

The symmetry elements (as provided by the symmetry equiv pos as xyz

data item) are essential for a complete description of a unit cell. They are

necessary, along with the atom site descriptions and cell parameters to recon-

struct the unit cell or create the unique moieties contained within the crystal

(as discussed in section 3.6). Whilst it is unlikely that a CIF would be pub-

lished with these items missing, this is the case with many unpublished or

pre-published CIFs that have been deposited in crystallographic databases.

For instance, many structures in the Crystallography Open Database do not

have symmetry elements.

To allow the optional addition of missing symmetry elements into CML

during the CIFConverter process, an index of Hermann-Mauguin (H-M)

space group symbols against the corresponding symmetry elements is pro-

vided with legacy2cml. This index was created from all post-2002 CIFs (to

ensure high quality of data) that were aggregated from IUCr, RSC and ACS

journals in the CrystalEye system (see section 4.3). Thus, the index is not

a complete representation of all possible H-M symbols, but covers the most

common examples. When such a CIF is processed, the symmetry elements

will be added by comparing the H-M symbol against the index (if the H-M

symbol is missing, then nothing can be done and an error is thrown).

Since this index was created, the Blue Obelisk[118] Data Repository[119]

has provided an XML file relating all possible H-M symbols to their symmetry

elements. In the future this index will replace the one that is currently

distributed with legacy2cml.

3.5.4 Dictionary validation

CIFConverter provides optional dictionary validation during processing. To

implement this, a CML representation of the coreCIF dictionary has been

created; this is distributed with the legacy2cml library. A section of coreCIF

in both CIF and CML is shown below:

76

coreCIF (in CIF)

...

data_atom_site_fract_

loop_ _name ‘_atom_site_fract_x’

‘_atom_site_fract_y’

‘_atom_site_fract_z’

_category atom_site

_type numb

_type_conditions esd

_related_item ‘_atom_site_Cartn_’

_related_function alternate

_list yes

_list_reference ‘_atom_site_label’

_definition

; Atom-site coordinates as fractions of the _cell_length_ values.

;

...

coreCIF (in CML)

<dictionary namespace="http://www.iucr.org/cif" xmlns="http://www.xml-cml.org/schema">

...

<entry dataType="xsd:double" id="_atom_site_fract_x">

<scalar dictRef="iucr:list">yes</scalar>

<definition>

Atom-site coordinates as fractions of the _cell_length_ values.

</definition>

<scalar dictRef="iucr:category">atom_site</scalar>

</entry>

<entry dataType="xsd:double" id="_atom_site_fract_y">

<scalar dictRef="iucr:list">yes</scalar>

<definition>

Atom-site coordinates as fractions of the _cell_length_ values.

</definition>

<scalar dictRef="iucr:category">atom_site</scalar>

</entry>

<entry dataType="xsd:double" id="_atom_site_fract_z">

<scalar dictRef="iucr:list">yes</scalar>

<definition>

Atom-site coordinates as fractions of the _cell_length_ values.

</definition>

<scalar dictRef="iucr:category">atom_site</scalar>

</entry>

...

</dictionary>

During dictionary validation, each time a data item is processed, the ex-

istence of the data name is checked, as well as the type of the corresponding

data value. As the dictionary is in an XML format, existence of a data name

can be checked by performing a simple XPath expression, such as:

./cml:dictionary/cml:entry[@id=’ atom site fract x’]

77

which would check for an entry with the atom site fract x name. The

data type can then be checked by inspecting the dataType attribute on the

returned entry. If the entry is missing or the data is of the wrong type,

then depending on the options set forCIFConverter, either an error will be

thrown, or the data item will be discarded (with a warning message passed

to stderr ‡). Two warnings generated by CIFConverter are shown below:

Cannot parse _diffrn_standards_decay_% as double: 1.185 (random)

Cannot find dictionary item: _vrf_plat_213_i

The first indicates that the value should be a double, but cannot be parsed as

such (because the text (random) has been included). The second indicates

that the data name is not part of the dictionary provided for validation.

3.5.5 Using CIFConverter

The behaviour of CIFConverter may be controlled by command-line options

(which may be passed to the class programmatically). The code below shows

typical CIFConverter usage:

package ned24.sandbox;

import org.xmlcml.cml.legacy2cml.cif.CIFConverter;

public class CIFConverterTest {

public static void main(String[] args) {

String infile = "e:/folder/test.cif";

String outfile = "e:/folder/test.cml";

String cifDict = "e:/folder/dict/cifCoreDict.xml";

String spaceGroupXml = "e:/folder/spaceGroup.xml";

String[] args0 = {"-INFILE", infile,

"-OUTFILE", outfile,

"-SKIPERRORS",

"-SKIPHEADER",

"-SPACEGROUP", spaceGroupXml,

"-DICT", cifDict

};

CIFConverter cifConverter = new CIFConverter();

try {

cifConverter.runCommands(args0);

‡In Unix and Unix-like operating systems, as well as certain programming language
interfaces, the standard streams are preconnected input and output channels between a
computer program and its environment (typically a text terminal) when it begins exe-
cution. The three I/O connections are called standard input (stdin), standard output
(stdout) and standard error (stderr). Standard error is an output stream typically used
by programs to output error messages or diagnostics.

78

} catch (Exception e) {

System.err.println(‘‘Error processing CIF file: ’’+infile);

}

}

}

The options that are set are:� INFILE — the path of the CIF which is to be converted,� OUTFILE — the path to which the output CML file will be written,� SKIPERRORS and SKIPHEADER — options passed to the CIFXML-J CIFParser

class so that errors during the CIFXML creation are fixed or skipped

depending on their severity,� SPACEGROUP — the path to the index containing the H-M symbols

against the symmetry elements,� DICT — the path to the dictionary file to be used.

For the above example, if the supplied CIF contains one structure datablock,

then the resulting CML will be written to:

e:/folder/test.cml

If the CIF contains more than one structure datablock, then more than one

CML file will be output, as described in section 3.5.1. These cannot all

be written to the same location so an incremented integer is added to the

supplied file name before the MIME type (in this case .cml). Thus, for a

CIF with three structure datablocks, the following files will be written:

e:/folder/test 1.cml

e:/folder/test 2.cml

e:/folder/test 3.cml

79

3.5.6 CIFXML to CML conversion statistics

To investigate the completeness and chemical correctness of published CIFs,

all those from ACS, Acta Cryst. and RSC that were correctly parsed us-

ing CIFXML-J in section 3.4.6 were processed and dictionary validated with

CIFConverter. Figure 3.7 shows the percentage of parsing failures for CIFs

from all publishers from 2001-7. The plot shows the decrease in failures dur-

ing the period, and that since 2005, the failure rate has been below 0.2%,

around an order of magnitude less than the corresponding figures for CIF

to CIFXML conversion (see figure 3.7). It is worth noting that all of these

errors were caused by data type errors or missing data from those sections

of the CIF that are required to create a complete description of the unit

cell, and that none were as a result of parsing or converting data from the

CIFXML documents.

By using the error messages produced by CIFConverter and some manual

inspection, the failure causing errors were seen to fall into six categories:

1. Non-IUPAC element symbol

2. Incomplete atom site data (generally the atom site type symbol is

omitted, which is essential for obtaining the atom site element types)

3. Invalid atom site coordinates

4. No explicit atom data provided

5. Bad symmetry element description §

6. Incomplete cell parameters

The proportion of the failures occurring for ACS, Acta Cryst. and RSC were

59%, 13% and 28% respectively. The proportions of the occurrence of each

error are shown in table 3.2.
§At present, if CIFConverter encounters a symmetry element in the

symmetry equiv pos as xyz loop that it is unable to parse, then an error is thrown.
Though it has not yet been implemented, it would be possible for the parser to then find
the correct set of symmetry elements using the provided space group symbol (as happens
when no symmetry elements are provided).

80

Figure 3.12: Plot showing the percentage of failures in converting CIFs to
CML using all CIFs aggregated by CrystalEye from 2001-7.

81

Error %
Non-IUPAC element symbol 62
Incomplete atom site data 4
Invalid atom site coordinates 9
No explicit atom data 8
Bad symmetry element 14
Incomplete cell parameters 3

Table 3.2: Proportion of error occurrences in CIF to CML conversion.

When using CIFConverter, if a CIF contains a non-IUPAC element sym-

bol in an atom site type symbol item, then the parsing will always fail

immediately. However, in the CIF standard this item is not limited only to

valid element symbols, but may be:

. . . composed of any character except an underline. . . [122]

Common use shows that valid IUPAC symbols are almost universally applied

to this item, though if a non-IUPAC symbol is entered (e.g. MN rather than

Mn), checkCIF uses heuristics to discover the identity of the element, rather

than suggest it be changed. This is presumably the cause of their relatively

frequent occurrence. Owing to the above definition, if checkCIF’s heuristics

cannot discover the identity of an element (e.g. J), then the error is only

noted indirectly when there is a mismatch during cross-checking between the

atom sites and any provided molecular mass or formula. Note that errors 2,

3, 4, 5 and 6 all give rise to A-level alerts when using checkCIF.

3.6 Enhancing the CML

To fully describe a crystal structure a CIF contains the unit cell parameters,

symmetry elements and the general positions of the atom sites (see figure

3.13)¶. Connection tables for the moieties that compose the crystal structure

are not given, though they are essential for associating identifiers to, and

hence reusing the data. The chemical conn [] data items have been defined

in the CIF specification to allow a chemical connection table to be described.

¶In this section, all rendering of the CML data will be done using the Jmol application.

82

Figure 3.13: Rendering of the structural data in the CIF for 1,1’-ethane-
1,2-diylbis(pentabromobenzene)[123]. The atom general positions, the cell
parameters and symmetry elements (the P -1 space group contains the iden-
tity and a centre of inversion) are used to generate the complete unit cell.

However, these are not required for publication and as a result are not in

common use. In all of the CIFs aggregated as part of the CrystalEye project

(see section 4.3), none contained any of this category of data items.

This section describes software I created to enhance the data contained in

CIFConverter output by:� calculating the connection tables of the moieties in the crystal structure,� converting these connection tables into unique chemical identifiers,� merging this derived data with the original data.

The JUMBO library was an ideal starting point for this work as it provided

the necessary base functionality for accessing and editing data in CML. All

software described has now been added to the JUMBO library.

83

3.6.1 Creating the connection table

To find the connection table for each moiety, the following sequence is fol-

lowed, starting with the CML output of CIFConverter:

1. discard minor disordered atom sites,

2. convert atom site fractional coordinates to cartesian,

3. add bonds between atoms using covalent radii,

4. apply symmetry operations to generate the molecular skeletons,

5. generate a set of bond orders and charges for the skeletons,

6. identify stereogenic atoms and bonds,

7. generate 2D coordinates for the molecules,

8. add 2D stereochemical details (i.e. wedge and hatch bonds).

This process is used for both discrete organic and organometallic moieties.

For inorganic and polymeric organic or organometallic structures, as there is

no obvious ‘simplest’ molecular unit, they are handled by adding all atoms

to the unit cell. This is described further in the following subsections.

Processing disorder

In CIFs, disorder is defined through the atom site disorder assembly and

atom site disorder group items, where the former is a

. . . code which identifies a cluster of atoms that show long-range

positional disorder but are locally ordered. Within each such

cluster of atoms, atom site disorder group is used to identify the

sites that are simultaneously occupied.[120]

The atom site occupancy item is used to report the fraction of the atom

type present at a particular site. An example of a disordered methyl group

in CIF is shown in figure 3.14.

84

Figure 3.14: A disordered methyl group represented in CIF (note that in CIF
‘#’ indicates a comment). There are two groups of three Hydrogen atoms
(labelled A and B) belonging to the same assembly (labelled M). Each group

is present 50% of the time.

If the disorder information is provided as described in the CIF specification,

then discarding the minor disordered atom sites is simply a case of removing

those that belong to groups with the lowest occupancies in each assembly

(see figure 3.15). If there are two groups in an assembly with the same

occupancy, then one will be chosen at random.

However, while occupancy data is always included in published CIFs, it

is common for the assembly and group data to be either unspecified, in-

complete or invalid with respect to the specification. If the software detects

invalid disorder representation then it will try to deduce an unambiguous

set of assemblys and groups from the occupancy data. In the majority of

cases this is possible, though if there are atom sites with an occupancy of

0.5 present, it is not possible to infer with absolute certainty which are the

correct groups (see figure 3.16).

Creating the molecular skeleton

If the crystal structure is inorganic, no molecular skeleton is created, instead

the atom sites are transformed using the cell symmetry elements to create a

complete unit cell (see figure 3.17).

85

Figure 3.15: The removal of the minor disordered components from a crys-
tal of (E)-Ethyl 2-[2-(bromomethyl)phenyl]-2-(methoxyimino)acetate[124],
which includes disordered ester and bromine groups (the bonds have been
included to aid clarity).

For organic and organometallic structures, the cell parameters and atom

site fractional coordinates are used to calculate the cartesian coordinates for

each atom[121]. From these, bonds between atoms are then added using

‘reasonable’ covalent radii, which results in one or more molecular fragments

being generated. These fragments can then be transformed using the cell’s

rotational symmetry elements, and bonds between the transformed and orig-

inal fragments can be added to create the complete molecular skeletons (see

figure 3.18).

From the molecular skeletons generated, it is then possible to detect if the

structure is polymeric. If there are two or more symmetry related atoms in

different environments, then the structure is taken as polymeric (as in figure

3.19).

For both inorganic and polymeric structures, creating the complete unit

cell is the final stage in enhancing their CML. In addition, no further en-

hancement can be made to those moieties that have disorder that could not

be resolved by the system. Note that those non-disordered moieties in an

86

Figure 3.16: Two examples from published CIFs of atom site [] loops
which contain invalid disorder representation. The top example is invalid as
it contains atom sites with occupancy < 1 that have a group, but not an
assembly, as well as containing a group which is composed of atom sites
with differing occupancies. This is resolvable, as the sites with the same
occupancy can be assigned the same group, and the groups which total an
occupancy of 1 can be assigned the same assembly. The bottom example
has disordered atom sites with no assigned group or assembly. The sites
all have the same occupancy, so this is unresolvable without inspecting the
atomic geometry.

87

Figure 3.17: The creation of the complete unit cell for a crystal structure of
MgZn2Ce[125] (where Mg = green, Zn = white, Ce = grey).

unresolved disordered crystal are still processed further, as described in the

following subsections.

Adding bond orders and charges

As there are no concepts of bond orders or atomic charges in CIF, to cre-

ate the complete connection table, the software must use a heuristic-based

approach to deduce them from the molecular skeleton alone.

For commonly occurring molecules (e.g. solvents and some counter-ions),

the system has a set of pre-defined templates which it will use to match their

skeletons and then to add a set of bond orders and charges (BOACs). For

all other organic moieties, the steps taken to find the correct set of BOACs

are:

1. If available, obtain the moiety charge from the chemical formula moiety

item (e.g. 2(C17 H13 F3 N3 O +), O4 S 2-, 2(H2 O)). This is often

not provided.

2. Add BOACs to common functional groups. Some groups, e.g. azides,

quaternary ammonium cations and carboxylates can be unambiguously

88

Figure 3.18: Images showing the steps taken to find the molecular skele-
ton for a trans-Tetraaquabis[3-(3-pyridyl)acrylato-κN]cobalt(II) crystal[126].
The images show: (top) the general atom positions, (middle) the addition
of bonds between atom sites to create a molecular fragment and (bottom)
the generation of the complete molecular skeleton by transformation of that
fragment using the cell symmetry and subsequent addition of bonds between
the original and transformed fragments.

89

Figure 3.19: Images showing how the software detects and handles
polymeric structures using a crystal structure of catena-Poly[[bis(pyridine-
κN)nickel(II)]-di-µ-azido-κ4N 1:N 3-[bis(pyridine-κN)nickel(II)]-di-µ-azido-
κ4N 1:N 1][127]. The top image shows the fragment created after bonds have
been added to the general atom positions, with the middle image showing
the skeleton created after transforming and joining that fragment using the
cell symmetry. In the middle image, the Nickel centre is shown to have three
different environments, which indicates that the structure is incomplete
(symmetry related centres in a crystal should have the same environment)
and is polymeric. Upon detecting this, the software will represent the
structure by adding all atoms to the unit cell (bottom).

90

identified by their skeleton, and so can be dealt with before the heuristic

process begins.

3. Get the list of possibly charged heteroatoms which were not marked up

in step 2, e.g. 2-coordinate Nitrogen may be negatively charged and

3-coordinate Nitrogen may be positively charged.

4. If the moiety charge was found in the first step, get all combinations of

charged heteroatoms that give a total charge equal to the moiety charge.

If the moiety charge was not found, then get all possible combinations

of charged heteroatoms.

5. For each combination found in step 4, apply them to the molecular

skeleton, and:� calculate the π-electrons on each atom (valence electrons minus

ligands, e.g. a neutral carbon atom with two ligands has two

(4-2) π-electrons),� add bonds between atoms containing π-electrons until no π-electrons

remain, thus giving a complete set of BOACs for the skeleton.

If the moiety charge was provided in the first step, then any match-

ing complete set of BOACs found can be confidently assigned to the

molecular skeleton. If more than one complete set of BOACs is found,

then the one containing the fewest charged atoms is selected.

If the moiety charge is not provided in the first step, then it must

be deduced by the system before a set of BOACs can be added to the

moiety.� If the unit cell contains one moiety, then it can be assumed to

have a charge of 0 (to give a neutral unit cell),� If the unit cell contains more than one moiety, then for each, all

steps up to this point must be run to find the complete sets of

91

Figure 3.20: If a unit cell contains multiple moieties (in this case three, A, B
and C), and no moiety charges have been provided, then all charges that give
a complete set of BOACs for each moiety must be calculated. They are then
compared to find a combination that gives a total charge of 0. In (a), there
is one possible combination of moiety charges where [A=-2, B=+1, C=+1].
These can therefore be assigned to the moieties with confidence. In (b) there
are two possible combinations [A=B=C=0] and [A=-2, B=+1, C=+1], and
the software is unable to deduce which is correct. In this situation, it is
better to do nothing than risk introducing errors into the system, and so no
BOACs will be added to the moiety skeletons.

BOACs that are feasible. The possible charges for each moiety

are then compared to find a combination where the total charge

for all moieties equals 0 (as described in figure 3.20).

6. If no complete sets of BOACS have been found, then steps 3 and 4

will be retried with anionic and cationic carbon also considered. This

step is only used if the charge on the moiety is known. Otherwise, the

number of possible combinations of charged atoms to inspect increases

by orders of magnitude, making the process very slow.

An example of this process is shown in figures 3.21.

The process of adding BOACs to organometallic moieties is more difficult.

Even if the chemical formula moiety item is provided, it only gives the

overall moiety charge for an organometallic species, and not the charges on

any metal centres or organic ligands within. The metal charges can be found

by parsing the chemical name provided in the chemical name systematic

item, e.g.

92

Figure 3.21: The process of adding bond orders and charges to a molecular
skeleton, for which the moiety charge has been provided (a). There are no
common functional groups recognised by the system, so the next step is to list
the possibly charged heteroatoms (b). This is followed by creating molecular
skeletons containing the charged heteroatom combinations that give a total
moiety charge equal to that provided (c). For each, the π-electrons on each
atom are calculated (d) before finding a set of bond orders which use all
those π-electrons (e). This final stage gives the complete sets of BOACs for
the moiety, Set A and Set B, which represent different resonance forms of
the same structure. The set of BOACs with fewest charged atoms is selected
(Set B) and applied to the moiety.

93

_chemical_name_systematic

;

Bis[2-(2-aminoethyl)-1H-benzimidazole-\k^2^N^2^,N^3^]zinc(II) bis(perchlorate)

;

though this is not commonly available. When trying to find a set of BOACs

for an organometallic moiety, there are three common scenarios:

1. the moiety charge and metal charge(s) are known – Using the

same trial-and-error method previously described for organic moieties

with no charge provided, all possible complete sets of BOACs are calcu-

lated for each ligand. The charges for those sets can then be compared

to find an unambiguous combination that is equal to the difference be-

tween the overall moiety and metal charges provided. An example is

shown in figure 3.22.

2. the moiety charge is known – Here the only way to be confident

of adding BOACs for the whole moiety is if each ligand has only one

possible set of BOACs, and there is only one metal centre (an example

of adding BOACs to a multi-centre moiety is shown in figure 3.23). If

that is the case, then the metal charge can be deduced as the difference

between the provided moiety charge and the combined charges for all

the ligands.

3. no charges are known – In this case, if there are multiple organometal-

lic moieties, the metal charges can never be confidently deduced. As

with multi-centre moieties in the previous point, it is possible to deduce

the total charge on all metal centres in the cell if all ligands have only

one possible set of BOACs, but it is not possible to then attribute a

charge to a particular metal centre.

It is clear that there are going to be many organometallic structures for

which the system cannot find an unambiguous set of BOACs. There are

areas, such as this, in which computer programs may never be able to do the

job of a trained chemist, and so other methods for completing the task must

be considered. This is discussed further in section 4.3.8.

94

Figure 3.22: For the Manganese complex shown, both the moiety and metal
centre charges are known to be 0 and +3 respectively. This means the total
charges on the metal ligands must equal -3. To calculate the charges on the
individual ligands, all bonds to the metal centre are ignored. The water and
chloride ligand charges are matched from a list of common ligands, and a
charge of -1 is added to the latter. For the diamine ligand, sets of complete
BOACs can be found with charges of 0 and -2. The latter is selected, as with
the charge on the chloride ligand, the necessary total ligand charge of -3 is
achieved.

95

Figure 3.23: For the Copper-Terbium complex shown, the BOACs for the
ligands can be unambiguously deduced from the skeleton. If the moiety
charge is known to be 0, then the metal centres have a combined charge
of +5. There is no way of knowing how to partition this charge correctly
between the two centres, so no charges will be assigned.

Adding stereochemistry

In those moieties that contain a complete set of BOACs, both 2D and 3D

stereochemistry is then added. For 3D stereochemistry the following is per-

formed:� Stereogenic atoms – Each atom in the moiety is inspected for chiral-

ity, and for each chiral atom found, an atom parity is calculated and

appended as a child element, e.g.

<atom id="a7" ... >

...

<atomParity atomRefs4="a2 a16 a17 a8">10.524352510236906</atomParity>

</atom>

A positive parity is equivalent to the Cahn-Ingold-Prelog R, and a

negative parity is equivalent to S.� Stereogenic bonds – Each acyclic double bond is inspected for geometri-

cal stereoisomerism. For each found, its configuration is calculated (cis

or trans), and then added to the bond as a bondStereo child element.

For instance:

96

<bond id="a54_a55" atomRefs2="a54 a55" order="2">

...

</bond>

may be described as a trans bond

<bond id="a54_a55" atomRefs2="a54 a55" order="2">

...

<bondStereo atomRefs4="a53 a54 a55 a57">T</bondStereo>

</bond>

To add 2D stereochemical descriptors, the 2D coordinates for each atom are

first generated from the 3D coordinates using the CDK[39]. These are then

added as attributes to the atoms, for instance:

<atom id="a47" z3="2.979995156779009" y3="1.7497709400000003" x3="2.789870115152765" ...>

...

</atom>

becomes

<atom id="a47" z3="2.979995156779009" y3="1.7497709400000003" x3="2.789870115152765"

x2="3.4837837797857762" y2="5.357026407595942" ...>

...

</atom>

Using the 2D coordinates, bonds can then be described as either wedge or

hatch. These are used for representing the stereochemistry in 2D diagrams

of the structures (such as those described in section 4.3.3). For instance:

<bond id="a7_a8" atomRefs2="a7 a8" order="1">

...

</bond>

may be described as a wedge bond (H is used for hatch bonds).

<bond id="a7_a8" atomRefs2="a7 a8" userCyclic="CYCLIC" order="1">

...

<bondStereo>W</bondStereo>

</bond>

The addition of stereochemistry to a moiety completes the creation of the

connection table.

97

3.6.2 Adding canonical identifiers

For those moieties with a complete connection table, two canonical identifiers

are added to their CML molecules as child identifier elements:

1. InChI – to allow exact matching of the moiety. This is created from

the CML molecules using the jni-InChI library[128], a Java Native

Interface to the InChI C++ library, which allows it be called directly

from Java code.

2. SMILES – to allow substructure searches of the moiety. This is cre-

ated from the CML molecules using the CDK implementation of the

SMILES algorithm.

Thus, the CML for a crystal structure containing one moiety will be:

<cml xmlns="http://www.xml-cml.org/schema">

...

<molecule id=’I’>

...

<identifier convention="cdk:smiles">

moiety smiles string

</identifier>

<identifier convention="iupac:inchi">

moiety inchi string

</inchi>

</molecule>

</cml>

If a crystal structure contains more than one moiety, and each has a complete

connection table, then identifiers representing the whole crystal will also be

added as child elements to the parent molecule. The CML for a crystal

structure containing two moieties will be:

<cml xmlns="http://www.xml-cml.org/schema">

...

<molecule id=’I’>

...

<molecule id=’I_sub1’>

...

<identifier convention="cdk:smiles">

moiety 1 smiles string

</identifier>

<identifier convention="iupac:inchi">

moiety 1 inchi string

</inchi>

</molecule>

<molecule id=’I_sub2’>

98

...

<identifier convention="cdk:smiles">

moiety 2 smiles string

</identifier>

<identifier convention="iupac:inchi">

moiety 2 inchi string

</inchi>

</molecule>

<identifier convention="cdk:smiles">

overall crystal smiles string

</identifier>

<identifier convention="iupac:inchi">

overall crystal inchi string

</inchi>

</molecule>

</cml>

3.7 Current usage

The process of converting CIF to ‘enhanced’ CML has already been imple-

mented in the following works:� The CrystalEye[129] website (see chapter 4). This has exposed the

process to CIFs from a wide range of laboratories with varying degrees

of conformance to the exact standard.� The SPECTRa project[130], in which the process was contained in

repository software implemented at Cambridge University, Imperial

College London and Southampton University.

3.8 Conclusions

It is possible for a machine to read and extract data from published CIFs

with high degree of accuracy. The ability to create software to perform

such processing is aided greatly by the provision of Open specifications and

dictionaries, as is the case with CIF. The high rate of validity of published

CIFs can be attributed to improved CIF editors and the increasing number

of journals which require the use of checkCIF before publishing.

The generation of chemical connection tables from CIF data relies on a

number of heuristics, though in many cases the correct representation can

99

be deduced. As shown, the calculation of the CT takes up a large part

of the CIF-to-CML conversion, though it is important to note that all of

this processing would be redundant if the chemical conn data items were

required when publishing CIFs.

100

Chapter 4

Automating the aggregation,
creation and dissemination of
semantic crystallography

4.1 Introduction

As described in the previous chapter, CIFs have been adopted by many

publishers as a standard method of publishing crystallographic data. When

an article describing a crystal structure is submitted for publication, it is

expected that the CIF will be provided as supplemental data. For some

publishers, these CIFs are made available through Open Access (i.e. not

behind a toll-access barrier, see figure 4.1), such as� International Union of Crystallography (IUCr)� American Chemical Society (ACS)� Chemical Society of Japan (CSJ)� Royal Society of Chemistry (RSC)

As a CIF consists of a set of facts about the crystal structure it describes,

and as facts are not copyrightable per se, these CIFs can be viewed as Open

Data and available for download and reuse. There is an abundance of crystal-

lographic data available in this way, but it is disperse and in a format which

101

Figure 4.1: Two article summaries in the table of contents from Acta Crys-
tallographica Section E. Note the link to the CIF in the line of links above
the article titles.

few tools understand. The Cambridge Crystallographic Data Centre[131]

(CCDC) maintains a large collection of data from CIF files (the Cambridge

Structural Database[132][133] (CSD)), predominantly from published arti-

cles, though to gain access to all of the data a substantial fee is required.

There are no Open collections of this data available, and thus no easy way to

use it for automated data-driven science. This chapter discusses work done

to provide a system which can automatically� aggregate the latest published CIFs from the Web,� convert the data into CML,� provide services for dissemination of all aggregated and derived data.

The initial effort focussed around implementing the system using workflow

software. After several months of work, it was decided that this was not

the best model for the system, and the software created up to that point

102

was separated from the workflow tool and developed into a standalone Java

application, CrystalEye. Both of these methodologies are discussed in the

following sections.

4.2 Implementing a workflow system

As this method was eventually abandoned, discussion of this work will be

brief. The workflow software will be described to highlight the original per-

ceived benefits it afforded, as well as those flaws that led to the discontinu-

ation of its use. Discussion of the workflows created will be minimal as the

tools and flow of data are described in detail in section 4.3.

4.2.1 The Taverna Workbench

The Taverna Workbench[134]∗† is a Java-based, Open Source software tool

for designing and executing workflows. Taverna has been developed under

the myGrid project, part of the UK eScience program. It allows users to

construct complex analysis workflows from components on both remote and

local machines, run these workflows on their own data and visualise the

results. Taverna is aimed primarily at the bioinformatics community, though

the software is generic and can be used for any domain.

Workflows and components

A workflow is a set of components and relations between them used to define

a complex process from simple building blocks. Relations may be in the form

of data links, transferring information from the output of one component to

the input of another, or in the form of control links (e.g. a temporal ordering)

which state some conditions on the execution of a component.

∗Which from now on, I will refer to as Taverna.
†Note that at the time this work was undertaken, the latest version of Taverna was

v1.3.2. Problems discussed concerning this version of the software may have been resolved
in subsequent versions.

103

A component is a reusable building block which performs some well defined

function within a process. Components may consume information (via a set

of input ports) and may emit information (via output ports) and may be

located on any computational resource accessible via the Internet or on the

user’s local workstation. The different types of component available are

Web Service : Taverna allows the creation of components from SOAP‡-based

WSs. If a WS provides a WSDL (Web Services Description Language)

file, Taverna can parse it and retrieve the required information for

communicating with that service. The bioinformatics community pro-

vides thousands of WSs to allow programmatic access to information

repositories and analysis tools (e.g. XEMBL[135], openBQS[136] and

SoapLab analysis services[137]). Many of these are automatically found

by Taverna and made available as components in its available services

panel (see figure 4.2). At the time of this development, there were no

known WSs provided by the cheminformatics community.

LocalWorker : components made from Java classes that implement the Lo-

calWorker interface provided in the Taverna library. A number are

provided with the distribution, though users can create their own col-

lections as JAR files and import them into Taverna.

Beanshell : a Java scripting language[138] that allows you to include Java

code directly into a workflow. The Beanshell code is interpreted when

the workflow is run.

String constant : components that supply a constant string value as input

to another component.

Nested workflow : components of this type represent and invoke another

workflow. They can be useful to create black-box processors so users

can share and implement complex workflows as single components with-

out needing to know the inner workings.

‡SOAP once stood for ‘Simple Object Access Protocol’ but this acronym was dropped
with Version 1.2 of the standard, as it was considered to be misleading.

104

A workflow can also possess input and output data entities. A workflow input

can be considered to be a source processor which executes instantaneously

and makes the input value available on its virtual output port. A workflow

output can be considered as a sink processor which receives a value from

its input port but never actually executes. By assigning a MIME type to

output ports, the method used to render output data can be signalled to the

Taverna GUI.

The GUI

The Taverna GUI (see figure 4.2) is broken down into three sub-windows

Advanced model explorer : used to link components of the workflow, as well

as providing execution constraints (e.g. indicate that a process should

be retried a number of times before failing).

Available services : a simple browser of those services known to Taverna.

This includes all components contained within the toolkits incorpo-

rated into Taverna, as well as those WSs whose addresses have been

hardcoded into the system. It allows services to be easily imported into

workflows via the advanced model explorer.

Workflow diagram : renders the workflow model in SVG. Figure 4.3 shows

the key for the workflow rendering in the GUI.

There is also an enactor invocation window which pops up when a workflow

is run. While the workflow is running the progress is shown as a diagram, and

upon completion the contents of the workflow outputs will be rendered. It

is also possible to view the inputs and outputs of each individual component

of the workflow (see figure 4.4).

Once all desired processes have been described and made available as Tav-

erna components, creating and running a workflow using the GUI is simple.

105

Figure 4.2: The Taverna GUI showing the advanced model explorer (top-
left), the available services panel (right) and the workflow diagram (bottom-
left). Note that almost all of the folders in the available services panel corre-
spond to sets of WSs provided by members of the bioinformatics community
(those folders with names that contain a URL).

106

Figure 4.3: Key for the different workflow components, as rendered in the
Taverna GUI.

4.2.2 Component development and workflows

In order to provide the required functionality for the system, a set of Local-

Workers was created. Many of these provide wrappers to our pre-existing

tools (e.g. JUMBO, CIFXML-J), though some also provide access to parts of

3rd party libraries (e.g. the XPath capabilities in XOM). Some of these com-

ponents are shown in figure 4.5.

Along with the LocalWorkers, a set of SOAP-based WSs were developed

and made available on the WWMM web server[139]. These were primarily

to provide access to 3rd party command-line applications, such as InChI

and OpenBabel (see figure 4.6). The workflow diagram window in figure 4.2

shows a workflow consisting solely of an InChI Web Service[141] component.

Using these components, two workflows were created for

1. finding and aggregating CIFs from journals by the IUCr and RSC (see

figure 4.7),

2. the conversion of CIFs to enhanced CML (see figure 4.8).

107

Figure 4.4: Three examples of the visualization provided by the enactor
invocation window. The workflow involved contains one component, which
is our WWMM OpenBabel WS[140]. The action being taken is to convert
the SMILES representation of benzene into a MOL file. The images show
the workflow progress (top), the data being passed to the ’inputData’ input
node of the WS (bottom-left) and the output of the workflow (bottom-right).

108

Figure 4.5: The available services panel showing the local services known
to Taverna. Each folder prefixed with WWMM contains a category of our
LocalWorkers.

109

Figure 4.6: The available services panel showing the integration of the InChI
and OpenBabel WSs (the last two folders). Note that the folder names show
the URLs of the WSDL files for each WS.

110

As already mentioned, details of the processes involved in these workflows

will be discussed in detail in section 4.3.

4.2.3 Developing under Taverna

Two of the primary goals of Taverna are to enable:

1. scientists with little or no computer background to create complex

workflows by linking components provided by others through the GUI.

2. the ability not only to use distributed tools, but also distributed com-

puter time, so that scientists without local access to powerful computers

can access it remotely via WSs.

As one of the ideals behind the work in this thesis is creating Open Source

software that can be easily reused by others, Taverna appeared to be a good

foundation from which to start. Working under Taverna offers no benefits in

terms of efficiency or speed of development for a developer of components,

though it does provide a good method of enabling others to reuse those

components and workflows that are created. Indeed, our set of LocalWorker

components were shared with researchers at Indiana University, and work

built on both these and our WSs have been described by both Pierce[142]

and Kim[143].

However, while creating the workflows, a number of problems with de-

veloping under Taverna became apparent to the author. When combined,

these caused a significant delay to the development cycle and compromised

the reliability of the software. Eventually it was decided that the benefits of

being able to develop software quickly and reliably outweighed the benefits

of sharing the software easily, and thus the use of Taverna was discontinued.

Four of the problems are listed below:� At the time of the development, there was no way of running the work-

flows outside the GUI (despite requests to the Taverna mailing lists).

As the system being developed was meant to be automatic, I needed to

111

Figure 4.7: Annotated diagram (as rendered in the Taverna GUI) of the workflow used to find and aggregate CIFs
and related data from IUCr journals

112

Figure 4.8: Annotated diagram (as rendered in the Taverna GUI) of the workflow used to convert CIFs to enhanced
CML

113

provide a way for our web server to run the workflows periodically. The

workflow enactment engine in Taverna is based upon Freefluo[144], an

Open Source project based at Sourceforge (which had already been dis-

continued). I created a command line tool to run the workflows using

the Sourceforge Freefluo library, though as it was unclear how simi-

lar the version of Freefluo in Taverna was, this was not a robust or

predictable solution.� When workflows are being run, a number of threads are created relating

to the number of processors being run concurrently. As there was no

way to limit how many threads were created, this led to large numbers

being created for our complex workflows. This, coupled with the fact

that large amounts of data were being processed meant that out-of-

memory errors were common.� When using nested workflows, the components contained within are

not represented in the enactor invocation window (see figure 4.9), only

the nested workflow itself. This makes debugging them difficult and

time consuming, as it is not possible to directly see where the failure

occurred, or the data that was being passed around to cause the failure.

In order to debug, the nested workflow must be run on its own, meaning

that the data causing the failure must first be captured and then passed

in as a workflow input.� It was not possible to test parts of a workflow in isolation. In order to do

so, a new workflow consisting of only those components would have to

be created (this was often faster than just running the entire workflow

during each debug step). Thus, once a bug was found, the time taken

to fix it, then check the workflow worked was greatly increased.

4.3 CrystalEye

After development of the Taverna-based system stopped, I refactored the

code and created CrystalEye, which represents the reformulation of the frag-

114

Figure 4.9: The enactor invocation window showing the workflow described
in figure 4.7 being run. Notice that the large nested workflow titled ‘pro-
cessEntries’ is represented as one component (circled), and that the details
of the components within are not shown.

115

mented crystallographic web into a structured XML-based repository. Crys-

talEye runs continuously, performing the following tasks:

1. aggregating the latest Openly published CIFs from the Web,

2. converting the CIF data into CML,

3. updating a website containing services for dissemination of all aggre-

gated and derived data.

All of the data aggregated and created by CrystalEye is Open, and a large

part of the system is focussed on making the semantic content available using

the latest Web technologies. By providing the data in this way, it is hoped

that CrystalEye will promote and aid:� the location of crystallography using Web search methods,� the reuse of the crystallographic data in e-Science.

4.3.1 Implementation

CrystalEye is a lightweight system which consists of a single standalone exe-

cutable JAR (Java ARchive) file that uses a hierarchical file-system for data

storage. This simple architecture is beneficial for distribution of the system

as only Java need be installed to deploy it, and as the file-system is used

for storage, all content can be made available in a RESTful[146] fashion (i.e.

every resource has an address) by providing the containing directory on a

web server (as is shown in section 4.3.4).

4.3.2 Aggregation

To locate and aggregate newly published CIFs, a set of web-spiders that per-

form web-scraping [147] have been written. The resources which CrystalEye

has aggregated CIFs from (as of 2008-07-03), are:� Publisher’s websites

– Acta Crystallographica

116

* Section A: Foundations of Crystallography* Section B: Structural Science* Section C: Crystal Structure Communications* Section D: Biological Crystallography* Section E: Structure Reports* Section J: Applied Crystallography* Section S: Synchrotron Radiation

– The Royal Society of Chemistry* Chemical Communications* CrystEngComm* PCCP* Dalton Transactions* Green Chemistry* Journal of Materials Chemistry* New Journal of Chemistry* Organic and Biomolecular Chemistry

– The American Chemical Society* Analytical Chemistry* Bioconjugate Chemistry* Biochemistry* Biomacromolecules* Chemistry of Materials* Crystal Growth and Design* Inorganic Chemistry* Journal of Agricultural and Food Chemistry* Journal of the American Chemical Society* Journal of Combinatorial Chemistry* Journal of Chemical Information and Modelling* Journal of Medicinal Chemistry

117

* Journal of Natural Products* The Journal of Organic Chemistry* Langmuir* Macromolecules* Molecular Pharmaceutics* Organic Letters* Organic Process Research and Development* Organometallics

– Elsevier* Polyhedron

– The Chemical Society of Japan* Chemistry Letters� Open databases

– COD (Crystallography Open Database)

All CIFs from the discontinued RSC journals, Perkin Transactions 1 and 2

have also been aggregated.

None of the above sites provide a formal method of discovering newly

published CIFs, so I have developed methods for up-to-date aggregation for

both categories of resource.

Aggregating from publisher’s websites

The web spiders have been written around three libraries:� HTTPClient[115] – provides methods for webpage retrieval, timeouts

and retries. It is important to take the latter two points into consider-

ation when writing spiders, as there are many reasons a URL request

could fail initially, and this would lead to missed content.� TagSoup[116] – used to tidy the retrieved HTML into markup that is

valid XML.

118

� XOM[30] – reads the tidied HTML into an in-memory DOM representa-

tion, which can then be queried using XPath to find the desired data

items.

Aggregation from each publisher is currently performed on a per journal

issue basis. Each time the spiders are run, the initial step is to check the

latest issue of each journal to see if it has already downloaded the CIFs

from it. For most publishers, each journal has a ”current-issue” URL that

always points to the table of contents (TOC) of the latest issue to have been

published. The URL below, for instance, always points to the latest issue of

Dalton Transactions.

http://pubs.rsc.org/Publishing/Journals/dt/Article.asp?Type=

CurrentIssue

This can be edited to apply to any RSC journal by changing dt to the ab-

breviation of another of their journals. Once the TOC has been downloaded

and read into XOM, it is queried using a predefined XPath to extract the year

and issue number of the issue. The spider then deduces whether it needs to

scrape that issue by comparing this data to an index of all previous issues to

have been scraped.

The page hierarchy and HTML structure for journals of different publishers

are generally not uniform (figure 4.10), but are the same for journals of the

same publisher; thus, there is one spider for each publisher. The steps the

spider performs when aggregating CIFs from a journal issue are highlighted in

figure 4.11. The spiders for different publishers all apply a similar strategy,

but differ in the number and structure of the XPath expressions that are

needed to navigate through the webpages from the TOC to the CIFs. An

extra step is required for Elsevier, as supplementary information for their

articles is provided in a ZIP file. In this case, the spider must locate the ZIP

file, unzip it and then check for CIFs. Note that for all journals, whenever

a CIF is found, the spider will also extract the corresponding DOI for that

article and store it as a file with the CIF.

119

Figure 4.10: The page hierarchy that links the TOCs to the CIFs for each
publisher scraped by CrystalEye.

In many cases, an article will not have an attached supplemental CIF, and

so for some journals, the majority of the webpages downloaded en route to

the supplemental pages are done so unnecessarily. Two other problems with

this method of aggregation are that the spiders rely on:

1. a fixed website structure. If a publisher were to redesign their website,

there is a chance that the XPaths would stop working. When writing

the XPaths, I tried not to refer to the HTML structure, and only query

for hyperlinks that contain HREFs with a particular folder structure

(as it is less likely for the website folder hierarchy to be changed than

the webpage HTML). Despite this, during the course of this work, the

spiders for ACS and RSC journals both had to be rewritten as a result

of website redesigns.

2. the path from TOC to supplemental data being complete. Publisher’s

websites are generated from fixed templates and so the spiders can rely

120

Figure 4.11: On initialization, the web-spider is provided with the ‘current-
issue’ URL of the journal, which is then downloaded via the HTTPClient

library. The webpage is tidied with TagSoup, read into a DOM using XOM

and then queried with a predefined XPath to find all the links in the page to
article abstract pages. The page referenced by each of these abstract links
is then downloaded, tidied and queried to find any links to supplementary
information pages. For each link the page is again downloaded and queried
to find any links to CIFs. If any are found, they are downloaded and stored
in the CrystalEye file system.

121

on a common HTML structure (barring website redesigns) to navigate

to the supplemental data. However, humans may still neglect to en-

ter required data into the template. As the spiders must navigate a

website to find the desired content, if any of the expected hyperlinks

are not provided along the way, then even if the final content is avail-

able, it will not be discovered. An example of this was noted when

the spider was not returning any CIFs from a number of RSC journals

in the latter half of 2004 (e.g. issues 14–23 of Dalton Transactions).

On inspection, none of the abstract pages for articles in these issues

contained links to supplementary data pages (which the spider relies

on). To check whether supplemental data had been provided, but just

not linked to, it is possible to use the journal code and article code to

create the supplementary data URL that would have been provided on

the abstract page (though by using this method, URLs for pages that

don’t exist may be created). The common form for these URLs is:

http://pubs.rsc.org/suppdata/CE/b4/b416493h/index.sht

where ‘CE’ is the journal code and ‘b416493h’ is the article code. A

spider was written to extract the article codes from the TOC for each

issue and then to create a supplementary data URL as above. An

attempt was made to download the page at each URL, and many of

them were found to exist and provide links to CIFs.§

Publishers now generally provide RSS feeds for their journals, where new

feed entries are added for each article as they are made available on the site.

In the near future, I am hoping to alter CrystalEye’s aggregation, so that

instead of the spider waiting for a new issue to be promoted to the ‘current-

issue’ at a site, it could just read the RSS feed for that journal and follow

each entry to the corresponding article. One benefit of this method would

be that CrystalEye could get updated content as it was made available on

the publisher’s site, rather than having to wait until an entire issue had been

finalised before scraping the whole thing.

§I notified the RSC of this problem, though it has yet to be rectified (2008-04-23).

122

These RSS feeds are still not a formal interface to the CIFs, and require

some HTML spidering. At present the entries of these RSS feeds point to

the abstract pages for an article, so CrystalEye would just be able to start

its spidering process a little further along the chain. Thus, the problems de-

scribed above must still be considered. Ideally the entries in these RSS feeds

would provide links to any supplemental data files (e.g. using enclosures,

see section 4.3.5). If this was used, no HTML scraping would be needed,

and only one fixed-structure RSS document would have to be tracked by the

spider in the search for new content. This would negate all of the previously

described problems encountered during aggregation from publisher sites.

Aggregating from the COD

The COD consists of CIFs that have been donated by publishers, institutions

and researchers. As of 2007-11-14, the COD contains over 45,000 CIFs, and in

particular provides a good source of inorganic structures, many of which have

been donated by American Mineralogist. The database is available as a single

large ZIP file[149] (> 120Mb, which contains the CIFs and a host of related

information), hence only one URL is needed by the spider, which downloads

the database, unzips it and checks through all the files for new CIFs. The

COD is only updated a few times a year, so to save unnecessary downloading

and processing, the spider can identify if the database has been updated

by providing an ’If-Modified-Since’[150] header in the HTTP request. If it

receives a 304 status (Not Modified) in return, then nothing more needs to

be performed.

Dealing with duplicate CIFs

Many of the crystal structures in the COD are duplicates of ones that Crys-

talEye has obtained from publisher’s websites. In these cases, the version

from the COD is of lower quality (often a pre-publication version), and so

is discarded. To perform this data deduplication automatically, CrystalEye

maintains an index of cell parameters against the chemical formula for each

crystal that it aggregates.

123

Each time the COD is downloaded, every CIF in the database must be

compared against this list before it is stored in CrystalEye. It is also possible

that CrystalEye could obtain a CIF from the COD before it finds the same

one on a publisher’s website. For this reason, the system must also check

the structures from each new journal issue download against all those it has

previously obtained from the COD. The COD version will be removed if any

duplicates are found.

Statistics for CIF aggregation

The number of CIFs aggregated from each of CrystalEye’s sources (as of the

end of 2007) are:� Acta Crystallographica – 30,465� Royal Society of Chemistry – 10,351� American Chemical Society – 26,548� Elsevier – 168� Chemical Society of Japan – 150� Crystallography Open Database – 18,283

which gives the total number of CIFs aggregated as 85,965. Both Elsevier

and the Chemical Society of Japan only provide CIFs in one journal each (as

far as is known) and these only go as far back as 2006 and 2005 respectively.

The growth in the number of CIFs aggregated per year can be seen in figures

4.12 and 4.13. The latter plot shows the recent rapid rise in the number of

CIFs published in both ACS and Acta Cryst. journals, while the number in

RSC journals has stayed largely the same.

To test that the spiders are aggregating all CIFs correctly, two issues were

selected at random for each year from 2001-2007 for every journal aggregated

by CrystalEye. These issues were then manually checked for supplementary

CIFs and, for each, the number of CIFs found by hand matched those found

by the spider.

124

Figure 4.12: Plot showing the total number of CIFs aggregated from pub-
lisher’s websites each year from 1990 to 2007.

125

Figure 4.13: Plot showing the number of CIFs aggregated from each publisher
from 1990 to 2007. Note the anomalous drop in CIFs published in ACS
journals in 2007.

126

Figure 4.14: Number of articles published in ACS journals from which over
500 CIFs have been aggregated between 2001-7

If this is the case, then what is the cause of the anomalous drop in the

number of CIFs aggregated from ACS journals in 2007? This may be partly

explained by inspecting the number of articles published in those ACS jour-

nals for which over 500 CIFs have been aggregated since 2001 (figure 4.14). It

can be seen that, like the number of CIFs aggregated, the number of articles

increased from 2001 to 2006, but decreased in 2007.

If the number of CIFs published per article for these journals is viewed

(figure 4.15), then we see that the number does rise each year, though the

steady growth seen from 2001-6 is not continued from 2006-7. It is difficult

to know what has caused the break in growth, though it may be that the

limit for CIFs being provided for all relevant articles is being reached.

127

Figure 4.15: The number of CIFs provided per article in ACS journals from
which over 500 CIFs have been aggregated between 2001-7.

128

4.3.3 Processing the data

Once the CIFs have been downloaded, they are converted into CML and other

related files which are used to represent and disseminate the structures via

the CrystalEye website (section 4.3.4). The unit of currency in CrystalEye

is the structure, not the CIF, and so the process of ’splitting’ the CIFs into

single structures, as described in section 3.5.1, is used. As CrystalEye is

based on a file-system, all data created is stored as separate text files.

Creating checkCIF XML

checkCIF has been designed to be used by humans via a web browser. The

webpage (figure 3.4 in section 3.3.4) contains a HTML form through which

a user can upload a CIF and submit it for checking on the IUCr’s web-

server. Once the checkCIF process has finished, the user’s browser will be

redirected to a webpage containing the checkCIF report (either in PDF or

HTML depending on the user’s selection). In order to programmatically

call the checkCIF service, I have written a Java program which mimics this

behaviour using a library that implements the HTTP protocol.

The interface to checkCIF on the homepage is a HTML form, which, when

viewed in the source code of http://checkcif.iucr.org/, looks like:

<form method="post" enctype="multipart/form-data"

action="http://dynhost1.iucr.org/cgi-bin/checkcif.pl">

File name:

<input type="file" name="file" size="35">

<input type="hidden" name="runtype" checked="checked" value="symmonly">

<input type="hidden" name="referer" checked="checked" value="checkcif_server">

<input type="submit" name="UPLOAD" value="Send CIF for checking">

<p>Select form of checkCIF report</p>

<input type="radio" name="outputtype" value="HTML" checked="checked">HTML

<input type="radio" name="outputtype" value="PDF">PDF

</form>

The URL that the CIFs are sent to for processing is shown (http://dynhost1.

iucr.org/cgi-bin/checkcif.pl) along with the options that need setting

(the input elements). Using Apache HTTPClient[115] I wrote a wrapper pro-

gram that creates a HTTP POST method to submit a CIF and the required

129

options to the above URL, after which it retrieves the resulting checkCIF

report as a HTML page.

As discussed previously, the checkCIF service was intended to be used by

humans. The checkCIF HTML structure has therefore been designed to be

understandable by humans viewing it through a web browser, and as a result

the underlying HTML contains no semantics. In order to extract the data

from the presentation-centric HTML, I have also written a checkCIF parser.

Despite the HTML containing no semantics, as the documents are pro-

grammatically generated we can be confident that the same HTML element

hierarchies and text patterns will occur from report to report. Thus we can

create XPath expressions (albeit semantically void ones) to access the desired

data and use it to create a new semantically rich checkCIF XML document.

To do this, the parser first tidies the HTML into valid XML using the

Tagsoup[116] library, after which the tidied HTML can be parsed by the XOM

library and the resulting DOM can be queried using XPath. The parser has

a set of hardcoded XPath expressions which are run in sequence to access the

DOM nodes which contain the desired data items. For each node retrieved,

the parser will extract the child text and use it to build the new XML doc-

ument. Figure 4.16 shows an example of the HTML for a set of alerts and

the corresponding representation of those alerts in checkCIF XML. Note that

checkCIF XML is not part of the CML Schema and therefore has a separate

namespace.

An example XPath expression used by the parser is:

//x:a[contains(@href,’javascript:makeHelpWindow’)]

While this query is intended to retrieve all of the HTML elements describing

the alerts, the XPath itself bears no relation to the data whose location it

describes. This is, however, the best way to uniquely identify the location of

that data from the HTML structure provided. These XPaths are extremely

130

Figure 4.16: Diagram showing the alerts section in a checkCIF report (a)
when viewed through a web browser, (b) when viewed as the HTML source
code and (c) after they have been converted to checkCIF XML.

131

fragile with respect to change in the checkCIF HTML (e.g. a change in the

name of the Javascript method associated with the alert links would cause

the above XPath expression to cease to work), and a more suitable method

for extracting data from checkCIF reports will be needed in the future. This

could either be provided by including semantically named attributes on the

HTML elements to describe the contained data, or preferably, by providing

optional XML output from the checkCIF service.

Creating the CML

Each CIF is processed through the CIF to enhanced CML process described

in chapter 3. After this, the following are also merged into the CML� the DOI for the article from which the structure was scraped. In the

CML, the DOI is described as a scalar, e.g.

<scalar dictRef="idf:doi">10.1107/S1600536808004169</scalar>

The DOIs are used widely on the CrystalEye website to provide per-

manent hyperlinks back to a structure’s parent article (the URL for a

DOI is created by prepending http://dx.doi.org/).� the checkCIF XML. Thus the crystallographic data is provided along-

side explicit community standard crystallographic validation. Reuse

of the data is aided by the ability of users to make assertions on its

quality.

For each structure aggregated by CrystalEye, the final CML file contains:� the original CIF experimental and researcher metadata,� enhanced CIF structural data, which is either the complete unit cell (for

inorganic and polymeric structures), or the unit cell containing the com-

plete unique moieties (for non-polymeric organic and organometallics).

If possible, the latter are enhanced with:

– resolved disorder,

132

– bond orders and charges,

– 2D and 3D stereochemical information,

– 2D atomic coordinates,

– SMILES and InChI canonical identifiers,� the structure’s DOI� the checkCIF XML

2D structure diagrams

For each non-disordered organic and organometallic moiety, a 2D image is

generated from the CML using the CDK (see figure 4.17). This works well for

most organic structures, though for some organic and many organometallic

structures the software, understandably, produces images where atoms and

bonds overlap. This gives diagrams where it is difficult to see the actual struc-

ture, and in some cases, the structure appears to be wrong (see figure 4.18).

The use of templates for common metal coordinations and ring-systems has

been suggested as a part solution, though for a universal solution, other

methods will need to be considered (further discussion in section 4.3.8).

Generating molecular fragments

For each non-disordered organic and organometallic moiety, CML files are

generated for the following molecular fragments (as shown in figure 4.19):� ring-nuclei,� metal ligands,� ring-ring, ring-terminus and terminus-terminus chains,� metal centres,� metal clusters.

Fragments are also created for singly and doubly sprouted fragment nuclei

(except for metal ligands, which are already complete), as shown in figure

4.20.

133

Figure 4.17: Rendering of the CML for rac-Bis[1-(9,9-dioxo-
10H -phenothiazin-10-yl)-2-propyl] dimethylammonium terephthalate
trihydrate[151] in Jmol with the 2D images (complete with stereochemistry)
generated for the contained moieties.

4.3.4 The website

A website[152] is maintained by CrystalEye to allow all of the generated

content to be browsed. As the CIF aggregation is performed on a per-issue

basis, each time a new issue is scraped, an interactive table of contents is

generated and a new link is added to the issues that have been scraped for

that journal (as in figure 4.21). The CrystalEye TOC allows all of the crystal

structures from that issue to be browsed quickly in both 2D and 3D. Access

is provided to further information about each structure and also links back

to the original journal article using the DOI (see figure 4.22).

For each crystal structure, a summary page is created highlighting impor-

tant metadata, and providing access to all of the related files (see figure 4.23).

These pages are important as they are used by the services (section 4.3.5) as

the reference point for each structure.

134

Figure 4.18: Rendering of the CML for (top) Tetra-µ-benzoato-
bis[(quinoxaline)copper(II)] and (bottom) {2,2’-[4-Methyl-4-azaheptane-1,7-
diylbis(nitrilomethylidyne)]diphenolato}zinc(II) in Jmol with the corre-
sponding 2D images showing overlapping atoms and bonds.

135

Figure 4.19: Example of the fragments generated from Tetra-µ-benzoato-
bis[(quinoxaline)copper(II)]. The pink atoms indicate the fragment R groups.

Figure 4.20: Example of a ring-nucleus fragment that has been singly and
doubly sprouted.

136

Figure 4.21: By following the links on the webpage summarising which jour-
nals CrystalEye aggregates CIFs from (top), the user can see all of the issues
for which CrystalEye found crystal structures (middle). Clicking on an issue
brings up a webpage which allows the user to browse all the crystal structures
associated with that issue. Each row in the given table corresponds to one
crystal structure. By clicking on a row, or by using the navigation buttons,
the structure will be displayed in both 2D and 3D at the bottom of the page.

137

Figure 4.22: From the issue summary page, the user can access both the orig-
inal article (via the DOI) or see the summary of all information CrystalEye
has aggregated and generated for each structure.

138

Figure 4.23: Image showing a full webpage of a crystal structure summary in
CrystalEye. This includes: a symbol that it is Open Data (top-left), journal
and contact author details and a link back to the original article (via the
DOI), a summary of important crystallographic metadata, the 3D structure
shown in Jmol (with the ability to enter arbitrary Jmol scripts), links to all of
the generated files for that structure, the canonical identifiers for the crystal
(to allow search engine indexing of the connection tables).

139

Figure 4.24: The CrystalEye search page

4.3.5 Services

Once the CML has been generated for all the newly aggregated CIFs, a set

of services is then automatically updated with the latest data. As the data

is stored in CML, accessing the data items required to update the service

indexes is trivial.

Structure and cell search

There are currently two methods of searching the structures in CrystalEye

(see figure 4.24):

1. Substructure search – OpenBabel is used for both creating an index of

all the SMILES strings in CrystalEye, and for performing the searching

of that index. An example of a substructure search is shown in figure

4.25).

140

2. Cell parameter search – allows the user to enter an arbitrary amount

of cell parameter detail for the structures they want to find (see figure

4.26).

Other searches, such as exact structure matching with InChI/InChIKey, will

be added when time permits.

RSS and CMLRSS

In order to allow users to be notified when new structures of a particular

type are published, CrystalEye maintains a large set of RSS and CMLRSS

feeds. At present, these feeds are in the following categories:� Journal – structures from a particular journal.� Compound class – structures that are either organic, inorganic or organo-

metallic.� Atom – structures that contain a particular element.� Bond – structures that contain a bond between two particular elements.

To provide for the most commonly used newsfeed types, each feed is created

as RSS 1.0, RSS 2.0 and Atom 1.0 (see figure 4.27). A person who is inter-

ested in structures containing carbon-silicon bonds could subscribe to that

feed[158] and they will be notified via their RSS reader each time such a

structure is found (as in figure 4.28).

As shown in figure 4.28, each entry in the feeds contain a link to the

structure webpage in CrystalEye. The only difference between the entries in

the RSS and the CMLRSS feeds is that the latter have the complete CML

document for the corresponding structure as a child element. Doing this

allows CML aware RSS readers to automatically render each structure (e.g.

the CMLRSS reader in Bioclipse[160]). The text below shows portions of

the carbon-silicon bond Atom 1.0 CMLRSS feed, highlighting how the CML

document for a given structure is merged directly into the corresponding feed

entry.

141

Figure 4.25: A substructure search of CrystalEye for all copper atoms bonded
to the nitrogen atom of a pyridyl ring

142

Figure 4.26: A cell parameter search of CrystalEye

143

Figure 4.27: Portion of the webpage providing links to RSS and CMLRSS
feeds of all structures contain a bond between carbon and another element

<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:cml="http://www.xml-cml.org/schema"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"

xmlns:taxo="http://purl.org/rss/1.0/modules/taxonomy/">

<title>

CrystalEye CMLRSS: Structures containing bonds of C-Si

</title>

<link rel="self"

href="http://wwmm.ch.cam.ac.uk/crystaleye/feed/bonds/C-Si/cmlrss/atom_10/feed.xml">

</link>

...

<entry>

<title type="html">

Catalyst- and solvent-free conditions as an environmentally benign approach to

4-aryl-3-cyano-hexahydro-4H-1,2-benzoxazine-2-oxides

</title>

<summary type="text">

CrystalEye CMLRSS summary of DataBlock 11a in CIF B712858D (DOI:10.1039/b712858d)

from issue 3/2008 of Royal Society of Chemistry, Green Chemistry.

</summary>

<cml title="11a" id="rsc_gc_2008_3_b712858dsup1_11a" xmlns="http://www.xml-cml.org/schema">

...

<scalar

dictRef="iucr:_cell_measurement_temperature"

dataType="xsd:double"

errorValue="2.0">

295.0

</scalar>

144

Figure 4.28: The RSS 2.0 feed for structures containing carbon-silicon bonds
shown in Google Reader[159]. Clicking on an entry redirects the browser to
the CrystalEye summary page of that structure.

145

<scalar

dictRef="iucr:_refine_ls_r_factor_all"

dataType="xsd:double"

errorValue="0.0">

0.2485

</scalar>

...

<molecule id="rsc_gc_2008_3_b712858dsup1_11a">

<crystal z="2">

...

</crystal>

<atomArray>

...

</atomArray>

...

</molecule>

</cml>

</entry>

...

</feed>

The method of containing the CML explicitly in a feed is how CMLRSS

was defined in the initial paper[161]. However, CMLRSS feeds with many

entries, or with large amounts of CML in each entry can become prohibitively

large. For instance, the journal feed for Acta Crystallographica Section E will

receive many hundreds of new structures per issue, and this can lead to a feed

that is tens or hundreds of megabytes large. Each time the feed is read by

an RSS reader the whole document is downloaded before the reader decides

which entries are new, and thus which ones to highlight for the user. With

explicit CML in each entry there can be a large amount of CML downloaded

for previously viewed entries, and thus a large percentage of the bandwidth

used is unnecessary.

An additional problem is that for many readers the default method of pars-

ing is to read the entire document into memory before processing. For these

large documents this could cause problems such as out-of-memory errors.

Indeed, in CrystalEye, to deal with these large feeds, the default method of

parsing had to be changed from reading the entire document into a DOM

using XOM to using a streaming XML parser (StAX[162]) to build sections of

the DOM as-and-when needed.

146

An alternative method of providing the CML content is not to provide the

markup explicitly in the feed document but to take advantage of enclosures,

which are a feature of the Atom Syndication Format specification[163]. These

allow content related to a feed entry to be provided as an enclosed link, which

RSS readers can then follow to retrieve the content. This is not equivalent

to explicit CMLRSS, as in this case only those CML documents for entries

that have not previously been viewed will be retrieved. Enclosures allow an

arbitrary number of files to be associated with an entry, so it is possible to

include links to a number of files in CrystalEye that are related to each crystal

structure. The CMLRSS feeds at CrystalEye still provide CML explicitly,

though now all Atom 1.0 RSS feeds provide the content as enclosures. The

text below shows portions of the carbon-silicon bond Atom 1.0 RSS feed.

<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:taxo="http://purl.org/rss/1.0/modules/taxonomy/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<title>

CrystalEye: Structures containing bonds of C-Si

</title>

<link rel="alternate"

href="http://wwmm.ch.cam.ac.uk/crystaleye/feed/bonds/C-Si/rss/atom_10/feed.xml" />

...

<entry>

<title>

Catalyst- and solvent-free conditions as an environmentally benign approach to

4-aryl-3-cyano-hexahydro-4H-1,2-benzoxazine-2-oxides

</title>

<link rel="alternate"

href="http://wwmm.ch.cam.ac.uk/crystaleye/summary//rsc/gc/2008/3/data/b712858d/

b712858dsup1_11a/b712858dsup1_11a.cif.summary.html" />

<link rel="enclosure"

href="http://wwmm.ch.cam.ac.uk/crystaleye/summary//rsc/gc/2008/3/data/b712858d/

b712858dsup1_11a/b712858dsup1_11a.complete.cml.xml" hreflang="en" />

<link rel="self"

href="http://wwmm.ch.cam.ac.uk/crystaleye/summary//rsc/gc/2008/3/data/b712858d/

b712858dsup1_11a/b712858dsup1_11a.cif.summary.html" hreflang="en" />

...

</entry>

...

</feed

By providing all feeds as RSS and CMLRSS, and each in three different

versions, there are almost 60,000 feeds currently maintained by CrystalEye.

Implementing all possible feeds that a user may wish to subscribe to like

this is not a scalable strategy and much processing time and storage space is

147

ultimately wasted. In the future I hope to implement an RSS system similar

to that provided at del.icio.us[164], that is, the user specifies what they want

to subscribe to, and the website dynamically creates that feed for them when

new content is added. Using this method, it would be possible to provide

RSS feeds by substructure by having the user enter their requirements as a

SMILES string.

Bond-length histograms

Indexes are maintained for the lengths of all bonds of each combination of

elements in CrystalEye. These are converted to interactive histograms using

the SVG graphing library created by Townsend[165]. A user viewing one

of these histograms is able to click on a bin and browse all of the affiliated

structures¶ (see figure 4.29). Two histograms are provided for each element

combination (see figure 4.30):

All : includes all bonds of that combination of elements, except those that

contain atoms that are disordered or constrained (a fixed value placed

on a parameter during crystallographic refinement),

After protocol : uses the same filters as in All, but the containing crystal

structure must also have been refined at ≤ 200K, and must have an R-

factor (a measure of the agreement between the crystallographic model

and the experimental X-ray diffraction data) of ≤ 0.05.

CrystalEye Greasemonkey

Greasemonkey[153] is an extension for the Mozilla Firefox[154] web browser

that is able to alter the content of webpages after they have been downloaded.

Users can create and install site-specific Greasemonkey scripts to add func-

tionality to web pages (e.g. by combining data from another webpage via

XMLHttpRequest[155]).

¶note that this interactivity is currently only available when viewing the histograms
with the Mozilla Firefox browser

148

Figure 4.29: The top image shows the interactive histogram of the lengths
of all nickel-nitrogen bonds in the structures in CrystalEye (as shown in the
graph title, it was last updated by the system on 2008-02-28). Clicking on
a bin brings up a webpage summarizing all those structures that constitute
the bin. In the 3D rendering of the structure, the atoms in the corresponding
bond are highlighted by a yellow halo.

149

Figure 4.30: Portion of the webpage containing the list of links to the bond-
length histograms for carbon

150

Many scripts have been described for the cheminformatics domain[156],

and a CrystalEye Greasemonkey script[157] has been created, which targets

webpages from any publisher scraped by CrystalEye. This site-specific tar-

geting is achieved by providing a set of regular expressions in the script, for

example� http://pubs.rsc.org/*� http://journals.iucr.org/*

which target all journal webpages at the RSC and IUCr sites. As previously

discussed, the DOI is noted for each CIF aggregated by CrystalEye, which are

then indexed against the URLs of the webpages of the corresponding crystal

structure summaries. With the script installed, each time a user views a

webpage that matches one of the script’s regular expressions, the following

actions automatically occur

1. the webpage HTML is searched for any DOI strings,

2. for each DOI found, it will be compared against the DOI index at the

CrystalEye site,

3. if a match is found in the index, the CIF summary URLs at CrystalEye

are noted (there may be more than one structure associated with a given

DOI),

4. these URLs are then inserted as hyperlinks alongside the corresponding

DOI in the HTML of the webpage being viewed.

With this script, a user is able to access all the functionality provided for the

corresponding crystal structure by CrystalEye from the point of publication

(figure 4.31 shows an example).

4.3.6 Database distribution

Providing the ability to download and keep an up-to-date copy of the entire

CrystalEye database is important for others who may want to use the data

in their work, provide a mirror system or aggregate the data into a larger

repository.

151

Figure 4.31: Example of the CrystalEye Greasemonkey script in action. The
top image displays a portion of the TOC webpage for an issue of Dalton
Transactions. Below is the same webpage viewed with the script installed,
showing the hyperlinks and corresponding crystal structures at CrystalEye.

152

The total size of the CML for all structures in CrystalEye adds up to several

gigabytes. As CrystalEye is updated on a daily basis, a mechanism must be

provided to allow others to easily update their version of the data, without

having to download previously obtained content (thus wasting bandwidth

for both parties). Methods which were considered, but not implemented are

discussed below. These would have been by providing:� a monolithic ZIP file, which would be updated each time new structures

were aggregated. However, by providing the data in this way, a user

would have to download the entire database each time they wanted to

update their version. For users who wanted daily updates, this would

lead to huge amounts of wasted bandwidth.� separate ZIP files for each batch of new structures that were aggregated.

However, this would mean much extra work for those who updated

their version infrequently. Each ZIP file would have to be located and

downloaded, which would likely lead to missed content on their part.� the data as an RSS feed. This is reasonable, as it provides a method

whereby one RSS file would summarise all the structures in CrystalEye

at a given time, plus the timestamp at which those structures were

aggregated. A suitable RSS reader could parse the feed and gather

only those structures which were added since its last visit. However,

even a summary of hundreds of thousands of structures would still give

a feed of hundreds of megabytes in size, which would lead to a large

amount of data having to be downloaded for even small updates.

Atom archived feeds

The method chosen is a type of RSS feed, though one where it is not a

monolithic document, but is split up into many smaller documents which:

. . . can be combined to accurately reconstruct the entries of a

logical feed.[167]

153

This method is an archived feed, as defined in a proposed standard extension

to the Atom protocol[166]. By splitting the feed up into smaller documents,

an aggregator need only download small chunks of the Atom archive feed

at a time before finding previously aggregated content. Thus the wasted

bandwidth is minimised and sometimes removed completely. To implement

this protocol, a Java library was written by the author.

For an archived feed, there is a fixed URL which points to the current

document that contains the latest entries. In CrystalEye, this URL is

http://wwmm.ch.cam.ac.uk/crystaleye/feed/atom/feed.xml

On 2008-03-10, this feed has the form:

<feed xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns="http://www.w3.org/2005/Atom">

<title>CrystalEye: All Structures</title>

<link rel="self"

href="http://wwmm.ch.cam.ac.uk/crystaleye/feed/atom/feed.xml"/>

<subtitle>

Feed summarising all the structures in CrystalEye.

</subtitle>

<updated>2008-03-08T05:27:09Z</updated>

<author>

<name>Chris Talbot</name>

</author>

<link rel="prev-archive"

href="http://wwmm.ch.cam.ac.uk/crystaleye/feed/atom/feed-4471.xml"/>

<id>http://wwmm.ch.cam.ac.uk/crystaleye/feed/atom/feed.xml</id>

<entry>

<title>

Summary page for crystal structure from DataBlock

d--mgdgroup-matthe~2-papers-zrc3-xrayre~1-test-k06mgd17

in CIF b718678asup1 from article b718678a in issue 2008/11

of Royal Society of Chemistry, Chemical Communications.

</title>

<link href="http://wwmm.ch.cam.ac.uk/crystaleye/summary/rsc/cc/2008/11/data/

b718678a/b718678asup1_d--mgdgroup-matthe~2-papers-zrc3-xrayre~1-

test-k06mgd17/b718678asup1_d--mgdgroup-matthe~2-papers-zrc3-

xrayre~1-test-k06mgd17.cif.summary.html"/>

<id>urn:uuid:8cf20230-141d-41d2-830a-8724bc19ad8f</id>

<summary>

Summary page for crystal structure from DataBlock

d--mgdgroup-matthe~2-papers-zrc3-xrayre~1-test-k06mgd17

in CIF b718678asup1 from article b718678a in issue 2008/11

of Royal Society of Chemistry, Chemical Communications.

<updated>2008-03-08T05:27:09Z</updated>

<link rel="enclosure"

href="http://wwmm.ch.cam.ac.uk/crystaleye/summary/rsc/cc/2008/11/data/

b718678a/b718678asup1_d--mgdgroup-matthe~2-papers-zrc3-xrayre~1-

test-k06mgd17/b718678asup1_d--mgdgroup-matthe~2-papers-zrc3-

xrayre~1-test-k06mgd17.complete.cml.xml"

154

type="chemical/x-cml"

length="253229"/>

<link rel="enclosure"

href="http://wwmm.ch.cam.ac.uk/crystaleye/summary/rsc/cc/2008/11/data/

b718678a/b718678asup1_d--mgdgroup-matthe~2-papers-zrc3-xrayre~1-

test-k06mgd17/b718678asup1_d--mgdgroup-matthe~2-papers-zrc3-

xrayre~1-test-k06mgd17_1.small.png"

type="image/png"

length="2389"/>

<content type="xhtml">

<div xmlns="http://www.w3.org/1999/xhtml">

<img src="http://wwmm.ch.cam.ac.uk/crystaleye/summary/rsc/cc/2008/11/data/

b718678a/b718678asup1_d--mgdgroup-matthe~2-papers-zrc3-xrayre~1-

test-k06mgd17/b718678asup1_d--mgdgroup-matthe~2-papers-zrc3-

xrayre~1-test-k06mgd17_1.small.png"/>

</div>

</content>

</entry>

</feed>

Note that the entry content is linked via enclosures. The current feed al-

ways contains a prev-archive link which points to the immediately preceding

archive document. This is usually the same name as the current document,

but with a number indicating its position in the archive. In the above exam-

ple it is:

http://wwmm.ch.cam.ac.uk/crystaleye/feed/atom/feed-4471.xml

When creating archived feeds, a maximum number of entries per document

is set. In CrystalEye this is 25, which means each document is around 30Kb

large, the size of a reasonable webpage. Once the current feed has reached

the limit, it is renamed to the same form as the prev-archive link, with the

number incremented:

http://wwmm.ch.cam.ac.uk/crystaleye/feed/atom/feed-4472.xml

and another archive document with no entries will be created at the current

URL. Note that the documents other than the current document also contain

two other links� next-archive – points to the immediately following archive document,� current – points to the current document.

The presence of these links allows aggregators to traverse the archived feed

structure however they wish, and not just from newest to oldest.

155

An Open Source harvester for the CrystalEye Atom Archive feed has

been written and blogged by Jim Downing[168]. The developers of the

ChemSpider[89] site, a free access source of structure-based chemical infor-

mation, have recently used this method to obtain the CrystalEye dataset.

They were then able to extract all of InChIs from the data and use them

to provide links to CrystalEye webpages from ChemSpider’s own structure

summaries.

4.3.7 CrystalEye data in RDF

Andrew Walkingshaw has, using his Golem[169] ontology system, created a

service (currently unnamed) which takes the URL for a CrystalEye CML file,

and converts it into RDF. For instance, providing it with the following URL:

http://wwmm.ch.cam.ac.uk/crystaleye/summary/acta/j/2002/02-00/data/

vi0154/vi0154sup1_tpp110kdata/vi0154sup1_tpp110kdata.complete.cml.xml

will return the RDF below (truncated for brevity):

<rdf:RDF

xmlns:j.0="http://wwmm.ch.cam.ac.uk/crystaleye/dictionary#"

xmlns:j.1="http://purl.org/dc/terms/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<rdf:Description rdf:about="http://wwmm.ch.cam.ac.uk/crystaleye/locations#

00abbb71e196a8f7f2c0eeaec8c93c1e">

<j.0:latitude rdf:datatype="http://www.w3.org/2001/XMLSchema#float">

48.0833333

</j.0:latitude>

<j.0:longitude rdf:datatype="http://www.w3.org/2001/XMLSchema#float">

-1.6833333

</j.0:longitude>

<j.0:address>

"LCSIM UMR 6511 CNRS - Universit\\’e de Rennes 1,

Institut de Chimie de Rennes, B\\^at. 10B,

Campus de Beaulieu, Avenue du G\\’en\\’eral Leclerc,

35042 Rennes, France "

</j.0:address>

</rdf:Description>

...

<rdf:Description rdf:about="http://wwmm.ch.cam.ac.uk/crystaleye/summary/acta/

j/2002/02-00/data/vi0154/vi0154sup1_tpp110kdata/

vi0154sup1_tpp110kdata.complete.cml.xml">

<j.0:_journal_name_full rdf:datatype="http://example.com/json">

"Journal of Applied Crystallography"

</j.0:_journal_name_full>

<j.1:contributor>

"Masson, Olivier"

</j.1:contributor>

<j.1:contributor>

156

"Descamps, Marc"

</j.1:contributor>

...

<j.0:_publ_section_title rdf:datatype="http://example.com/json">

"Ab initio structure determination of TriPhenyl Phosphite by powder

synchrotron X-ray diffraction"

</j.0:_publ_section_title>

<j.0:oscarAnnotation

rdf:resource="http://wwmm.ch.cam.ac.uk/crystaleye/ontology/ONT/Phosphite"/>

<j.0:oscarAnnotation

rdf:resource="http://wwmm.ch.cam.ac.uk/crystaleye/ontology/CM/Phosphite"/>

...

<j.0:location rdf:resource="http://wwmm.ch.cam.ac.uk/crystaleye/locations#

00abbb71e196a8f7f2c0eeaec8c93c1e"/>

...

<j.0:AcceptanceDate rdf:datatype="http://www.w3.org/2001/XMLSchema#date">

2002-01-09

</j.0:AcceptanceDate>

</rdf:Description>

...

</rdf:RDF>

The generated RDF currently includes:� bibliographic data,� annotations for the OSCAR3 system[170],� geographic data.

I have used an X/HTML metadata profile[171] to provide links to this RDF

from the crystal structure summary pages in CrystalEye. For instance, the

page at the URL below

http://wwmm.ch.cam.ac.uk/crystaleye/summary/acta/j/2002/02-00/data/

vi0154/vi0154sup1_tpp110kdata/vi0154sup1_tpp110kdata.cif.summary.html

contains the following code

<html>

<head profile="http://purl.org/net/uriprofile/">

...

<link rel="meta"

href="http://www.cmlcomp.org/golem/demo/cedescribe/http%3A//

wwmm.ch.cam.ac.uk/crystaleye/summary/acta/j/2002/

02-00/data/vi0154/vi0154sup1_tpp110kdata/

vi0154sup1_tpp110kdata.complete.cml.xml"

/>

</head>

<body>

...

</body>

</html>

In the future, instead of linking to this RDF, it will be merged with the

HTML as explicit RDFa[172].

157

Figure 4.32: Results page for a SPARQL query of the CrystalEye RDF for
all crystal structures authored by ‘Redfern S A T’.

Walkingshaw has created RDF for the entire CrystalEye dataset, and is

experimenting with RDF-based search (see figure 4.32) and providing visu-

alizations of the data (e.g. a video showing the geographic spread of Open

crystallography[173]).

4.3.8 Further work

There is still much to do to improve the quality and rate of aggregation of

data in CrystalEye. The following are viewed as important steps to this end.

158

Self-deposition

At present CrystalEye aggregates almost entirely from the published liter-

ature. By providing a method for self-deposition into the system (either

public or departmental), CrystalEye could start to collect some of the 80%

of structures which are never published. Such a system has already been

investigated in the SPECTRa project[130], and work has already begun to

provide this functionality in CrystalEye.

Community annotation and validation

It is inevitable that errors occur in any large dataset. Manual curation is

extremely resource intensive and complete continuous curation of CrystalEye

would require many hours work. Jim Downing and I have thus started to

investigate crowdsourcing [174], so that interested users not directly involved

in the project can aid curation of CrystalEye.

Community data checking is also being investigated at ChemSpider[175],

and an experimental method based around Connotea[177] has been outlined[176].

Connotea is a social bookmarking tool aimed at scientists, which allows URLs

to be tagged and shared by members. Our mechanism suggests that on find-

ing a bug in a CrystalEye document, the user should bookmark that URL

in Connotea with the tag crystaleyeproblem, where the Description field

can be used to describe the problem. By subscribing to the RSS feed at,

http://www.connotea.org/tag/crystaleyeproblem, we can then be instantly

notified of any bugs found in CrystalEye. Once the bug is fixed, the same

URL can be bookmarked with another tag, crystalfixed.

Another potential use of crowdsourcing in CrystalEye is for annotation of

data to aid processing. It is accepted that programs cannot be created to

perform all the tasks an expert in a particular field is capable of, such as:� understanding data that deviates slightly from its specification,� processing data in areas where the rules and semantics are not well-

defined (e.g. finding a set of BOACs for an organometallic skeleton).

159

There are many documents that CrystalEye is unable to completely process

by virtue of the data being either invalid or ambiguous. By providing these

documents to human experts in a suitable Web UI, missing or erroneous data

could be corrected, and a higher proportion of the data aggregated could be

processed to completion, and thus be made available to the community.

4.4 Conclusions

CrystalEye provides a completely automated method for gathering, process-

ing and disseminating semantic Open crystallographic data found on the

Web. The software comprising CrystalEye has been well tested on crystal-

lographic data from over 85,000 CIFs. This has made CrystalEye a robust

service, which has been running for the first six months of 2008 without

requiring human intervention.

All data is made Openly available via a website, which utilises numerous

Web 2.0 technologies for dissemination, as well as enabling chemical search by

exposing the InChI and SMILES for each structure. Methods for expanding

and improving CrystalEye have been discussed, with work already having

started in some areas. CrystalEye is also involved in funded projects due to

start in the latter half of 2008.

160

Chapter 5

High-throughput prediction of
solid-state geometry using
semi-empirical methods

5.1 Introduction

The availability of CrystalEye provided access to a large, high-quality set of

crystallographic data which could be used to perform e-Science. Townsend

previously used molecular structures from CrystalEye to assess the ability of

different computational methods to predict the geometry of structures in the

gas-phase[165]. One of the packages Townsend used in his work was MOPAC,

a general-purpose semi-empirical molecular orbital package. He found, for

molecules containing first and second row elements, that the PM3 method in

MOPAC gave a good approximation of the structure in the majority of cases.

However, certain structural fragments (e.g. N-N bonds) gave systematic

errors. He was then able to report back to Stewart, the author of MOPAC,

those molecular sub-systems that appeared to need further parameterization.

In March 2007 I met with Stewart to discuss how I might be able to extend

Townsend’s work. Stewart informed me of the latest additions to MOPAC

(the current version is MOPAC2007), which included (then unpublished)

work on:

1. a new parameterization, PM6 (now published[178]).

161

2. new functionality that allows the calculation of solid-state geometry

(now published[179]).

The aim of Stewart’s work on PM6 was to carry out a systematic global

parameter optimization of all the main group elements, with emphasis on

compounds of interest in biochemistry; and to extend the methodology by

performing a restricted optimization of parameters for the transition metals.

As a result, PM6 contains atom and atom-pair parameters for 70 elements

(all main group elements up to Bismuth).

Despite the addition of functionality to calculate solid-state geometry, no

solids were used in the training or survey sets whilst parameterizing PM6.

Stewart stated that this was because of the lack of computer power avail-

able, and had since performed around 100 geometry optimizations on both

organic and inorganic crystal structures. As I had access to CrystalEye and

Cambridge University’s computing grid, CamGrid, I had the possibility of

applying MOPAC’s solid-state capability in a high-throughput manner to a

large number of structures. By selecting structures containing a wide range

of systems, this would provide a good test of the method, as well as its use

for data validation.

Townsend’s work on geometry prediction in the gas-phase highlighted var-

ious molecular fragments and atom-pairs that were not modeled well in the

PM3 parameterization. During the work, I can expect to find similar re-

sults, and, as no solids were used during parameterization for PM6, I can

also expect to find poorly parameterized intermolecular interactions leading

to a variety of distortions of the crystallographic cell (discussed further at

the start of section 5.5).

To undertake this work, as the amount of data involved is large (several

gigabytes in many thousand files), it is preferable to automate as much as

possible of the workflow. Not only this, but in order to minimise format con-

version errors and keep data extraction simple, CML must be used wherever

162

possible. For this reason, the incorporation of CML output functionality into

MOPAC was first investigated.

5.2 MOPAC-CML

MOPAC, like many computational chemistry programs is written in Fortran,

an imperative programming language that is especially suited to numeric

computation. Unlike the numerical support in Fortran, the I/O facilities are

very limited, where reading and outputting much more than plain text is

difficult. As such, each program has developed its own idiosyncratic input

and output formats, which generally consists of whitespace delimited ASCII

text designed primarily for human readability (see figures 5.1 and 5.2).

It is far more difficult to write bug-free programs to parse these files (as

Townsend described in his efforts to post-process program output using XML

stylesheets[165]) when compared to highly structured formats such as XML.

Thus, automating the analysis and reuse of the data produced by these pro-

grams is difficult and error-prone. Ideally, computational chemistry programs

should read and output structured, semantically-rich XML, though until re-

cently the lack of an XML library for Fortran meant this was not feasible.

5.2.1 FoX

As part of the eMinerals project[180], investigations have been undertaken

into the use of CML for data exchange, visualization and storage for compu-

tational science[181]. To facilitate these aims, the open source FoX (Fortran

XML) library has been developed by White[182].

FoX is the first fully-validating XML parser and writer to be written in

Fortran 95, and can be used directly within programs rather than having

to post-process existing output. XML output is obtained by successive calls

to functions named xmlNewElement, xmlAddAttribute and xmlEndElement

where state is kept by the library to ensure well-formedness throughout the

document. There are also a series of additional function calls to directly

163

Figure 5.1: An example MOPAC input file to calculate the solid-state geome-
try of Albite. The input parameters (top line), and a portion of the Z-matrix
(below) are shown.

Figure 5.2: A portion of the MOPAC output file from the calculation of the
solid-state geometry of Albite.

164

translate native Fortran data structures to appropriate collections of XML

structures.

In addition, FoX also provides the WCML library, which allows developers to

output CMLComp[183], a subset of CML. Methods are provided to output

commonly-grouped collections of CML elements, for instance:

call cmlAddMolecule(xf=xmlFile, coords=array_of_coords,

elems=array_of_elements)

would output the following chunk of CML:

<molecule>

<atomArray>

<atom x3=’0.1’ y3=’0.1’ z3=’0.1’ elementType=’H’ />

....

</atomArray>

</molecule>

Similar interfaces are provided for all portions of CML commonly used by

simulation codes.

Many computational atomic molecular and molecular physics codes are

Open Source or are available for community modifications, and most of those

used in the eMinerals project have already been modified with the WCML

interface. These include the public releases of SIESTA 2.0 and DLPOLY 3, as

well as the version of CASTEP[184] being developed by Materials Grid[185].

5.2.2 MOPAC and FoX

Following discussions with Stewart, it became clear that there were two op-

tions to add the FoX functionality into MOPAC to output CML:

1. Include FoX method calls throughout the code to mirror those used for

the standard text output.

2. Have all standard output also directed to a new module, which can

then be modified to use FoX to output CML.

165

The former option would mean that, as FoX calls would be scattered through-

out the whole of the code, FoX would always be required when building the

system. Stewart preferred not to do this, or to maintain two different ver-

sions of MOPAC for those who do or do not wish to output CML, and so

suggested that the latter method was preferable. With this option, to cre-

ate a MOPAC executable that outputs CML, users can replace one Fortran

module and use a slightly altered make file to include the FoX libraries.

As a result, Stewart added a new module called to screen and altered

all those modules that contain calls to standard output so that there is a

duplicate call to to screen. For instance, in the writmo module, the call to

output the final heat of formation to the standard output is:

write (iw, &

’(4/10X,’’FINAL HEAT OF FORMATION =’’,F17.5,’’ KCAL’’ ,’’ =’’,F14.5,’’ &

&KJ’’)’) escf, escf*4.184D0

There is now a call to to screen shortly after:

write (line,’(10x,a,f16.5,a)’) "Final heat of formation = ",escf," kcal/mol"

call to_screen(line)

When to screen is run, it uses the message passed as a parameter to decide

what needs to be output.

The to screen module contains all the necessary control structures and

example outputs to reproduce the standard textual output of MOPAC. Thus

I could use it as a template and simply modify the provided calls to use

calls to FoX. For instance, the call for outputting the heat of formation was

originally:

write(hook,"(a,sp, d13.6,a)")" HEAT_OF_FORMATION:KCAL/MOL=",escf

but I have now changed it to:

! write(hook,"(a,sp, d13.6,a)")" HEAT_OF_FORMATION:KCAL/MOL=",escf

call cmlStartElement(xf=cmlfile, name=’scalar’)

call xml_addAttribute(xf=cmlfile, name=’dictRef’, value=’mopacDict:escf’)

call xml_addAttribute(xf=cmlfile, name=’dataType’, value=’fpx:real’)

call xml_addAttribute(xf=cmlfile, name=’units’, value=’units:kcal.mol-1’)

call xml_addCharacters(xf=cmlfile, chars=escf)

call xml_EndElement(xf=cmlfile, name=’scalar’)

166

so that the output is now a CML scalar element with the appropriate dic-

tionary reference, data type and units, such as:

<scalar dictRef="mopacDict:escf" dataType="fpx:real"

units="units:kcal.mol-1">-1.541568085299e4</scalar>

By doing this for the entire module, all of the data produced by MOPAC

can be captured as appropriate CML elements to create a valid document.

Note that the original output calls have all been maintained, but have been

commented out.

An executable of the modified version of MOPAC was compiled, along

with FoX v2.0.2, using G95 v0.9 on a SUSE Linux machine with an i686

CPU architecture. Using this executable, when a calcultion with an input

file <id>.mop is run, the standard output, as usual, is written to <id>.out,

but there is also a file written to <id>.xml containing the output CML.

5.2.3 MOPAC-CML and Jmol

Another benefit of having CML output direct from MOPAC is that it enables

the viewing of renderings of the data immediately in current chemical visual-

ization tools, rather than first having to convert to a viewer-friendly format.

I have altered the to screen module so that the geometry of the structure is

output as a molecule element every 25 cycles (see figure 5.3), thus allowing

the tracking of atomic movement during optimization. When these files are

viewed in Jmol, the starting geometry will be displayed initially, and by using

the scroll buttons, a user can click through each intermediate structure until

the final geometry is displayed. This combination is very useful for viewing

and analyzing atomic movement during rearragements (as in figure 5.4).

5.3 High-throughput computing

High-throughput computing (HTC) is the use of many computing resources

over long periods of time to accomplish a computational task∗, often involv-

∗As opposed to high-performance computing (HPC), where the emphasis is placed on a
much shorter timespan (FLOPS (FLoating-point Operations Per Second) is the common

167

Figure 5.3: Section of a MOPAC-CML output file showing the details of
successive optimization cycles. Every 25th cycle the geometry is output, as
shown in the module for cycle 50.

168

Figure 5.4: Images showing the use of Jmol to view the MOPAC-CML output
for a geometry optimization of low-cristobalite. The change in geometry can
be viewed using the scroll buttons in the top-right of the application window.
Calculations on the phases of silica are discussed further in section 5.6.2.

169

ing grid computing technologies and techniques. HTC is particularly useful

where the same analysis needs to be applied to independent sets of data

repeatedly; as is the case with using the same application to optimise the

geometry of a large set of crystal structures.

5.3.1 Condor

Condor[186] is an Open Source, high-throughput computing software frame-

work. Condor may be used to network machines into clusters of compute

nodes (called pools), and allows users to submit jobs to these resources. Ex-

ecutable files may be provided along with input files so that jobs involving

any application can be run (providing the application can run on the archi-

tectures in the cluster). Condor pools may consist of dedicated nodes, as

well as workstations, which are used at times when they would otherwise be

idle. Condor’s flocking technology[187] can be used to combine pools to build

Grid-style computing environments that cross administrative boundaries (as

in CamGrid below).

Condor provides features commonly found in batch scheduling systems,

such as job queueing and scheduling policies, priorities, resource monitoring

and resource management. Condor places submitted jobs into a queue, de-

cides where and when to run them, monitors jobs as they run and returns

the results back to the user.

5.3.2 CamGrid

CamGrid[37] is a project at the Cambridge e-Science Centre[36] to provide

a computational grid for the university’s members. It was initially conceived

by a number of departments and groups within the university who decided

to federate their computational facilities. CamGrid is based on Condor, with

each institution maintaining its own Condor pool (there are currently 12).

The resources of all participating pools are shared using Condor’s flocking

mechanism. The Unilever Centre for Molecular Science Informatics (UCC)

yardstick in HPC).

170

provides a pool consisting of 44 dedicated Condor hosts and a central man-

ager from which jobs can be submitted[188].

5.4 The calculation workflow

The steps necessary to perform the calculations and obtain the output are:

1. select suitable structures from CrystalEye,

2. create MOPAC input files from each CML file,

3. create a Condor submit file for each MOPAC input file,

4. upload the MOPAC input and Condor submit files to the Condor sub-

mit host,

5. submit the jobs to the Condor pool,

6. retrieve the output CML files.

I aimed to automate as much of this process as possible. The discussion and

implementation of each step is provided below.

5.4.1 Structure selection

The fact that I have access to an Open, CML-based dataset of structures in

CrystalEye makes data aggregation and filtering simpler than the methods

previously available, as:� I don’t have to pay or ask permission to get or reuse the data,� a harvesting method and tool is provided (section 4.3.6),� I can use existing tools to parse, extract and perform complex filtering

of the CML data provided.

171

After harvesting the CrystalEye dataset onto a local machine, I then cre-

ated a Java program that would iterate through all of the CML files, and use

XPath queries to find suitable structures. The precise details of the filters

used for both organic and inorganic structures are described in section 5.5

5.4.2 MOPAC input

Unlike more conventional methods, MOPAC does not normally use a funda-

mental unit cell. Neither does it sample the Brillouin Zone in order to model

the electronic structure. Instead, it uses a large unit cell, called a cluster,

and applies the Born-von Karman[189, 190] periodic boundary conditions.

The online MOPAC manual states:

The unit cell must be large enough that an atomic orbital in the

center of the unit cell has an insignificant overlap with the atomic

orbitals at the ends of the unit cell. In practice, a translation

vector of more that about 7 or 8Å is sufficient.[191]

Stewart provided me with a set of example input files for the solid-state

calculations. These examples contained a common set of input parameters

which I adopted, though I also added a time limit and a flag indicating that

no checkpoint file need be written during calculation (to save space on the

submit host). An example input file is shown in figure 5.5, the first line of

which contains the set of parameters that were used throughout this work.

The definitions for these are:

MERS=(1,1,2) Used to signify the number of unit cells used along the a, b

and c axes respectively. Using the recommendation from the MOPAC

manual above, I used a minimum translation vector of 7Å for the clus-

ters in the calculations. As many structures have unit cell parameters

smaller than this, the calculation must be performed on a supercell of

the structure.

GNORM=5 Signals that geometry optimization should exit as soon as the gradi-

ent norm drops below 5 kcal mol−1Å−1, corresponding to an uncertainty

in the optimized geometry of about 0.001Å.

172

Figure 5.5: Example input file for a MOPAC solid-state calculation for Ap-
atite. Note that the Z-matrix has been truncated for brevity.

LET DDMIN=0.0 During a calculation, the confidence level or trust radius

is continuously checked. If this becomes too small, the calculation

will be stopped. This can readily happen if the geometry was already

almost optimized (as may be the case with the starting experimental

geometries). In these cases, this combination of two keywords is to be

used[192].

T=172800 Sets a CPU time limit of 172800 seconds (two days) for the cal-

culation.

DUMP=172801 If this keyword is not provided, restart files are written au-

tomatically at two hour CPU time intervals to allow long jobs to be

restarted if they are terminated catastrophically. The time for this key-

word has been provided so that the interval for writing the restart file

is longer than the maximum calculation time.

The next two lines are used for calculation comments. Below this is the Z-

matrix for the cluster, where the element symbol is followed by the Cartesian

173

coordinates for the atom. Stewart stated that in his work:

“An attempt was made initially to use internal coordinates, but

the numerical instabilities associated with the geometric gradients

at the interfaces of the unit cells rendered their use impractical.”[179]

thus I used Cartesian coordinates exclusively. At the end of the Z-matrix are

the translation vectors for the cluster, denoted by the symbol Tv. The +1

next to each coordinate signals that it should be optimized. During Stewart’s

work all unit cell parameters were optimized, as were the coordinates of all

atoms within the unit cell. Thus, during the calculations, I will do the same.

The legacy2cml library[114] contains the MOPACINConverter class that

allows the conversion of CML molecules to MOPAC input files for molecular

calculations. This converter was extended to allow users to use molecules

containing crystal elements to create MOPAC solid-state input files. An

example of the use of this converter is shown below:

String[] args = {"-INFILE", "c:/path/to/cml/file.cml",

"-OUTFILE", "c:/output/file/path.mop",

"-MAKELEGACY",

"-KEYWORDS", "GNORM=5",

"-TITLE", "ID",

"-JOBID", "1",

"-MINTV", 7,

"-CRYSTAL"

};

MOPACINConverter mopConverter = new MOPACINConverter();

mopConverter.runCommands(args);

The options used in the above example are:� INFILE – the path to the input CML file.� OUTFILE –the path to the output MOPAC input file.� MAKELEGACY – indicates to the parser that it should create MOPAC

input files from CML, and not the other way round (which the class is

able to perform).� KEYWORDS – the job parameters (first line for the input file).

174

� TITLE – the job title (second line). In this work this is used to indicate

the origin of the crystal structure, including the publisher, journal,

year, issue, article and CIF datablock information, e.g.

acta b 1992 06-00 as0598sup1 as0598b� JOBID – the unique ID of the job (third line). This is useful in case

more than one job needs to be run on any structure.� MINTV – the minimum translation vector length of the generated super-

cell.� CRYSTAL – indicates that the input file is for a solid-state calculation.

When MOPACINConverter is executed, the following steps are performed:

1. the CML file is read into an in-memory XOM representation,

2. the cell parameters from the crystal child of the molecule element

are extracted,

3. the size of the supercell needed to fulfill the minimum cluster size re-

quirements is calculated,

4. the cluster is generated from the molecule (methods were added to the

CrystalTool class of the JUMBO library to allow this),

5. for each atom, the Cartesian coordinates are calculated from the frac-

tional coordinates provided,

Using the input parameters and IDs provided, as well as the generated coor-

dinates, the input file can then be created and output.

5.4.3 Condor input

An example file for the submission of a MOPAC job to Condor is shown in

figure 5.6. Assuming the file is named ned24-2392.mop, and that the user

has a shell open and pointing at the same directory that file is stored in, the

following command would submit the job from the host to the pool:

175

Figure 5.6: Example submit file for the submission of a MOPAC job to
Condor.

condor submit ./jobs/ned24-2392.condor.sh

Here follows a description of each line in the submit file:

1. the Condor execution environment

2. the operating system, CPU architecture and minimum memory re-

quired for a compute node to be able to run the job

3. the path on the submit host to the executable file to be used for the

job

4. the path that the job log should be written out to on the submit host

5. flag that the log file should be in XML

6. flag that the job should be terminated if it takes up more than 2Gb

drive space

7. the path that the output of stderr should be written to on the submit

host

8. flag that all files necessary to start the job should be transferred from

the submit host to the Condor pool (the executable is always trans-

ferred when this flag is used)

176

9. flag that files should only be written from the pool to the submit host

once the job has terminated

10. path of the input file to be transferred to the pool

11. the argument needed in the job execution command

12. tells Condor to queue the job for execution

5.4.4 Job submission and retrieval

All job submissions to CamGrid must be done via a Condor submit host (dur-

ing this work, it is the UCC host, hadean--ch.grid.private.cam.ac.uk).

Unfortunately there are no methods available for automating the submission

of jobs from workstations, so all the MOPAC input and Condor submit files

must be copied to hadean and run from there. This was achieved by a shell

script.

Another shell script was then written to submit the jobs from the host in

batches of 500. I kept track of job termination, and when each batch had

finished, the next was submitted. Once all the jobs had terminated, all output

was archived on hadean, with copies of the CML output being downloaded

onto a workstation for analysis (again achieved by a shell script).

Condor-related job failures

Prior to the execution of the batch jobs, a number of tests were run to

ensure that running MOPAC jobs on Condor would be successful. These

tests uncovered two Condor-related problems which caused jobs to fail.

Initially, each Condor submit files contained commands to indicate the

names of the output files on each calculation (as below):

input = ned24-1396.mop

output = ned24-1396.out

177

This is necessary for many applications, though in MOPAC only the input

file needs to be specified. The name of the output file is that of the input file,

but with the .out MIME (and also .xml in the modified version) replacing

.mop. As I was instructing Condor to create files that MOPAC was also

writing to, all submitted jobs failed immediately.

Many of the machines in each Condor pool contain more than one VM

(virtual machine), where each is able to run a separate job. It was noted that

when a machine was running more than one job from a particular user, if

one job terminated (whether successfully or not), then the other jobs would

be terminated at exactly the same time. This was discussed with Mark

Calleja (manager of CamGrid), who identified that when a job terminated, a

SIGTERM was automatically being sent to all processes owned by that user.

This was meant to clean up any unclosed processes from the terminated job,

but as a result was also closing any other jobs owned by the user. This

problem has subsequently been fixed.

5.4.5 The overall workflow

The workflow for the high-throughput solid-state calculation of MOPAC jobs

is shown in figure 5.7. For each step, programs and scripts were written to

automatically process arbitrarily large datasets, though they were executed

manually rather than the ideal of being linked together in an automated

workflow. It would be technically possible to automate the whole process,

though the lack of an interface for automated job submission to CamGrid

would require a workaround.

5.5 The first protocol

By using structures from CrystalEye as starting points for the calculations, I

can investigate how closely MOPAC calculations agree with experimentally

observed structures. Ideally all structures would remain unchanged during

calculation, though in reality I may expect the following changes to occur:

178

Figure 5.7: The workflow for performing high-throughput solid-state
MOPAC calculations. CML is harvested from CrystalEye via the Atom
archive feed, before being filtered by a Java program based around XPath
queries. The remaining CML files are then parsed by the MOPACINConverter
Java class into solid-state MOPAC input files, which are subsequently con-
verted into Condor submit files. Both of these are then uploaded to the
Condor submit host, hadean, via a shell script. Batches of jobs are submit-
ted from hadean to the UCC Condor pool, which may communicate with
other departmental pools to execute the jobs. Once terminated, Condor will
return the output files to hadean, which are downloaded to a workstation for
analysis via another shell script.

179

Figure 5.8: Figure showing an experimentally observed charge-transfer com-
plex of N -Iodosuccinimide and an imine[194]. The intermolecular N-I dis-
tance is 2.5Å, and the intramolecular distance is 2.1Å.� expansion/contraction — many of the structures obtained from Crys-

talEye will have been observed at various temperatures or pressures.

As MOPAC calculates all structures at the same temperature (0K), I

can expect some expansion or contraction to occur.� rotation of subspecies — in some structures, large rotation of subspecies

and polyhedra can occur at relatively low energies.� phase changes — MOPAC may rearrange the structure into one that

it evaluates to be a more energetically favourable form.� formation of new bonds — particularly between electron-rich and electron-

poor atoms. For instance, donor-acceptor (charge-transfer) complexes

involving molecular halogens, interhalides and a wide range of covalent

halides are well known[193] (as in figure 5.8). In these complexes, inter-

molecular distances between the two atoms taking part in the charge-

transfer are considerably smaller than the sum of the van der Waals

180

radii, and in some cases, approach the sum of the covalent radii.� mobile protons — Townsend discussed intramolecular H movement be-

tween electronegative atoms in his work on PM3. I can also expect

intermolecular H movement in the solid-state, particularly where H-

bonding occurs.

It is very difficult to create a method to identify interesting changes in

crystal structures; Stewart proposed using density as the most obvious scalar

property to observe structural change.

5.5.1 Organic structures

The selection of organic structures from CrystalEye was performed in sets of

500, which would subsequently be filtered before the file conversions and job

execution took place. Once one set of calculations had finished, the process

would then be repeated on the next set of 500 structures. The total number of

organic structures selected by the end of the process was 6500. This included

all those organic structures from Acta Cryst. Section A and Section B, as

well as all those from Section C up to the end of 1998.

From the 6500 selected structures, all of those containing disorder, as in-

dicated by the author of the CIFs, were removed, leaving 5916 structures.

From these, all those without an author provided formula (usually obtained

from the chemical formula sum element), which is required for the vali-

dation of the the composition of the structure, were removed; this left 5798

structures.

For the remaining 5798 structures, the calculation workflow was performed

as described previously in section 5.4. Of these calculations:� 4245 converged successfully,� 875 reached the job time limit before converging,� 651 reached the maximum cycle limit before converging,

181

Figure 5.9: Plot showing the experimentally observed densities against the
change in density predicted by MOPAC for the set of 4243 converged organic
structure calculations.� 27 resulted in MOPAC errors that gave controlled abortions,� 0 resulted in an uncontrolled job abortion.

For those calculations that converged successfully, figure 5.9 shows a plot

of the experimentally observed crystal density against the change in density

predicted by MOPAC. The average unsigned and signed errors in calculated

density for this dataset are 6.4% and 4.0% respectively. Before any fur-

ther analysis of the results were undertaken, those calculations for inorganic

structures were run.

5.5.2 Inorganic structures

As there were far fewer inorganic than organic structures in CrystalEye, the

aim was to select all of them prior to filtering and calculation. The filtering

182

steps are summarized below:

1. select all inorganic structures from CrystalEye — giving 17919 struc-

tures,

2. remove those structures containing disorder — leaving 7404 structures,

3. remove structures that contain pairs of atoms for which MOPAC has

no atom-pair parameters — leaving 2245 structures,

4. remove structures that do not contain an author provided formula —

leaving 2173 structures.

It is worth noting that CrystalEye contains many ‘duplicate’ structures which

have the same composition, but are either different phases, or are the same

structure but the experiment was performed at a different temperature or

pressure. All duplicate structures that passed the above filters were retained

in the dataset, and shall be further discussed later.

From these 2173 structures, 500 were selected and the calculations per-

formed as described previously. However, upon analysing the output, it

appeared that the results were unpromising and so no further calculations

were performed at that time. Of the 500 calculations:� 464 converged successfully,� 5 reached the time limit before converging,� 3 reached the cycle limit before converging,� 28 resulted in MOPAC errors that gave controlled abortions,� 0 resulted in an uncontrolled abortion.

For those calculations that converged successfully, figure 5.10 shows a plot

of the experimentally observed crystal density against the change in density

predicted by MOPAC. The average unsigned error in calculated density for

this dataset is 25.1%, which is larger than is acceptable.

183

Figure 5.10: Plot showing the experimentally observed densities against the
change in density predicted by MOPAC for the set of 464 successfully con-
verged inorganic structure calculations.

After this finding, I decided that rather than continue with the analysis

of the inorganic calculations, I would wait for the next development in the

protocol for solid-state calculations. I also decided that the full analysis of

the organic calculations would be postponed to this time. It was at this point

that the work on Open Computational NMR was performed (see chapter 6).

5.6 The second protocol

In March 2008, Stewart published a second paper on PM6[179], which de-

scribed his calculations performed on the solid-state. In this paper, the

results of geometry optimization for 124 organic structures and 166 inor-

ganic structures are discussed, with the starting structures for each cal-

culation being the observed X-ray structure. The reference data for the

organic and inorganic structures were obtained solely from the Cambridge

184

Structural Database[132, 133] and American Mineralogist Crystal Structure

Database[195].

The protocol used by Stewart for the organic calculations was the same

as was used in my work. With few exceptions, the geometries of individual

organic molecules and ions and their packing arrangement were reproduced

with good accuracy. The average unsigned and signed errors for the calcu-

lated density of organic solids was 6.9% and 3.9% respectively. This matched

well with values obtained during this work of 6.4% and 4.0%. Stewart at-

tributed most of these errors to problems in modeling intermolecular separa-

tion. No major errors were found during these calculations, though Stewart

did note that formation of the H3O
+ ion was unrealistically favoured.

The parameters used by Stewart for the inorganic calculations were the

same as I had used, though the minimum cluster size differed, with Stewart

stating that:

“. . . a much larger cluster must be used when inorganic solids that

are not composed of discrete molecules are modeled. In practice,

this means that the cluster used has to be large enough to contain

a sphere of radius 10-12Å, in contrast to the 7-8Å used in the

modeling of organic solids.”[179]

The average unsigned and signed errors of calculated density for the inorganic

calculations were stated as 9.3% and -2.5% respectively. The unsigned error

is a large improvement on the 25.1% observed during the calculations, and

signified that I should rerun them, and the remainder of the dataset, with

the larger cluster size recommended.

Most of the inorganic structures used by Stewart contained common, well

characterized anions such as halides, oxides, carbonates, phosphates, sul-

fates, sulfides, nitrates and silicates, which may have been the reason for the

improvement in accuracy. Barring silicates, the majority of the structures

were of type AnBm, or contained two distinct species. The highest accuracy

185

was exhibited in minerals in which metal atoms interact with oxygen, with

the oxygen then interacting with a main group element. Stewart attributed

this to the fact that a large quantity of reference data for systems that have

such interactions was used during parameterization.

During the work, Stewart found five atom-pairs where the core-core pa-

rameters were erroneous, and which:

“. . . gave rise to results that were nonsense.”[179]

These erroneous pairings were Na-Na, Pb-Sb, Pb-Zn, Pb-Se and Br-N. Stew-

art stated that fixing these problems:

“. . . would involve only a re-optimization of the faulty diatomic

parameters, and would not alter the performance of PM6 when

applied to other systems.”[179]

Note that a new version of MOPAC had not been released since these findings,

so any occurrences of these atom-pairs in the calculations was likely to also

give poor results. As Stewart had used a much smaller range of systems

than were available in the selection from CrystalEye, it was likely that I

would uncover further erroneous atom-pairings, and so it seemed sensible to

investigate this early in the analysis.

Before any calculations were run with structures from CrystalEye, I re-

peated all of those calculations that Stewart had performed and made avail-

able via the MOPAC website[196]. The results obtained from the calculation

environment used in this work agreed with those obtained by Stewart.

5.6.1 The data

The MOPAC input files (.mop), the standard MOPAC output (.out), the

MOPAC-CML output (.xml) and the original CIF from which the input

files were created (.cif) for all organic and inorganic calculations have been

made available through the University of Cambridge’s DSpace repository at

the following addresses:

186

� http://www.dspace.cam.ac.uk/handle/1810/197582� http://www.dspace.cam.ac.uk/handle/1810/197581

For each of the two datasets, the names of the files have the form of ned24-xx,

where xx is an integer that refers to the job number of the calculation. When

discussing groups of calculations in the following analyses, I will refer to

sections in appendix B, which will contain a list of the names of the relevant

jobs.

5.6.2 Inorganic structures

From the 2173 structures selected in section 5.5.2, MOPAC input files were

regenerated with the same input parameters, though with a larger minimum

cluster size of 12Å, the upper limit of the minimum range recommended by

Stewart. No extra input parameters were used to specify the spin-state of

any metal centres, though as Stewart has stated:

“For geometries, the effect of ignoring spin is minor — much less

than the errors in PM6.”[197]

this should not effect any conclusions that I draw from the results.

From the created MOPAC input files, all those jobs containing clusters with

300 or fewer atoms were selected, giving 1731 structures from the following

sources:� Acta Crystallographica - 172 structures� American Chemical Society - 52 structures� Royal Society of Chemistry - 14 structures� Crystallography Open Database - 1493 structures

From the calculations performed on these structures:� 1258 converged successfully,

187

� 424 reached the time limit before converging,� 1 reached the cycle limit before converging,� 48 resulted in MOPAC errors that gave controlled abortions,� 0 resulted in an uncontrolled abortion.

Figure 5.11 shows a plot of the experimentally observed crystal density

against the change in density predicted by MOPAC for those calculations

that converged successfully. The average unsigned and signed errors in cal-

culated density for this dataset are 17.8% and -4.8% respectively. The un-

signed error is considerably higher than that observed by Stewart in his work,

though it is perhaps expected, as a far wider range of inorganic systems have

been calculated in the dataset in this work. It is likely that some of the more

exotic atom pairings would have had a poor representation during parame-

terization, which can lead to incorrect parameters, and hence results.

Those calculations that either ran out of time or reached the cycle limit

before converging will not be rerun, and hence will not figure in any of the

further analysis. The calculations that terminated with controlled errors are

discussed at the end of this subsection.

Short atom-atom distances

Erroneous atom-pair parameters can be discovered by inspecting the final

geometries of each calculation for particularly short atom-atom distances.

A program was written to iterate through all of the MOPAC-CML files for

the calculations that converged successfully to find any instances where the

atom-atom distances were less than three-quarters of the sum of the covalent

radii.

This program found 24 different atom-pairings with short atom-atom dis-

tances in 57 structures; these are summarized in appendix B.1.1. The atom

pairs are Ba-Ba, Br-Ta, Ca-Na (as shown in figure 5.12), Ca-S, Cd-N, Cl-Fe,

Cl-Hg, Cs-P, F-K, Hg-Hg, Hg-Te, K-Nb, K-Ta, La-La, Mg-Mg, Na-Na, Na-S,

188

Figure 5.11: Plot showing the experimentally observed densities against the
change in density predicted by MOPAC for the set of 1258 successfully con-
verged inorganic structure calculations.

189

Figure 5.12: Figure showing the creation of a spurious Ca-Na bond in prober-
tite. The Ca-Na distances in the starting and final structure are 3.8Å and
1.9Å respectively (green=Ca, purple=Na).

Na-Ta, P-Pb, Pb-Pb, Pb-Se, Si-Sr, Zn-Zn. I inspected the bond-length plots

at CrystalEye[198] corresponding to each of these atom-pairs, and in each

case the calculated distance was less than that of all observed distances in

the entire CrystalEye dataset. 496 structures containing one or more of these

atom-pairs were found in the dataset, and were subsequently removed from

further analysis. After this filtering, 762 structures remained.

Duplicate structures

As discussed before, no attempt was made to remove structures with dupli-

cated composition from the dataset. Of the remaining 762 structures, 542

had structures of duplicate composition. These duplicates may consist of

different phases of the same structure or structures of the same phase that

had been elucidated at a different temperature and/or pressure.

By investigating the results of those calculations for structures of identical

composition and phase at different temperature and pressure, it is shown

that they converge on the same structure. This is not an unexpected result,

as all calculations are performed at absolute zero, though it is gratifying.

190

Figure 5.13: Figure showing the starting cluster of potassium dinitramide
displayed in Jmol (where purple=K, blue=N, red=O)

It does, however, highlight a source of error in the difference between the

observed and calculated density. For instance, in the dataset, there were

7 structures of potassium dinitramide, KN3O4 (as shown in figure 5.13) at

temperatures between 85K and 298K. There is a 3.7% difference in starting

density between the minimum and maximum of these structures; therefore,

if the temperature of the structure of potassium dinitramide that is being

calculated is not known, then an error of less than 3.7% cannot be expected.

This order of error can be expected for other systems, and so it may be useful

to analyse only those structures that were observed at low temperatures and

pressures. However, this metadata is not routinely provided for all structures

in the dataset, and due to the already small number of structures left, I

decided not to perform this filtering.

From the 542 structures with duplicate composition, each was examined

and one representative of each phase of each structure was selected using the

191

Figure 5.14: Plot showing the experimentally observed densities against the
change in density predicted by MOPAC for the set of 393 remaining inorganic
structure calculations.

following criteria:� where possible, select the structure with the lowest temperature or

pressure (there were no instances where both were provided),� if no temperature or pressure is provided, select the structure with the

smallest density change during calculation.

173 structures were selected during this filtering. The other 369 duplicates

were removed from the dataset, leaving 393 structures.

For the 393 calculations left in the dataset, the plot of the experimentally

observed crystal density against the change in density predicted by MOPAC

is shown in figure 5.14. The average unsigned and signed errors for these

structures are 19.5% and -3.5% respectively.

192

Figure 5.15: Density plot of the RMS atomic deviations for the 393 remaining
calculations. Note that the appearance of RMS values of < 0Å is an artifact
of the density kernel method in R[201].

Atom RMS deviations

Inspecting change in density allows the discovery of poorly modeled struc-

tures where there has been a large expansion or contraction. However, to find

those structures where there have been large atomic rearrangements but the

density remains unchanged, another method is needed. This can be achieved

by using the RMS atomic deviation during calculation. For each of the re-

maining 393 calculations, the density plot of the RMS deviations are shown

in figure 5.15, where the mean RMS deviation is 1.0Å.

Starting with the structures with the largest RMS deviation and working

downward, the observed and calculated structures were inspected for each

calculation. The aim was to find the range in which those structures that had

been calculated poorly fell. It appears that for those structures with an RMS

deviation of less than 1Å, the overall structure remains largely unchanged.

193

The changes in this area involve small expansion/contraction or rotation of

subspecies. There are 242 such structures, which is 62% of the dataset. In

this range, there is a preponderance of ionic structures of light and medium

elements, and a small number of compounds that contain transition and semi-

metals. The latter group generally contain well known solvents, the lighter

halogens, or metals that are bonded only to oxygen atoms. These types of

structures that I observe to be modeled well by MOPAC are in agreement

with Stewart’s work in the second PM6 paper[179].

For structures with an RMS deviation greater than 1Å, there are still

many examples where the change involves expansion, contraction or rotation,

though each is naturally more pronounced as the RMS deviation increases.

As the maximum RMS deviation is approached, there are increasing numbers

of structures where large atomic rearrangements are observed, sometimes

with a loss of symmetry. In this range, there are many structures containing

the heavier halogens, the heavier alkali and earth-metals, and transition and

semi-metals bound to elements other than oxygen. For these structures, the

cause of the large RMS deviations can be assigned to three categories:

1. erroneous starting data,

2. real chemical variability,

3. modeling problems in MOPAC.

Erroneous starting data

10 calculations were found where the starting structure appeared to be in-

correct (see appendix B.1.3), owing to the following problems:

1. missing hydrogen atoms — these structures were not removed during

the filtering as the formula provided in the CIF did not contain the H

atoms either.

2. incorrect symmetry elements leading to the generation of an incorrect

unit cell — for these structures, the symmetry elements had not been

194

Figure 5.16: Figure showing the erroneous starting structure of SiF4 contain-
ing F-F bonds.

provided in the CIF, but had been added during processing by Crys-

talEye. In each case, the wrong space group had been provided in the

CIF, leading to the addition of the wrong symmetry elements during

the CML creation.

3. incorrect data provided in the CIF, e.g. the structure of SiF4 shown in

figure 5.16, which contains F-F bonds.

As 233 of the 393 structures were inspected, this gives a 4.3% error rate,

which is far higher than desirable. 8 of the 10 erroneous structures came

from the COD, though this is not unexpected, as over 86% of the calculated

structures were from this source.

Chemical variability

Some structures are known to be very difficult to model as they undergo large

distortions for very little energy. For instance, eight of the phases of silica are

195

present in the dataset (see appendix B.1.2†). These were low-quartz, high-

quartz, low-tridymite, high-tridymite, low-cristobalite, high-cristobalite, co-

esite and stishovite. The structural rearrangments between the high and

low form of each phase involve low energy rotation of tetrahedra, with tran-

sition between phases involving changes in the linkage between the tetra-

hedra. In each case, as expected, the linkage between the SiO4 tetrahedra

remains the same during calculation, and for high-quartz, high-tridymite,

high-cristobalite, coesite and stishovite, no tetrahedral rotation is predicted.

However, for low-quartz, low-tridymite and low-cristobalite, MOPAC pre-

dicts that they will undergo a phase transition into the higher symmetry,

higher temperature forms. This is shown in figure 5.4, where low-cristobalite

is rearranged during calculation into high-cristobalite.

There are other structures which are observed to undergo phase changes

during calculation (which may or may not be real), though investigating

them all is beyond the scope of this thesis.

Problems in modeling

The observed problems in modeling fall into three categories, these are:� uncontrolled expansion,� large loss of symmetry,� formation of new bonds.

The job name relevant to each of the points discussed below are provided in

appendix B.1.4. Only one example of uncontrolled expansion was found in

the dataset, which was for the structure of NiF2 (see figure 5.17).

MOPAC does not contain any specific functionality to handle symmetry,

and so for those interactions that are poorly modeled, this can lead to a large

loss of symmetry. This is usually seen when bonds are formed or broken, and

†note that there were 106 structures of SiO2 in the dataset before duplicates were
removed

196

Figure 5.17: Figure showing the large expansion in geometry predicted for
NiF2.

was noted in 20 cases. For instance, three of the structures with the highest

RMS deviations contain Ag, where a large loss of symmetry is predicted

in each case. This is shown in the calculation for Ag2O in figure 5.18. it

is interesting to note the well-formed structure that breaks away from one

corner of the cluster. The elements that occur more than once in structures

that show a large loss of symmetry are (number of occurrences shown in

parentheses) Ag(3), Rb(3), Cu(2), Xe(2) and Ga(2).

During inspection of the calculations, 4 atom-pairs were noted on more

than one occasion to give rise to bond formation‡, I-I, Rb-F, Al-Si and Tl-O.

Calculations that terminated with controlled errors

The 48 calculations that failed with errors did so with two different types:� unable to achieve self-consistency - 6 occurrences� numerical problems in bracketing lambda - 42 occurences.

Failing with these errors can signal problems with the modeling in MOPAC,

thus I should have removed other jobs containing these pairs from the analysis

‡where a bond is taken as a distance of less than 1.2 times the sum of the covalent radii

197

Figure 5.18: Figure showing the large loss of symmetry predicted during the
calculation for Ag2O.

at an earlier point. Details for all jobs discussed in the points below are

provided in appendix B.1.4.

There are 14 elemental crystal structures included in these failed jobs, Li

(2 structures of the same phase), Sc, Sr, Cd, Au, Tl (3 structures of two

different phases), Pb and Bi (4 structures of the same phase). Except for

Li, in each case the symmetry is retained, though there are large expansions

before the calculation terminates. The structures for Li show a large loss of

symmetry, with some bond lengths being predicted to be less than 1.4Å.

5.6.3 Organic structures

As the initial set of organic calcuations were performed with the same proto-

col Stewart used in the second PM6 paper, I can continue the analysis where

I left off in section 5.5.1.

Again, as with the analysis of inorganic calculations, the 1526 calculations

that either reached the time limit, or the maximum number of cycles before

converging will not be rerun, and will not be discussed further in this analysis.

198

Calculations that terminated with controlled errors

Two different errors were observed in the 27 failed calculations (summarized

in appendix B.2.1):� numerical problems in bracketing lambda — 8 occurrences.� all convergers are now forced on — 19 occurrences.

For the former, it was noted that all of the structures contained a nitroxyl

radical. When calculating the geometry of radicals, the UHF keyword should

be used, but all of the calculations in this work were performed using the

default RHF. Thus, the results for any calculations containing radicals must

be removed from the analysis. A simple program was created to iterate

through the dataset to find all structures containing moieties with an odd

number of electrons and remove them. During this filtering 8 calculations

that converged successfully were removed (summarized in appendix B.2.2),

leaving 4237 remaining.

For the latter error type, the online MOPAC manual states that:

“This is often caused by faulty data, so the data should be checked

to see if anything is wrong. This sometimes happens naturally,

particularly with exotic systems.”[199]

Each of the 19 structures causing this error were inspected. The starting

structure of one calculation (ned24-8752) was found to be erroneous, as the

position of one H atom in the original CIF was incorrect (see figure 5.19).

The other 18 starting structures were found to be correct and are described

in table B.1 in appendix B.2.1. On inspection, it appears that the following

may give problems during calculation in MOPAC:� structures containing a high proportion of N or F atoms,� structures containing N-N bonds,� structures containing C bonded to two or more N atoms.

199

Figure 5.19: Figure showing the data in the CIF for erucic acid rendered in
Jmol. Note the incorrect position of one of the terminal H atoms.

Townsend’s work has previously highlighted 10 molecular fragments that

seem to give problems when performing geometry optimization in the gas-

phase using MOPAC (though he was using the PM3 method)[200]. 9 of

those 10 fragments contained either N-N bonds or C bonded to two or more

N atoms.

Changes in connection table

By inspecting the connection tables of the moieties in the cluster throughout

each calculation, the formation or breaking of any bonds can be observed. A

change in connection table during calculation can be caused by two things:� an erroneous starting structure containing ‘wrong’ bonds,� incorrect modeling of the system by MOPAC.

A program was written to iterate through the MOPAC-CML for each cal-

culation, and to generate the InChIs for the starting, intermediate and final

200

structures. It then compared the InChIs at each stage and noted each cal-

culation where the InChI did not match. The job names relevant to each

point discussed below are provided in appendix B.2.3. Stewart has previ-

ously discussed the unrealistic favouring of Zwitterion formation from amine

and alcohol groups, as well as formation of the oxonium ion when using

PM6[179]. As a result, these types of H-shift will not be further investigated

here.

The program highlighted 87 structures which had undergone a change in

connection table during calculation. Of these, 85 contained bond formation

and only 2 contained bond breaking. Upon inspection it was found that these

2 structures had incorrect starting geometry, which was traced back to the

fact that the CIFs for each (ned24-9025 and ned24-10389) did not contain

any symmetry elements. As with the inorganic examples earlier, when these

CIFs were processed, CrystalEye had used the provided space group to add

symmetry elements to the data. In each case this space group was incorrect

and meant the wrong symmetry elements were added for the cell, leading

to the creation of a structure which contained close contacts. In the case of

ned24-9025, these consisted of short C-H bonds, and in ned24-10389 there

are also short C-I bonds. In both cases, MOPAC ’fixes’ the broken structures.

For the other 85 structures, only bond formation is observed§, leading

to the creation of charge-transfer complexes. Most of the bonds formed

are between p-block elements, with the most common involving the heavier

halogens. The elements involved and the number of structures in which they

were observed to bond are:

S-N (3); S-O (4); S-S (2); S-Cl (2); Se-Se (2), Se-I (4), Te-Cl (1),

O-Br (4), N-Br (12); Br-Br (2); O-I (38); S-I (3); N-I (4); I-I (7)

The other observed effect was in hydrogen bonds containing the chloride ion.

13 structures were found where there is a significant shortening of the A-

§where a bond is taken as a distance of less than 1.2 times the sum of the covalent radii

201

Figure 5.20: Figure showing the formation of an N-I bond by contraction of
the cell. The observed N-I distance is 2.7Å, while the calculated distance is
2.1Å.

H—Cl distance, with the H atom also moves noticeably towards the A-Cl

midpoint.

On inspection of the structures where two p-block elements are shown

to bond, as expected, the new bonds are generally intermolecular, and in-

volve intermolecular shifts, rather than intramolecular movement to bring

the atoms closer together. It appears that where the atom-pairs are not ob-

structed by other species, it is normally a simple contraction of the cell that

leads to bond formation, as shown in figure 5.20.

The only cases of intramolecular bond formation found are for S-S, and

in both cases, this is brought about by an intramolecular 1,5 interaction, as

shown in figure 5.21.

In the other 83 cases where bonds are formed, the new bond is intermolec-

ular. The effects observed indicate that MOPAC seems to overestimate the

strength of charge-transfer bonds (see figure 5.20). In each case where S-

N bonds are formed, either the N or S atom is already bonded to another

N atom (as shown in figure 5.22). In the structures where S-O bonds are

202

Figure 5.21: Figure showing the formation of an S-S bond (yellow=S,
blue=N, green=Cl). The S-S distances in the starting and final structures
are 2.9Å and 2.3Å respectively.

formed, the oxygen is either part of a carboxylate or nitro group (there are

two examples of each).

In an attempt to ascertain the distances at which these atom-pairs become

attracted to each other, a program was written to iterate through all the

calculations, and for each atom pair described above, plot all distances of

less than 5Å in the starting structures against the distance between the

two atoms in the final structure. The plot for O-I interactions is shown in

figure 5.23. There is clearly a distance around 2Å favoured for O-I in many

calculated structures.

This same plot pattern is observed for many of the other atom-pair com-

binations described above, where the majority of the interactions lie around

the line of unity, though few show a large decrease in atom-atom distance.

While in the plot for O-I it appears that a distance of over 4.3Å is enough

to stop O-I formation, in the plot for N-Br (figure 5.24), it appears that

distances of over 5Å can still lead to bond formation. Again, as described

above, those interactions where the distance is considerably reduced during

calculation seem to arise in structures where a cell contraction can be made

203

Figure 5.22: Figure showing two structures in which the formation of a new
S-N bond is predicted (yellow=S, blue=N).

204

Figure 5.23: Plot of all observed O-I distances of less than 5Å against the
calculated distance (the line shown is unity).

205

Figure 5.24: Plot of all observed N-Br distances of less than 5Å against the
calculated distance (the line shown is unity).

to bring atoms in different moieties closer together.

Atom RMS deviations

For the 4237 remaining structures that converged successfully, the density

plot for the RMS atomic deviations is shown in figure 5.25. The mean RMS

deviation is 0.77Å, higher than expected, and there were more than 50 struc-

tures with RMS deviations of over 5Å. After investigation, it was found that

in many cases, the RMS deviations were artificially high due to the entire

cluster undergoing rotation, even when the internal structure of the cluster

remained unchanged (as shown in figure 5.26). This was a surprising effect

that neither I nor Stewart had expected. The origin of this problem is under

investigation by Stewart and has yet to be confirmed.

206

Figure 5.25: Density plot of the RMS atomic deviations for the 4237 remain-
ing calculations.

A program was then written to ‘fit’ the final structure back on to the

starting structure and identify the magnitude of the rotation that had oc-

curred. Figure 5.27 shows the plot of structural rotation against the RMS

deviation for that structure. This rotation of the entire structure makes it

more difficult to write software to identify patterns in the calculations. As

such, further analysis of RMS deviations will be postponed until the issue

with cluster rotation has been investigated.

Minimum supercell size

Owing to the nature of the solid-state calculations in MOPAC, the size of

the cluster used can have an effect on the accuracy of the calculation. As

discussed above, the minimum translation vector during the organic calcula-

tions was 7Å. For unit cells with lengths less than 7Å, a supercell must be

created. This means that for most calculations, the smallest translation vec-

207

Figure 5.26: Figure showing the rotating geometry of α-(2-pyridine)-2,4-
dinitrophenylethenyl at various stages during calculation.

208

Figure 5.27: Plot of the angle of rotation of each structure against its RMS
deviation.

209

Figure 5.28: Plot of the minimum translation vector against the change in
density during calculation for each structure.

tor will lie between 7Å and 14Å. Thus, by plotting the minimum translation

vector against the density change, I can get an idea of the improvement in

accuracy afforded by the larger clusters (as shown in figure 5.28).

It is not clear just by inspecting the plot whether there is a relationship

between the two. To do this, the structures can be split up into ranges of

minimum translation vector, and then calculate the standard deviation and

mean for each (table 5.6.3). There does not seem to be an improvement

in either the mean or standard deviation of density change as the minimum

translation vector increases. Thus when calculating a large number of organic

structures containing a range of systems, there appears to be no benefit from

using a minimum translation vector greater than 7Å.

210

Min. TV (Å) No. of structures Mean Standard deviation
7 < x ≤7.5 714 4.06 6.75
7.5 < x ≤8 685 4.00 7.21
8 < x ≤8.5 542 4.25 6.70
8.5 < x ≤9 446 4.09 6.82
9 < x ≤9.5 418 3.22 8.00
9.5 < x ≤10 374 3.73 6.74
10 < x ≤11 548 4.21 6.38

x > 11 516 4.13 6.33

Table 5.1: Table showing the density change mean and standard deviation
for structures with various minimum translation vectors.

Density change outliers

To find those structural fragments that commonly give rise to large changes in

density during calculation, all those structures that had a predicted absolute

density change of >20% and did not contain a change in connection table were

inspected. For density changes of <-20% there were 16 structures, while for

changes of >20% there were 13 structures. These are shown in tables B.2 and

B.3 in appendix B.2.4. As observed in earlier examples, the change in density

for each of the inspected structures can be attributed almost exclusively to

changes in intermolecular distances.

For those structures with predicted density change of <-20%, there are

three structural features which are prominent:� structures with a high proportion of F or Cl atoms, or containing a

centre bonded to 3 F or Cl atoms — 7 examples,� structures containing a dithiocyclopentene fragment — 5 examples,� structures containing aromatic N — 5 examples.

There is also one structure (ned24-7257) which contains a C atom bonded to

3 N atoms, which was a fragment highlighted earlier that occurred in those

calculations which terminated with controlled errors.

211

For those structures with predicted density change of >20%, there are also

2 structural features which stand out:� aromatic groups with Cl, Br or I subsituents — 5 examples,� icosohedral carboranes — 2 examples.

5.7 Conclusions

The high-throughput calculation of several thousand solid-state structures

has been used to highlight and report several issues that need to be addressed

in the algorithms and parameterization of the PM6 method. Stewart has

stated:

“Most of the errors were either new to me, or were good examples

of known faults.”[203]

Creating the workflow and performing these high-throughput calculations

would have been impossible if the data had not been Open, and would have

been considerably harder if CrystalEye had not been created to provide the

data in a readily available XML-based collection.

By running several thousand jobs with a fixed set of parameters, I was

able to discover many issues with the method. The MOPAC algorithm for

solid-state calculation, appears to be robust, i.e. no uncontrolled crashes

were encountered during the 8029 calculations performed in this work. It is

important to ’stress-test’ methods in this way, as the more systems that are

calculated, the more problems are discovered. For semi-empirical methods

this is particularly important, as the data that gives rise to errors can often

be used in the next parameterization to fix the problem. Stewart has stated

that:

“Developing tests for new methods is hard work, and until now

has been ‘hit or miss’ — mostly I wait until someone writes in

with a complaint, and most of those are user errors anyway, and

212

thus result in a lot of wasted time. What you’ve done is, I think,

on a par with the CSP2004 test[202], but with a very different

emphasis. In CSP2004, the objective was to use skill to predict

the packing of new solids. Once the test was complete, it could

not be used again. In your work, you provide a test that can

be applied to any new computational chemistry method, by the

authors of that method, or by users.”[203]

The calculated results for organic structures, generally agree well with

experiment. Several atom-pairs have been highlighted which commonly give

rise to intermolecular bonds that are unrealistically short, as well as a large

problem with the method which leads to the whole system rotating during

calculation. The best results are achieved using structures involving first

row elements and a low proportion of the lighter halogens and chalcogens. In

structures containing the heavier halogens and chalcogens, there is a tendency

for the intermolecular forces to be overemphasised. However, there were no

unreasonable structures predicted by MOPAC; the largest effect observed

was the shortening of charge-transfer bonds.

The current version of MOPAC could be confidently used as a method to

validate the structure of organic crystal structures; though users should be

aware that the prediction for any structure that contains the heavier halogens

or chalcogens, or a large proportion of the lighter halogens is likely to be less

accurate than otherwise.

For inorganic structures, MOPAC generally preserves the symmetry well,

despite having no specific functionality to do so. However, the structure

prediction can fail catastrophically, giving results where all symmetry is lost.

In some examples it appeared that this is a result of erroneous atom-pair

parameters giving rise to very short bonds, which leads to a large distortion

in the whole structure. In other examples this is not the case (e.g. the Ag2O

structure shown in figure 5.18), and the cause has yet to be determined by

Stewart. Several atom-pairs which give rise to short bonds and large loss of

213

symmetry have been highlighted.

At present, MOPAC could not be used confidently as a general method

for validation of inorganic crystal structures. If MOPAC predicted a similar

geometry, then this could be a good indication of a correct structure. If

MOPAC predicted a different structure, then it would be difficult to know

whether this was because the starting structure was erroneous, whether there

is a low-energy phase change, or whether MOPAC is modeling the system

poorly.

214

Chapter 6

High-throughput prediction of
13C NMR chemical shifts by
quantum-mechanical GIAO
calculations

6.1 Introduction

This chapter describes a collaboration between myself, Peter Murray-Rust

and Henry Rzepa in performing high-throughput prediction of 13C NMR

chemical shifts using density-functional theory (DFT) methods. Rzepa had

developed a modification to Bifulco’s protocol[221] for the prediction of 13C

shifts, though it had not been applied to a wide range of systems. The

work here describes my efforts to produce an automated workflow to perform

high-throughput calculations on CamGrid using data obtained from an Open

NMR shift database, NMRShiftDB[204, 205]. The results of the work are

used to highlight the accuracy of both the protocol and the data, and the

range of systems to which the protocol can reasonably be applied.

6.2 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is a powerful technique for structure de-

termination in solution since it can provide a wealth of data that can be

related to chemical structure, conformation, and their relationship or inter-

215

action with the surroundings. The fundamental data provided by an NMR

spectrum are chemical shifts (δ), which are used to obtain atom connectiv-

ity and spin-spin coupling constants (J), from which stereochemistry can be

deduced.

Despite all of the 2D and 3D spectroscopic methods available today, struc-

tural assignment of complex molecules (e.g. natural products) is still a sig-

nificant challenge. To aid assignment, the prediction of NMR spectra by

computational methods can be used. In particular, 13C chemical shifts are

spread over a wide spectral range, are relatively insensitive to solvent effects,

do not exhibit spin-spin couplings (owing to the low natural abundance) and

are sensitive to steric and electronic influences in the structure. Matching
13C spectra can be an indication of identity between two compounds, and so

accurate prediction of 13C spectra is a good test for compatibility.

6.3 Computational NMR

Computational NMR methods can be divided into two categories:

1. heuristic and machine learning algorithms, such as HOSE (Hierarchical

Organisation of Spherical Environments) codes and neural networks

(NN),

2. quantum mechanical methods.

The former rely on matching molecular fragment fingerprints to large databases

of spectra for known structures. These are in use in many proprietary chem-

istry packages and have been shown to work to a high degree of accuracy for
13C chemical shifts. Recent results using NMRShiftDB (see below) as a sur-

vey set show the average error of two such programs to be around 2ppm[206].

As with semi-empirical QM methods, the accuracy of these methods depends

on the data they are trained on. As a result, they are purely interpolative,

and work less well for compounds with unusual or novel substructures that

are not represented in the database.

216

The development of methods and codes for quantum mechanical calcula-

tions of NMR parameters, together with the ongoing growth of computing

facilities has led to the study of a wide range of chemical problems[207, 208].

The gauge-including atomic orbital (GIAO)[209, 210] method is one of the

most common approaches for calculating nuclear magnetic shielding tensors.

It has been shown to provide results that are often more accurate than those

calculated using other approaches of the same basis set size[211]. In many

cases, in order to take into account correlation effects, post-Hartree-Fock

calculations of organic molecules have been performed using DFT methods,

which usually provide significant results at a relatively low computational

cost. These methods have recently been widely applied to aid both structural

assignment[212, 213] and reassignment[214] (notably hexacyclinol[215]).

Forsyth first demonstrated that an inexpensive computational method

could be applied to a diverse group of small organic molecules with good

accuracy[216]. He used an MM3 geometry and calculated the chemical

shifts using GIAO with the B3LYP method and a specialized basis set.

Using an empirical linear correlation, an average shift deviation of only

2.3ppm was achieved across the data set. Bifulco refined this approach

and showed that the HF/6-31G(d) method gave good results for rigid non-

polar compounds[217]. The method was subsequently extended to flexible

molecules using a Boltzmann weighted average of the low-energy conformers[218].

Bifulco later compared a wide range of computational methods and found

that using the mPW1PW91/6-31G(d,p) DFT method for calculating both

the optimised geometry and chemical shifts gave the most accurate predictions[221].

A modified version of Bifulco’s protocol was used by Rychnovsky during

his structural reassignment of hexacyclinol[215]. His analysis consisted of

three steps:

1. the best geometry was identified using a Monte Carlo conformational

search with the MMFF force field,

2. the geometry optimization was calculated using the HF/3-21G method,

217

3. the NMR chemical shifts were calculated with mPW1PW91/6-31G(d,p)

and the self-consistent-reaction-field CPCM continuum solvation model

for the NMR solvent.

Note that the method in the second step was altered not because it was more

accurate, but because it was computationally less expensive. The average ab-

solute deviation for the reassigned structure was shown to be 1.8ppm with a

maximum deviation of 5.8ppm. Rzepa subsequently performed calculations

on the reassigned structure using mPW1PW91/6-31G(d,p) for both geom-

etry optimization and chemical shift calculation, and used a self-consistent

reaction field correction for solvation. From this an average absolute devia-

tion of 0.9ppm and a maximum of 2.8ppm were obtained[222]. The efficacy

of this method was also shown in the work on reassigning the structure of

the obtusallenes[214].

6.3.1 The Rzepa Protocol

After communication with Rzepa, it was decided that I would perform high-

throughput calculations using his protocol (which shall be referred to as

HSR0) to test its ability to reproduce known spectra for a range of small to

medium-sized structures. HSR0 is implemented as a Gaussian03 workflow

file containing three steps (as shown in figure 6.1):

1. geometry optimization using the ‘cheap’ RHF/STO-3G method,

2. more accurate optimization using the mPW1PW91/6-31G(d,p) method,

3. 13C chemical shift calculation using mPW1PW91/6-31G(d,p).

To perform the calculations, I needed access to a dataset of structures with:� a connection table (preferably including 3D coordinates),� the spectra,� assigment of spectral peaks to atoms,

218

Figure 6.1: Gaussian03 workflow file implementing HSR0. The file consists
of three linked calculations. Note that the Z-matrix has been truncated.� the spectrum’s metadata (the solvent is required in the HSR0 work-

flow).

A promising solution is to use NMRShiftDB, which fulfills all these criteria.

Not only that, but as the content is Open, we are also able to share the data.

This allows us to undertake the experiment in an Open manner (see section

6.5), where all data and results are made available to the public.

6.3.2 NMRShiftDB

NMRShiftDB[204, 205] is an Open Source, Open Access, Open Content[223]

database for organic structures and their NMR spectra. As of 2008-05-23

NMRShiftDB contains 21,498 structures with 25,091 spectra, the majority

of which are for 13C nuclei. The content comes from manual scraping of pub-

lished literature, donated third-party databases and individual submissions,

all of which are peer-reviewed by humans before being entered into NMR-

ShiftDB. The web interface provides functionality for spectrum and structure

219

prediction (based on HOSE codes) as well as searching spectra, structures

and other properties.

As NMRShiftDB is an Open Content database, users are provided with

methods to download the entire dataset in several forms[231], one of which

is CMLSpect[29]. For instance, the (truncated) CMLSpect document for

ketene is provided below:

<?xml version="1.0" encoding="UTF-8"?>

<molecule id="nmrshiftdb10008900" xmlns="http://www.xml-cml.org/schema">

<atomArray>

<atom id="a1" elementType="C" x2="0.0021" y2="-0.0041"

x3="0.0021" y3="-0.0041" z3="0.0020" formalCharge="0" hydrogenCount="0"/>

.....

</atomArray>

<bondArray>

<bond id="b1" atomRefs2="a2 a1" order="D"/>

.....

</bondArray>

<scalar dictRef="cdk:molecularProperty" title="Remark" dataType="xsd:string">

NMRShiftDB 10008900 www.nmrshiftdb.org_dkfz_2003-04-28_06:56:35_0430

</scalar>

<spectrum id="nmrshiftdb10014421" moleculeRef="nmrshiftdb10008900" type="NMR"

.....

xmlns:cml="http://www.xml-cml.org/dict/cml">

<conditionList>

<scalar dataType="xsd:string" dictRef="cml:temp" units="siUnits:k">298</scalar>

<scalar dataType="xsd:string" dictRef="cml:field" units="siUnits:hertz">

Unreported

</scalar>

</conditionList>

<metadataList>

<metadata name="nmr:OBSERVENUCLEUS" content="13C"/>

</metadataList>

<substanceList>

<substance dictRef="cml:field" role="subst:solvent" title="Chloroform-D1 (CDCl3)"/>

</substanceList>

<peakList>

<peak xValue="194.0" xUnits="units:ppm" peakShape="sharp" peakMultiplicity="S"

id="p1" atomRefs="a1"/>

.....

</peakList>

</spectrum>

</molecule>

The CMLSpect document contains a CML molecule element providing the

connection table along with 3D coordinates (which were calculated using

CORINA). Note however that explicit H atoms are not provided in NMR-

ShiftDB, they are described using the hydrogenCount attribute on each atom

bonded to H. Along with the molecule a spectrum element is provided which

contains the spectral data and metadata, which may include:

220

� the observed nucleus,� the temperature,� the field, in Hertz, used for the NMR experiment,� the solvent,� a description of each peak in the spectrum, with links to the atoms in

the molecule using the atomRefs attribute.

This is very useful, as all the data to define the structure and spectra is

provided in one highly structured document. Once the calculations are per-

formed, it is possible to add another spectrum element to each document to

describe the results. This will provide simple access to each data item during

analysis.

Note that without NMRShiftDB, automating this work would have been

very difficult. There are no other public databases of experimental NMR

spectra, so the source would have been limited to the published literature.

Problems with extracting NMR spectra from article full-text are:� It can be difficult to find a spectrum’s associated structure (e.g. nu-

merals are often used throughout publications as brief references to

long-named compounds).� Once the structure is found, it is unlikely that a connection table will

be provided. This must be obtained by either parsing an image of the

structure, or by performing a name-to-structure conversion.� Assignment of peaks to atoms is highly error-prone.

Another option would be to write a spider to scrape article supplemental

data and hope that enough authors had provided the spectra in formats such

as JCAMP[224]. However, there are no figures for the number of spectra

published using this method.

221

6.4 Calculations

The overall workflow for performing the calculations is very similar to that

used for MOPAC in section 5.4:

1. select suitable structures from NMRShiftDB,

2. create Gaussian03 workflow files for each selected structure,

3. create a Condor submit file for each job to be run,

4. upload the Gaussian03 workflow and Condor submit files to the Condor

submit host,

5. submit the jobs to the Condor pool,

6. retrieve the Gaussian03 output files,

The discussion and implementation of steps 1, 2 and 3 are provided in the

following subsections. The scripts and programs used for steps 4, 5 and 6 are

identical to those used in the MOPAC workflow, and so will not be described

here. As in the MOPAC workflow, the scripts and programs created for each

step are executed manually. As in the MOPAC work, it would have been

useful to have Gaussian03 output CML. However, it is a closed system and

so its standard textual output must be converted to CML.

6.4.1 Structure selection

After downloading a copy of the CML version of NMRShiftDB, a Java class

was written to read each CML document into JUMBO and select those with

connection tables that:� contain a subset of the atoms H, B, C, N, O, F, Si, P, S, Cl, Br and I,� have a MW < 300,� do not have a chain of more than two non-H atoms,� have at least one CML spectrum for 13C NMR where:

222

– the solvent is provided,

– the number of carbon atoms in the spectrum is equal to the num-

ber in the structure.

This gave a set of rigid, small molecules, while still allowing for the presence

of carbonyls and other functional groups. The first 400 structures to match

these criterai were chosen to be used during this work.

6.4.2 Gaussian03 input

For each selected structure, the next step was to create a Gaussian03 workflow

file in the form shown in figure 6.1. This is greatly eased by having the data in

a consistent CML structure, from which data extraction is simple and robust

using JUMBO (this is based on XOM, which contains an XPath library). Note

that the only variables in the workflow are the path to the checkpoint file,

the Z-matrix in the first step and the solvent in the third. To create the files,

a simple Java class was written to iterate through each structure, performing

the following steps:

1. read the CML into JUMBO,

2. convert the implicit H atoms into explicit atom elements,

3. create 3D coordinates for each H atom (JUMBO contains methods for

this),

4. convert the atomArray into a Gaussian03 Z-matrx,

5. extract the solvent from the spectrum.

6. enter the Z-matrix and solvent into the workflow template shown in

figure 6.2. The checkpoint file is assigned to have the same name as

the input CML file (its MIME is provided in the workflow template),

7. output workflow out with the same name as the input CML file, though

with the Gaussian03 workflow MIME, gjf.

223

Figure 6.2: A template for Gaussian03 input files implementing HSR0. The
three variables <checkpoint-path>, <z-matrix> and <solvent> must be
replaced.

6.4.3 Condor input

The Condor submit files for the Gaussian03 jobs (as in figure 6.3) are similar

to those used for the MOPAC work. To create them, a minor alteration was

made to the program used in the MOPAC work. As Gaussian03 accepts an

argument signalling where the the output file must be written to, there is

now a line containing the output parameter. Note also that, as Gaussian03

is installed on a number of machines in the CamGrid, that I do not have to

provide the executable with each job. Instead, I can specify that the jobs

run only on those machines with Gaussian03 by using:

HAS_GAUSSIAN == TRUE

in the requirements section.

A number of tests were run prior to the batch jobs to ensure that they

would execute successfully. During this testing, it was noticed that all jobs

submitted to three of the compute nodes were failing immediately. After

224

Figure 6.3: An example Condor submit file for Gaussian03 jobs.

investigation, this was shown not just to apply to Gaussian03 jobs. To make

sure that no further jobs were submitted to these nodes, the following was

appended to the requirements line in the submit file:

&& Machine != "gridlock20--ch.grid.private.cam.ac.uk"

&& Machine != "gridlock26--ch.grid.private.cam.ac.uk"

&& Machine != "gridlock27--ch.grid.private.cam.ac.uk"

Interestingly, it was noted that for these commands to be applied by the

system, they would have to be placed before the HAS GAUSSIAN parameter.

6.4.4 TMS

Tetramethylsilane (TMS) is the usual standard to which chemical shifts are

related. These chemical shifts, δ(13Ci), are defined by:

δ(13Ci) = σ(13C)TMS - σ(13Ci)

where σ is the nuclear isotropic shielding tensor. To have accurate calculated

chemical shifts, the geometry and the isotropic shielding constant of carbon

atoms in TMS were computed at the same level of calculation as used for

the structures in the dataset. As a workflow is being used where the solvent

must be specified, the calculation was performed on TMS using all solvents

in the dataset. All calculated chemical shifts discussed in the analysis will

be with reference to the average chemical shift of the carbons in TMS in the

same solvent.

225

6.5 Open Computational NMR

Before undertaking this investigation, it was decided that it would be per-

formed as an Open experiment, where the method and results would be made

public. The initial intention was to perform the experiment as Open Note-

book Science[225] (ONS), where all methods and results are published in as

close to real-time as possible on the Web. During the experiment the results

were published as they were discovered, though as the methodology was not

made clear from the outset, the experiment could not be classed as ONS. It

was instead given the title of ‘Open Computational NMR’.

One of the core benefits of publishing in such a way is that it allows

crowdsourcing, described as the solution of problems through a distributed

network of people. That is, the more people looking at the data, the more

chance there is of finding errors or relationships; to borrow a phrase from

Open Source software development:

Given enough eyeballs, all bugs are shallow.[227]

It was decided that the best method of publishing the experiment would be to

provide a webpage with the full, continuous experimental commentary[226],

and to notify others of each individual finding as it happened via a blog

(written by Peter Murray-Rust[228]∗). As blogs allow user comments, this

would also serve as a good place for community discussion and feedback.

To publish the results I could just create a webpage that provides hy-

perlinks to all output data. This would be most unhelpful however, as the

average reader would not have the time or inclination to analyse it them-

selves. Likewise, if only the numerical results of analysis were provided, e.g.

the average shift deviation, users would be denied the opportunity to view

each data point and discuss the origins of the deviations. It is therefore im-

portant to provide interactive visualizations that allow linking of graphical

points back to the original data.

∗All posts regarding this experiment are provided in the ‘NMR’ category of this blog
at http://wwmm.ch.cam.ac.uk/blogs/murrayrust/?cat=22

226

To allow this, a program was written that could read a series of CMLSpect

files and automatically produce a webpage like the one in figure 6.4. The

graphs on these pages are created as SVG (Scalable Vector Graphics) using

a Java tool developed by Townsend[165]. JavaScript is then embedded into

this SVG to allow points to become interactive. By embedding a Jmol applet

into the same webpage, it is possible to allow the optimised geometry of the

structure related to each point to be displayed upon clicking†. Note that

for each point clicked on the above page, the associated carbon atom is also

highlighted in the Jmol applet by a yellow halo. Links to other visualizations,

such as plots for individual structures are also provided, which then give links

back to the original data on the NMRShiftDB website. For each piece of

analysis performed, an interactive webpage was created showing the results,

and a link to it would be provided on the experiment commentary webpage.

6.6 Analysis

6.6.1 Preparing the output

Of the 400 structures selected for calculation, 105 of the geometries were not

successfully optimized before the calculation cycle limit of 100 was reached.

Rather than increase the cycle limit and recalculate, it was decided to con-

tinue with the 295 structures that were successfully calculated.

In order to ease the analysis, a Java program was written to extract the

chemical shifts and optimized Cartesian coordinates from each successful

Gaussian03 output file (as in figure 6.5), convert them into a CML spectrum

and then merge this with the original NMRShiftDB CML file. This means

that both observed and calculated shifts for each structure are in a common

format within the same document, and also allows the CML file to be read

into Jmol to display the optimized geometries side-by-side with the interac-

tive plots.

†Note that these graphs are currently only interactive when viewed with the Mozilla
Firefox browser.

227

Figure 6.4: Screen capture of the webpage at http://wwmm.ch.cam.ac.uk/

data/nmr/html/hsr0/all-obsvscalc_he_m_ps_pm_ta_lr/index.html . Note
that this plot is equivalent to the one shown in figure 6.6.

228

Figure 6.5: Section of a Gaussian03 output file showing the calculated
isotropic magnetic tensors.

6.6.2 Initial results

The plot showing all 2341 calculated versus observed 13C shifts is shown in

figure 6.6. The shifts for nuclei bonded to chlorine and bromine are shown

to be routinely overestimated during calculation. This is a well-known ef-

fect due to spin-orbit (SO) coupling and is exhibited increasingly by ‘heavy

elements’[229]. While calculation of the SO effect is possible using third-order

perturbation theory[230], additive corrections have been shown by Rzepa to

give accurate results[214]. Rzepa supplied these offsets to apply to carbon

atoms bonded to S, Cl and Br, which are -2, -3 and -12ppm respectively. The

plot for the same set of shifts after these offsets have been applied is shown

in figure 6.7. This shows a noticeable improvement in the 100-150ppm range

and removes a gross outlier at around (50,80) which corresponded to a carbon

bonded to two bromine atoms. The average absolute deviation for calculated

versus observed shifts is improved from 3.25ppm to 3.15ppm on inclusion of

these offsets.

229

Figure 6.6: Plot showing all calculated versus observed 13C shifts for the 295
successfully completed calculations using HSR0.

6.6.3 Sources of error

All datasets contain errors, and so it is helpful to know their causes in order

to aid discovery and remedy. There are many possible sources of error in

collecting NMR spectra and assigning shifts, some of which are discussed

below.

Experimental or reporting errors are independent of the prediction of the

effect. These include:� mis-reported solvent (the shifts are solvent dependent and the calcula-

tion tries to simulate this)� variable calibration of the NMR instrument (e.g. giving rise to origin

shifts)� impure compound — the sample may contain a substance which gives

rise to appreciable peaks not belonging to the title compound

230

Figure 6.7: Plot showing all calculated versus observed 13C shifts for the 295
successfully completed calculations using HSR0 after spin-orbit offsets have
been applied. The outlier at (60,135) is explained in section 6.6.4.

231

� wrong compound assigned to spectrum (i.e. error in bookkeeping or

drawing error)� machine parameters (e.g. field strength) varied or reported incorrectly� transcription errors in spectrum or peaks� misassignment of peaks to inappropriate atoms� broad peaks with considerable variance leading to misreporting of mean

(this is unlikely in 13C owing to the sharpness of the peaks)� errors in applying theory of NMR or its interpretation� noise (including random noise and mains spikes)� human editing of spectra

A prediction error is independent of the reported value for the shift. Some

are theoretical, some are computer ‘bugs’. These include:� mis-calculation of offset (e.g. from isotropic tensor to observed shift)� mis-assignment of calculated peaks to atoms� corruption of connection tables (particularly in the adding of H atoms)� mismapping of atoms between input and output of calculation. As

there is no way to add IDs to atoms in the program used, I must rely

on the atoms being output in the order they are provided in the input� incorrect generation of program input� program bugs in reading input and main calculation (e.g. it was

reported[165] that for GAMESS input, if a line overflowed 80 charac-

ters then the atom on the following line was reported but not included

in the calculation)� incorrect transformation of output to CMLSpect

232

� theoretical model has limitations� oversimplified chemical model. Some common problems are:

– only one conformer is calculated

– symmetry is not well treated

– tautomerism is ignored

– isomerism (e.g. ring-chain is ignored)

There are also potential bugs on the computational side, such as:� inconsistent results from different machine architectures� errors in processing and outputting the results

As the starting dataset is the list of assigned peaks for each structure, and

not the spectrum obtained from the NMR machine, means that some errors,

even if discovered, cannot be assigned to a cause with full confidence. For

instance, if I have data from an in-house database where it appears that the

structure for a given set of peaks may be wrong, how do I know if this is the

case, or whether a shift has been incorrectly supplied? Similarly, knowing

whether the correct offset has been applied to an observed spectrum can only

be asserted by having access to the original spectrum. To enable detailed

analyses of computational NMR methods, access is required to databases of

not just assigned peak lists, but also the original spectra. However, at the

present time, this is not feasible.

6.6.4 Cleaning the dataset

The ideal dataset for this work would not contain any errors in the creation

or assignment of the NMR shifts, though in reality this is unattainable. Dis-

covering and fixing errors in datasets is a key part of eScience, and has

already been discussed with regards to NMRShiftDB by Robien[232] and

Blinov et al.[206] using HOSE/NN methods. In performing this work, I

had the opportunity to use the output of the calculations to discover and

233

report errors in NMRShiftDB. As the results were made public with inter-

active visualizations, the interested community (which included maintainers

of NMRShiftDB) could help to do this.

To aid the location of ‘problem’ structures, an interactive plot was created

to show the RMS deviation versus the mean deviation for the shifts of each

structure (see figure 6.8). This allowed users to click through the points cor-

responding to high RMS deviation or mean deviation and then inspect plots

for those structures alone. In addition to this, ‘misassignment’ plots were

created for each structure where the difference in observed and calculated

shifts was plotted against the average of the two shifts. Plotting the data in

this way can help identify those shifts that may have been misassigned by

finding two points with the same average shift and equal but opposite shift

difference (see figure 6.9).

Through community discussion via Peter Murray-Rust’s blog, and the use

of the above interactive plots, the data for 7 structures were initially found

to be erroneous:� The observed shift for a carbon in nmrshiftdb10006060 (the NMR-

ShiftDB ID for the structure) was shown by Rzepa to have been in-

correctly copied from the published literature (this point is the largest

outlier shown at around (60,135) in figure 6.7).� The structures with the highest and lowest mean deviations (nmr-

shiftdb10009121 and nmrshiftdb10006328) corresponded to tautomers

taken from the same sample. Christoph Steinbeck (head of the NMR-

ShiftDB project) highlighted that the shifts for these had been taken

from the same spectrum, but some of them had been misassigned to

the wrong tautomer.� Two structures (nmrshiftdb2275 and nmrshiftdb2562) were judged to

have an incorrect structure for the shifts that had been supplied.

234

Figure 6.8: Screen capture of the webpage at http://wwmm.ch.cam.ac.uk/

data/nmr/html/hsr0_hal/RMSD-vs-C_he_m_ps_pm_ta_lr/index.html . The
plot shows the RMS deviation vs. mean deviation for all structures calculated
using HSR0 with spin-orbit offsets applied. The circled point corresponds to
the structure shown in the Jmol applet, the data for which were subsequently
shown to be incorrect. Note that the ‘misassignment’ plot for any structure
shown in the Jmol applet can be viewed by simply clicking a button beneath
the applet.

235

Figure 6.9: Screen capture of the webpage at http://wwmm.ch.cam.ac.

uk/data/nmr/html/hsr0_hal/nmrshiftdb10008656-2-misassignment/index.

html . This ‘misassignment’ plot shows the difference in observed and
calculated shift plotted against the average of the two. Those two shifts
with equal but opposite differences between observed and calculated shift
and equal average shift were shown to be misassigned.

236

� Two structures (nmrshiftdb10008656 and nmrshiftdb10006416) were

judged to have shifts that had been misassigned.

These 7 structures were subsequently removed from the dataset.

In order to provide simple access to those structures that had possible

misassignments, a program was written to find structures with two peaks

for which the average of observed and calculated shifts were within 2ppm,

and the difference between the observed and calculated shift was greater than

2ppm. The program found 42 structures with potential misassignments, all of

which were then removed from the dataset before further analysis took place

(which left 246 structures with 1943 peaks). After a list of these structures

was made available via the experiment commentary webpage, a member of

the NMRShiftDB team inspected the data for the 42 structures and found 11

of them to be incorrect[233]. This included 10 structures with misassigned

peaks and 1 incorrect structure. Thus, 18 out of the initial 295 structures

were shown to contain errors, which corresponds to an error rate of 6.1%.

Note that all data found to be incorrect during this work has now been

corrected in NMRShiftDB.

6.6.5 Conformational issues

As I am only calculating the chemical shifts for the conformer that is cal-

culated to be most stable for each molecule, it is possible for chemically

equivalent atoms to have two different calculated shifts (such as in figure

6.10). This effect can be removed by comparing the Morgan number[234] for

each carbon in a structure, and averaging the shifts of those that are equiv-

alent. The Morgan numbers can be calculated from a CML document using

the Morgan class in JUMBO. An example of the shift averaging for chemically

equivalent atoms can be seen by comparing figures 6.10 and 6.11.

This, however, only fixes conformational problems for chemically equiva-

lent atoms. If, for instance, there was a substituent in the meta-position to

the vinyl group in the structure in the previous plots, then the two atoms

237

Figure 6.10: Plot showing the difference in calculated and observed shifts
against the observed shift for styrene. The two circled points are those for
the two carbons α to the vinyl group. These are chemically equivalent,
though the geometry optimization has meant they are inequivalent when the
isotropic magnetic tensors are calculated.

Figure 6.11: Figure showing the same plot as in figure 6.10, though this time
with averaging of the shifts for Morgan equivalent atoms.

238

in the ortho-position to the vinyl group would no longer be equivalent. It is

likely that each of them, in the most stable calculated conformation, would

be experiencing the effects of the vinyl group more or less than they would

on average if free rotation were allowed. Thus, the chemical shifts for both

will be incorrect, and the only way to counter this effect is to calculate the

set of most highly occupied conformers and use a weighting to average the

calculated shifts for each. This has been discussed in work by Bifulco[218],

who showed that conformational analysis and Boltzmann averaging can be

used for accurate shift predictions of flexible molecules.

Due to time constraints, I was not able to undertake such analyses during

this work and tried to select only rigid molecules to avoid this problem. In

order to minimise these effects further, it was decided that I would remove

all structure with 7-membered rings or larger, and those structures that were

possibly tautomeric. After this filtering, 207 structures were remaining with

1544 peaks.

6.6.6 HSR1

Rzepa provided a modified version of HSR0 (hereafter called HSR1). This

incorporated an improved 6-31G(d) basis set in the NMR shift calculation

to improve the values calculated for vinyl and carbonyl carbon atoms. This

basis set included an additional diffuse ‘3p’ function for O and C, estimated

from the corresponding values for S and Si. The HSR1 template is shown

in figure 6.12. For the 207 remaining structures and TMS, the calculations

were rerun using this new protocol. As the first two steps of both protocols

are identical, the checkpoint files from the previous calculation could be used

so that only the shift calculation was rerun in each case. Figure 6.13 shows

the calculated versus observed shifts after both spin-orbit offsets and Morgan

averaging have been applied to calculations from HSR1.

Table 6.1 shows the improvement of the average absolute shift deviation

on application of the spin-orbit coupling offsets and averaging of the shifts

for topologically equivalent atoms for both HSR0 and HSR1 protocols. The

239

Figure 6.12: A template for Gaussian03 input files implementing HSR1. Note
that the second extra basis set in the final step should not be included if the
structure does not contain any oxygen atoms.

240

Figure 6.13: Calculated vs. observed chemical shifts for the HSR1 protocol
after spin-orbit offsets and averaging of the shifts for topologically equivalent
atoms have been applied.

241

average abs.
deviation

intercept slope p (ppm)

HSR0 2.237 0.960 0.998 2.94
+ spin-orbit offset 2.093 0.960 0.999 2.84
+ equiv. atom averaging 2.093 0.960 0.999 2.80

HSR1 2.435 0.965 0.998 2.68
+ spin-orbit offset 2.291 0.965 0.999 2.54
+ equiv. atom averaging 2.291 0.965 0.999 2.50

Table 6.1: The linear fitting coefficients (where p is the Pearson correlation
coefficient) of calculated versus observed shifts for the remaining 207 struc-
tures using HSR0 and HSR1. Also provided is the average absolute deviation
of each shift. For each protocol, the statistics are also provided for subse-
quent application of the spin-orbit coupling offsets and averaging the shifts
for topologically equivalent atoms.

intercepts in each case improve on application of the spin-orbit offsets. It

has been shown elsewhere that the slope of the linear correlation between

observed and calculated shifts can deviate more or less than 1 depending

on the computational method and choice of basis set[216, 219, 220]. As

expected, averaging the shifts for topologically equivalent atoms does not

affect the linear fitting coefficients. For the final average absolute deviations,

there is an 11% improvement using HSR1 over HSR0.

It is useful to have shown that the steps taken have led to improvements

between and within the HSR0 and HSR1 protocols, though as the dataset

has been shown to contain a significant rate of errors, it is difficult to be

confident of their accuracy when comparing to other methods. However,

while cleaning the dataset, it was noticed that many of the errors came

from structures donated by the same source. The source metadata is not

provided in each CML file, though the field strength is, and since the spectra

from this provider were created at an unusual field (23Hz) I could filter the

structures using that. After removing all spectra taken at that field strength,

only 36 structures remained (containing 317 peaks). The calculated versus

observed shift plot for these 36 structures is shown in figure 6.14. The linear

fitting coefficients and average absolute deviation using HSR0 and HSR1 with

242

Figure 6.14: Calculated vs. observed shifts for HSR1 with spin-orbit offsets
and averaging shifts for topologically equivalent atoms for those structures
with spectra determined at a field of over 25Hz.

spin-orbit offsets and averaging of shifts for topologically equivalent atoms

are shown in table 6.2. By analysing only these 36 structures, there are

improvements of 17% and 10% in the average absolute shift deviations using

HSR0 and HSR1 respectively.

Accuracy of the spin-orbit offsets

For the remaining 36 structures, there were 19 shifts for which spin-orbit

offsets had been applied. For carbon atoms bonded to S, Cl and Br, there

were 11, 4 and 1 shifts respectively. The average deviation and average

absolute deviation for these shifts were 0.23 and 1.66. For carbon atoms

bonded to sulphur alone, these were 0.10 and 1.70, and to chlorine they were

0.72 and 1.77. These figures show that the shifts for which spin-orbit offsets

have been applied are more accurate than the overall dataset. The results for

the shifts of carbon bonded to chlorine suggest that an offset of -3.5ppm may

243

average abs.
deviation

intercept slope p (ppm)

HSR0 2.477 0.963 0.999 2.36
HSR1 2.708 0.967 0.999 2.24

Table 6.2: Linear fitting coefficients and average absolute shift deviation
using only those spectra which were taken at fields of over 25Hz.

provide more accurate results than the -3ppm offset used, though as there

are only 4 data points this would need to be investigated more thoroughly

to be justified.

6.6.7 Conclusions

The NMRShiftDB is a helpful resource for the purpose of evaluating chemical

shift prediction accuracy, as evidenced by this work and the previous work

of Blinov et al.[206] and Robien[232]. As has been discussed in this and the

previous works, there are outliers in the dataset requiring review and correc-

tion. Blinov has shown that the literature itself contains around 8% errors

in the form of mis-assignments, transcription errors and incorrect structures,

and 6.1% of the structures used in this work were shown to be erroneous.

Despite this, this error rate is far higher than desired, and it would be useful

to introduce robotic refereeing of submissions to NMRShiftDB, either by QM

or HOSE/NN methods to help reduce the error rate.

Performing this work in an Open manner was very beneficial in analysing

the quality of the dataset. As public web-based tools were provided to allow

inspection of the data, most of the errors discovered were described by people

not directly involved in the work (thus demonstrating the power of crowd-

sourcing!). As all discussion was held in public on the Web, this allowed

the maintainers of NMRShiftDB to immediately find and fix any uncovered

errors.

The data presented here shows that HSR1 with spin-orbit offsets and Mor-

gan averaging has an average deviation in predicted 13C chemical shifts of

244

less than 2.25ppm for small, rigid structures. This is comparable to the re-

sults obtained for the entire NMRShiftDB dataset using HOSE (2.22ppm)

and NN (1.59ppm) methods.

Nominally, the far greater cost of the QM approach compared to HOSE/NN

was not worth while, given the comparable errors. However, the QM ap-

proach relies on no library of chemical shifts, as HOSE/NN do. This makes

the QM approach more extrapolative, whilst the HOSE/NN methods are

interpolative. The former would always be preferable for compounds with

unusual or novel structures, or structures where a conventional group has

been strained or distorted from its normal structure.

245

Chapter 7

Conclusions

As stated in section 1.7, the goals of this work were twofold; to aid the

creation of a Chemical Semantic Web and to show how Open, semantic data

is beneficial to e-Science. The work performed for the former can be viewed

as two parts:

1. An assessment of the ability to locate chemical structures on the Web

using current chemical identifiers as query strings.

2. The creation of CrystalEye, a web-based, Open collection of semantic

crystallographic data, which includes a number of related services.

The work performed for the latter demonstrated two examples of using Open

data to perform high-throughput e-Science experiments.

The InChI and SMILES identifiers now provide widespread, robust meth-

ods for exact and sub-structure searches for organic species. These solutions

are sufficient for searching over a large proportion of Web-based chemical

databases (e.g. PubChem, ChemSpider). However, while these identifiers

can also represent organometallic structures, they are unable to uniquely

identify them in the same way as with organics. For instance, the default

setting in InChI is to disconnect all bonds to metal atoms, and not to treat

them at all in the canonicalization algorithm[238]. This arises from the fact

that there are no standards between chemists for depicting the bonding in

246

organometallic molecules, and hence there is no way to implement a canoni-

calization algorithm. It is possible to generate an InChI for an organometallic

structure which contains an extra layer (the ’reconnected layer’) which uses

the bonds in the input structure[238]. However, this will lead to problems in

having more than one identifier for the same structure if two people were to

use different metal-ligand bonding schemes in their input structures.

There are large number of organometallic structures in current crystallo-

graphic literature, and hence a unique identifier for them is important for

searching of databases such as CrystalEye. There are no clear solutions to

this problem at present, though I think the pragmatic approach to the prob-

lem is currently to use the default settings of InChI, and alert any searchers

that queries for organometallics may return a small number of false positives.

Crystallography is unusual in the chemical community, in that the experi-

mental data is provided Openly alongside published articles as supplemental

information in a community standard with well-defined syntax and seman-

tics. As shown, there is an abundance of crystallographic data available on

publishers websites that is technically available for reuse by anyone with an

Internet connection, though in practice, reuse is more difficult. This is be-

cause the data is not actively promoted by the publishers, but is still largely

seen as a method for validation of the article during the peer-review process.

The implementation in CrystalEye shows that it is possible to aggregate this

data with high recall and precision by spidering HTML pages, though the

process is fragile and highly susceptible to changes in website structure. All

publishers now use RSS/Atom feeds to notify readers of new articles, and

as described, simple additions to these feeds would also allow notification of

data provided alongside these articles. As RSS/Atom are XML-based and are

widely adopted throughout the Web community, robust software to aid auto-

mated creation and parsing of these is Openly available. Hence, this method

would be an excellent choice for persistent data distribution by publishers.

247

However, only around 20% of all crystal structures are published, and in-

stitutions are now beginning to capture this data. An example of this is

the University of Southampton’s eCrystals site[52], where data for crystal

structures generated by the Southampton Chemical Crystallography Group

and the EPSRC UK National Crystallography Service are made available.

We are also now investigating the capture of unpublished crystal structures

from the Department of Chemistry at the University of Cambridge using

software based on CrystalEye[235]. In order to gain the most value from the

new generation of stores being created, the eCrystals project[236] is due to

provide infrastructure to enable a pan-institutional federation of crystallo-

graphic repositories (of which CrystalEye will be a member). The increasing

rate of published crystal structures (as highlighted in figure 4.12) coupled

with the fact that data for unpublished CIFs is now starting to be captured

and shared will lead to a dramatic rise in the amount of crystallographic data

Openly available. Indeed, it is not unreasonable to think that CrystalEye,

which has data for around 140,000 crystal structures from the past 15 years,

could double in size over the next 2-3 years.

There are costs to using unpublished data, and a primary concern is the

quality of data that has not been checked by trained scientists or been

through the publication process. The amount of data being currently pro-

duced is far too great to be checked completely manually, and thus compu-

tational validation methods such as those described in chapters 5 and 6 are

required. Again, the crystallographic community is a forerunner in this field,

in that CheckCIF, the validation tool used during the peer-review process

for many journals, is Openly available. Indeed, in section 4.3.3 I described a

method to automate the use of CheckCIF, which could be used to validate

thousands of CIF files per day, many times more than is currently produced

(whether published or not).

In order to make crystallographic data visible on the Web, we must as-

sociate it with chemical identifiers by calculating the connection tables of

the moieties contained in each structure. Unfortunately, this process must

248

contain heuristics and so is not error-free. In the case of CrystalEye, the

molecular skeletons can be unambiguously derived (though sometimes the

disorder information may not be resolved), though it is the addition of bond

orders and charges which requires heuristics, and therefore poses the tough-

est problem. Thus, despite there being an Open method to validate the

crystallographic data, we risk introducing errors to the data when deriving

the chemistry contained within. I believe that introducing any errors into

data is unacceptable, and so it is imperative that rigorous checks are used

during the heuristic process. If any ambiguities are discovered in the way

the data can be interpreted, then it is better to do nothing at all that risk

introducing errors. Of course, this is where those secondary data providers,

such as the CCDC[131], excel. They use trained chemists to aggregate and

interpret data, and have no doubt spent tens, if not hundreds of thousands of

man-hours in creating the CSD. However, I believe that most of the process

of creating such a database can be automated, as described throughout this

work. If the software can be written in such a way that those parts which

execute with a high degree of certainty are automated, but ambiguous data

is delegated to a human to interpret, then this would be an optimal system.

This is the vision for the future of CrystalEye, though as yet a system for the

delegation of problem structures to humans for validation has yet to be im-

plemented. We have, however, made a start in creating an editor, C3DE[237]

(see figure 7.1), which allows users to edit the bond orders and charges on

connection tables generated from a CIF file. Ideally we would have Crystal-

Eye create a webpage containing a C3DE applet, which listed all structures

that could not be processed completely. A user would then be able to click

through each structure, add the correct bond orders and charges, and save

the data.

Many parties are naturally skeptical about the quality of unpublished Open

Data (e.g. self-published via Open Notebook Science, or deposited into an

Institutional Repository), however the amount of unpublished data available

will soon dwarf all of the data made available in the history of research. It

is not going to be a question of whether or not to use unpublished data, but

249

Figure 7.1: Screenshot of the C3DE application. The moieties contained in
an input CIF file are displayed in both 2D and 3D. A user is able to edit the
2D structure and save the resulting data to CML.

250

which unpublished data to use. I think that a lot of responsibility for the

future of data quality will lie in data aggregators such as CrystalEye. By

providing their data Openly on clear webpages with suitable visualizations,

they will provide rallying points for those in the community eager to help and

make it simple for them to do so (as with our Open NMR experiment using

NMRShiftDB data in chapter 6). It is also expected that federations such

as that provided by the upcoming eCrystals project will also be beneficial,

as if each repository has access to all the others data, with each using their

own validation methods, then the data will be subject to more rigorous tests

than if a single ’silo’ repository was used.

251

Appendix A

Analysis of the efficacy of Web
search engines for chemical
search

The following is the supplemental information provided with the paper En-
hancement of the Chemical Semantic Web through InChIfication[239]. The
results and discussion within were performed and written by the author.

A.1 Search-engines and strategy

To examine the ability of today’s search engines at indexing and returning
both CAS numbers and InChIs, searches were performed on the search en-
gines shown in table A.1.

Name URL
Google http://www.google.com
AOL Search http://search.aol.com
Yahoo http://www.yahoo.com
Altavista http://www.altavista.com
MSN Search http://search.msn.com
Ask Jeeves http://www.ask.com
Teoma http://www.teoma.com
Dogpile http://www.dogpile.com

Table A.1: Selection of search engines used in the analysis

252

This covers the three most popular search engine ‘providers’ (of free list-
ings) in Google, Yahoo and Teoma and also others for which they provide
main listings (Google ← AOL Search, Yahoo ← Altavista / MSN Search,
Teoma ← Ask Jeeves). Also included was Dogpile[240], a popular meta
search engine that draws results from a number of other search engines (in-
cluding Google, Yahoo, Ask Jeeves and Overture) and returns the ones it
considers relevant. We believe that engines in different countries may give
different results but this will probably not affect our subject matter and this
was not controlled for.

It is extremely important to realise that the analysis of search engines is an
inexact science. Search engines do not describe their indexing and retrieval
methods (presumably to protect competitive advantages) and may change
their strategies at frequent intervals to deter manipulations of rankings. The
number of indexed pages changes every minute and a search is, ipso facto,
not reproducible. We therefore quote approximate times that searches were
performed and many of our conclusions should be adjusted for this. However
the results we show have such clear outcomes that we are confident that
variations in time and place do not affect them. In the following discussion
all searches are in bold type.

It is not clear which pages are indexed by search engines but we believe
the following:� Only static web pages are indexed. Pages created on-the-fly as a result

of database queries seem to be ignored.� All engines seem to index X/HTML, DOC, PDF, TXT but may not
always index XML (or CML) files. Searching is performed on the ASCII
content (XML markup and formatting is ignored).� All pages fitting the selection above are indexed; no documents are
rejected because they are meaningless to humans. There is no reason
why any chemical documents should not be included.

By default most engines appear to use the following strategy:� Use case-insensitive strings, we believe this cannot be altered. This is
unlikely to cause many problems in practice; although, for example,
CO and Co would collide there is normally enough syntactic context
to remove ambiguity.� Do not carry out stemming and other lexical operations in the presumed
language of the query. Thus Google-2004-11-21 retrieves 77 documents
for datument and 111 for datuments. There is apparently no com-
monality (unless the documents contain both words).

253

� Use a list of stop words. If Google-2004-11 is given to be or not to
be, that is the question. It returns:

The following words are very common and were not included
in your search: to be to be that is the. Lowercase “or”

was ignored. Try “OR” to search for either of two terms

and searches only for not and question. This gives many false posi-
tives.� By default search engines now seem to apply AND operations between
multiple terms so that wallaby datument returns no hits on any en-
gines (2004-11-21). This appears to be a change in policy from earlier
versions which allowed some OR results to be returned with low num-
bers of hits.� Strings can be found anywhere in the document. Thus chemical se-
mantic web returns ca. 70, 000 hits, most of which contain the three
tokens in widely separated positions. We believe, however, that some
engines will order results to emphasize proximity.� Tokenize the query at any punctuation, Thus Altavista-2004-11-21 re-
turned 298 results for murray-rust wallaby. A typical one included
the summary:

. . .Dance of Death (album)David Murray. Enhanced CD

. . . British Heavy Metal. Power metal. Rust. Slayer . . .
banded gecko. Banded Hare-Wallaby (enc.) . . .

Note that the search terms are not proximal and can be de-hyphenated
or re-hyphenated.� Hide or coalesce ”similar” results. Thus Google-2004-11-21 returns 3
results for ”114795-97-0” but adds the message:

In order to show you the most relevant results, we have omit-
ted some entries very similar to the 3 already displayed. If
you like, you can repeat the search with the omitted results
included.

Following this link now gives a total of 4 hits. This strategy was essen-
tial in analysing the recall and precision of InChIs, as different InChIs
can appear ”similar” to search engines.

254

All search engines appear to allow refinements of the query to increase
precision, and seem to use a common syntax and behaviour. Some options
can be provided by syntax but most are on a special ”Advanced Search”
page.� Tokens can be mandatory (prefixed by +) or disallowed (-). Thus

+chemical +semantic +web would recall only those pages which
contain all three words. However search engines frequently seem to
adopt this strategy by default and the OR option needs to be switched
on.� Enclosing strings in quotes requires that all tokens be returned in the
precise order and juxtaposed. Thus semantic chemical web would
recall chemical semantic web but ”semantic chemical web” would
not. However any punctuation appears to be normalised to whites-
pace, so that ”(chemical) semantic-web” returns the same hits as
”chemical semantic web”.� Strings can be long; we have not ascertained a maximum length but
Google-2004-11-21 retrieves a 60-character protein sequence fragment
such as

EPTTMITLGPLLVFLVIGFFAWLLFTLAVFALPVFAGVTIGLWAFHTGAGALGGIAVGPV

while a substring, as expected, is not retrieved.

Search engines seem to have a maximum number of tokens in a quoted
string; apparently 10 in Google-2004-11 and AltaVista-2004-11. A Google-
2004-11-21 search for ”twas brillig and the slithy toves did gyre and
gimble in the wabe” returns 4020 hits and advises

”in”(and any subsequent words) was ignored because we limit
queries to 10 words.

So the same hits are returned for the string ”twas brillig and the slithy
toves did gyre and gimble in the bath”. Initially this is counted as
false positive, but it is easily eliminated by a textual search of the document.
This means that a simple tool can match the full text of the retrieved docu-
ments and eliminate hits that did not contain the full search string. This is
important for InChIs which almost always have more than 10 tokens.

255

Search Engine No. of entries
viewable

Google 1000
AOL Search 535
Yahoo 1000
Altavista 1050
MSN Search 1000
Ask Jeeves 200
Teoma 200
Dogpile 125

Table A.2: Number of query results viewable for a selection of commercial
Web search engines

Search engines also seem to have a limit to the number of the recalled
entries you can view. On searching for a common word you may be informed
that there are 10,000 documents found that match, but you will never be able
to view them all. table A.2 shows the maximum number of results that can
be viewed for each search engine (2004-11-21). This could prove a problem
for the future, particularly if someone were to search for a large molecule
which had more stereoisomers than viewable results from the search engine.

A.2 Search terms and metrics

In information retrieval (IR) it is normal practice to define a precise corpus
which is to be searched (or processed) and to measure the recall and precision
of different strategies. In this case the unit of measurement is the page (or
document). It is possible that a page may contain multiple instances of search
terms but this was not relevant here. We use the abbreviations and terms:

P total known pages

H total pages retrieved (hits)

TP true positive; all those retrieved pages which match the InChI

FP1 false positive matching another InChI

FP2 false positive matching a non-InChI string

FP total false positive

FN false negative; pages containing the query InChI which were not re-
trieved

256

Note that:� FP = FP1 + FP2� H = TP + FP� P = TP + FN� recall = TP / P� precision = TP / H

These concepts are not applicable when the size of the corpus is unknown,
as for the searches for CAS registry numbers.

A.3 Searching for CAS numbers

Chemical Abstracts registry numbers (”CAS numbers”) are widely used
across the World Wide Web and can also act as unique identifiers. To test pre-
cision and recall two very common compounds, caffeine and acetic acid were
chosen. These occur in many types of document (journal articles, suppliers’
catalogs, Materials Safety Data Sheets, lists of properties) and in multiple
sources. The precise number of web pages containing a given CAS number
is unknown and changes continuously, so that recall cannot be established.
(As CAS numbers are copyright, we assumed it may not be legal to create
test documents without permission). In practice authors of web pages use a
variety of syntaxes such as CAS: 64-19-7, CAS number: 64-19-7, Reg-
istry number: 64-19-7 and frequently simply 64-19-7 (almost universal
when tables are used). Recall will obviously be higher for the pure number
but precision will be lower.

It is impossible to measure the precision and recall of the whole corpus
(often >104 entries). The first 100 hits with 3 strategies were therefore
analysed (table A.3). Note that the total number of hits varies enormously
and that the aggregator (Dogpile) is clearly selective. MSN Search seems to
select on single tokens and neglects order. The contrast in precision between
caffeine and acetic acid (Yahoo, MSN Search, Teoma) is surprising since the
actual tokens are probably relatively equifrequent. Some differences may be
due in part to speed of indexing. It is interesting that adding the apparent
constraint +number to the search actually increases the total hits.

257

true positives / sample size (total hits)

Search string Google AOL Search Yahoo Altavista MSN Search Ask Jeeves Teoma Dogpile

Acetic acid: 64-19-7
”64-19-7” 79/100(15,100) 78/100(3220) 9/100(10,200) 27/100(9,830) 63/100(1,486) 82/100(2,950) 82/100(2,950) 28/48(48)

+CAS +”64-19-7” 100/100(10,800) 99/100(2,230) 99/100(4,400) 99/100(4,250) 100/100(881) 100/100(1,530) 100/100(1,530) 62/63(63)
+CAS +number +”64-19-7” 100/100(5,300) 100/100(1125) 100/100(1,380) 100/100(1,500) 99/100(495) 100/100(1,060) 100/100(1,060) 60/61(61)

Caffeine: 58-08-2
”58-08-2” 28/100(6,720) 28/100(1,435) 0/100(543,000) 0/100(550,000) 0/100(100,488) 43/100(2,540) 43/100(2,540) 9/11(11)

+CAS +”58-08-2” 100/100(873) 100/100(550) 23/100(13,300) 20/100(13,400) 21/100(2,289) 98/100(396) 98/100(396) 21/22(22)
+CAS +”number” +”58-08-2” 100/100(8,250) 100/100(265) 32/100(4,430) 34/100(2,080) 25/100(601) 94/100(207) 94/100(207) 30/56(56)

Table A.3: Searching for CAS numbers with various strings(2004-11-18)

258

Manual examination of the first 100 entries showed the number of false
positives (i.e. not chemical compounds). Not surprisingly this can be a high
percentage for the raw strings as they retrieve many other triads (dates,
phone numbers, etc.) and the enormous amount of noise for 58-08-02 seems
to be due in part to ringtones. It seems that the string CAS provides complete
recall in some cases but at the expense of precision (<50%).

A.4 Searching for InChIs

A.4.1 The InChI architecture and implications

An InChI string consists of layers, the first being the chemical formula of
the compound. This is followed by the atom connection information, which
in turn is followed by optional layers containing information such as stereo-
chemistry or isotopic content. For most molecules there are many more than
10∗ tokens that appear before the connection information is complete. We
can see that when searching for a stereoisomer of a large molecule, that none
of the information in the stereochemical layer of the InChI string will be
included in a search by Google. Thus if InChI strings of other stereoisomers
were on the web, then they would be seen as identical to the search string and
incorrectly returned. The same can be said of any molecules with the same
connection information but differing information in the later layers. Indeed,
it would also be possible for two different molecules to have the same chem-
ical formula and also start of the connection information but have differing
connection information in the regions not searched for by Google. So unless
search engines start searching with the whole search string entered, this could
cause minor problems in the future. If not, a program used post-search to
scan the recalled entries for the complete InChI string would be necessary to
ensure no ‘other-InChI’ false positives.

∗Since these searches were performed (2004-11), Google has increased the maximum
number of tokens used for a query from 10 to 32 (2005-02). Thus the same hits are now not
returned for ”twas brillig and the slithy toves did gyre and gimble in the wabe”
and ”twas brillig and the slithy toves did gyre and gimble in the bath”. However,
”twas brillig, and the slithy toves did gyre and gimble in the wabe all mimsy
were the borogoves, and the mome raths outgrabe. Beware the Jabberwock,
my son! The jaws that bite, the claws that catch!” and ”twas brillig, and the
slithy toves did gyre and gimble in the wabe all mimsy were the borogoves,
and the mome raths outgrabe. Beware the Jabberwock, my son! The jaws
that bite, the rods that fish!” do return the same hits.

259

A.4.2 Results

There are very few InChIs on the web, so our experiment was performed
on a bounded dataset of unique compounds. We chose the University of
Southampton’s Crystal Structure Report Archive website[241], which at the
time (2004-11-18) contained 104 pages each containing the results of a crystal
structure. Each page contains an IChI (sic the name started out as IChI and
was changed then to INChI before finally settling on InChI) string, created
with version 0.932Beta of the identifier. Note that the compounds are mainly
novel and/or complex so it is extremely unlikely that anyone outside the
authors will have published the same compounds using IChIs in a different
context, especially as V0.932 beta is now obsolete. We therefore have an
accurate estimate of recall as totalHits / totalKnownPages. This corpus
consists of:� 104 HTML pages� 100 describing different molecules for which the IChI is unique� 2 pages describing different experiments on the same compound and

will therefore have the same IChI� 2 pages describing a pair of diastereomers which have the same IChI as
stereochemistry was omitted from its calculation. This is an inter-IChI
collision which the search engines obviously cannot detect.

There are thus a total of 102 IChIs on the 104 Southampton HTML pages.� 93 CML pages which are mapped to the HTML pages� 89 different molecules with unique IChIs� 2 of the two experiments on the same molecule� 2 of the two diastereomers

There are thus a total of 91 IChIs on the 93 Southampton CML pages.
To simplify the analysis we report the HTML and CML retrieval separately.
For each of the 102 IChIs a separate search was performed on each engine,
using the quoted IChI string. The results are aggregated in table A.4. The
results of the search for each engine are aggregated within cells (described in
the caption). The search was performed on two dates and shows a significant
increase in the MSN recall.

Out of the 832 searches performed on 8 different search engines there were
no false positives.

260

TP / FP1 / FP2 / P / recall(%) / precision(%)

2004-11-05 2004-11-18

.html .cml .html .cml
Pages 104 93 104 93
Google 103/0/0/99/100 67/0/0/72/100 104/0/0/100/100 92/0/0/99/100
AOL Search N/A 102/0/0/98/100 91/0/0/98/100
Yahoo 15/0/0/14/100 0/0/0/0/- 33/0/0/32/100 0/0/0/0/-
Altavista 20/0/0/19/100 0/0/0/0/- 39/0/0/38/100 0/0/0/0/-
MSN Search 0/0/0/0/- 0/0/0/0/- 43/0/0/42/100 0/0/0/0/-
Ask Jeeves N/A 0/0/0/0/- 0/0/0/0/-
Teoma N/A 0/0/0/0/- 0/0/0/0/-
Dogpile N/A 102/0/0/98/100 91/0/0/98/100

Table A.4: Recall of InChI strings from the Crystal Structure Report Archive
(2004-11-18)

Why is there a difference in recall between InChI strings and CAS
numbers?

A CAS number consists of only numbers separated by generic punctuation
and an InChI string consists of blocks of letters and numbers separated by
generic punctuation. CAS numbers are at a disadvantage as they are short
and only contain numbers and generic punctuation. Indeed, when searching
for the CAS number of caffeine 58-08-2 it is quite common for documents
containing information on acetone to be recalled, as its molecular weight is
58.08. InChI strings are generally much longer than CAS numbers and as
they have a good mix of letters and numbers in their tokens and separation
by generic punctuation, it is unlikely that even a small section of an InChI
string will be matched to anything else on the World Wide Web.

A.5 Searching for SMILES

In principle SMILES is uniquefiable but in practice there is no public con-
formance to the specification and we also believe that some implementations
produce incompatible results. The present study confirms the variation. To
determine the usage of SMILES, queries of the form SMILES AND (”caf-
feine” OR ”58-08-2”) were used. This is clearly imprecise, but about 10
sites were found containing SMILES for caffeine which showed at least 7 dif-
ferent syntactic variants. To test precision and recall these were submitted
to Google-2004-11-20.

The raw precision of the SMILES strings in table A.5 is high. This can
be attributed to each string (apart from the first) having around 10 tokens,
allowing Google to search for the whole string and match it exactly with
strings found on the web. The first string has 18 tokens, and so a large

261

True positives/False positives/non-SMILES(Total hits)

Search String Google Located on sites

"[c]1([n+]([CH3])[c]([c]2([c]([n+]1[CH3])[n][cH][n+]2[CH3]))[O-])[O-]" 2/3/0(5)
www.biocheminfo.org
www.eureka.ya.com

www.biozentrum.unibas.ch

"CN1C(=O)N(C)C(=O)C(N(C)C=N2)=C12" 14/0/0(14) www.daylight.com

"Cn1cnc2n(C)c(=O)n(C)c(=O)c12" 20/0/0(20)

www.daylight.com
pubs.acs.org

www.predictive-toxicology.org
www.eyesopen.com

bind.ca
www.surrey.ac.uk

www.sunsetmolecular.com

"Cn1cnc2c1c(=O)n(C)c(=O)n2C" 2/0/0(2)
www.molinspiration.com

doi.wiley.com

"N1(C)C(=O)N(C)C2=C(C1=O)N(C)C=N2" 1/0/0/(1) www.fda.gov

"O=C1C2=C(N=CN2C)N(C(=O)N1C)C" 2/0/0/(2) potency.berkeley.edu

"CN1C=NC2=C1C(=O)N(C)C(=O)N2C" 17/0/0/(17)

www.jchem.com
www.chemaxon.com

www.structuresearch.com
www.chemaxon.hu
bohlmann.bgbm.org

Table A.5: Searching for SMILES representations of caffeine in Web search
engines

part is not included in the search, leading to lower precision. To a search
engine SMILES strings are similar to InChI strings as they consist of tokens
containing letters and numbers separated by generic punctuation.

The 58 pages from table A.5 occurred on 20 sites with 7 syntactic variants.
There is thus no commonality of approach (i.e. the page creators are not
using a synoptic approach).

A.6 Searching for InChI strings from the KEGG

collection using Google

On 2004-10-04 9585 molecules from the KEGG collection were converted to
CML, indexed with InChI V1.12 Beta and posted as static pages on the
WWW. To our knowledge there are very few other InChI V1.12 Beta in-
stances on the web, so this provides a test of recall.

At 2004-11-16 the molecules at wwmm.ch.cam.ac.uk/data/kegg have been
indexed on Google up to c07576. As far as we know the indexing is serial
so that 4870 molecules were indexed. To test precision and recall the InChIs
for 83 KEGG ligands c00001-c00100 were submitted to Google (table A.6).

262

There were no non-InChI recalls (FP1 = 0) and no false negatives (FN =
0). No hits were found to molecules not on our site so recall is measured with
respect to this. The FP2 are due to collisions after the first 10 unique tokens.
They are easily removed by a simple program filtering the search engine re-
sults. For each false positive its quoted InChI was submitted to see if all the
recalls were symmetric (i.e. if molecule c00010 recalls c00298, does c00298 re-
call c00010). There are 35 isomeric collisions in about 4500 molecules, which
suggests that the false collisions can be managed with simple filters. In prac-
tice, also, many molecules in KEGG do not have complete stereochemistry
so that methods other than the connection table (e.g. names) would have to
be used to separate them.

Isomers with InChI collisions

Each of the 35 entries contains two or more colliding InChIs, for each of which
the serial number (not the KEGG id) and the InChI are given. The entry
is optionally followed by a note. Note that all InChI collisions are trivially
resolvable after retrieval and are listed to give an idea of the length of the
strings that most search engines index. The only problem arises if collisions
are so frequent that the search engine cuts off before returning all the true
positives.

Table A.6: Collisions in web queries for InChI representations of Kegg
molecules

Kegg No. InChI

c01328 1.12Beta/H2O/h1H2/p-1
c00001 1.12Beta/H2O/h1H2

NOTE: 1 (water) recalls 1328 BUT 1328 does not recall 1

c00704 1.12Beta/O2/C1-2
c00007 1.12Beta/O2/C1-2

NOTE: 704 is the superoxide ion O2- and should have been rendered as
1.12Beta/O2/C1-2/q-1

c00054 1.12Beta/C10H15N5O10P2/C11-8-5-9(13-2-12-8)15(3-14-
5)10-6(16)7(25-27(20,21)22)4(24-10)1-23-26(17,18)19/
h1H2,2-4H,6-7H,10H,16H,(H2,11,12,13)(H2,17,18,19)(H2,
20,21,22)/t4-,6-,7-,10-/m1/s1

c00008 1.12Beta/C10H15N5O10P2/C11-8-5-9(13-2-12-8)15(3-14-
5)10-7(17)6(16)4(24-10)1-23-27(21,22)25-26(18,19)20/
h1H2,2-4H,6-7H,10H,16-17H,(H,21,22)(H2,11,12,13)(H2,
18,19,20)/t4-,6-,7-,10-/m1/s1

c03850 1.12Beta/C10H15N5O10P2/C11-8-5-9(13-2-12-8)15(3-14-
5)10-7(25-27(20,21)22)6(16)4(24-10)1-23-26(17,18)19/
h1H2,2-4H,6-7H,10H,16H,(H2,11,12,13)(H2,17,18,19)(H2,
20,21,22)/t4-,6-,7-,10-/m1/s1
NOTE: These are isomers but the connection table only differs after the 10th token

c00014 1.12Beta/H3N/h1H3
c01342 1.12Beta/H3N/h1H3/p+1

NOTE: 14 recalls 1342 BUT 1342 does not recall 14

Continued on next page

263

Table A.6 – continued from previous page

Kegg No. InChI

c01367 1.12Beta/C10H14N5O7P/C11-8-5-9(13-2-12-8)15(3-14-
5)10-6(17)7(4(1-16)21-10)22-23(18,19)20/h1H2,2-4H,6-
7H,10H,16-17H,(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-
,10-/m1/s1

c04378 1.12Beta/C10H14N5O7P/C11-8-5-9(13-2-12-8)14-3-15(5)
10-7(17)6(16)4(22-10)1-21-23(18,19)20/h1H2,2-4H,6-
7H,10H,16-17H,(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-
,10-/m1/s1

c00946 1.12Beta/C10H14N5O7P/C11-8-5-9(13-2-12-8)15(3-14-
5)10-7(22-23(18,19)20)6(17)4(1-16)21-10/h1H2,2-4H,6-
7H,10H,16-17H,(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-
,10-/m1/s1

c00020 1.12Beta/C10H14N5O7P/C11-8-5-9(13-2-12-8)15(3-14-
5)10-7(17)6(16)4(22-10)1-21-23(18,19)20/h1H2,2-4H,6-
7H,10H,16-17H,(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-
,10-/m1/s1

c00023 1.12Beta/Fe
c00824 1.12Beta/Fe.H2S/h;1H2/q+1;/p-1

NOTE: 23 recalls 824 BUT 824 does not recall 23
NOTE: c00023 is junk as no proper charge is given

c00217 1.12Beta/C5H9NO4/c6-3(5(9)10)1-2-4(7)8/h1-2H2,3H,6H2,
(H,7,8)(H,9,10)/t3-/m1/s1

c00302 1.12Beta/C5H9NO4/c6-3(5(9)10)1-2-4(7)8/h1-2H2,3H,6H2,
(H,7,8)(H,9,10)

c00025 1.12Beta/C5H9NO4/c6-3(5(9)10)1-2-4(7)8/h1-2H2,3H,6H2,
(H,7,8)(H,9,10)/t3-/m0/s1

c00029 1.12Beta/C15H24N2O17P2/C18-3-5-8(20)10(22)12(24)14(32-
5)33-36(28,29)34-35(26,27)30-4-6-9(21)11(23)13(31-
6)17-2-1-7(19)16-15(17)25/h1-2H,3-4H2,5-6H,8-14H,18H,
20-24H,(H,26,27)(H,28,29)(H,16,19,25)/t5-,6-,8+,9-
,10+,11-,12+,13-,14?/m1/s1

c00052 1.12Beta/C15H24N2O17P2/C18-3-5-8(20)10(22)12(24)14(32-
5)33-36(28,29)34-35(26,27)30-4-6-9(21)11(23)13(31-
6)17-2-1-7(19)16-15(17)25/h1-2H,3-4H2,5-6H,8-14H,18H,
20-24H,(H,26,27)(H,28,29)(H,16,19,25)/t5-,6-,8+,9-
,10-,11-,12-,13?,14?/m1/s1

c00936 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2?,3?,4-,5-,6-/m0/s1

c00124 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3+,4-,5+,6?/m0/s1

c00159 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3-,4-,5-,6?/m0/s1

c00031 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3-,4-,5+,6?/m0/s1

c06467 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3+,4-,5+,6?/m1/s1

c06464 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3-,4+,5+,6?/m1/s1

c01487 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3-,4+,5-,6?/m1/s1

c00221 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2?,3?,4-,5+,6+/m0/s1

c00267 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3-,4-,5+,6-/m0/s1

c00962 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2?,3?,4-,5+,6+/m0/s1

Continued on next page

264

Table A.6 – continued from previous page

Kegg No. InChI

c00984 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3+,4-,5+,6-/m0/s1

c06465 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3+,4+,5-,6?/m1/s1

c06466 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3+,4+,5+,6?/m1/s1

c00293 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3-,4+,5-,6?/m1/s1

c01582 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3+,4+,5-,6+/m1/s1

c01825 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3+,4+,5-,6+/m0/s1

c02209 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H/t2-,3-,4-,5-,6+/m0/s1

c00738 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H

c01381 1.12Beta/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h1H2,
2-11H
NOTE: these hexopyranosides (stereoisomers of glucose) show the variation in ste-
rochemical information in KEGG:� c02209: exact at all centres� c00738: no stereochemical information given� c00936: stereochemistry given at 3/5 centres

c02606 1.12Beta/C4H4O5/c5-2(4(8)9)1-3(6)7/h1H,5H,(H,6,7)(H,
8,9)/b2-1-

c03981 1.12Beta/C4H4O5/c5-2(4(8)9)1-3(6)7/h1H,5H,(H,6,7)(H,
8,9)/b2-1-

c00036 1.12Beta/C4H4O5/c5-2(4(8)9)1-3(6)7/h1H2,(H,6,7)(H,8,
9)

c00133 1.12Beta/C3H7NO2/C1-2(4)3(5)6/h1H3,2H,4H2,(H,5,6)/t2-
/m1/s1

c01401 1.12Beta/C3H7NO2/C1-2(4)3(5)6/h1H3,2H,4H2,(H,5,6)
c00041 1.12Beta/C3H7NO2/C1-2(4)3(5)6/h1H3,2H,4H2,(H,5,6)/t2-

/m0/s1
c00203 1.12Beta/C17H27N3O17P2/C1-6(22)18-10-13(26)11(24)

7(4-21)35-16(10)36-39(31,32)37-38(29,30)33-5-8-
12(25)14(27)15(34-8)20-3-2-9(23)19-17(20)28/h1H3,2-
3H,4-5H2,7-8H,10-16H,21H,24-27H,(H,18,22)(H,29,30)
(H,31,32)(H,19,23,28)/t7-,8-,10-,11+,12-,13-,14-
,15?,16?/m1/s1

c01170 1.12Beta/C17H27N3O17P2/C1-6(22)18-10-13(26)11(24)7(4-
21)35-16(10)36-39(31,32)37-38(29,30)33-5-8-12(25)
14(27)15(34-8)20-3-2-9(23)19-17(20)28/h1H3,2-3H,4-
5H2,7-8H,10-16H,21H,24-27H,(H,18,22)(H,29,30)(H,
31,32)(H,19,23,28)/t7-,8-,10-,11+,12-,13-,14-,15-
,16?/m1/s1

c00043 1.12Beta/C17H27N3O17P2/C1-6(22)18-10-13(26)11(24)7(4-
21)35-16(10)36-39(31,32)37-38(29,30)33-5-8-12(25)
14(27)15(34-8)20-3-2-9(23)19-17(20)28/h1H3,2-3H,4-
5H2,7-8H,10-16H,21H,24-27H,(H,18,22)(H,29,30)(H,
31,32)(H,19,23,28)/t7-,8-,10-,11-,12-,13+,14-,15-
,16?/m1/s1

c00047 1.12Beta/C6H14N2O2/c7-4-2-1-3-5(8)6(9)10/h1-4H2,5H,7-
8H2,(H,9,10)/t5-/m0/s1

Continued on next page

265

Table A.6 – continued from previous page

Kegg No. InChI

c00739 1.12Beta/C6H14N2O2/c7-4-2-1-3-5(8)6(9)10/h1-4H2,5H,7-
8H2,(H,9,10)/t5-/m1/s1

c00049 1.12Beta/C4H7NO4/c5-2(4(8)9)1-3(6)7/h1H2,2H,5H2,(H,6,
7)(H,8,9)/t2-/m1/s1

c00402 1.12Beta/C4H7NO4/c5-2(4(8)9)1-3(6)7/h1H2,2H,5H2,(H,6,
7)(H,8,9)/t2-/m1/s1

c00055 1.12Beta/C9H14N3O8P/C10-5-1-2-12(9(15)11-5)8-7(14)
6(13)4(20-8)3-19-21(16,17)18/h1-2H,3H2,4H,6-8H,13-
14H,(H2,10,11,15)(H2,16,17,18)/t4-,6-,7-,8-/m1/s1

c05822 1.12Beta/C9H14N3O8P/C10-5-1-2-12(9(15)11-5)8-6(14)
7(4(3-13)19-8)20-21(16,17)18/h1-2H,3H2,4H,6-8H,13-
14H,(H2,10,11,15)(H2,16,17,18)/t4-,6-,7-,8-/m1/s1

c03104 1.12Beta/C9H14N3O8P/C10-5-1-2-12(9(15)11-5)8-7(20-
21(16,17)18)6(14)4(3-13)19-8/h1-2H,3H2,4H,6-8H,13-
14H,(H2,10,11,15)(H2,16,17,18)/t4-,6-,7-,8-/m1/s1

c00062 1.12Beta/C6H15N4O2/c7-4(5(11)12)2-1-3-10-6(8)9/h1-
3H2,4H,7-9H2,10H,(H,11,12)/t4-/m0/s1

c00792 1.12Beta/C6H15N4O2/c7-4(5(11)12)2-1-3-10-6(8)9/h1-
3H2,4H,7-9H2,10H,(H,11,12)/t4-/m1/s1

c02385 1.12Beta/C6H15N4O2/c7-4(5(11)12)2-1-3-10-6(8)9/h1-
3H2,4H,7-9H2,10H,(H,11,12)

c00064 1.12Beta/C5H10N2O3/c6-3(5(9)10)1-2-4(7)8/h1-2H2,3H,
6H2,(H2,7,8)(H,9,10)/t3-/m0/s1

c00819 1.12Beta/C5H10N2O3/c6-3(5(9)10)1-2-4(7)8/h1-2H2,3H,
6H2,(H2,7,8)(H,9,10)/t3-/m1/s1

c00303 1.12Beta/C5H10N2O3/c6-3(5(9)10)1-2-4(7)8/h1-2H2,3H,
6H2,(H2,7,8)(H,9,10)

c00716 1.12Beta/C3H7NO3/c4-2(1-5)3(6)7/h1H2,2H,4H2,5H,(H,6,
7)

c00065 1.12Beta/C3H7NO3/c4-2(1-5)3(6)7/h1H2,2H,4H2,5H,(H,6,
7)/t2-/m0/s1

c00740 1.12Beta/C3H7NO3/c4-2(1-5)3(6)7/h1H2,2H,4H2,5H,(H,6,
7)/t2-/m1/s1

c00072 1.12Beta/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h1H2,
2H,5H,7-10H/t2-,5+/m0/s1

c06430 1.12Beta/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h1-
5H,8-10H/t2-,3+,4+,5-/m1/s1

c03289 1.12Beta/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h1H2,2-
3H,5H,7-9H/t2-,3+,5+/m0/s1

c01733 1.12Beta/C5H11NO2S/C1-9-3-2-4(6)5(7)8/h1H3,2-3H2,4H,
6H2,(H,7,8)

c00855 1.12Beta/C5H11NO2S/C1-9-3-2-4(6)5(7)8/h1H3,2-3H2,4H,
6H2,(H,7,8)/t4-/m1/s1

c00073 1.12Beta/C5H11NO2S/C1-9-3-2-4(6)5(7)8/h1H3,2-3H2,4H,
6H2,(H,7,8)/t4-/m0/s1

c01602 1.12Beta/C5H12N2O2/c6-3-1-2-4(7)5(8)9/h1-3H2,4H,6-
7H2,(H,8,9)

c00077 1.12Beta/C5H12N2O2/c6-3-1-2-4(7)5(8)9/h1-3H2,4H,6-
7H2,(H,8,9)/t4-/m1/s1

c00515 1.12Beta/C5H12N2O2/c6-3-1-2-4(7)5(8)9/h1-3H2,4H,6-
7H2,(H,8,9)/t4-/m0/s1

c00806 1.12Beta/C11H12N2O2/C12-9(11(14)15)5-7-6-13-10-4-2-1-
3-8(7)10/h1-4H,5H2,6H,9H,12H2,13H,(H,14,15)

c00525 1.12Beta/C11H12N2O2/C12-9(11(14)15)5-7-6-13-10-4-2-1-
3-8(7)10/h1-4H,5H2,6H,9H,12H2,13H,(H,14,15)/t9-/m1/s1

Continued on next page

266

Table A.6 – continued from previous page

Kegg No. InChI

c00078 1.12Beta/C11H12N2O2/C12-9(11(14)15)5-7-6-13-10-4-2-1-
3-8(7)10/h1-4H,5H2,6H,9H,12H2,13H,(H,14,15)/t9-/m0/s1

c00079 1.12Beta/C9H11NO2/C10-8(9(11)12)6-7-4-2-1-3-5-7/h1-
5H,6H2,8H,10H2,(H,11,12)/t8-/m0/s1

c02265 1.12Beta/C9H11NO2/C10-8(9(11)12)6-7-4-2-1-3-5-7/h1-
5H,6H2,8H,10H2,(H,11,12)/t8-/m1/s1

c02057 1.12Beta/C9H11NO2/C10-8(9(11)12)6-7-4-2-1-3-5-7/h1-
5H,6H2,8H,10H2,(H,11,12)

c06420 1.12Beta/C9H11NO3/C10-8(9(12)13)5-6-1-3-7(11)4-2-
6/h1-4H,5H2,8H,10H2,11H,(H,12,13)/t8-/m1/s1

c01536 1.12Beta/C9H11NO3/C10-8(9(12)13)5-6-1-3-7(11)4-2-
6/h1-4H,5H2,8H,10H2,11H,(H,12,13)

c00082 1.12Beta/C9H11NO3/C10-8(9(12)13)5-6-1-3-7(11)4-2-
6/h1-4H,5H2,8H,10H2,11H,(H,12,13)/t8-/m0/s1

c00083 1.12Beta/C24H38N7O19P3S/C1-24(2,19(37)22(38)27-4-3-
13(32)26-5-6-54-15(35)7-14(33)34)9-47-53(44,45)50-
52(42,43)46-8-12-18(49-51(39,40)41)17(36)23(48-12)31-
11-30-16-20(25)28-10-29-21(16)31/h1-2H3,3-9H2,10-
12H,17-19H,23H,36-37H,(H,26,32)(H,27,38)(H,33,34)
(H,42,43)(H,44,45)(H2,25,28,29)(H2,39,40,41)/t12-,17-
,18-,19?,23-/m1/s1

c03188 1.12Beta/C24H38N7O19P3S/C1-24(2,19(37)22(38)27-4-3-
13(32)26-5-6-54-15(35)7-14(33)34)9-47-53(44,45)50-
52(42,43)46-8-12-18(49-51(39,40)41)17(36)23(48-12)31-
11-30-16-20(25)28-10-29-21(16)31/h1-2H3,3-9H2,10-
12H,17-19H,23H,36-37H,(H,26,32)(H,27,38)(H,33,34)
(H,42,43)(H,44,45)(H2,25,28,29)(H2,39,40,41)/t12-,17-
,18-,19?,23-/m1/s1

c00085 1.12Beta/C6H13O9P/c7-2-6(10)5(9)4(8)3(15-6)1-14-
16(11,12)13/h1-2H2,3-5H,7-10H,(H2,11,12,13)/t3-,4-
,5+,6?/m1/s1

c06312 1.12Beta/C6H13O9P/c7-2-6(10)5(9)4(8)3(15-6)1-14-
16(11,12)13/h1-2H2,3-5H,7-10H,(H2,11,12,13)/t3-
,4+,5+,6?/m0/s1

c05345 1.12Beta/C6H13O9P/c7-2-6(10)5(9)4(8)3(15-6)1-14-
16(11,12)13/h1-2H2,3-5H,7-10H,(H2,11,12,13)/t3-,4-
,5+,6-/m1/s1

c01097 1.12Beta/C6H13O9P/c7-2-6(10)5(9)4(8)3(15-6)1-14-
16(11,12)13/h1-2H2,3-5H,7-10H,(H2,11,12,13)/t3-
,4+,5+,6?/m1/s1

c00283 1.12Beta/H2S/h1H2
c00087 1.12Beta/H2S/h1H2
c00090 1.12Beta/C6H6O2/c7-5-3-1-2-4-6(5)8/h1-4H,7-8H
c05060 1.12Beta/C6H6O2/c7-5-3-1-2-4-6(5)8/h1-5H,7H
c01785 1.12Beta/C6H6O2/c7-5-3-1-2-4-6(5)8/h1-4H,7-8H
c01172 1.12Beta/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)

5(9)4(3)8/h1H2,2-10H,(H2,11,12,13)/t2-,3-,4-,5-
,6+/m0/s1

c02962 1.12Beta/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)
5(9)4(3)8/h1H2,2-10H,(H2,11,12,13)

c00275 1.12Beta/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)
5(9)4(3)8/h1H2,2-10H,(H2,11,12,13)/t2-,3-,4+,5+,6-
/m1/s1

c00668 1.12Beta/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)
5(9)4(3)8/h1H2,2-10H,(H2,11,12,13)/t2-,3-,4+,5-
,6+/m1/s1

Continued on next page

267

Table A.6 – continued from previous page

Kegg No. InChI

c01113 1.12Beta/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)
5(9)4(3)8/h1H2,2-10H,(H2,11,12,13)/t2?,3?,4-,5+,6?
/m0/s1

c03735 1.12Beta/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)
5(9)4(3)8/h1H2,2-10H,(H2,11,12,13)/t2?,3?,4?,5?,6-
/m0/s1

c02965 1.12Beta/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)
5(9)4(3)8/h1H2,2-10H,(H2,11,12,13)

c00092 1.12Beta/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)
5(9)4(3)8/h1H2,2-10H,(H2,11,12,13)/t2-,3-,4+,5-
,6?/m1/s1

c00623 1.12Beta/C3H9O6P/c4-1-3(5)2-9-10(6,7)8/h1-2H2,3-
5H,(H2,6,7,8)/t3-/m1/s1

c03189 1.12Beta/C3H9O6P/c4-1-3(5)2-9-10(6,7)8/h1-2H2,3-
5H,(H2,6,7,8)

c00093 1.12Beta/C3H9O6P/c4-1-3(5)2-9-10(6,7)8/h1-2H2,3-
5H,(H2,6,7,8)/t3-/m0/s1

c00095 1.12Beta/C6H12O6/c7-1-3-4(9)5(10)6(11,2-8)12-3/h1-
2H2,3-5H,7-11H/t3-,4-,5+,6?/m1/s1

c01719 1.12Beta/C6H12O6/c7-1-3-4(9)5(10)6(11,2-8)12-3/h1-
2H2,3-5H,7-11H/t3-,4-,5+,6-/m0/s1

c02336 1.12Beta/C6H12O6/c7-1-3-4(9)5(10)6(11,2-8)12-3/h1-
2H2,3-5H,7-11H/t3-,4-,5+,6-/m1/s1

c01496 1.12Beta/C6H12O6/c7-1-3-4(9)5(10)6(11,2-8)12-3/h1-
2H2,3-5H,7-11H/t3-,4-,5+,6-/m1/s1

c00096 1.12Beta/C16H25N5O16P2/C17-16-19-12-6(13(28)20-16)18-
3-21(12)14-10(26)8(24)5(34-14)2-33-38(29,30)37-
39(31,32)36-15-11(27)9(25)7(23)4(1-22)35-15/h1-2H2,3-
5H,7-11H,14-15H,22-27H,(H,29,30)(H,31,32)(H3,17,19,
20,28)/t4-,5-,7-,8-,9+,10-,11+,14-,15-/m1/s1

c00394 1.12Beta/C16H25N5O16P2/C17-16-19-12-6(13(28)20-16)18-
3-21(12)14-10(26)8(24)5(34-14)2-33-38(29,30)37-
39(31,32)36-15-11(27)9(25)7(23)4(1-22)35-15/h1-2H2,3-
5H,7-11H,14-15H,22-27H,(H,29,30)(H,31,32)(H3,17,19,
20,28)/t4-,5-,7-,8-,9+,10-,11-,14?,15?/m1/s1

c01581 1.12Beta/C16H25N5O16P2/C17-16-19-12-6(13(28)20-16)18-
3-21(12)14-10(26)8(24)5(34-14)2-33-38(29,30)37-
39(31,32)36-15-11(27)9(25)7(23)4(1-22)35-15/h1-2H2,3-
5H,7-11H,14-15H,22-27H,(H,29,30)(H,31,32)(H3,17,19,
20,28)/t4-,5+,7?,8+,9?,10+,11?,14+,15?/m0/s1

c02280 1.12Beta/C16H25N5O16P2/C17-16-19-12-6(13(28)20-16)18-
3-21(12)14-10(26)8(24)5(34-14)2-33-38(29,30)37-
39(31,32)36-15-11(27)9(25)7(23)4(1-22)35-15/h1-2H2,3-
5H,7-11H,14-15H,22-27H,(H,29,30)(H,31,32)(H3,17,19,
20,28)/t4-,5+,7+,8+,9-,10+,11-,14+,15+/m0/s1

c00793 1.12Beta/C3H7NO2S/c4-2(1-7)3(5)6/h1H2,2H,4H2,7H,(H,5,
6)/t2-/m1/s1

c00736 1.12Beta/C3H7NO2S/c4-2(1-7)3(5)6/h1H2,2H,4H2,7H,(H,5,
6)

c00097 1.12Beta/C3H7NO2S/c4-2(1-7)3(5)6/h1H2,2H,4H2,7H,(H,5,
6)/t2-/m0/s1

c00100 1.12Beta/C24H40N7O17P3S/C1-4-15(33)52-8-7-26-14(32)5-
6-27-22(36)19(35)24(2,3)10-45-51(42,43)48-50(40,41)
44-9-13-18(47-49(37,38)39)17(34)23(46-13)31-12-30-
16-20(25)28-11-29-21(16)31/h1-3H3,4-10H2,11-13H,17-
19H,23H,34-35H,(H,26,32)(H,27,36)(H,40,41)(H,42,43)
(H2,25,28,29)(H2,37,38,39)/t13-,17-,18-,19?,23-/m1/s1

Continued on next page

268

Table A.6 – continued from previous page

Kegg No. InChI

c02843 1.12Beta/C24H40N7O17P3S/C1-4-15(33)52-8-7-26-14(32)5-
6-27-22(36)19(35)24(2,3)10-45-51(42,43)48-50(40,41)
44-9-13-18(47-49(37,38)39)17(34)23(46-13)31-12-30-
16-20(25)28-11-29-21(16)31/h1-3H3,4-10H2,11-13H,17-
19H,23H,34-35H,(H,26,32)(H,27,36)(H,40,41)(H,42,43)
(H2,25,28,29)(H2,37,38,39)/t13-,17-,18-,19?,23-/m1/s1

c02187 1.12Beta/C24H40N7O17P3S/C1-4-15(33)52-8-7-26-14(32)5-
6-27-22(36)19(35)24(2,3)10-45-51(42,43)48-50(40,41)
44-9-13-18(47-49(37,38)39)17(34)23(46-13)31-12-30-
16-20(25)28-11-29-21(16)31/h1-3H3,4-10H2,11-13H,17-
19H,23H,34-35H,(H,26,32)(H,27,36)(H,40,41)(H,42,43)
(H2,25,28,29)(H2,37,38,39)/t13-,17-,18-,19?,23-/m1/s1

269

Appendix B

MOPAC calculation references

B.1 Second-protocol inorganic calculations

B.1.1 Short atom-atom distances

24 different pairings with short atom-atom distances were found in the 1258
calculations that converged successfully. These are listed below, where each
job in which a short distance occurred is provided along with the shortest
instance in that job:

Ba-Ba ned24-35, 1.73Å; ned24-228, 1.80Å; ned24-359, 1.77Å; ned24-829, 1.77Å;
ned24-2557, 1.79Å; ned24-2558, 1.69Å; ned24-2611, 1.69Å; ned24-3035, 1.86Å;
ned24-3195, 1.67Å

Br-Ta ned24-3344, 1.88Å

Ca-Na ned24-2333, 1.86Å; ned24-3059, 1.86Å

Ca-S ned24-2613, 2.03Å

Cd-N ned24-2411, 1.51Å

Cl-Fe ned24-189, 1.61Å; ned24-3239, 1.04Å; ned24-3240, 1.65Å

Cl-Hg ned24-2412, 1.77Å

Cs-P ned24-3098, 2.38Å

F-K ned24-339, 1.86Å; ned24-339, 1.86Å; ned24-3555, 1.98Å

Hg-Hg ned24-523, 2.23Å; ned24-1618, 2.18Å; ned24-2499, 2.20Å; ned24-2739,
2.21Å

Hg-N ned24-2412, 1.68Å

270

Hg-Te ned24-465, 1.97Å; ned24-524, 1.99Å

K-Nb ned24-171, 2.43Å; ned24-339, 2.48Å

K-Ta ned24-340, 2.44Å; ned24-3555, 1.76Å

La-La ned24-801, 1.88Å; ned24-2540, 2.35Å; ned24-2834, 1.97Å

Mg-Mg ned24-2542, 1.88Å

Na-Na ned24-206, 1.22Å; ned24-394, 1.23Å; ned24-413, 1.24Å; ned24-433, 1.26Å;
ned24-483, 1.22Å; ned24-774, 1.20Å; ned24-908, 1.22Å; ned24-2394, 1.22Å;
ned24-3557, 1.17Å; ned24-3126, 1.19Å; ned24-3128, 1.16Å; ned24-3583, 1.23Å

Na-S ned24-2394, 1.82Å

Na-Ta ned24-3128, 2.13Å

P-Pb ned24-731, 1.88Å

Pb-Pb ned24-2639, 2.10Å

Pb-Se ned24-2639, 1.83Å; ned24-2882, 1.73Å

Si-Sr ned24-828, 1.94Å

Zn-Zn ned24-986, 1.46Å

B.1.2 Silicas

The 8 phases of silica present in the dataset were:� low-quartz, ned24-1045� high-quartz, ned24-1647� low-tridymite, ned24-1669� high-tridymite, ned24-2188� low-cristobalite, ned24-1174� high-cristobalite, ned24-2461� coesite, ned24-1056� stishovite, ned24-1142

271

B.1.3 Errors in the data

The different types of data error found, and the corresponding jobs, are:� missing H atoms - ned24-360, ned24-3387, ned24-3545� incorrect symmetry elements - ned24-732, ned24-842, ned24-1020, ned24-
1021� incorrect data provided in the CIF - ned24-364, ned24-737, ned24-739

B.1.4 Errors in modeling

Uncontrolled expansion

The job showing uncontrolled expansion is ned24-3016.

Large loss of symmetry

The 20 calculations showing a large loss of symmetry are:

ned24-238, ned24-246, ned24-397, ned24-485, ned24-519, ned24-666,
ned24-1269, ned24-2392, ned24-2515, ned24-2516, ned24-2572, ned24-
2583, ned24-2584, ned24-2643, ned24-2666, ned24-2693, ned24-2778,
ned24-2911, ned24-2914, ned24-3354

Formation of new bonds

The 4 different atom pairs with more than 1 occurence of bond formation
during calculation are:

I-I ned24-353, ned24-397, ned24-404, ned24-2387, ned24-2606, ned24-2667, ned24-
2678, ned24-2693, ned24-2741, ned24-2839, ned24-2840, ned24-3056, ned24-
3263, ned24-3290, ned24-3345

Rb-F ned24-74, ned24-76, ned24-355

Al-Si ned24-541, ned24-1173, ned24-1412

Tl-O ned24-469, ned24-3152

272

Calculations that terminated with controlled errors

These jobs failed with two different error types. For those elemental crystals
discussed in the text, the element symbol is provided next to the job name:

unable to achieve self-consistency ned24-151, ned24-495, ned24-659, ned24-
1200, ned14-2541 (Li), ned24-2566 (Li)

numerical problems in bracketing lambda ned24-335, ned24-414, ned24-425,
ned24-439, ned24-542, ned24-661, ned24-716 (Au), ned24-791 (Bi), ned24-
983, ned24-1890, ned24-2013, ned24-2015, ned24-2016, ned24-2017, ned24-
2018, ned24-2021, ned24-2023, ned24-2026, ned24-2029, ned24-2032, ned24-
2034, ned24-2100, ned24-2113, ned24-2293, ned24-2529 (Pb), ned24-2531
(Sc), ned24-2533 (Cd), ned24-2549 (Sr), ned24-2551 (Tl), ned24-2552 (Tl),
ned24-2577 (Tl), ned24-2597, ned24-2614, ned24-2722, ned24-2803, ned24-
2850, ned24-2917 (Bi), ned24-2918 (Bi), ned24-2919 (Bi), ned24-3134, ned24-
3417, ned24-3498

B.2 Organic calculations

B.2.1 Calculations that terminated with controlled er-

rors

Those calculations that failed with the “numerical problems in bracketing
lambda” error and were subsequently found to contain radicals are:

ned24-10476, ned24-11685, ned24-6768, ned24-6770, ned24-6774, ned24-
6775, ned24-6846, ned24-6848

Those calculations that ran out of time or reached the cycle limit and were
subsequently found to contain radicals are:

ned24-6773, ned24-6850

The major components for those calculations that failed with the “all
convergers are now forced on” error are shown in the table below.

273

Table B.1: The major components of the structures
that had a good starting geometry and caused the “all
convergers are now forced on” error.

ned24-6589 ned24-6956

ned24-7236

ned24-7413

ned24-8575 ned24-8979

ned24-9055

ned24-9389

Continued on Next Page. . .

274

Table B.1 – Continued

ned24-9736

ned24-10159

ned24-10217
ned24-10219

ned24-11579
ned24-11810

ned24-11937

ned24-12385

ned24-12619
ned24-13046

275

B.2.2 Calculations containing radicals that converged
successful

Those calculations that converged successfully, and were subsequently found
to contain radicals are:

ned24-6769, ned24-6771, ned24-6843, ned24-6844, ned24-6845, ned24-
6849, ned24-6851, ned24-11098

B.2.3 Changes in connection table

Those structures where a chloride ion involved in a hydrogen bond moves
significantly closer to the H are:

ned24-10173; ned24-10577; ned24-11655; ned24-11656; ned24-11963;
ned24-12008; ned24-12093; ned24-12592; ned24-6602; ned24-9005; ned24-
9032; ned24-9566; ned24-9567

The structures for those atom-pairs which are observed to form bonds are:

S-N ned24-10052, ned24-12479, ned24-12984

S-O ned24-12290, ned24-13165, ned24-6817, ned24-6819

S-S ned24-9987, ned24-10034

S-Cl ned24-11260, ned24-11585

Se-Se ned24-10298, ned24-9782

Se-I ned24-8599, ned24-11595, ned24-11665, ned24-11991

Te-Cl ned24-12156

O-Br ned24-10154, ned24-10319, ned24-11026, ned24-13516

N-Br ned24-10683, ned24-10890, ned24-11348, ned24-11594, ned24-12094, ned24-
12839, ned24-12854, ned24-12865, ned24-12925, ned24-13060, ned24-7288,
ned24-7436

Br-Br ned24-11143, ned24-13328

O-I ned24-10485, ned24-10499, ned24-12004, ned24-12686, ned24-10720, ned24-
12831, ned24-13009, ned24-13127, ned24-13164, ned24-13165, ned24-13354,
ned24-13400, ned24-6762, ned24-6772, ned24-7078, ned24-7079, ned24-7080,
ned24-7138, ned24-7139, ned24-7153, ned24-7154, ned24-7302, ned24-7316,
ned24-7321, ned24-7373, ned24-7374, ned24-7375, ned24-7376, ned24-7416,
ned24-8608, ned24-8609, ned24-8610, ned24-8611, ned24-8612, ned24-8929,
ned24-9264, ned24-9811, ned24-9883

276

S-I ned24-10826, ned24-11595, ned24-13165

N-I ned24-11486, ned24-11670, ned24-11948, ned24-8588

I-I ned24-10335, ned24-10485, ned24-11491, ned24-11588, ned24-12984, ned24-
13130, ned24-8599

B.2.4 Density change outliers

The organic structures that were predicted to have density changes of >20%
are shown in tables B.2 and B.3. For each structure, the 2D image is provided,
as well as the density change predicted by MOPAC and its job number. Each
table is organised by predicted density change, starting with the largest.

Table B.2: The organic structures which were predicted
to have a density change of <-20%

ned24-10459 (-77.3%)

ned24-8810 (-41.6%)

ned24-10370 (-32.6%)
ned24-9326 (-30.3%)

Continued on Next Page. . .

277

Table B.2 – Continued

ned24-11230 (-30.1%)

ned24-9514 (-26.1%)

ned24-13335 (-26.0%)
ned24-13200 (-23.0%)

ned24-12186 (-23.0%)

ned24-11144 (-22.7%)

ned24-7257 (-22.3%)

ned24-12062 (-22.0%)

Continued on Next Page. . .

278

Table B.2 – Continued

ned24-13067 (-21.8%)

ned24-13177 (-21.1%)

ned24-9160 (-20.9%) ned24-9163 (-20.1%)

Table B.3: The organic structures which were predicted
to have a density change of >20%. Two of the structures,
ned24-12762 and ned24-13125, are icosohedral carbo-
ranes, and for clarity the 3D image of each has been
provided. The key for these two images is: C atoms
are grey; H atoms are white, B atoms are pink; O atoms
are red and I atoms are purple.

ned24-6801 (28.0%) ned24-6827 (26.7%)

Continued on Next Page. . .

279

Table B.3 – Continued

ned24-12762 (24.8%) ned24-10214 (24.5%)

ned24-13146 (24.2%)

ned24-8644 (24.1%)

ned24-13125 (23.9%)

ned24-11119 (23.2%)

ned24-13297 (21.1%)

ned24-13020 (20.3%)

Continued on Next Page. . .

280

Table B.3 – Continued

ned24-10138 (20.0%)

ned24-7337 (20.0%)

281

Appendix C

Published Work

The following papers and communications have been published as a result of

work contained in this thesis.

S. J. Coles, N. E. Day, P. Murray-Rust, H. S. Rzepa, Y. Zhang, Enhance-

ment of the chemical semantic web through the use of InChI identifiers, Org.

Biomol. Chem., 2005, 3, 1832-1834

N. E. Day, P. Murray-Rust, H. S. Rzepa, S. M. Tyrrell, Y. Zhang, Automatic

aggregation of open chemical data, Abstr. Am. Chem. Soc., 2005

P. T. Corbett, P. Murray-Rust, N. E. Day, J .A. Townsend, H. S. Rzepa,

Chemistry publications in CML, Abstr. Am. Chem. Soc., 2006

N. E. Day, P. T. Corbett, P. Murray-Rust, Semantic chemical publishing,

Abstr. Am. Chem. Soc., 2007

A. D. Walkingshaw, T. O. H. White, N. E. Day, O. H. Downing, P. Murray-

Rust, Representing, indexing and mining scientific data with XML and RDF:

Golem and CrystalEye, Proceedings of XTech 2008

J. Downing, P. Murray-Rust, A. P. Tonge, P. Morgan, H. S. Rzepa, F. Cot-

terill, N. Day, Matt J. Harvey, SPECTRa: The Deposition and Validation

282

of Primary Chemistry Research Data in Digital Repositories, J. Chem. Inf.

Model., ASAP Article, DOI: 10.1021/ci7004737

283

Bibliography

[1] H. B. Bürgi, J. D. Dunitz, J. M. Lehn, G. Wipff, Stereochemistry of

reaction paths at carbonyl centres, Tetrahedron, 1974, 1563-1572

[2] T. Hey, A. Trefethen, The Data Deluge: An e-Science Perspective,

Wiley, 2003, 809–824

[3] Registry Number and Substance Counts, Chemical Abstracts Service,

http://www.cas.org/cgi-bin/cas/regreport.pl, accessed on July 17,

2008

[4] Budapest Open Access Initiative, Open Society Institute and Soros

Foundation Network, http://www.soros.org/openaccess/, accessed on

July 2, 2008

[5] Bethesda Statement on Open Access Publishing, The SPARC Open Ac-

cess Newsletter, http://www.earlham.edu/~peters/fos/bethesda.htm,

accessed on July 2, 2008

[6] Berlin Declaration on Open Access to Knowledge in the Sciences

and Humanities, Conference on Open Access to Knowledge in

the Sciences and Humanities, http://oa.mpg.de/openaccess-berlin/

berlindeclaration.html, accessed on July 2, 2008

[7] Homepage, DSpace, http://www.dspace.org/, accessed on July 2, 2008

[8] Open Access and Institutional Repositories with EPrints, EPrints,

http://www.eprints.org/, accessed on July 4, 2008

284

[9] Open Data, Wikipedia, http://en.wikipedia.org/wiki/Open_data,

accessed on July 4, 2008

[10] Homepage, Science Commons, http://sciencecommons.org/, accessed

on July 4, 2008

[11] Homepage, Open Data Commons, http://www.opendatacommons.org/,

accessed on July 4, 2008

[12] Homepage, Nucleic Acids Research, http://nar.oxfordjournals.org/,

accessed on July 9, 2008

[13] Homepage, Acta Crystallographica Section E, Structure Reports, http:

//journals.iucr.org/e/journalhomepage.html, accessed on July 9,

2008

[14] Open Access resolution adopted by the Harvard Faculty of Arts and

Sciences, Faculty of Arts and Sciences, Harvard University, http://

www.fas.harvard.edu/~secfas/May_2008_Agenda.pdf, accessed on July

9, 2008

[15] Homepage, PubChem, http://pubchem.ncbi.nlm.nih.gov/, accessed

on July 9, 2008

[16] Homepage, Wikipedia, http://en.wikipedia.org/, accessed on July

13, 2008

[17] Homepage, Wichempedia, http://www.wichempedia.org/Search.aspx?

q=all, accessed on July 13, 2008

[18] D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese,

V. Chetvernin, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen,

L. Y. Geer, Y. Kapustin, O. Khovayko, D. Landsman, D. J. Lipman,

T. L. Madden, D. R. Maglott, J. Ostell, V. Miller, K. D. Pruitt, G.

D. Schuler, E. Sequeira, S. T. Sherry, K. Sirotkin, A. Souvorov, G.

Starchenko, R. L. Tatusov, T. A. Tatusova, L. Wagner, E. Yaschenko,

Database resources of the National Center for Biotechnology Informa-

tion, Nucleic Acids Research, 35, D5-D12

285

[19] J. L. Sussman, D. Lin, J. Jiang, N. O. Manning, J. Prilusky, O.

Ritter, E. E. Abola, Protein Data Bank (PDB): Database of Three-

Dimensional Structural information of Biological Macromolecules, Acta

Cryst, D54, 1078-1084

[20] A. Hamosh, A. F. Scott, J. Amberger, C. Bocchini, D. Valle, V. A.

McKusick, Online Mendelian Inheritance in Man (OMIM): a knowl-

edgebase of human genes and genetic disorders, Nucleic Acids Research,

30, 52-55

[21] S. R. Hall, F. H. Allen, I. D. Brown, The crystallographic information

file (CIF): a new standard archive file for crystallography, Acta. Cryst.,

A47, 655–685

[22] Extracting the science from science publications, University of

Cambridge Computer Laboratory, http://www.cl.cam.ac.uk/~aac10/

escience/sciborg.html, accessed on July 9, 2008

[23] P. Murray-Rust, H. S. Rzepa, The Next Big Thing: From Hypermedia

to Datuments, J. Digital. Inf., 2004, 248

[24] RSC Prospect, RSC Publishing, http://www.rsc.org/Publishing/

Journals/ProjectProspect/, accessed on July 9, 2008

[25] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Sci. Am.,

2001, 284, 34-43

[26] Semantic Web: Linked Data on the Web, World Wide Web Consortium

Talks, http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24),

accessed on July 9, 2008

[27] P. Murray-Rust, H. S. Rzepa, Chemical Markup, XML, and the World-

wide Web. 1. Basic Principles, J. Chem. Inf. Comput. Sci., 1999, 39,

928-942

[28] P. Murray–Rust and H. S. Rzepa, Chemical Markup, XML and the

World–Wide Web. 4. CML Schema, J. Chem. Inf. Comput. Sci., 2003,

43, 757-772

286

[29] S. Kuhn, T. Helmus, R. J. Lancashire, P. Murray-Rust, H. S. Rzepa, C.

Steinbeck, E. L. Willighagen, Chemical Markup, XML, and the World

Wide Web. 7. CMLSpect, an XML Vocabulary for Spectral Data, J.

Chem. Inf. Model., 47, 2015-2034

[30] Homepage, XOM, http://www.xom.nu/

[31] Defining e-Science, National e-Science Centre, http://www.nesc.ac.

uk/nesc/define.html, accessed on July 6, 2008

[32] Homepage, Folding@home project, http://folding.stanford.edu/,

accessed on July 6, 2008

[33] Client statistics by OS, Folding@home project, http://fah-web.

stanford.edu/cgi-bin/main.py?qtype=osstats, accessed on July 6,

2008

[34] IBM Triples Performance of World’s Fastest, Most Energy-Efficient

Supercomputer, IBM Press room, http://www-03.ibm.com/press/us/

en/pressrelease/21791.wss, accessed on July 6, 2008

[35] Homepage, National e-Science Centre, http://www.nesc.ac.uk/, ac-

cessed on July 6, 2008

[36] Homepage, Cambridge e-Science Centre, http://www.escience.cam.

ac.uk/, accessed on July 6, 2008

[37] Homepage, CamGrid project, http://www.escience.cam.ac.uk/

projects/camgrid/, accessed on July 6, 2008

[38] The Open Source Definition, The Open Source Initiative, http://

opensource.org/docs/osd, accessed on July 15, 2008

[39] Homepage, The Chemistry Development Kit (CDK), http://almost.

cubic.uni-koeln.de/cdk/cdk_top, accessed on July 15, 2008

[40] Homepage, Open Babel: The Open Source Chemistry Toolbox, http:

//openbabel.org/wiki/Main_Page, accessed on July 15, 2008

287

[41] Homepage, Jmol: an open-source Java viewer for chemical structures

in 3D, http://jmol.sourceforge.net/, accessed on July 15, 2008

[42] Experiment on search engine spider behaviour involving more than 2

billion webpages, Drunk Men Work Here, http://drunkmenworkhere.

org/219, accessed on April 11, 2008

[43] Homepage, Sitemaps, http://www.sitemaps.org/, accessed on April

11, 2008

[44] Methanol — Compound Summary (CID: 887), PubChem, http:

//pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=887, accessed

on April 11, 2008

[45] CAS REGISTRY and CAS Registry Numbers, Chemical Abstracts

Service, http://www.cas.org/expertise/cascontent/registry/

regsys.html, accessed on April 11, 2008

[46] Homepage, Registry of Toxic Effects of Chemical Substances (RTECS),

http://www.cdc.gov/niosh/rtecs/, accessed on April 11, 2008

[47] D. Weininger, SMILES, a Chemical Language and Information System.

1. Introduction to Methodology and Encoding Rules, J. Chem. Inf.

Comp. Sci., 1988, 28, 31–36

[48] D. Weininger, A. Weininger, J. L. Weininger, SMILES. 2. Algorithm

for Generation of Unique SMILES Notation, emphJ. Chem. Inf. Comp.

Sci.,1989, 29, 97–101

[49] Unofficial InChI FAQ, World Wide Molecular Matrix, http://wwmm.

ch.cam.ac.uk/inchifaq, accessed on April 11, 2008

[50] S. E. Stein, S. R. Heller and D. Tchekovskoi, An Open Standard

for Chemical Structure Representation: The IUPAC Chemical Identi-

fier, proceedings of the International Chemical Information Conference

(Nimes), 2003

288

[51] Project: IUPAC - International Chemical Identifier, IUPAC, http:

//www.iupac.org/projects/2000/2000-025-1-800.html, accessed on

April 11, 2008

[52] eCrystals, University of Southampton Chemistry Department, http:

//ecrystals.chem.soton.ac.uk/, accessed on April 11, 2008

[53] InChI 1.02beta Software Release — introducing InChIKey,

IUPAC,http://www.iupac.org/inchi/release102.html, accessed

on April 11, 2008

[54] S. Heller, The future of linking (most all) literature and scientific chem-

ical information using InChI and InChIKey, Wiley-Weinheim seminar,

2007

[55] Homepage, chem-bla-ics weblog, http://chem-bla-ics.blogspot.

com/, accessed on April 11, 2008

[56] Homepage, Totally Synthetic weblog, http://totallysynthetic.com/

blog/, accessed on April 11, 2008

[57] Homepage, Useful Chemistry weblog, http://usefulchem.blogspot.

com/, accessed on April 11, 2008

[58] Homepage, ChemAxon MarvinSketch, http://www.chemaxon.com/

product/msketch.html, accessed on April 11, 2008

[59] Google SOAP Search API (Beta), Google Code, http://code.google.

com/apis/soapsearch/reference.html, accessed on April 11, 2008

[60] Google SOAP Search API (Beta) Search Results Format, Google

Code, http://code.google.com/apis/soapsearch/reference.html#

search_results_format, accessed on April 11, 2008

[61] InChImatic homepage, http://inchimatic.com/, accessed on April 11,

2008

289

[62] S.Omura, Y.Iwai, A.Hirano, A.Nakagawa, J.Awaya, H.Tsuchiya,

Y.Takahashi and R.Masuma, J. Antibiotics, 1977, 30, 275

[63] A.Furasaki, N.Hashiba, T.Matsumoto, A.Hirano, Y.Iwai, and

S.Omura, Chem. Comm., 1978, 801

[64] N.Funato, H.Takayanagi, Y.Kouda, Y.Toda, H.Harigaya, Y.Iwai and

S.Omura, Tetrahedron Letters, 1994, 35, 1251

[65] Staurosporine, Chemsoc, http://www.chemsoc.org/exemplarchem/

entries/jagfin/jagfin/contents/therap.htm, accessed on April 11,

2008

[66] Staurosporine, LC Laboratories, http://www.lclabs.com/PRODFILE/S-

Z/S-9300.php4, accessed on April 11, 2008

[67] Staurosporine, National Institute of Allergies and Diseases, http://

apps1.niaid.nih.gov/struct_search/images/structures/001539.gif,

accessed on April 11, 2008

[68] Staurosporine, European Bioinformatics Institute, http://www.ebi.

ac.uk/msd-srv/chempdb/cgi-bin/cgi.pl?FUNCTION=record&ENTITY=

CHEM_COMP&PRIMARYKEY=2989&PARENTINDEX=-1&APPLICATION=1, accessed

on April 11, 2008

[69] Staurosporine, Volkerberl, http://www.volkerberl.de/content/

english/2_research/navi_inhalt/inhalt_research_postdoc_

background.htm, accessed on April 11, 2008

[70] Staurosporine, Cope with Cytokines, http://www.copewithcytokines.

de/cope.cgi?key=Staurosporine, accessed on April 11, 2008

[71] Staurosporine — Compound Summary (CID: 5279), PubChem,

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5279,

accessed on April 11, 2008

[72] Staurosporine, Turku University of Applied Sciences, http://www.

turkuamk.fi/varsta/lividans.htm, accessed on April 11, 2008

290

[73] Staurosporine — Compound Summary (CID: 358479), Pub-

Chem, http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=

358479, accessed on April 11, 2008

[74] Staurosporine, Upstate, http://www.upstate.com/img/coa/19-123-

29999.pdf, accessed on April 11, 2008

[75] Staurosporine, CaymanChem, http://www.caymanchem.com/app/

template/Product.vm/catalog/81590, accessed on April 11, 2008

[76] Staurosporine, EMD Biosciences, http://www.emdbiosciences.com/

product/569397, accessed on April 11, 2008

[77] Staurosporine, Instituto Biomar, http://www.institutobiomar.com/

stock.htm, accessed on April 11, 2008

[78] Staurosporine, National Institute of Allergies and Diseases,

http://apps1.niaid.nih.gov/struct_search/class/class_many.

asp?class=PROTEIN%20KINASE%20C%20INHIBITORS, accessed on April

11, 2008

[79] Protein Kinase Inhibitors : Staurosporine, proteinkinase,

http://www.proteinkinase.de/html/protein_kinase_inhibitors.

html#staurosporine, accessed on April 11, 2008

[80] Staurosporine from Streptomyces sp. (S5921), Sigma Aldrich, http://

www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/S5921,

accessed on April 11, 2008

[81] Staurosporine from Streptomyces sp. (85658), Sigma Aldrich, http://

www.sigmaaldrich.com/catalog/search/ProductDetail/FLUKA/85658,

accessed on April 11, 2008

[82] Staurosporine from Streptomyces sp. (S4400), Sigma Aldrich, http://

www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/S4400,

accessed on April 11, 2008

291

[83] Staurosporine, Visiscience, http://visiscience.com/%20samples/

Staurosporine.jpg, accessed on April 11, 2008

[84] Staurosporine, Serva Electrophoresis, http://www.serva.de/servaWeb/

www_root/ar03/templates/Ar03ProductDetail.jsp?artNr=35385, ac-

cessed on April 11, 2008

[85] Staurosporine, Alomone Labs, http://www.alomone.com/p_postcards/

database/104.htm, accessed on April 11, 2008

[86] Staurosporine, ChemExper, http://www.chemexper.com/chemicals/

supplier/cas/62996-74-1.html, accessed on April 11, 2008

[87] Staurosporine — Compound Summary (CID: 44259), PubChem,

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=44259,

accessed on April 11, 2008

[88] Staurosporine — Compound Summary (CID: 44259), PubChem, http:

//pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=451705, ac-

cessed on April 11, 2008

[89] Homepage, ChemSpider, http://www.chemspider.com/, accessed on

April 11, 2008

[90] Lecture notes from Data Exchange, Quality Assurance and Integrated

Data Publication (CIF and checkCIF), IUCr submission for the ALPSP

Award for Publishing Innovation, 2006, http://www.iucr.org/iucr-

top/docs/presentations/ALPSP_innovation2006.ppt, accessed on

June 30, 2008

[91] IUCr Crystallographic Information Framework, IUCr, http://www.

iucr.org/iucr-top/cif/index.html, accessed on May 3, 2008

[92] S. R. Hall, The STAR File: A New Format for Electronic Data Transfer

and Archiving, J. Chem. Inf. Comput. Sci, 31, 326-333

292

[93] I. D. Brown, CIF (Crystallographic Information File): A Standard for

Crystallographic Data Interchange, J. Res. Natl. Inst. Stand. Technol.,

101, 341

[94] CIF Core dictionary (coreCIF) — version 2.3.2, IUCr, http://www.

iucr.org/iucr-top/cif/cifdic_html/1/cif_core.dic/index.html,

accessed on May 3, 2008

[95] CIF Macromolecular dictionary (mmCIF) — version 2.0.09, IUCr,

http://www.iucr.org/iucr-top/cif/cifdic_html/2/cif_mm.dic/

index.html, accessed on May 3, 2008

[96] S. R. Hall, A. P. F. Cook, STAR Dictionary Definition Language: Ini-

tial Specification, J. Chem. Inf. Comput. Sci, 35, 819-825

[97] Dictionary Definition Language 1 homepage, IUCr, http://www.iucr.

org/iucr-top/cif/ddl1/index.html, accessed on May 3, 2008

[98] Dictionary Definition Language 2 homepage, IUCr, http://www.iucr.

org/iucr-top/cif/ddl2/index.html, accessed on May 5, 2008

[99] I. D. Brown, B. McMahon, CIF: The Computer Language of Crystal-

lography, Acta. Cryst., B58, 317-324

[100] checkCIF, IUCr, http://checkcif.iucr.org/, accessed on May 5, 2008

[101] Details of checkCIF/PLATON tests, IUCr, http://journals.iucr.

org/services/cif/datavalidation.html, accessed on May 3, 2008

[102] S. R. Hall, H. J. Bernstein, CIF Applications. V. CIFtbx2: extended

tool box for manipulation CIFs, J. Appl. Cryst., 1996, 29, 598-603

[103] J. D. Westbrook, S.-H. Hsieh, P. M. D. Fitzgerald, CIF Applications.

VI. CIFLIB: an application program interface to CIF dictionaries and

data files, J. Appl. Cryst., 1997, 30, 79–83

[104] H. J. Bernstein, F. C. Bernstein, P. E. Bourne, CIF Applications. VIII.

pdb2cif: translating PDB entries into mmCIF format, J. Appl. Cryst.,

1998, 31, 278–281

293

[105] P. R. Edgington, HICCuP: High-Integrity CIF Checking Using Python,

Cambridge Crystallographic Data Centre, UK, 1997

[106] J. R. Hester, A validating CIF parser: PyCIFRW, J. Appl. Cryst.,

2006, 39, 621–625

[107] W. Bluhm, Star (CIF) parser, San Diego Supercomputer Centre, http:

//pdb.sdsc.edu/STAR/index.html, accessed on May 3, 2008

[108] About SAX, SAX project, http://www.saxproject.org/, accessed on

May 3, 2008

[109] Document Object Model (DOM), W3C, http://www.w3.org/DOM/, ac-

cessed on May 3, 2008

[110] Java, Sun Developer Network, http://www.javasoft.com, accessed on

May 4, 2008

[111] Chemical Markup Language, Sourceforge, http://www.sf.net/

projects/cml, accessed on May 3, 2008

[112] Chemical Markup Language Subversion, Sourceforge, http://

sourceforge.net/svn/?group_id=51361, accessed on May 3, 2008

[113] Welcome to Maven, Apache Maven Project, http://maven.apache.

org/, accessed on May 3, 2008

[114] legacy2cml download page, Sourceforge, http://sourceforge.net/

project/showfiles.php?group_id=51361&package_id=232633, accessed

on May 3, 2008

[115] Introduction, Jakarta Commons HTTPClient, http://hc.apache.org/

httpclient-3.x/, accessed on May 3, 2008

[116] Tagsoup, Chester County InterLink, http://home.ccil.org/~cowan/

XML/tagsoup/, accessed on May 3, 2008

294

[117] CIF - Common Semantic Features, IUCr, http://www.iucr.org/iucr-

top/cif/spec/version1.1/cifsemantics.html, accessed on May 3,

2008

[118] Homepage, Blue Obelisk, http://blueobelisk.sourceforge.net/wiki/

Main_Page, accessed on May 3, 2008

[119] The Blue Obelisk Data Repository download page, Sourceforge,

http://sourceforge.net/project/showfiles.php?group_id=189199,

accessed on May 3, 2008

[120] atom site disorder assembly definition in the coreCIF dictionary,

IUCr, http://www.iucr.org/iucr-top/cif/cifdic_html/1/cif_core.

dic/Iatom_site_disorder_assembly.html, accessed on May 3, 2008

[121] J. S. Rollett, Computing Methods in Crystallography, Oxford, Perga-

mon Press, 1965, p23

[122] atom site label definition in the Core CIF Dictionary (version 2.3),

IUCr, http://www.iucr.org/iucr-top/cif/cif_core/definitions/

Cdata_atom_site_label.html, accessed on May 3, 2008

[123] R. Köppen, F. Emmerling, R. Becker, Decabromodiphenylethane, Acta

Cryst., E63, o585-586

[124] L. Xu, W. -Z. Bi, K. Zhou, (E)-Ethyl 2-[2-(bromomethyl)phenyl]-2-

(methoxyimino)acetate, Acta. Cryst., E63, o4686

[125] V. Pavlyuk, P. Solokha, G. Dmytriv, B. Marciniak, V. Paul-Boncour,

The Heusler-type alloy MgZn2Ce, Acta. Cryst., E63, i161

[126] J. Miklovic, J. Moncol, D. Miklos, P. Segla, M. Koman, trans-

Tetraaquabis[3-(3-pyridyl)acrylato-κN]cobalt(II), Acta. Cryst., E64,

m426

[127] W. -C. Song, M. -J. Zhang, Y. Tao, J. -R. Li, catena-Poly[[bis(pyridine-

κN)nickel(II)]-di-µ-azido-κ4N 1:N 3-[bis(pyridine-κN)nickel(II)]-di-µ-

azido-κ4N 1:N 1], Acta. Cryst., E63, m3062

295

[128] jni-InChI, Sourceforge, http://jni-inchi.sourceforge.net/, accessed

on May 3, 2008

[129] CrystalEye, World Wide Molecular Matrix, http://wwmm.ch.cam.ac.

uk/crystaleye/index.html, accessed on May 3, 2008

[130] J. Downing, P. Murray-Rust, A. P. Tonge, P. Morgan, H. S. Rzepa, F.

Cotterill, N. Day, Matt J. Harvey, SPECTRa: The Deposition and Val-

idation of Primary Chemistry Research Data in Digital Repositories,

J. Chem. Inf. Model., ASAP Article, DOI: 10.1021/ci7004737

[131] Homepage, Cambridge Crystallographic Data Centre, http://www.

ccdc.cam.ac.uk/index.php, accessed on May 14, 2008

[132] F. H. Allen, The Cambridge Structural Database: a quarter of a million

crystal structures and rising, Acta. Cryst., B58, 380–388

[133] Cambridge Structural Database, Cambridge Crystallographic Data

Centre, http://www.ccdc.cam.ac.uk/products/csd/, accessed on May

14, 2008

[134] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K.

Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord,

M. R. Pocock, M. Senger, R. Stevens, A. Wipat, C. Wroe, Taverna:

Lessons in creating a workflow environment for the life sciences, Grid

Workflow Special Issue, 2005, 1067-1100

[135] L. Wang, J. J. Riethoven, A. Robinson, XEMBL: distributing EMBL

data in XML format, Bioinformatics, 18, 1147–1148

[136] Bibliographic Query Service, European Bioinformatics Institute, http:

//industry.ebi.ac.uk/openBQS/, accessed on May 14, 2008

[137] M. Senger, P. Rice, T. Oinn, SoapLab: a unified Sesame door to anal-

ysis tools, Proceedings of the UK e-Science All Hands Meeting, 2003

[138] Beanshell homepage, http://www.beanshell.org/

296

[139] WWMM Web Services, WWMM, http://wwmm-svc.ch.cam.ac.uk/

wwmm/html/, accessed on May 14, 2008

[140] WWMM OpenBabel Web Service, WWMM, http://wwmm-svc.ch.

cam.ac.uk/wwmm/html/observer.html, accessed on May 14, 2008

[141] WWMM InChI Web Service, WWMM, http://wwmm-svc.ch.cam.ac.

uk/wwmm/html/inchiserver.html, accessed on May 14, 2008

[142] M. Pierce, oral presentation, Community Grids Lab Work, CICC Quar-

terly Meeting, 2006, http://grids.ucs.indiana.edu/ptliupages/

presentations/CICCMarlon_Jan27_06.ppt, accessed on May 14, 2008

[143] J. Kim, oral presentation, Building Services for BCI with Tav-

erna, CICC Quarterly Meeting, 2006, http://grids.ucs.indiana.edu/

ptliupages/presentations/CICCJake_Jan27_06.ppt, accessed on May

14, 2008

[144] Freefluo, Sourceforge, http://freefluo.sourceforge.net/, accessed on

May 14, 2008

[145] Homepage, Eclipse - an open development platform, http://www.

eclipse.org/, accessed on May 14, 2008

[146] R. T. Fielding, Architectural Styles and the Design of Network-based

Software Architectures, PhD Thesis 2000

[147] Web Scraping, Wikipedia, http://en.wikipedia.org/wiki/Web_

scraping, accessed on May 14, 2008

[148] Crystallography Open Database homepage, http://cod.ibt.lt/, ac-

cessed on May 14, 2008

[149] Database ZIP file, Crystallography Open Database, http://www.

crystallography.net/cod/cod.zip, accessed on May 14, 2008

[150] HTTP Request fields — Hypertext Transfer Protocol Version

1.x, W3C, http://www.w3.org/Protocols/HTTP/HTRQ_Headers.html,

accessed on May 14, 2008

297

[151] D. -X. Zhu, W. Sun, G. -F. Yang, S. W. Ng, rac-Bis[1-(9,9-dioxo-10H -

phenothiazin-10-yl)-2-propyl]dimethylammonium terephthalate trihy-

drate, Acta. Cryst., E63, o4830

[152] CrystalEye, World Wide Molecular Matrix http://wwmm.ch.cam.ac.

uk/crystaleye/, accessed on May 14, 2008

[153] Greasemonkey, Firefox Add-ons, https://addons.mozilla.org/en-US/

firefox/addon/748, accessed on May 14, 2008

[154] Homepage, Mozilla Firefox, http://www.mozilla.com/en-US/firefox/,

accessed on May 14, 2008

[155] The XMLHttpRequest Object Working Draft, W3C, http://www.w3.

org/TR/XMLHttpRequest/, accessed on May 14, 2008

[156] E. L. Willighagen, N. M. O’Boyle, H. Gopalakrishnan, D. Jiao, R.

Guha, C.Steinbeck, D. J. Wild, Userscripts for the Life Sciences, BMC

Bioinformatics, 8:487

[157] CrystalEye Greasemonkey, Userscripts, http://userscripts.org/

scripts/show/11439, accessed on May 14, 2008

[158] RSS 2.0 feed for structures containing Carbon-Silicon bonds,

CrystalEye, http://wwmm.ch.cam.ac.uk/crystaleye/feed/bonds/C-

Si/rss/rss_20/feed.xml, accessed on May 14, 2008

[159] Homepage, Google Reader, http://reader.google.com, accessed on

May 14, 2008

[160] Homepage, Bioclipse, http://www.bioclipse.net/, accessed on May

14, 2008

[161] P. Murray-Rust, H. S. Rzepa, M. J. Williamson, E. L. Willighagen,

Chemical Markup, XML and the World Wide Web. Part 5. Applica-

tions of Chemical Metadata in RSS Aggregators, J. Chem. Inf. Comp.

Sci, 44, 462-469

298

[162] Homepage, StAX (The Streaming API for XML), http://stax.

codehaus.org/, accessed on May 14, 2008

[163] Atom Syndication Format specification, AtomEnabled, http:

//atomenabled.org/developers/syndication/atom-format-spec.php,

accessed on May 14, 2008

[164] Homepage, del.icio.us, http://del.icio.us/, accessed on May 14, 2008

[165] J. Townsend, Automated Analysis and Validation of Chemical Litera-

ture, PhD Thesis 2007

[166] Atom feed paging and archiving, IETF Tools, http://tools.ietf.org/

html/rfc5005, accessed on May 14, 2008

[167] Atom Archived Feeds, IETF Tools, http://tools.ietf.org/html/

rfc5005#section-4, accessed on May 14, 2008

[168] Atom History vs Large Archive Files, Coding Trombonist, http://

wwmm.ch.cam.ac.uk/blogs/downing/?p=140, accessed on May 14, 2008

[169] Homepage, The Golem ontology system, http://www.lexical.org.uk/

science/golem/, accessed on May 14, 2008

[170] P. T. Corbett, P. Murray-Rust, Using chemical structure in open-source

chemical text mining, Chemistry Central Journal, 2008, 2(Suppl

1):S10

[171] Profile For Using the Keyword ”meta” As an XHTML/HTML Link

Type, inamidst, http://inamidst.com/misc/uriprofile, accessed on

May 14, 2008

[172] RDFa primer, W3C, http://www.w3.org/TR/xhtml-rdfa-primer/, ac-

cessed on May 14, 2008

[173] The geographic spread of crystallography, Brighten the Corners, http:

//wwmm.ch.cam.ac.uk/blogs/walkingshaw/?p=53, accessed on May 14,

2008

299

[174] Crowdsourcing, Wikipedia, http://en.wikipedia.org/wiki/

Crowdsourcing, accessed on May 14, 2008

[175] Antony Williams, ChemSpider Has Curated Over 500 Comments,

ChemSpider Blog, http://www.chemspider.com/blog/chemspider-

has-curated-over-500-comments.html, accessed on May 14, 2008

[176] Using Connotea for CrystalEye data checking, Coding Trombonist,

http://wwmm.ch.cam.ac.uk/blogs/downing/?p=171, accessed on May

14, 2008

[177] Homepage, Connotea, http://www.connotea.org/, accessed on May 14,

2008

[178] J. J. P. Stewart, Optimization of parameters for semiempirical meth-

ods V: Modification of NDDO approximations and application to 70

elements, J. Mol. Model., 13, 1173-1213

[179] J. J. P. Stewart, Application of the PM6 method to modeling the solid

state, J. Mol. Model., 14, 499-535

[180] Introduction to the eMinerals project, eMinerals, http://www.

eminerals.org/, accessed on May 24, 2008

[181] T. O. H. White, P. Murray-Rust, P. A. Couch, R. P. Tyler, R. P. Bruin,

I. T. Todorov, D. J. Wilson, M. T. Dove, K. F. Austen, Application

and Uses of CML within the eMinerals project, Proceedings of the UK

e-Science All Hands Meeting, 2006

[182] Homepage, FoX (Fortran XML), http://www.uszla.me.uk/FoX/, ac-

cessed on May 24, 2008

[183] CML for Computational Atomistics, CMLComp, http://www.cmlcomp.

org, accessed on May 24, 2008

[184] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J.

Hasnip, S. J. Clark, M. C. Payne, First-principles simulation: ideas,

300

illustrations and the CASTEP code, J. Phys. Cond. Matt., 14, 2717-

2743

[185] MaterialsGrid: Large scale computer simulation of physical properties

of materials, MaterialsGrid, http://www.materialsgrid.org/, accessed

on May 24, 2008

[186] Homepage, Condor project, http://www.cs.wisc.edu/condor/, ac-

cessed on May 24, 2008

[187] Connecting Condor Pools with Flocking, Condor manual, http:

//www.cs.wisc.edu/condor/manual/v6.8/5_2Connecting_Condor.html,

accessed on May 24, 2008

[188] Details of the UCC Condor pool, UCC, http://www-ucc.ch.cam.ac.

uk/CO/condor.html, accessed on May 24, 2008

[189] M. Born, T. von Karman, Vibrations in Space Gratings (Molecular

Frequencies), Z. Physik., 13, 297-309

[190] A. F. Block, Z. Physik., 52, 555

[191] The Cluster, MOPAC online manual, http://openmopac.net/Manual/

Solids_cluster.html, accessed on May 24, 2008

[192] Considerations in Geometry Optimization, MOPAC online man-

ual, http://openmopac.net/Manual/Geometry_considerations.html,

accessed on May 24, 2008

[193] O. Hassel, Structural Aspects of Interatomic Charge-Transfer Bonding,

Science, 170, 497-502

[194] I. Castellote, M. Moron, C. Burgos, J. Alvarez-Builla, A. Martin, P.

Gomez-Sal, J. J. Vaquero, Reaction of imines with N-iodosuccinimide

(NIS): unexpected formation of stable 1 : 1 complexes, Chem. Com-

mun., 2007, 1281-1283

301

[195] Homepage, American Mineralogist Crystal Structure Database, http:

//rruff.geo.arizona.edu/AMS/amcsd.php, accessed on May 24, 2008

[196] Comparison of Structures of Crystalline Solids Predicted using PM6

with X-Ray, MOPAC, http://openmopac.net/all.html, accessed on

May 24, 2008

[197] Private communication with J. J. P. Stewart, author of the MOPAC

program, July 2008

[198] Bond-length histograms, CrystalEye, http://wwmm.ch.cam.ac.uk/

crystaleye/bondlengths/index.html, accessed on May 24, 2008

[199] Error messages produced by MOPAC, MOPAC Online Manual, http:

//openmopac.net/Manual/error_messages.html, accessed on May 24,

2008

[200] J. Townsend, Automated Analysis and Validation of Chemical Litera-

ture, PhD Thesis 2007, p137

[201] Homepage, The R Project for Statistical Computing, http://www.r-

project.org/, accessed on May 24, 2008

[202] G. M. Day, W. D. S. Motherwell, H. L. Ammon, S. X. M. Boerrigter, R.

G. Della Valle, E. Venuti, A. Dzyabchenko, J. D. Dunitz, B. Schweizer,

B. P. van Eijck, P. Erk, J. C. Facelli, V. E. Bazterra, M. B. Ferraro,

D. W. M. Hofmann, F. J. J. Leusen, C. Liang, C. C. Pantelides, P. G.

Karamertzanis, S. L. Price, T. C. Lewis, H. Nowell, A. Torrisi, H. A.

Scheraga, Y. A. Arnautova, M. U. Schmidt, P. Verwer, A third blind

test of crystal structure prediction, Acta Cryst., B61, 511-527

[203] Private communication with J. J. P. Stewart, author of the MOPAC

program, June 2008

[204] C. Steinbeck, S. Krause, S. Kuhn, NMRShiftDB - Constructing a free

chemical information system with open-source components, J. Chem.

Inf. Comput. Sci., 43, 1733-1739

302

[205] C. Steinbeck, S. Kuhn, NMRShiftDB - compound identification and

structure elucidation support through a free community-built web

database, Phytochemistry, 65, 2711-2717

[206] K. A. Blinov, Y. D. Smurnyy, M. E. Elyashberg, T. S. Churanova, M.

Kvasha, C. Steinbeck, B. A. Lefebvre, A. J. Williams, Performance Val-

idation of Neural Network Based 13C NMR Prediction Using a Publicly

Available Data Source, J. Chem. Inf. Model., 2008, 48, 550-555

[207] A. C. J. de Dios, Ab initio calculations of the NMR chemical shift,

Prog. Nucl. Magn. Reson. Spectrosc., 1996, 29, 229

[208] T. Helgaker, M. Jaszunski, K. Rudd, Ab Initio Methods for the Calcu-

lation of NMR Shielding and Indirect Spin-Spin Coupling Constants,

Chem. Rev., 99, 293-352

[209] R. J. Ditchfield, Molecular Orbital Theory of Magnetic Shielding and

Magnetic Susceptibility, J. Chem. Phys., 1972, 56, 5688

[210] K. Wolinski, J. F. Hinton, P. Pulay, Efficient Implementation of the

Gauge-Independent Atomic Orbital Method for NMR Chemical Shift

Calculations, J. Am. Chem. Soc., 1990, 112, 8251

[211] J. R. Cheeseman, G. W. Trucks, T. A Keith, M. J. Frisch, A comparison

of models for calculating nuclear magnetic resonance shielding tensors,

J. Chem. Phys., 1996, 104, 5497

[212] J. Casanovas, A. M. Namba, S. Leon, G. L. B. Aquino, G. V. J. da

Silva, C. Aleman, Calculated and Experimental NMR Chemical Shifts

of p-Menthane-3,9-diols. A Combination of Molecular Dynamics and

Quantum Mechanics to Determine the Structure and Solvent Effects,

J. Org. Chem., 2001, 66, 3775-3782

[213] A. Baladina, V. Mamedov, X. Franck, B. Figadere, S. Latypov, Appli-

cation of quantum chemical calculations of 13C NMR chemical shifts

to quinoxaline structure determination, Tet. Lett., 45, 4003-4007

303

[214] D. C. Braddock, H. S. Rzepa, Structural Reassignment of Obtusallenes

V, VI, and VII by GIAO-Based Density Functional Prediction, J. Nat.

Prod., 2008, 71, 728-730

[215] S. D. Rychnovsky, Predicting NMR Spectra by Computational Meth-

ods: Structure Revision of Hexacyclinol, Org. Lett., 8, 13, 2895-2898

[216] D. A. Forsyth, A. B. Sebag, Computed 13C NMR Chemical Shifts via

Empirically Scaled GIAO Shieldings and Molecular Mechnanics Ge-

ometries. Conformation and Configuration from 13C Shifts, J. Am.

Chem. Soc., 1997, 119, 9483-9494

[217] G. Barone, L. Gomez-Paloma, D. Duca, A. Silvestri, R. Riccio,

G. Bifulco, Structure Validation of Natural Products by Quantum-

Mechanical GIAO Calculations of 13C NMR Chemical Shifts, Chem.

Eur. J., 2002, 8, 3233-3239

[218] G. Barone, D. Duca, A. Silvestri, L. Gomez-Paloma, R. Riccio, G.

Bifulco, Determination of the Relative Stereochemistry of Flexible Or-

ganic Compounds by Ab Initio Methods: Conformational Analysis and

Boltzmann-Average GIAO 13C NMR Chemical Shifts, Chem. Eur. J.,

2002, 8, 3240-3245

[219] K. K. Baldridge, J. S. Siegel, Correlation of Empirical δ(TMS) and

Absolute NMR Chemical Shifts Predicted by Ab Initio Computations,

J. Phys. Chem., 103, 4038

[220] D. D. Laws, H. Le, A. C. de Dios, R. H. Havlin, E. Oldfield, A Ba-

sis Size Dependence Study of Carbon-13 Nuclear Magnetic Resonance

Spectroscopic Shiedling and Alanyl and Valyl Fragments: Toward Pro-

tein Shielding Hypersurfaces, J. Am. Chem. Soc., 117, 9542

[221] P. Cimino, L. Gomez-Paloma, D. Duca, R. Riccio, G. Bifulco, Com-

parison of different theory models and basis sets in the calculation of
13C NMR chemical shifts of natural products, Magn. Reson. Chem.,

2004, 42, S26-S33

304

[222] Private communication with Prof. H. S. Rzepa, September 2007

[223] OpenContent License (OPL), OpenContent, http://opencontent.org/

opl.shtml, accessed on June 15, 2008

[224] JCAMP Standard NMR Data Format homepage, Acorn NMR Inc.,

http://www.acornnmr.com/JCAMP.htm, accessed on June 15, 2008

[225] J-C Bradley, Open Notebook Science, Drexel COAS E-Learning,

http://drexel-coas-elearning.blogspot.com/2006/09/open-

notebook-science.html, accessed on June 15, 2008

[226] Predicting 13C NMR shifts with Gaussian03, WWMM, http://wwmm.

ch.cam.ac.uk/data/nmr/, accessed on June 15, 2008

[227] E. S. Raymond, Release Early, Release Often, The Cathedral

and the Bazaar, http://catb.org/esr/writings/cathedral-bazaar/

cathedral-bazaar/ar01s04.html, accessed on June 15, 2008

[228] Peter Murray-Rust, Homepage, A Scientist and the Web, http://wwmm.

ch.cam.ac.uk/blogs/murrayrust/, accessed on June 15, 2008

[229] M. Kaupp, O. L. Malkina, V. G. Malkin, Interpretation of 13C NMR

chemical shifts in halomethyl cations. On the importance of spin-orbit

coupling and electron correlation, Chem. Phys. Lett., 265, 55-59

[230] O. L. Malkina, B. Schimmelpfennig, M. Kaupp, B. A. Hess, P. Chandra,

U. Wahlgren, V. G. Malkin, Spin-orbit corrections to NMR shielding

constants from density functional theory. How important are the two-

electron terms?, Chem. Phys. Lett., 296, 93-104

[231] What is NMRShiftDB?, NMRShiftDB, http://

nmrshiftdb.ice.mpg.de/portal/js_pane/P-Help;jsessionid=

FBA908159F963A23D5BF8D06D7F1B830.tomcat2?URL=t1.html#whatis,

accessed on June 15, 2008

305

[232] Quality check of nmrshiftdb-data using CSEARCH-Algorithms,

NMRPREDICT, http://nmrpredict.orc.univie.ac.at/csearchlite/

enjoy_its_free.html, accessed on June 15, 2008

[233] Peter Murray-Rust’s blog, Comments for the entry titled ’Open

NMR: Nick Day’s final results’, http://wwmm.ch.cam.ac.uk/blogs/

murrayrust/?p=800#comments, accessed on June 15, 2008

[234] H. L. Morgan, The Generation of a Unique Machine Description for

Chemical Structures - A Technique Developed at Chemical Abstracts

Service, J. Chem. Doc., 1965, 5, 107-113

[235] Cambridge Chemistry Department Crystallographic Repository,

http://wwmm.ch.cam.ac.uk/projects/C3DeR/index.html, accessed on

November 20, 2008

[236] Main Page, eCrystals Project Wiki, http://wiki.ecrystals.chem.

soton.ac.uk/index.php/Main_Page, accessed on November 20, 2008

[237] C3DE (Cambridge CML Crystallographic Diagram Editor), http://

wwmm.ch.cam.ac.uk/projects/C3DE/index.html, accessed on November

20, 2008

[238] How does InChI represent organometallic compounds? ,Unoffi-

cial InChI FAQ, http://wwmm.ch.cam.ac.uk/inchifaq/#How%20does%

20InChI%20represent%20organometallic%20compounds? , accessed on

November 20,2008

[239] S. J. Coles, N. E. Day, P. Murray-Rust, H. S. Rzepa and Y. Zhang,

Enhancement of the chemical semantic web through the use of InChI

identifiers, Org. Biomol. Chem., 2005, 3, 1832–1834

[240] Dogpile homepage, http://www.dogpile.com/, accessed on May 27,

2008

[241] Crystal Structure Report Archive, University of Southampton, http:

//ecrystals.chem.soton.ac.uk/, accessed on May 27, 2008

306

References are given in the style adopted by the Journal of Chemical Infor-

matics and Computer Science.

307

