

Information Extraction from

Chemical Patents

David Matthew Jessop

Fitzwilliam College

This dissertation is submitted for the degree of Doctor of Philosophy

i

Preface

This dissertation is the result of my own work and includes nothing which is the outcome of work

done in collaboration except where specifically indicated in the text

This dissertation does not exceed the word limit (60000) set by the Degree Committee

ii

Abstract

Information Extraction from Chemical Patents David Matthew Jessop

The automated extraction of semantic chemical data from the existing literature is demonstrated.

For reasons of copyright, the work is focused on the patent literature, though the methods are

expected to apply equally to other areas of the chemical literature.

Hearst Patterns are applied to the patent literature in order to discover hyponymic relations

describing chemical species. The acquired relations are manually validated to determine the

precision of the determined hypernyms (85.0%) and of the asserted hyponymic relations (94.3%). It

is demonstrated that the system acquires relations that are not present in the ChEBI ontology,

suggesting that it could function as a valuable aid to the ChEBI curators. The relations discovered by

this process are formalised using the Web Ontology Language (OWL) to enable re-use.

PatentEye – an automated system for the extraction of reactions from chemical patents and their

conversion to Chemical Markup Language (CML) – is presented. Chemical patents published by the

European Patent Office over a ten-week period are used to demonstrate the capability of PatentEye

– 4444 reactions are extracted with a precision of 78% and recall of 64% with regards to determining

the identity and amount of reactants employed and an accuracy of 92% with regards to product

identification. NMR spectra are extracted from the text using OSCAR3, which is developed to greatly

increase recall. The resulting system is presented as a significant advancement towards the large-

scale and automated extraction of high-quality reaction information.

Extended Polymer Markup Language (EPML), a CML dialect for the description of Markush structures

as they are presented in the literature, is developed. Software to exemplify and to enable

substructure searching of EPML documents is presented. Further work is recommended to refine the

language and code to publication-quality before they are presented to the community.

iii

Acknowledgments

I would like to thank Prof. Robert Glen and Prof. Peter Murray-Rust for supervision. I would also like

to thank all those who have contributed to the creation of the software that has made this project

possible – most notably Dr Peter Corbett for his work on OSCAR3, Dr Lezan Hawizy for her work on

ChemicalTagger and Daniel Lowe for his work on OPSIN. Further thanks go to all those too numerous

to name at the Unilever Centre, past and present, who have contributed to discussions and

supported me in my work. Special thanks go to Dr Sam Adams, who volunteered to proof read this

thesis, and to Jo for her love and support.

I am grateful to Unilever for funding.

iv

Contents

Preface ... i

Abstract ... ii

Acknowledgments .. iii

Contents ... iv

List of Figures .. vii

Glossary .. ix

1. Introduction .. 1

1.1 Open and Closed Data .. 1

1.2 The Semantic Web .. 2

1.3 Semanticizing Chemistry ... 5

1.4 Information Extraction from Chemical Documents .. 5

1.5 Development Environment ... 7

2. Sources of Chemical Documents & Technologies for their Semantic Enrichment 8

2.1 Availability of Documents ... 8

2.1.1 Journal Articles .. 9

2.1.2 Theses ... 9

2.1.3 Patents .. 10

2.2 Key Technologies .. 14

2.2.1 XML & XPath ... 15

2.2.2 Regular Expressions .. 16

2.2.3 Machine-Understandable Chemical Formats ... 17

2.2.4 Chemical Markup Language .. 21

2.2.5 CMLXOM & JUMBO ... 25

2.2.6 OSCAR3 ... 26

2.2.7 ChemicalTagger ... 39

2.2.8 OSRA .. 45

2.3 Conclusions ... 47

3. Representation and Manipulation of Markush Structures ... 48

3.1 Markush Structures ... 49

3.2 Polymer Markup Language ... 50

3.2.1 Representation of Polyethylene Oxide ... 50

v

3.2.2 Representation of Polystyrene ... 53

3.2.3 Representing Variability in PML .. 55

3.2.4 The Cambridge Polymer Builder ... 58

3.3 Extension of PML for Markush Structures .. 61

3.3.1 Frequency Variation .. 63

3.3.2 Homology Variation .. 63

3.3.3 Position Variation .. 66

3.3.4 Position and Count Variation .. 67

3.3.5 Inline Connection Tables ... 68

3.4 Building Representative Examples of a Markush Structure.. 70

3.5 Substructure Searching of Markush Structures .. 75

3.5.1 Implementing Extended Connection Tables ... 76

3.5.2 Building Extended Connection Tables ... 78

3.5.3 The Relaxation Algorithm.. 82

3.5.4 Examples ... 87

3.6 Conclusions ... 91

4. Automatic Acquisition of Hyponymic Relations from the Chemical Literature 93

4.1 Hyponymic Relations .. 93

4.2 Hearst Patterns ... 94

4.2.1 OSCAR3 Implementation .. 95

4.3 Acquiring Hyponymic Relations .. 97

4.3.1 HearstFinder .. 98

4.3.2 Recording Hyponymic Relations ... 100

4.3.3 Content of the Derived Relations & Sources of Error ... 102

4.3.4 Trimming the Relations ... 105

4.3.5 HearstFinder Validation .. 107

4.4 Uses of Derived Data ... 116

4.4.1 Automatic Classification of Structural & Non-Structural Classes 117

4.4.2 Detection of Useful Relationships ... 120

4.4.3 Application to Data Searching ... 124

4.5 Conclusions ... 124

5. High-Throughput Abstraction of Chemical Reactions – PatentEye .. 126

5.1 Downloading Patents .. 127

5.1.1 EPO Web Interface .. 127

vi

5.1.2 Automated Downloading of EPO patents ... 128

5.1.3 Formation of the Patent Corpus ... 130

5.2 Document Enhancement .. 131

5.2.1 Paragraph Deflattening ... 132

5.2.2 Document Segmentation .. 133

5.2.3 Data Annotation .. 139

5.2.4 Experimental Paragraph Classification ... 154

5.2.5 Image Analysis ... 157

5.2.6 Back Reference Annotation .. 170

5.3 Extraction of Reactions ... 175

5.3.1 Conventional Format of Experimental Sections ... 176

5.3.2 Implementation of Automatic Reaction Extraction .. 177

5.3.3 Reaction Extraction Performance ... 195

5.4 Conclusions ... 198

6. Results ... 199

6.1 Quality of Extracted Reactions .. 199

6.1.1 Corpus Formation ... 199

6.1.2 Product Validation .. 200

6.1.3 Reagent Validation .. 201

6.1.4 Spectra Validation ... 203

6.1.5 Automated Verification Validation ... 204

6.2 Enabling Reuse of the Extracted Data ... 209

7. Conclusions ... 213

8. Bibliography .. 216

Appendix A .. 224

Appendix B .. 227

Appendix C .. 229

Appendix D .. 230

Appendix E .. 232

vii

List of Figures

Figure 2-1: InChI representations of limonene ... 19

Figure 2-2: CML representation of acetaldehyde ... 22

Figure 2-3: Hydration of acetaldehyde ... 23

Figure 2-4: CML representation of a chemical reaction ... 24

Figure 2-5: OSCAR3 Architecture .. 26

Figure 2-6: Example inline document as produced by OSCAR3 .. 32

Figure 2-7: OSCAR3 Data Annotations .. 37

Figure 2-8: 1H NMR regular expression ... 38

Figure 2-9: ChemicalTagger Architecture ... 40

Figure 2-10: Sample ChemicalTagger output .. 44

Figure 2-11: Example reaction scheme ... 45

Figure 3-1: Generic structure representing the monochlorinated toluenes .. 48

Figure 3-2: PML representation of poly(ethylene oxide) .. 51

Figure 3-3: Atomistic representation for the g:o fragment .. 52

Figure 3-4: The creation of bonds between fragments in PML .. 53

Figure 3-5: PML representation of polystyrene .. 54

Figure 3-6: PML representation of a statistical copolymer... 56

Figure 3-7: The front page of the Cambridge Polymer Builder ... 58

Figure 3-8: Designing a polymer ... 59

Figure 3-9: Results of polymer building .. 60

Figure 3-10: PML representation of the monochlorinated toluenes .. 62

Figure 3-11: Homology variation in EPML .. 64

Figure 3-12: Formal description of the alkoxy template .. 65

Figure 3-13: Position variation in EPML .. 66

Figure 3-14: Markush structure employing simultaneous position and count variation 67

Figure 3-15: Simultaneous position and count variation in EPML .. 68

Figure 3-16: Markush structure featuring variable cyclic unit .. 69

Figure 3-17: Inline connection tables in EPML .. 69

Figure 3-18: Example Markush structure ... 73

Figure 3-19: EPML representation of the example Markush structure .. 74

Figure 3-20: 3D (left) and 2D (right) views of a randomly-generated example compound 75

Figure 3-21: Superimposed structure representing the monochlorinated toluenes 75

Figure 3-22: Relaxation match of 3-aminopropanoyl chloride ... 84

Figure 3-23: Inconclusive results of relaxation matches .. 85

Figure 3-24: Example Markush structure (left) and corresponding ECT (right) 88

Figure 4-1: Acquisition and Storage of Hearst Patterns.. 97

Figure 4-2: Grammatical structure of a Hearst Pattern .. 100

Figure 4-3: Distribution of Hearst Patterns across the patent corpus .. 102

Figure 4-4: Individual Hearst Pattern frequency across the patent corpus .. 103

Figure 4-5: The customised OSCAR3 ScrapBook ... 110

viii

Figure 4-6: Annotated Hearst Pattern as produced by the OSCAR3 ScrapBook................................. 111

Figure 4-7: Indirect ChEBI classification of acetone as a solvent .. 121

Figure 5-1: Search results for EP 1777210 .. 127

Figure 5-2: Variation of downloaded and unique patents in the corpus .. 130

Figure 5-3: Identification of and Document Restructuring Using Consecutive Headings 138

Figure 5-4: Software architecture for the application of OSCAR3 data annotations to patent XML

documents .. 140

Figure 5-5: Embedded images in the patent XML. The text has been shortened for the sake of brevity

 .. 158

Figure 5-6: EP1620437B1 Image 413 .. 158

Figure 5-7: Types of images present in experimental sections... 161

Figure 5-8: Input image (left) and correctly interpreted structure (right) .. 164

Figure 5-9: Input image (top) and correctly interpreted structure (bottom) 165

Figure 5-10: Input image (left) and correctly interpreted structure ... 165

Figure 5-11: Input image (top) and incorrectly interpreted structure (bottom) 166

Figure 5-12: Input image (top) and unbuildable result (bottom) ... 167

Figure 5-13: Input image (top) and unbuildable result (bottom) ... 168

Figure 5-14: Runtime required for image analysis .. 169

Figure 5-15: Analogous reactions from EP1326865.. 170

Figure 5-16: Indexed and Tokenised Headings ... 172

Figure 5-17: Local annotation of sub-headings .. 174

Figure 5-18: EP1326865 - Example 79, Step 1 .. 177

Figure 5-19: Abstracting reactions from patent text .. 178

Figure 5-20: Example NMR spectrum in CML ... 181

Figure 5-21: Sample ChemicalTagger markup of a reactant ... 182

Figure 5-22: ChemicalTagger output for mixed content .. 182

Figure 5-23: Automatically generated reactantList and spectatorList. For the sake of brevity, atom

and bond elements have been removed .. 184

Figure 5-24: Identification of key reactants .. 188

Figure 5-25: Significant substructures in the analogous reaction .. 189

Figure 5-26: Proton environments in a non-trivial system ... 192

Figure 6-1: Sample RDF from the PatentEye Repository .. 211

Figure 6-2: Diagrammatic illustration of PatentEye Repository RDF .. 212

ix

Glossary

API Application Programming Interface

CAS Chemical Abstracts Service

ChEBI Chemical Entities of Biological Interest

CML Chemical Markup Language

DTD Document Type Definition

EPML Extended Polymer Markup Language

EPO European Patent Office

ECT Extended Connection Table

HTML HyperText Markup Language

InChI IUPAC International Chemical Identifier

JUMBO Java Universal Molecular Browser for Objects

JVM Java Virtual Machine

MEMM Maximum Entropy Markov Model

NLP Natural Language Processing

OCR Optical Character Recognition

OPSIN Open Parser for Systematic IUPAC Nomenclature

OSCAR Open Source Chemistry Analysis Routines

OSRA Optical Structure Recognition Application

OWL Web Ontology Language

MPT Mean Pairwise Tanimoto Coefficient

NMR Nuclear Magnetic Resonance

PDF Portable Document Format

PML Polymer Markup Language

RDF Resource Description Framework

SMILES Simplified Molecular Input Line Entry Specification

x

URI Uniform Resource Indicator

USPTO United States Patent and Trademark Office

WIPO World Intellectual Property Organization

XML Extensible Markup Language

1

1. Introduction

Isaac Newton once wrote to Robert Hooke;

“If I have seen a little further it is by standing on the shoulders of giants”

This oft-quoted adage contains a great truth; in modern science, all new works are based upon

something that has come before and so if we are to carry out new work, we must first know what

has come before. In the modern age this can be difficult – research today is carried out on a huge

scale, and a scientist searching for the answer to a simple question may find it impossible to find the

appropriate needle in a vast, electronic haystack. Modern information systems give him at least a

fighting chance, but it is by no means guaranteed that a computer system will contain the data he

seeks, or have indexed the information it holds in sufficient depth to allow him to find his answer.

This thesis seeks to address the problem of information flow in chemistry; the question of how to

make information available to those who need it, when they need it.

1.1 Open and Closed Data

The scale of information output in modern chemistry is huge (1). The CAplus database (2) holds

more than 32 million references to patents and journal articles and indexes more than 1500 current

journals on a weekly basis, while the CAS REGISTRY (3) holds more than 54 million chemical

compounds and the CASREACT (4) database more than 39 million single and multi-step reactions.

But even these numbers do not do justice to the scale on which the research is conducted –

inevitably, these databases will not be complete indexes of the published data, while published

authors will limit the data they include in their documents to that which is directly relevant to their

work, omitting much that they have generated during the course of it.

2

Much chemical information is not freely available – it may be locked to a paper format in a

researcher’s lab book, effectively lost to the community, while the traditional business model of a

journal requires the erection of paywalls. Such closed data obstructs the work of scientists, though

they may not know it. Data may be closed with good reason – in commercial research, for example,

revealing the detail of one’s work too early may risk the patentability of an invention and thereby its

commercial value – but often data is closed that need not be.

The availability of data is vital for data-driven science such as spectra prediction and Quantitative

Structure-Activity Relationships (QSAR), which has become increasingly important to the

pharmaceutical industry as it seeks to control the spiralling costs of drug development. Open data –

data that is freely available to the community – supports and enables such work. The more that the

culture of open data spreads, the more such work becomes viable.

1.2 The Semantic Web

Tim Berners-Lee first described the concept of the Semantic Web (5). The idea is simple – the World

Wide Web comprises a vast collection of information, but information that is largely meaningless to

a computer. If it were to be made machine-understandable, then software agents could be

developed that would be able use this information as a basis for reasoning and to make decisions.

This concept, tied to that of open data, would allow for computerised scientists conducting their

own data-driven research and reporting their conclusions back to humans. The concept of a machine

performing research is not one for the world of science fiction – indeed, the robot scientist Adam

has conducted its own hypothesis-driven research, reaching conclusions that were later validated by

human researchers (6).

In order to make our information machine-understandable, it is necessary to formalise the semantics

of the medium in which it is stored. For the semantic web, such formalisation is typically performed

3

by encoding the data using eXstensible Markup Language (XML). A bookshop, for example, might

encode its catalogue as follows;

<catalogue>

 <book>

 <title>Of Mice and Men</title>

 <author>John Steinbeck</author>

 <ISBN>0141023570</ISBN>

 <price>£4.00</price>

 </book>

 <book>

 <title>War and Peace</title>

 <author>Leo Tolstoy</author>

 <ISBN>1853260622</ISBN>

 <price>£1.99</price>

 </book>

 …

</catalogue>

In this example, the four pieces of information that are stored for each book – the title, author, ISBN

number and price – are enclosed within appropriate XML tags. XML tags may be either opening, e.g.

<title>, closing, e.g.</title> or empty, e.g. <title />. A computer may read this document

and see that the catalogue contains a book, the title of which is “Of Mice and Men” and the

author of which is “John Steinbeck”. By specifying the semantics in this way, we have made the

data machine-understandable.

Of course, concepts of the same name can mean different things to different people – or even to the

same person. The concept “book” may be a collection of bound pages to a publisher or a collection

of bets placed by gamblers to a bookmaker. A “title” may be the name of a book or a prefix to a

person’s name in polite conversation. In order to allow a machine to differentiate between different

concepts of the same name, XML elements are assigned namespaces, for example;

<book xmlns=”http://www.amazon.co.uk” />

The attribute xmlns on this book element defines the term “book” as having the meaning defined

by Amazon. The namespaces used in XML are Internationalised Resource Indicators (IRIs), as

4

opposed to the more common Uniform Resource Locator (URL) – the difference being that an IRI

may, but need not, point to the actual location of a resource and may contain characters chosen

from a larger set. By using a unique namespace, an author may create his own XML vocabulary

suitable for whatever task he has in mind. Concepts from differing namespaces may then be

combined within the same document to perform the role required by the document’s author. This

combination of flexibility and precision of concepts has led in recent years to XML becoming a de

facto standard with, for example, XML-based formats being adopted by Microsoft Office and

OpenOffice.

Though we may be some years away from computers routinely performing our science for us, some

benefits of making our data machine-understandable are immediate – it is, for example,

immediately made far more discoverable. Perhaps our frustrated researcher needs to know the glass

transition temperature of polyvinyl alcohol. A text-based search on the web for the terms “glass

transition temperature” and “polyvinyl alcohol” may be successful, or it may not. The glass transition

temperature is often abbreviated as “Tg”, while polyvinyl alcohol is also known as poly(vinyl alcohol),

poly(ethenol) and PVA – which is also the abbreviation for polyvinyl acetate. Moreover, the value of

Tg for a polymer depends on the precise composition of the polymer and the method of

measurement employed. The difficulties of locating key information in the literature have been

previously noted (7). Our researcher would be greatly advantaged if he could define the property

and substance of interest in terms that the machine can understand and allow the correct value to

be discovered automatically from a set of precisely defined data.

5

1.3 Semanticizing Chemistry

The description of chemistry in terms understandable to a machine is supported by the XML dialect

Chemical Markup Language (CML). CML allows for the description of atoms, molecules, spectra,

reactions and more, and is discussed in section 2.2.4.

By embedding CML inside another XML document, it is possible to produce a document which is

readable to humans and in which the chemistry may be understood by machines – a datument (8).

This process may be carried out either by the original author, on the author’s behalf by an editor

during the process of document publication, or post-publication. Creation of XML is best-supported

by the creation of authoring tools, such as the Microsoft Word plug-in Chem4Word which allows

CML to be embedded directly into Word documents (9). Publishers are beginning to see the value of

semantically enriching their output, such as in the Royal Society of Chemistry’s Project Prospect (10;

11; 12), but there remains a vast amount of published chemical literature, both past and present,

which is entirely unintelligible to a machine. This presents the central problem that this thesis seeks

to address; to what extent can we identify and semantically enhance chemical information in

published documents and extract it to form novel collections?

1.4 Information Extraction from Chemical Documents

Chemical documents take a variety of types – the most common being journal articles, patents and

theses. Such documents are widely available, though terms of usage agreements may restrict the

uses to which they may be put. They typically contain large amounts of chemical information, such

as syntheses, characterisation data and properties of a wide range of chemical substances. Such

information is typically structured in purely natural (i.e. human) language, which is manually scraped

from the literature in order to populate chemical databases such as the aforementioned CAS

systems at the cost of much time and effort.

6

The potential automation of this process offers two great advantages. Firstly, the much greater

efficiency of an automated process will allow the creation of free data aggregation services such as

CrystalEye (13) – enabling data-driven science, saving money for those who depend on the

information and widening access to such information. Secondly, by reducing the marginal cost of

data acquisition to a matter of machine time the potential scale on which the process operates will

be widened. The goal is unquestionably worthwhile, but the technology is as yet too immature to

fully supplant the human aspect.

Various systems have been developed to address specific aspects of the goal of information

extraction from the chemical literature. In the 1980’s, CAS developed an experimental system to aid

in their work abstracting chemical reactions from the literature while the 1990’s saw the

development of optical structure recognition – software to identify and interpret chemical structure

diagrams – which remains an active area of research today. Recent times have seen the

development of the Open Source Chemistry Analysis Routines (OSCAR) and ChemicalTagger (14)

toolkits in the Unilever Centre. OSCAR (15) allows for the semantic annotation of chemical

documents, identifying chemical terminology and data within text, and is described in section 2.2.6.

ChemicalTagger combines the chemical name recognition aspects of OSCAR with standard natural

language parsing techniques to analyse the grammar of chemical texts as a precursor to machine

understanding of the texts, and is described in section 2.2.7. These two toolkits between them

perform key roles in the software developed as part of the current work and provide a platform for

the development of large-scale systems for the liberation of chemical information from its

containing documents.

7

1.5 Development Environment

The work for this thesis required the integration and development of a number of pre-existing open-

source technologies such as OSCAR; XOM (16), a library for the manipulation of XML; CMLXOM (17),

a library for the manipulation of CML and JUMBO (17), a library of CML-compatible cheminformatics

tools. All of these libraries are written in the Java programming language – and so, for compatibility

reasons, is the code that underlies the present work. It is hoped that, in time, this code will also be

released under an open-source licence to allow its further use and development by third parties.

8

2. Sources of Chemical Documents & Technologies for their

Semantic Enrichment

The current work is built upon two sine qua non. The first is that a suitable, and preferably large, set

of chemical documents be found that may be used as source documents. The second is that,

wherever possible, the relevant pre-existing tools and technologies must be employed. Accordingly,

this chapter discusses the sources of chemical documents (section 2.1) and the existing technologies

that are used in the current work (section 2.2) such as machine-understandable chemical formats,

Chemical Markup Language and the software libraries that operate on it and the tools OSCAR3,

ChemicalTagger and OSRA.

2.1 Availability of Documents

Crucial to the success of this work is the availability and usability of suitable source documents.

Chemical documents are typically supplied in one of two types of formats; in a text format, or an

image format. In an image format, the supplied data encodes an image of the document, rendering

the text of the document not readily accessible. A computer must first perform Optical Character

Recognition (OCR) before operations involving the text may occur. OCR technology is highly error-

prone, and so documents that are supplied in an image format are to be avoided. Conversely, in a

text format the text of the document is encoded using a character set – making it directly available

to a computer program. Such documents are obviously preferable for the current work. XML offers

an ideal format for text documents, allowing for the explicit definition of text formatting, document

sections, etc. in an unambiguous manner.

The popular Portable Document Format (PDF) is notoriously difficult to work with. The format is

designed to produce electronic copies of a document that describe its appearance rather than its

9

content. While allowing for the creation of documents that are quite suitable for displaying

information to human users, PDF does not lend itself to the easy interpretation of the enclosed text.

Indeed, the process of extracting text from a PDF has been compared to “converting hamburgers

into cows” (18). Consequently, the PDF format is also to be avoided where possible.

2.1.1 Journal Articles

Perhaps the most familiar chemical document is the journal article. Short and focused upon a

specific subject, journal articles are published frequently throughout an academic’s career. With the

coming of the digital age, journal articles are widely available in digital formats from the journal’s

website. Journal articles are most frequently supplied as PDF downloads and in an HTML format for

direct viewing on the website. Since a journal’s publisher will frequently operate a business model

that charges for access to its articles, the terms of use of the subscription will typically prohibit the

automated downloading of documents that the current work requires. Though open-access journals,

such as Acta Crystallographica Section E, exist they are very much atypical at present. The question

of whether such arrangements should or will continue in the digital age is open and important, but

beyond the scope of this thesis. So while journal articles constitute an important route for the

communication of chemical information, the automated abstraction of information from journal

articles was not attempted during the current work.

2.1.2 Theses

The standard route by which a PhD is gained requires the preparation of a thesis, and so a great

number of chemical theses are produced around the world every year. After the conclusion of the

examination process, a physical copy of the thesis is deposited with the university’s library and

becomes a public document. It is curious that in the modern day there is not requirement for the

10

deposition of a digital copy of a thesis though the very great majority of PhD candidates will have

prepared their thesis as a digital document. At the time of writing, the University of Cambridge’s

digital repository of scholarly works, DSpace@Cambridge (19), contains just three theses from the

Department of Chemistry, suggesting a low take-up rate among candidates. The British Library

operates the Electronic Theses Online Service (EThOS) (20) which offers access to those theses that

the British Library has digitised or has been supplied with a digital copy of, though coverage is

incomplete and not all of the UK’s universities participate in the programme. Due to the difficulty of

accessing a sufficient quantity of usable documents, theses were not considered a suitable source of

documents for the current work.

2.1.3 Patents

In order to gain a patent, an inventor must disclose and describe the subject of his invention, and

detail examples of the invention. In the field of chemistry, this frequently requires the claimant to

describe the synthesis and characterisation of a number of example compounds, as well as to

describe the background and subject of the invention. As a result, chemical patents contain a great

deal of potentially useful information such as synthetic routes and compound properties.

In order to allow the public to know what has and what has not been patented, the documents are

made public and, in the digital age, are widely accessible. Patent authorities and numerous other

websites host copies of the documents. Though these documents are not supplied entirely without

copyright protection, the restrictions are certainly less prohibitive than those that apply to journal

articles. The United States Patent and Trademark Office, for example, permit a patent author to

claim copyright over his work, provided that he allows for the facsimile reproduction of the original

(21). The European Patent Office asserts copyright over the content of its website, but allows for its

11

adaptation and reuse without the need to acquire a licence subject to certain conditions (22).

Patents therefore provide an ideal source of data for the current work.

2.1.3.1 EPO Patents

The European Patent Office (EPO) has begun publishing its patents in an XML format. This format

uses standardised XML tags such as heading and p (paragraph) to define the formatting of the

document, to indicate the location of images within the text as well as to link to a specified image

file and for some elementary definition of sections of the documents. Crucially, these patents are

published in a text format. The XML files may be downloaded from the EPO website (23), and are

packaged into a ZIP file along with a PDF-formatted copy of the patent and a set of files

corresponding to the images that are present in the patent. These images are supplied in the TIFF

format and are given sequential file names that correspond to the image IDs that are used in the

XML-formatted copy of the patent document, e.g. imgb0006.tif.

The content of the patent XML files is governed by a Document Type Definition (DTD) file that can be

downloaded from the EPO website (24). The composition of the XML-formatted patents, whether

used by convention or enforced by the DTD, is subsequently discussed.

Root Element

The root element of the XML documents is ep-patent-document. The common children of this

element include SDOBI, abstract, description, claims, ep-reference-list. The only

required child of ep-patent-document is abstract, although the other children mentioned will

generally be present as well – description, for example, will in practice only be absent in those

documents that do not contain a description of the invention e.g. patent search reports.

12

Alternatively, the children of ep-patent-document are permitted to be a series of doc-page

elements, but this format is only employed when the pages of the application are included in an

image format, and has not been encountered during the preparation of this thesis.

Abstract

The abstract element can be composed either of an abst-problem and an abst-solution

element, or of one or more p elements. The abst-problem and abst-solution elements

themselves consist of one or more p elements. The p (paragraph) elements contain text as well as

formatting tags such as br and sup that perform the same roles as their namesakes in HTML, and

further elements such as tables, maths and chemistry that enclose further content of a specific

type.

SDOBI

The Sub-DOcument for Bibliographic (SDOBI) data uses proprietary tags to encode a wealth of

metadata related to the patent, e.g. the tag B110 contains the patent number, B140 contains the

date of publication of the patent and B542 contains the title of the patent. The specification of these

tags is contained in the patent DTD, but since this metadata is not used at any point in this thesis it

shall not be further discussed.

Claims

By convention, each document contains three claims sections – one each in English, French and

German. Each claims element contains one or more claim elements, and each claim element

13

contains one or more claim-text elements. A claim-text element is composed of text, HTML-

style formatting tags and further tags in a similar manner as for the p element.

ep-reference-list

The ep-reference-list element contains one or more sets of a heading element followed by

one or more p elements. The heading elements contain text and HTML-style formatting tags, and

the p elements have been discussed previously.

Description

The description element contains the majority of the text of the patent, and the DTD allows it to

be composed of one or more sets of a heading followed by a number of p elements. The DTD also

allows for a number of elements to be used that correspond to well-defined sections of the patent

document, e.g. technical-field, industrial-applicability and description-of-

embodiments – unfortunately the comments in the DTD state that “these elements must NOT be

used by contractors” and they do not occur in the patents that comprise the corpus used to prepare

this thesis. As a result, the identification of the different sections of the patent documents is not the

trivial task that the DTD allows for, and this task is discussed later.

2.1.3.2 Other Patents

Patents are, of course, published by organisations other than the EPO. The World Intellectual

Property Organisation (WIPO) publishes patent documents through its website (25), primarily as

images that are not suitable for the current work, though also as HTML-formatted text with minimal

14

markup of document sections. The United States Patent and Trademark Office (USPTO) produces

text versions of its patents which are converted to XML and made available for bulk download via

Google patents (26). At the time of writing the documents available for download date from 1976 to

the present day, and are claimed to number approximately 7 million, across all subjects.

The format of the patent text within the USPTO XML files is similar to that used by the EPO, with

heading and p elements containing the text of headings and paragraphs respectively, and these

elements forming a single, unstructured list. References to external files, including images,

ChemDraw and Mol files are present in the XML, and the supporting files are available as part of the

bulk downloads.

Though the USPTO patents were not used in the current work it is believed that the techniques and

technology developed for the EPO patents should be directly applicable to them, with the need for

only some minor customisation. The set of USPTO patents would therefore constitute a second bulk

set of source documents for a scaled-up version of the current work. The WIPO patents could also be

used as source documents with the caveat that it would be necessary first to reformat the HTML

versions of the patents and identify headings within the text before they could be subjected to the

same process as those patents produced by the EPO and the USPTO.

2.2 Key Technologies

Of course, the work presented in this thesis has not been conducted in an intellectual vacuum. Much

of it is built upon technologies that have been developed over the preceding years or decades, and

the most important of these technologies are subsequently discussed.

15

2.2.1 XML & XPath

The basic terminology and format of XML, as well as the capacity it provides to render information

machine-understandable, has already been discussed in section 1.3. Much of the functionality for

writing and handling XML documents in the current work is provided by the XOM library (16). XOM

provides such basic and essential tools as the ability to read, operate upon, and serialise XML

documents while constantly ensuring that the document is well-formed – the requirement that,

among other points, the document must contain a single root element from which all other elements

in the document descend, and that the elements be correctly nested, i.e. they must not overlap. Key

operations supported by XOM include the addition to and removal from the document of XML

elements and attributes and of text content. XOM further supports the use of the XML query

language XPath (27).

XPath is a means to select XML nodes (elements, attributes, etc.) from a document. The language

permits the user to formulate simple, context-independent queries such as;

//molecule

which selects all elements named “molecule” that are descended from the starting node, the prefix

“//” indicating that the position of the selected node in the document is unimportant, provided that

it descends from the starting point. Queries may be more complex and involve context-dependent

terms, for example;

/molecule//atom

which selects all elements named “atom” that are descended from an element named “molecule”

that is itself a child of the starting node. The query may be further specified by the requirement that

elements carry named attributes or that named attributes have specific values, for example;

/molecule[@name='benzene']//atom

16

which operates as for the previous example, with the added requirement that the molecule

element must carry a name attribute with the value “benzene”. The example XPath expressions

given here are simple examples, but are sufficient to give an impression of the uses to which XPath is

put in the current work.

2.2.2 Regular Expressions

Regular expressions (“regexes”) are a powerful method for string matching, for which support has

been added to a number of programming languages including Java. When using regular expressions,

literal characters in the search regex match to characters in the target text, e.g. the regex “mol”

matches the substring “mol” in each of the strings “mol”, “molecule”, “salbutamol” and “Smolensk”.

Certain characters are used as metacharacters and have roles other than to literally denote a

character. For example, the metacharacter “$” marks the end of a line, the metacharacters “(“ and

“)” denote the beginning and the end of a group respectively, and the metacharacter “?” notes that

the preceding character or group is optional. Character classes may be used in regexes to match a

single character from a well-defined set. Certain character classes are built in to the language, such

as “.”, which matches any character and “\s”, which matches any whitespace character. Other

character classes may be defined by the user by enclosing the permitted characters in square

brackets, e.g. “*abc+” matches any one of the characters “a”, “b” or “c”. Further metacharacters

permit iteration of the preceding character or group, such as “*”, which defines that any number

(including zero), and “+”, which defines that one or more of the previous character or group must

occur in a match. Regular expressions may also define lookaheads and lookbehinds, that require that

a matching substring must be followed or preceded, respectively, by a specified regex, e.g. a

lookahead is used in the regex “mol(?=\s)” to match “mol” in “salbutamol is used by asthmatics” but

not in “Smolensk is in Russia”.

17

Regular expressions may be used to match complex patterns of text and to extract this text from a

document. In the current work, regular expressions are most notably used by OSCAR3 in order to

match the highly stylised reports of spectral data that occur in chemical texts. This operation is

discussed later, in section 2.2.6.5.

2.2.3 Machine-Understandable Chemical Formats

As the usage of computers to manage chemical information expanded, it became necessary to be

able to represent chemical structures in a format that was interpretable by the machine. While the

simple text strings “ethyl acetate” or “Oseltamivir” are easily understood by humans with sufficient

domain knowledge, the chemical structures they represent cannot be trivially identified by a

computer. Simple tasks such as substructure searching or calculation of molecular weights therefore

cannot be automated if the input to the program is not machine-understandable.

Machine-understandable chemical formats have proliferated over the years – the open-source

format-conversion tool Open Babel supports more than 90 such formats (28). Two simple formats –

SMILES and InChI – are employed in the current work and are subsequently discussed.

2.2.3.1 SMILES

Simplified Molecular Input Line Entry Specification (SMILES) (29), is a popular form of line notation –

a method for representing chemical structures in which a single string encodes the structure. In

SMILES, atoms are represented using the abbreviated forms of their chemical elements. Atoms may

be indicated to be bonded to one another when their element symbols are adjacent to one another,

and bonds are assumed to be single bonds unless the two symbols are connected by the symbol = or

#, marking double and triple bonds respectively, and unless the atoms are from the limited subset

18

permitted to be marked as aromatic by using their lowercased element symbol, e.g. “n” and “c”. To

keep SMILES strings readable, it is assumed that hydrogen atoms are present in sufficient number

and appropriate positions to occupy free valencies. Thus, propanal may be represented by the

SMILES string “CCC=O”.

Of course, not all chemical structures take the topological form of lines. Branches in a molecule may

be indicated by enclosing the side chain within brackets, while ring closures may be indicated by

following the two atoms between which a bond is present with the same number. Thus, 1,1-

dimethylcyclohexane may be represented by the SMILES string “CC1(C)CCCCC1”.

SMILES strings provide a concise means of representing chemical structures in a machine-

understandable format, and have the advantage that it is possible to produce representations for

simple structures such as those above that are comprehendible to humans. SMILES strings have the

disadvantage, however, that it is possible to represent a single chemical structure with a number of

different SMILES strings. Propanal, for example, may be represented as “CCC=O” as above, as

“O=CCC” or as “C(C=O)C” among many other permutations. It is therefore not possible to determine

if the structure represented by two SMILES strings is the same by simple text comparison of the two

strings. Though various proprietary algorithms exist for the canonicalization of SMILES strings, such

as CANGEN (30), the differing algorithms produce differing canonical SMILES strings for the same

connection table. Consequently, recent attention has focused on an open standard – the

International Chemical Identifier (InChI).

2.2.3.2 InChI

The InChI technical manual (31) states that;

“The objective of the Identifier is to provide a string of characters capable of uniquely
representing a chemical compound… Since InChI is intended to serve as a precise
digital signature of a compound, it must have two properties: 1) different compounds

19

(as defined by their „connection tables‟) must have different identifiers and 2) a single
compound must have a single identifier, regardless how its structure is drawn.”

The InChI (32; 33) represents a chemical structure in a series of layers and sub-layers. Sub-layers are

indicated by preceding their content with the string “/?” where “?” is a single character code that

identifies the sub-layer. The connection layer, indicating connectivity of the atoms in the molecular

graph, for example, is indicated by the string “/c”. Sub-layers are present only when required to

describe the structure the InChI represents. For example, consider the InChIs for limonene, (R)-

limonene and (S)-limonene as shown in Figure 2-1.

Limonene

InChI=1/C10H16/c1-8(2)10-6-4-9(3)5-7-10/h4,10H,1,5-7H2,2-3H3

(R)-limonene

InChI=1/C10H16/c1-8(2)10-6-4-9(3)5-7-10/h4,10H,1,5-7H2,2-

3H3/t10-/m0/s1

(S)-limonene

InChI=1/C10H16/c1-8(2)10-6-4-9(3)5-7-10/h4,10H,1,5-7H2,2-

3H3/t10-/m1/s1

Figure 2-1: InChI representations of limonene

20

The InChI for limonene is composed as follows;

 InChI=1 – a declaration stating that the InChI is version 1

 /C10H16 – the molecular formula sub-layer (prefixed “/”), stating that the molecular formula

is C10H16

 /c1-8(2)10-6-4-9(3)5-7-10 – the connectivity layer (prefixed “/c”), defining connections

between atoms in the molecular graph; in this case atom 1 is connected to atom 8, which is

connected to atoms 2 and 10 etc.

 /h4,10H,1,5-7H2,2-3H3 – the hydrogen layer (prefixed (“/h), defining the positions of

hydrogen atoms in the molecule; in this case, atoms 4 and 10 have one hydrogen atom each,

atoms 1 and 5-7 have two hydrogen atoms each etc.

When the stereochemistry of the chiral centre is specified as (R), the InChI is extended as follows;

 /t10- – the sp3 stereo sub-layer; in this case indicating that atom 10 has stereochemistry of

parity “-” according to the InChI algorithm

 /m0 – indicating whether all defined sp3 stereochemistry should be inverted, allowing

enantiomers of molecules with multiple stereocentres to share an identical sp3 stereo sub-

layer

 /s1 – defining the type of stereochemistry as absolute or relative; in this case, absolute

When the InChI for (S)-limonene is calculated, it can be seen to be identical to that of (R)-limonene

with the exception that the “/m0” becomes “/m1”, indicating the inversion of the stereocentre.

21

In order to produce canonical representations, the ordering of layers in an InChI is mandated. As a

result, InChIs for related structures will start identically – for example, InChIs for all the isomers of

limonene will start “InChI=1/C10H16”, while all InChIs for all the stereoisomers of limonene will start

“InChI=1/C10H16/c1-8(2)10-6-4-9(3)5-7-10/h4,10H,1,5-7H2,2-3H3”, as seen above. The content of

the various sub-layers is assured to be canonical by various procedures as detailed in the InChI

technical manual; for example the molecular formulae are formatted according to the Hill system

(34).

The generation of InChIs is supported by a number of popular software packages such as ChemDraw

(35) and OpenBabel (28). Functionality for the automatic generation of InChIs from within Java

programs is provided by the JNI-InChI library (36) and it is this library to which JUMBO delegates

much of the process. Consequently, InChIs are a convenient canonical identifier for small molecules

and are used where appropriate throughout the current work.

2.2.4 Chemical Markup Language

Chemical Markup Language (CML) is an XML-based language for the description of chemistry (37; 38;

39; 40; 41). As such, CML allows for the description of machine-understandable connection tables

and much more besides. For example, the connection table of acetaldehyde may be represented as

in Figure 2-2.

22

<molecule xmlns="http://www.xml-cml.org/schema" id="m1">

 <name dictRef="nameDict:unknown">acetaldehyde</name>

 <atomArray>

 <atom id="a1" elementType="C" />

 <atom id="a2" elementType="C" />

 <atom id="a4" elementType="O" />

 <atom id="a5" elementType="H" />

 <atom id="a6" elementType="H" />

 <atom id="a7" elementType="H" />

 <atom id="a8" elementType="H" />

 </atomArray>

 <bondArray>

 <bond id="a1_a2" atomRefs2="a1 a2" order="S" />

 <bond id="a1_a4" atomRefs2="a1 a4" order="D" />

 <bond id="a1_a5" atomRefs2="a1 a5" order="S" />

 <bond id="a2_a6" atomRefs2="a2 a6" order="S" />

 <bond id="a2_a7" atomRefs2="a2 a7" order="S" />

 <bond id="a2_a8" atomRefs2="a2 a8" order="S" />

 </bondArray>

</molecule>

Figure 2-2: CML representation of acetaldehyde

The individual atoms that make up the molecule are represented by the atom elements, which are

contained within the atomArray element. Bonds are represented by the bond elements, contained

within the bondArray element. The chemical element of each of the atoms is defined by the

elementType attribute on the atom element, while the bond order is specified by the order

attribute on the bond element and the two (assuming a conventional two-centre bond) atoms

between which the bond exists are identified by the atomRefs2 attribute on the bond element –

the value being a concatenation of the unique ids of the atoms between which the bond exists. The

example above does not include any information that could not be encoded in most if not all

machine-understandable formats, but the great advantage of CML is that it provides a platform for

the description of chemical information that is more complex than simply molecular connectivity.

For example, CML vocabularies exist for the description of chemical reactions (42) and spectral data

(43). Furthermore, these vocabularies may co-exist within the same document rather than require,

for example, one document describing a molecular structure to link to a separate document that

describes its NMR spectrum. For example, the hydration of acetaldehyde, as shown in Figure 2-3,

23

may be represented in CML as in Figure 2-4, in which the connection tables of the reaction

components have been omitted for the sake of brevity.

Figure 2-3: Hydration of acetaldehyde

24

<reaction xmlns="http://www.xml-cml.org/schema">

 <reactantList>

 <reactant>

 <molecule id="m1">

 <name dictRef="nameDict:unknown">acetaldehyde</name>

 </molecule>

 </reactant>

 <reactant>

 <molecule id="m2">

 <name dictRef="nameDict:unknown">water</name>

 </molecule>

 </reactant>

 </reactantList>

 <spectatorList>

 <spectator>

 <molecule id="m3">

 <name dictRef="nameDict:unknown">

 hydrogen chloride

 </name>

 </molecule>

 </spectator>

 </spectatorList>

 <productList>

 <product>

 <molecule id="m4">

 <name dictRef="nameDict:unknown">

1,1-ethanediol

</name>

 <spectrum type="hnmr">

 <peakList>

 <peak xValue="1.40" integral="3.0"

yUnits="unit:hydrogen"

peakMultiplicity="cmlx:doublet">

 <peakStructure type="coupling" value="6.8"

 units="unit:hz" />

 </peak>

 <peak xValue="3.65" integral="2.0"

yUnits="unit:hydrogen"

peakMultiplicity="cmlx:singlet" />

 <peak xValue="5.13" integral="1.0"

yUnits="unit:hydrogen"

peakMultiplicity="cmlx:quartet">

 <peakStructure type="coupling" value="6.8"

 units="unit:hz" />

 </peak>

 </peakList>

 </spectrum>

 </molecule>

 </product>

 </productList>

</reaction>

Figure 2-4: CML representation of a chemical reaction

25

It can be seen that the reaction is described by its component reactant, spectator (e.g. solvents and

catalysts) and product molecules. The 1H NMR spectrum of the product molecule is also contained

within the document, being present as a spectrum child of the product molecule.

The examples given above demonstrate a small but, in the context of this thesis, significant subset of

the capacity of CML to define chemical information. By rendering chemical information machine-

understandable, CML allows for the creation of systems that integrate data of a variety of types and

from a variety of sources to perform novel research – a semantic web for chemistry.

2.2.5 CMLXOM & JUMBO

Since the purpose of Chemical Markup Language is to allow computers to understand chemistry, it

follows that there is a need for tools for reading, writing and manipulating CML to allow

programmers to implement CML-compliant software. These roles are filled by the open-source

libraries CMLXOM and JUMBO (44). CMLXOM is intended as a CML-specific extension to the popular

open-source XML manipulation library XOM (16), while JUMBO serves as an open-source collection

of CML-compliant cheminformatics utilities. Further JUMBO-related projects exist to provide specific

pieces of functionality, such as the JUMBOConverters (45) project that provide conversion between

CML and a number of other formats. While the great majority of code development that was

undertaken as part of the current work occurred in projects specific to the task at hand, functionality

already provided as part of CMLXOM and JUMBO was reused where possible and functionality likely

to be of use to others was added to the shared libraries.

The current work used versions 5.5.1 of JUMBO, 2.5.1 of CMLXOM, 0.3 of JUMBOConverters and

1.2.3 of XOM.

26

2.2.6 OSCAR3

The OSCAR project has, over the last few years, resulted in the creation of a number of tools for the

analysis of chemical texts. OSCAR3 (46) is the latest incarnation of this project, and is a tool for the

automated annotation and semantic enrichment of chemical texts. The primary function of OSCAR3

is to recognise chemical named entities and, where possible, to resolve chemical names to their

corresponding connection tables. Where OSCAR3 recognises a named entity, annotations may be

created in two forms – standoff, where the annotations are held in a separate document, and inline,

where the annotations are directly embedded in the document under analysis. The system

architecture of OSCAR3 is summarised in Figure 2-5, and the functioning of the program is

subsequently discussed.

Where not otherwise noted, the version of OSCAR3 used in the current work is revision 877, dated

2010-07-21.

Figure 2-5: OSCAR3 Architecture

27

2.2.6.1 Input

OSCAR3 accepts input in a variety of formats. The system architecture is strongly dependent upon

the SciXML format – much of the code relies upon the subject document being held in this format.

As an initial step, other input formats are converted to SciXML and tools exist within OSCAR3 for this

conversion to be effected from plain text and from other XML formats, and for the conversion of

HTML to plain text from which the SciXML document may be created, as shown in Figure 2-5.

2.2.6.2 Key OSCAR3 Resources

The various stages of processing implemented in the OSCAR3 workflow make use of a number of key

resources that are shared by the different modules. These resources provide examples of chemical

and non-chemical terminology and associated structures. The resources are subsequently outlined.

ChemNameDict

ChemNameDict is a dictionary of chemical names that is largely derived from the ChEBI Ontology

(47; 48) as at August 2009. ChemNameDict contains records for 13068 unique compounds, and each

record contains precisely one InChI, at most one SMILES string and at least one chemical name. The

large majority of the records that are derived from the ChEBI Ontology also contain at least one

ChEBI ID, while the 52 that have been manually added by the OSCAR3 developers and were not

present in the ChEBI Ontology do not.

28

Ontology.txt

Ontology.txt provides a list of terms from the ChEBI, FIX (49) and REX (50) ontologies and their

corresponding ontology IDs.

Lexicon

The Lexicon provides a list of chemical elements, both names and atomic symbols, from Hydrogen to

Darmstadtium, element 110.

ChemAses & NonChemAses

ChemAses comprises a list of the names of 924 enzymes that are intended to be recognised by

OSCAR3 – those of named entity type ASE, as described in section 2.2.6.3 – that was manually

collected from the Gene Ontology (GO) (51), while NonChemAses is a list of 126 enzyme names from

GO that are not of type ASE, e.g. “epimerase” and “transferase”.

UsrDictWords

UsrDictWords is a list of approximately 96000 English words, included to provide as wide a variety of

non-chemical words as possible. This dictionary contains chemical terms commonly used in English

speech, such as “aspirin” and “benzene”. Terms from UsrDictWords are therefore only taken as

examples of non-chemical terms if they do not also appear in one of the lists of chemical terms.

29

Further Training Data

Further training data is provided from a number of chemical documents in which named entities

have been hand annotated by the OSCAR3 developers. This data includes the lists of tokens that

have occurred in the texts and their state as chemical or non-chemical terms.

2.2.6.3 Named Entity Recognition

The key function of OSCAR3 is the recognition of named entities. A number of classes of named

entities are recognised by OSCAR3. These classes are fully described in the OSCAR3 annotation

guidelines, and can be summarised as follows;

 Chemical (CM) – used for terms that denote a specific chemical structure, substructure or

generic structure e.g. “water”, “methyl” or “ketone”. The CM class is not applied to terms

that describe function or properties, such as “ligand” or “base”.

 Reaction (RN) – used for names of reactions that are derived from terms of type CM or

named after chemists, e.g. “ozonolysis” – derived from “ozone” – or “Hofmann degradation”

– named after the 19th century chemist August Wilhem von Hofmann. RNs may occur in any

part of speech e.g. “hydrolyse” or “methylated”.

 Chemical Adjective (CJ) – used for adjectives that are derived from words of type CM and do

not occur as part of a CM, e.g. “aqueous” or “citric” in “citric acidity”.

 Enzyme (ASE) – used for enzyme names that are derived from words of type CM or RN, e.g.

“beta-lactamase” or “hydrolase”.

 Chemical Prefix (CPR) – used for prefixes that would normally occur as part of a CM but are

not being used as part of one, e.g. “cis-“ in “cis- isomer” or “1,3-” in “1,3-dipolar”.

30

 Ontology term (ONT) – used for a set of dictionary terms that do not belong to any of the

above types but are of sufficient importance to have been included in the ontology.txt

resource, e.g. “acid” or “base”.

Previous work has involved the manual annotation of a corpus according to the OSCAR3 annotation

guidelines by separate human annotators and has demonstrated inter-annotator agreement of

around 90% (52). The named entities classes are further divided into subclasses. The assignment of

named entities to subclasses is not typically of importance to the user and does not form a part of

the standard process of named entity recognition. Indeed, the performance of automatic subclass

assignment is poor compared to that of the named entity recognition (53). Each of the classes CM,

RN, CJ and ASE are divided into subclasses while the classes CPR and ONT are not.

The class CM has three major and three minor subclasses. The major subclasses are EXACT, for

specific compounds such as “acetic acid”, CLASS, for classes of compounds such as “carboxylic acid”

and PART, for parts of specific compounds and classes thereof such as “carbonyl” and “alkyl”. The

three minor subclasses are intended for terms that do not easily fit into one of the three major

subclasses and are SPECIES, for elements used in the sense of “atmospheric carbon”, SURFACE and

POLYMER, used for surfaces and polymers respectively. The subclasses of RN are REACT, for specific

named reactions such as “methylation”, DESC, for descriptions of compounds such as in “the

chlorinated solvent” and MOVE, for words that denote the movement of chemical compounds such

as in “the chlorinated swimming pool”. The subclasses of CJ are EXACT, CLASS and PART, as for CM,

plus ACID, for adjectives referring to an acid such as “citric”, SOLUTION, for adjectives referring to

solutions such as “aqueous” and RECEPTOR for adjectives that refer to receptors such as “nicotinic”.

The subclasses of ASE are not relevant to the current work and are detailed in the literature for the

interested reader.

Once named entity recognition has been performed, the results are used to create a set of standoff

annotations. If desired by the user, these standoff annotations are then passed to the

31

NameResolver class (see section 2.2.6.4) in order to generate and incorporate connection tables

for named entities of type CM where possible. Finally, the set of standoff annotations may be used

to create an inline document, embedding named entity annotations into the subject document. For

example, the input text “Methyl bromide is my favourite alkyl halide.” is rendered as shown in Figure

2-6.

32

<PAPER>

 <BODY>

 <DIV>

 <HEADER />

 <P>

 <ne id="o1" surface="Methyl bromide" type="CM"

confidence="0.8851147923587711"

SMILES="[H]C([H])([H])Br"

 InChI="InChI=1/CH3Br/c1-2/h1H3" cmlRef="cml1"

 ontIDs="CHEBI:39275">

 Methyl bromide

 </ne>

 is my favourite

 <ne id="o2" surface="alkyl halide" type="CM"

 confidence="0.8596820024542137" rightPunct="."

 ontIDs="CHEBI:24469">

 alkyl halide

 </ne>

 .

 </P>

 </DIV>

 </BODY>

 <cmlPile>

 <cml convention="cmlDict:cmllite" id="cml1"

 xmlns="http://www.xml-cml.org/schema"

 xmlns:cmlDict="http://www.xml-cml.org/dictionary/cml/"

 xmlns:nameDict="http://www.xml-cml.org/dictionary/cml/name/">

 <molecule id="m1">

 <name>Methyl bromide</name>

 <identifier convention="iupac:inchi">

 InChI=1/CH3Br/c1-2/h1H3

 </identifier>

 <name dictRef="nameDict:unknown">Methyl bromide</name>

 <atomArray>

 <atom id="a1" elementType="C" />

 <atom id="a3" elementType="H" />

 <atom id="a4" elementType="H" />

 <atom id="a5" elementType="H" />

 <atom id="a2" elementType="Br" hydrogenCount="0" />

 </atomArray>

 <bondArray>

 <bond id="a1_a3" atomRefs2="a1 a3" order="S" />

 <bond id="a1_a4" atomRefs2="a1 a4" order="S" />

 <bond id="a1_a5" atomRefs2="a1 a5" order="S" />

 <bond id="a2_a1" atomRefs2="a2 a1" order="S" />

 </bondArray>

 </molecule>

 </cml>

 </cmlPile>

</PAPER>

Figure 2-6: Example inline document as produced by OSCAR3

OSCAR3 takes a modularised approach to named entity recognition and implements an extensible

architecture. Two approaches are currently implemented – the PatternRecogniser and the

MEMMRecogniser. Both approaches operate by breaking an input string of text into tokens –

33

continuous sets of characters that may or may not correspond to words. The PatternRecogniser

and MEMMRecogniser attempt to identify within the resulting token sets any examples of the

named entity classes described above.

PatternRecogniser

The strategy employed by the PatternRecogniser attempts to classify tokens as chemical or non-

chemical before joining sequential tokens into multi-token named entities where appropriate. The

classification is carried out by comparing the token to the lists of chemical and non-chemical tokens

derived from the OSCAR3 resources. If the token is contained in a list of chemical tokens derived

from the resources, it is known to be chemical, while if it is not contained in a chemical list but is

contained in the UsrDictWords resource then it is known to be non-chemical. If the token is

previously unseen then a naïve Bayesian model is used to classify the token. This model is trained

using 4-grams – sequential substrings of the token of length 4 – of the chemical and non-chemical

terms in the OSCAR3 resources. For example, for the token “pyridine” the 4-grams would be “^pyr

pyri yrid ridi idin dine ine$”. The first and last 4-grams here indicate specifically that the characters

“pyr” and “ine” were found at the beginning and the end of the string respectively. Once trained, the

model uses the 4-grams of an unseen token to predict the probability that it belongs to the chemical

class, and if this probability exceeds a user-modifiable threshold then the token is classified as

chemical.

Once the tokens have been determined to be chemical or non-chemical, a pre-classifier then

putatively assigns each of the chemical tokens to one of the named entity classes, based on the

ending of the token. For example, tokens ending in “ic” are putatively assigned as CJ, with the

exception of “arsenic” which is putatively assigned as CM. Adjacent chemical tokens are then joined

together into single named entities where appropriate. For example, “ethyl acetate” should be

34

recognised as a single named entity, whereas “carbonyl carbon” should not. This process is

controlled by regular expression style patterns based upon common naming conventions such as

“*yl *ate”, “*ium *ide” or “*ic acid”. Each of these patterns defines the named entity class to which

the term should be assigned, for example terms of the form “CPR and RN” such as “α- and β-

methylation” are assigned as RN. Those tokens that have not been combined to form a multi-token

name are then confirmed as members of their putative class. When identifying named entities using

the PatternRecogniser, the assignment of named entity subclasses is not supported.

MEMMRecogniser

A second NameRecogniser implementation, the MEMMRecogniser (54), replaces the regular

expressions employed by the PatternRecogniser with a Maximum Entropy Markov Model

(MEMM), using the implementation supplied in the OpenNLP package Maxent (55). The pre-

classification of tokens is carried out as described above, then for each token a number of features

are generated. Such features may describe the token itself, such as the named entity class assigned

by the pre-classifier and the 4-grams used in the pre-classification procedure, or contextual

information about the usage of the token such as the tokens that surround the token in question.

These features are then used by a rescorer to identify named entities. The rescorer consists of four

individual maximum entropy classifiers, one for each of the classes CM, RN, CJ and ASE. Each of

these four classifiers, trained on data extracted from manually annotated documents, predicts the

probability that a given term is a named entity of the class for which the classifier has been trained

and the most likely named entity subclass. Named entities are then identified within the text by

discounting “blocked” entities – those that overlap with another entity with a higher confidence

score. In the term “ethyl acetate”, for example, the entities “ethyl” and “acetate” would be

considered individual named entities with low confidence scores, while the named entity “ethyl

35

acetate” would have a far higher confidence score and therefore supersede the single-token named

entities.

The MEMMRecogniser is considered to provide higher performance than the PatternRecogniser

and is the NameRecogniser that OSCAR3 uses by default.

2.2.6.4 NameResolver

The function of the NameResolver is, where possible, to generate a connection table for a named

entity in InChI, SMILES and CML formats. In a conventional OSCAR3 workflow, the NameResolver

modifies the set of stand-off annotations that has been produced by the NameRecogniser to

include the connection tables, though as part of the work done in preparation of this thesis its

capability was widened to allow its use as part of a library and the resolution of individual chemical

names. Consequently, it is now possible to use the NameResolver to resolve individual chemical

names to structures without the need to create and parse a SciXML document.

When attempting to resolve a name, a number of strategies are employed. First, if the named entity

is found in the NameResolver cache – the set of terms previously resolved for the document – then

the previously generated results are used. Secondly, the term is looked up in the Lexicon and

ChemNameDict resources and, if the name being queried is found, the connection tables stored

therein are returned. Finally, the name is passed to the Open Parser for Systematic IUPAC

Nomenclature (OPSIN). The results generated at any stage are cached to facilitate more rapid

functioning of the code.

The differing methods for resolving names produce connection tables in various formats. OPSIN, for

example, generates a CML representation of the molecule, while a name resolved from

ChemNameDict will have been resolved to InChI and, most to likely, to SMILES. The formats to which

the name has not been resolved are generated from the known formats and the three formats are

36

added to the document being processed, in a conventional OSCAR3 workflow, or are returned to the

calling function if OSCAR3 is being used as an external library.

2.2.6.5 DataParser

OSCAR3 also has a secondary but highly useful function implemented in the DataParser class – the

capacity to recognise and annotate sections of analytical data such as NMR and mass spectra by

using regular expressions to match the highly stylised formats authors use when reporting them.

This functionality was the origin of the OSCAR project, which began life as the Experimental Data

Checker – a tool to allow authors of papers to be published in RSC journals to check that their

experimental sections both conform to the journal’s style guidelines and contain no identifiable

errors (56; 57). The functionality has been retained within the OSCAR3 project, though is not

integrated with the name recognition and resolution functionality. As shown in Figure 2-5, the

DataParser produces an inline annotation document of its own, in which recognised chunks of

data are annotated but chemical names are not, for example the annotations generated for the

input text “Recorded spectrum of ethyl acetate: 1H NMR(400MHz) 1.20 (3H, t), 1.97 (3H, s), 4.10

(2H, q)” are shown in Figure 2-7.

<PAPER>

 <BODY>

 <DIV>

 <HEADER />

 <P>

 Recorded spectrum of ethyl acetate:

 <spectrum type="hnmr">

 1H NMR(

 <quantity type="frequency">

 <value>

 <point>400</point>

 </value>

 <units>MHz</units>

 </quantity>

)

 <peaks type="..">

 <peak>

 <quantity type="shift">

 <value>

37

 <point>1.20</point>

 </value>

 </quantity>

 (

 <quantity type="integral">

 <value>

 <point>3</point>

 </value>

 <units>H</units>

 </quantity>

 ,

 <quantity type="peaktype">t</quantity>

)

 </peak>

 ,

 <peak>

 <quantity type="shift">

 <value>

 <point>1.97</point>

 </value>

 </quantity>

 (

 <quantity type="integral">

 <value>

 <point>3</point>

 </value>

 <units>H</units>

 </quantity>

 ,

 <quantity type="peaktype">s</quantity>

)

 </peak>

 ,

 <peak>

 <quantity type="shift">

 <value>

 <point>4.10</point>

 </value>

 </quantity>

 (

 <quantity type="integral">

 <value>

 <point>2</point>

 </value>

 <units>H</units>

 </quantity>

 <quantity type="peaktype">q</quantity>

)

 </peak>

 </peaks>

 </spectrum>

 </P>

 </DIV>

 </BODY>

</PAPER>

Figure 2-7: OSCAR3 Data Annotations

38

It can be seen that the annotations that have been applied to the text by OSCAR3 have created a

machine-understandable spectrum, in which the peak shifts, integrals and multiplicities have been

individually marked up, allowing for a machine that recognises the format of the OSCAR3 data

annotations to read the spectrum. A converter exists within the JUMBOConverters (45) project to

transform the output thus produced by OSCAR3 for NMR spectra into Chemical Markup Language,

facilitating the easy reuse of the data.

The regular expressions that form the core of this module are, for ease of comprehension and reuse,

formatted in XML and implemented as a cascading set in which regular expressions are referred to

by ids and can embed further regular expressions. For example, the top-level regular expression for

matching a 1H NMR spectrum is as follows;

<node type="spectrum" id="hnmr" value="hnmr">

<regexp parsegroup="0">

<insert idref="nmrDelta" />?

\b

<insert idref="hNmr.Prolog"/>

(?: \W* for\s+\w+ (?: (![\(\);]).)*?)?

<insert idref="nmrMethod"/>?

(\W+(<insert idref="nmrDelta"/>|H)+\b)?

[\s:=]+?

(?: \W*ppm\W*?)?

(?: peaks\s+at\s+)?

(?:\s*<insert idref="nmrDelta"/>\s+)?

<insert idref="nmrPeakBlock"/>

</regexp>

<child type="quantity" id="hnmrSolvent"/>

<child type="quantity" id="hnmrStandard"/>

<child type="quantity" id="hnmrFrequency"/>

<child type="quantity" id="hnmrTemperature"/>

<child type="peaks" id="hnmr"/>

</node>

Figure 2-8:
1
H NMR regular expression

The node element denotes a concept to be annotated, the value of the type attribute gives the

name of the tag to be assigned to the annotation and the id attribute gives the value of the type

attribute to set on the annotation, as can be seen above in the annotated 1H NMR – in this case,

<spectrum type="hnmr">. Other regular expressions are inserted into the top-level regex using

39

the insert elements, and important subsections of the matching text that are also to be annotated

are defined using the child tag – where the regular expressions defined for these children are

matched then the annotations produced by OSCAR3 will have children accordingly. For illustration,

note that the frequency and peaks in the annotated spectrum above are children of the spectrum

element, as defined by the third and fifth children of the top-level 1H NMR regular expression given

above.

2.2.7 ChemicalTagger

ChemicalTagger (14) is a tool, developed within the Unilever Centre, for the syntactic analysis of

chemical documents. By combining the capacity of OSCAR3 for the identification of chemical named

entities with common linguistic tools it is possible to identify the grammatical structure of chemical

text and then use this information to infer the meaning. This is achieved using the Natural Language

Processing techniques of tagging (the process of assigning tags to denote the meaning of individual

tokens) and chunking (the process of building the grammatical structure according to a set of

production rules). The functioning of ChemicalTagger may be summarised as follows;

40

Figure 2-9: ChemicalTagger Architecture

ChemicalTagger accepts as its input format plain text. This text is then passed separately through

each of three taggers to create three separate tag sets, which are then combined using heuristics to

ascertain priority of the tags from each set. ANTLR (Another Tool for Language Recognition) (58) is

then used to parse this single tag set according to a predefined formal grammar to determine its

structure in a process known as chunking, and the result is produced as an Abstract Syntax Tree

(AST), which is subsequently converted to XML and returned to the user.

2.2.7.1 Tagging

Tagging is the process of selecting an appropriate label to denote the meaning of each token in a

sequence. In the ChemicalTagger workflow, the input text is tokenised on whitespace before three

separate taggers are applied to create three separate tag sets. The three taggers are employed as

they categorise the token based on different criteria, as described below.

41

OpenNLP Tagger

The OpenNLPTagger class passes the input text to the part-of-speech (POS) tagger provided by

OpenNLP (59). This implementation is based on a MEMM and is trained with data from the Wall

Street Journal and the Brown corpus. The POS tags that are applied to the text describe the function

of the word within the sentence, e.g. noun or verb. These broad categories are subdivided into

specific classes e.g. singular proper noun or past participle. The POS tags provide much of the key

information that is required in order to identify the grammatical structure of the text. For example,

the input string “The cat sat on the mat” is tagged as follows;

The cat sat on the mat

DT

NN VBD IN DT NN

where the POS tags are those from the Penn Treebank tagset (60), and have the following meaning;

DT – determiner
NN – noun, singular or mass
VBD – verb, past tense
IN – preposition/subordinating conjunction

OSCAR3 Tagger

The OscarTagger class passes the text to OSCAR3 to be annotated, using the default parameters.

Tokens that that are annotated as named entities by OSCAR3 are tagged as being of the type

assigned to them by OSCAR3. Tokens that occur as part of a multiple token named entity e.g. “ethyl

acetate” are further tagged with their position in that named entity, i.e. start, middle or end to

enable simpler reconstruction later in the ChemicalTagger workflow.

42

Regex Tagger

The RegexTagger class applies a series of regular expressions to each token – those that match a

regular expression are given the tag associated with that regular expression. For example, the token

“mol” and variations thereon are given the tag “NN-AMOUNT” and are matched by the regular

expression;

(\d\d+)?(m|k)?mol(s)?$

By tagging the token “mol” in this way, it is possible to recognise a molar amount in a chemical text

as a number followed by a token of type NN-AMOUNT. Such multi-token entities are defined in a set

of formal production rules and are recognised during the chunking process.

2.2.7.2 Combination of Tag Sets

The combination of the three separate tag lists into one combined set takes part in two stages.

Initially, a simple rule of priority is used – if the token has received a tag from OSCAR3, other than

ONT, then that tag takes priority. Otherwise, tags assigned by the regex tagger take priority over

those from the OpenNLP tagger. A second step of processing then corrects a number of common

errors. For example, the token “M” will be annotated as CM by OSCAR3, being a common

abbreviation for “metal”. However, if the preceding token is a number, as in “2 M”, then it is likely

that it is being used as abbreviation for “molar”. This error is corrected by reassigning the tag as

“NN-MOLAR”. Such error correction serves to allow correct chunking in the next stage of the

ChemicalTagger workflow.

43

2.2.7.3 Chunking – Determination of Grammatical Structure

Using a pre-defined regular grammar, ChemicalTagger is able to determine the grammatical

structure of a given input text. In this grammar, the format of the expected language is defined using

a series of production rules that reference one another and the tags assigned to the input tokens.

For example, the quantity of a chemical compound as commonly reported in the literature, such as

“0.14 mol, 2.89 g”, is specified as follows;

nnamount:'NN-AMOUNT' TOKEN;

meaning that an “nnamount” is a token that has been tagged as “NN-AMOUNT” in the combined tag

set.

amount : cd nnamount -> ^(NODE["AMOUNT"] cd nnamount);

meaning that an “amount” is composed of a cardinal number (“cd”) followed by an “nnamount”.

The part of the rule following the symbol “->” is an instruction to group the matched content into a

single “AMOUNT” entity.

measurementtypes : molar|amount|mass|percent|volume ;

defining the five types of common measurements

measurements :(cd nn)? measurementtypes dt?;

quantity2 : measurements (comma measurements)* ;

quantity : (quantity1|quantity2) -> ^(NODE["QUANTITY"] quantity1?

quantity2?);

meaning that a “quantity” may be formed from one or more “measurementtypes” in a comma

separated list. Similar sets of rules define grammatical structures such as noun phrases and verb

44

phrases. As a result, the input text “Into a pressure reactor was placed 4-(dimethylamino)-

benzenethiol (.147 g, .96 mmol).” produces the output shown in Figure 2-10, once converted into

XML.

<Document>

 <PrepPhrase>

 <IN-INTO>Into</IN-INTO>

 <NounPhrase>

 <DT>a</DT>

 <APPARATUS>

 <NN-PRESSURE>pressure</NN-PRESSURE>

 <NN-APPARATUS>reactor</NN-APPARATUS>

 </APPARATUS>

 </NounPhrase>

 </PrepPhrase>

 <VerbPhrase>

 <VBD>was</VBD>

 <VB-SUSPEND>placed</VB-SUSPEND>

 </VerbPhrase>

 <NounPhrase>

 <MOLECULE>

 <OSCAR-CM>4-(dimethylamino)-benzenethiol</OSCAR-CM>

 <QUANTITY>

 <_-LRB->(</_-LRB->

 <MASS>

 <CD>.147</CD>

 <NN-MASS>g</NN-MASS>

 </MASS>

 <COMMA>,</COMMA>

 <AMOUNT>

 <CD>.96</CD>

 <NN-AMOUNT>mmol</NN-AMOUNT>

 </AMOUNT>

 <_-RRB->)</_-RRB->

 </QUANTITY>

 </MOLECULE>

 </NounPhrase>

 <STOP>.</STOP>

</Document>

Figure 2-10: Sample ChemicalTagger output

Once the meaning of chemical text has been determined and formally encoded in this manner, it is

possible for a machine to automatically interpret the meaning of the input text. In the example

above, for example, by using XPath it is possible to identify the presence and amount used of 4-

(dimethylamino)-benzenethiol in the reaction from which the input text was taken. In this way,

ChemicalTagger may be used as the foundation of a system for the semanticizing of texts that report

45

chemical syntheses. In the current work, ChemicalTagger revision 321256e8b429 (dated 2010-06-10)

is used throughout.

2.2.8 OSRA

In spite of the proliferation of machine-understandable chemical formats, much structural

information is still communicated in image formats. To the document’s author and primary

readership, this method is not without its advantages – in many situations, a chemical structure may

be communicated to a trained chemist better and faster by using a structure diagram than by a

systematic name. Indeed, when describing a chemical reaction the use of a reaction diagram greatly

clarifies matters as compared to describing it in text. To a human, the reaction scheme shown in

Figure 2-11 is preferable to the phrase “Isopropyl 3-(hydroxymethyl)pyridine-2-carboxylate plus

methyl N-[(4-methylphenyl)sulfonyl]glycinate plus diethyl azodicarboxylate plus triphenylphosphine

gives 3-{[Methoxycarbonylmethyl-(toluene-4-sulfonyl)-amino]-methyl}-pyridine-2-carboxylic acid

isopropyl ester”. The use of image formats to communicate structural information is thus

understandable, though in the context of this work unhelpful.

Figure 2-11: Example reaction scheme

46

The resolution of structure diagrams to connection table is a simple task for a human; however to a

machine the images do not directly contain any structural information. The creation of software for

this task has been attempted by a number of groups, resulting in a number of applications including

Kekulé (61), CLiDE (62; 63; 64), OSRA (65; 66; 67), chemOCR and ChemReader (68). This research

dates back to the 1990’s, and has in the last few years been undergoing a renaissance – in particular

the development of the Optical Structure Recognition Application (OSRA), the first open-source

application for the interpretation of chemical structure diagrams. The published systems follow

similar methodology in the analysis of input images, employing modules to carry out the following

tasks;

 Optical Character Recognition (OCR) – the identification of text within the image, which is

typically used to denote atoms other than carbon.

 Vectorisation – the process of reducing the width of lines and transforming the raster

(bitmap) image to a vector format.

 Bond detection – the identification of which graphical elements constitute bonds, and which

types of bonds are represented e.g. wedge bonds, double bonds, and aromatic bonds.

 Connection table compilation – the process of turning the information gathered in the

previous steps into a connection table.

Comparison of the currently available applications was performed by Park et. al. (68), who

concluded that on a corpus of 362 images ChemReader performed best, followed by OSRA, Kekulé

and CLiDE. This result should be treated with caution, however, since new versions of both OSRA and

CLiDE have been released since the work was performed – and it should be noted that Park et. al.

are the authors of ChemReader. Indeed, it is only that due to this fact that they could compare the

performance of ChemReader since their software is not available externally pending the removal of

open-source components that prevent the release of a commercial version. Since OSRA is, at

47

present, the only open-source solution for chemical image interpretation it was selected for the

current work as the use of one of the alternative pieces of software would preclude the release of

the software created during the preparation of this thesis as open-source.

2.3 Conclusions

This chapter discussed the current situations of chemical document availability and the leading

technologies that have been brought to bear on the problems of information extraction from the

literature and the reuse of such information – two areas of critical importance for the current work.

The applications of these technologies and the information that can be automatically recovered

from the literature are subsequently described in chapters 4 and 5.

48

3. Representation and Manipulation of Markush Structures

To be effective, a chemical patent must not only claim protection over those compounds that the

authors have prepared and demonstrated to be of value, but also prevent competitors from

introducing trivial modifications and thereby circumventing the protection that the patent grants.

To achieve this goal, chemical patents describe the subjects of the invention in terms of generic

structures – known as Markush structures after Eugene Markush, the first inventor to employ them

– in which a number of related chemical species are simultaneously described by a shared scaffold

with a number of variable features. For example, in a trivial case the set of three monochlorinated

toluenes may be described by the generic structure shown in Figure 3-1.

Figure 3-1: Generic structure representing the monochlorinated toluenes

The Markush structures employed in patents are far more complex than that depicted in Figure 3-1,

featuring multiple independently variable features to simultaneously describe hundreds of

thousands of specific chemical compounds or more that could not feasibly be enumerated within

the document. Since the Markush structures describe the area of chemical space for which a patent

claims protection, the information they contain is of crucial importance. For that reason, information

systems that deal with chemical patents require the capability to represent and handle the Markush

structures that the patents contain.

The 1980’s saw the development of a number of systems for the representation of Markush

structures including the two main commercial systems (69), Markush DARC and MARPAT (70; 71). In

49

addition, a large project at the University of Sheffield led to the development of the GENSAL

language (72; 73) which has since fallen into disuse. The current state of the art is sufficient to allow

the creation of Markush database searching tools such as STN, but incompatible with the semantic

web of chemistry. Since CML does not permit the description of Markush structures, it was a goal of

the current work to explore how the existing technology of Polymer Markup Language (PML) could

be employed to create this capability. The work presented in this chapter is therefore intended to

serve as a proof of principle rather than as a fully-functional system that is ready for a large-scale

implementation.

3.1 Markush Structures

The manner in which Markush structures are used to describe areas of chemical space is consistent

across the patent literature. Structural diagrams are used to illustrate the common scaffolds and

how the variable features interact with them. Pseudoatoms are used to indicate the presence of

complex features, while accompanying text describes the chemical identity of these groups. The

classes of variability used in Markush structures are described by Barnard and Downs (74) as follows;

 Substituent variation, where a group represents one unit chosen from an explicitly

enumerated list of possibilities, e.g. “R1 is fluorine or chlorine”.

 Homology variation, where a group represents one unit chosen from an implied list of

possibilities by use of a class name, e.g. “R1 is alkyl” or “R1 is a halogen”.

 Frequency variation, where the number of repetitions of a motif is allowed to vary, e.g. “R1

is -(CH2) nOH, where n is 0 to 12”.

 Position variation, where the position to which a substituent is bonded is not fixed, e.g. the

case of the chlorinated toluenes seen in Figure 3-1.

50

It should be appreciated, however, that these four classes of variation are conceptually rather than

fundamentally different from one another since the sets of substituents which match a given

example of homology, frequency or position variation are in principle enumerable and could

therefore be expressed in terms of substituent variation. Of course, such an enumeration is not

always practical – the problem of combinatorial explosion renders the enumeration of long-chain

branched alkyl groups unworkable, for example. The usage of the other forms of variation where

appropriate is also of value to the creation of an understandable Markush structure if these forms

are a true representation of the variation which the author intends to describe.

3.2 Polymer Markup Language

Earlier work in the Unilever Centre for Molecular Science Informatics has resulted in the

development of Polymer Markup Language (PML), a CML vocabulary for the fragment-based

description of polymers (75). In PML, polymer structures are described as assemblages of fragment

elements. A fragment acts as a container for further fragment elements and for molecule

elements. These molecule elements define atomistic information and represent molecular

substructures in that one or more of the atoms in the molecule is a pseudoatom, intended to

denote the position of a free valency. These free valencies are referenced by join elements, which

describe the molecular connectivity between the substructures. The usage of PML is further

discussed with reference to specific examples in sections 3.2.1, 3.2.2 and 3.2.3.

3.2.1 Representation of Polyethylene Oxide

As a simple example of the usage of PML, the representation of a pentamer of polyethylene oxide is

shown in Figure 3-2.

51

1 <fragment xmlns:g="http://www.xml-cml.org/mols/geom1">

2 xmlns="http://www.xml-cml.org/schema">

3 <fragment countExpression="*(5)">

4 <join order="1" moleculeRefs2="PREVIOUS NEXT"

5 atomRefs2="r2 r1">

6 <torsion>180</torsion>

7 </join>

8 <fragment>

9 <fragment>

10 <molecule ref="g:o"/>

11 </fragment>

12 <join id="j1" order="1" moleculeRefs2="PREVIOUS NEXT"

13 atomRefs2="r2 r1">

14 <torsion>180</torsion>

15 </join>

16 <fragment>

17 <molecule ref="g:ch2"/>

18 </fragment>

19 <join id="j2" order="1" moleculeRefs2="PREVIOUS NEXT"

20 atomRefs2="r2 r1">

21 <torsion>180</torsion>

22 </join>

23 <fragment>

24 <molecule ref="g:ch2"/>

25 </fragment>

26 </fragment>

27 </fragment>

38 </fragment>

Figure 3-2: PML representation of poly(ethylene oxide)

The repeat unit of poly(ethylene oxide) (PEO) is specified by the fragment on line 8 of Figure 3-2.

This fragment contains three further fragment elements, on lines 9, 16 and 23. Each of these

three fragment elements contains a molecule element. The atomistic representations

(connection tables) for the subunits are contained within separate resources, and are referred to

using namespaced identifiers. An example of one of these substructures is given in Figure 3-3.

52

1 <molecule xmlns="http://www.xml-cml.org/schema" id="o">

2 <atomArray>

3 <atom id="a1" elementType="O" x3="-0.000000"

4 y3="-50.065000" z3="0.000000"/>

5 <atom id="r1" elementType="R" x3="-0.776000"

6 y3="0.512000" z3="-0.000000"/>

7 <atom id="r2" elementType="R" x3="0.776000" y3="0.512000"

8 z3="-0.000000"/>

9 </atomArray>

10 <bondArray>

11 <bond atomRefs2="a1 r1" order="1"/>

12 <bond atomRefs2="a1 r2" order="1"/>

13 </bondArray>

14 </molecule>

Figure 3-3: Atomistic representation for the g:o fragment

This molecule contains three atoms – an oxygen atom which is bonded to two pseudoatoms of

elementType R. Similarly the other fragment used in the description of polyethylene oxide, the

methylene fragment, may be found to consist of a -CH2- unit, the carbon atom of which is connected

to two of these pseudoatoms. The role of these pseudoatoms, referred to as R-groups, is to indicate

the free valencies present in a fragment through which joins may be used to connect it to further

fragments and thereby to construct a macromolecule.

The three molecule elements used in the PML document shown in Figure 3-2 are connected by the

two join elements on lines 12 and 19. Each of these joins specifies a bond order, as well as a

moleculeRefs2 attribute and an atomRefs2 attribute. The value of moleculeRefs2 used here,

PREVIOUS NEXT, indicates that the fragments should be connected sequentially as opposed to as a

side-chain. The atomRefs2 attribute indicates which of the pseudoatoms in the individual

fragments should be used in the construction of the bond. The value used in this example, r2 r1,

indicates that the dummy atoms to use are the one with and id of r2 in the PREVIOUS fragment and

the one with an id of r1 in the NEXT fragment. These dummy atoms are to be deleted and new

bonds between the fragments created as shown in Figure 3-4. The join elements may contain a

child torsion element, which defines an appropriate torsion angle for the new bond.

53

Figure 3-4: The creation of bonds between fragments in PML

The fragment on line 8 is itself contained by the fragment on line 3. The fragment in this

position – a child of the root element – defines the constitutional repeating unit of the polymer and

is hereafter referred to as the primary fragment. The optional countExpression attribute on the

primary fragment specifies the number of repeat units present, in this case five, while the join on

line 4 specifies how the repeat units are connected to one another using the syntax covered

previously.

3.2.2 Representation of Polystyrene

The example of polyethylene oxide discussed above is simple in that the macromolecule may be

described as a continuous chain with no side chains. This topology is by no means ubiquitous, and

consequently PML supports the description of branched polymers such as comb polymers and

dendrimers. The methods which permit the description of branched polymers may also be employed

54

to describe polymers with a single backbone but which also carry side chains. This phenomenon is

illustrated in Figure 3-5.

1 <fragment xmlns:g="http://www.xml-cml.org/mols/geom1"

2 xmlns="http://www.xml-cml.org/schema">

3 <fragment countExpression="*(5)">

4 <join order="1" moleculeRefs2="PREVIOUS NEXT"

5 atomRefs2="r2 r1">

6 </join>

7 <fragment>

8 <fragment>

9 <molecule ref="g:ch">

10 <join order="1" moleculeRefs2="PARENT CHILD"

11 atomRefs2="r3 r1">

12 <fragment>

13 <molecule ref="g:benzene"/>

14 </fragment>

15 </join>

16 </molecule>

17 </fragment>

18 <join order="1" moleculeRefs2="PREVIOUS NEXT"

19 atomRefs2="r2 r1">

20 </join>

21 <fragment>

22 <molecule ref="g:ch2"/>

23 </fragment>

24 </fragment>

25 </fragment>

26 </fragment>

Figure 3-5: PML representation of polystyrene

It can be seen that the usage of the join element on line 10 of the PML document in Figure 3-5

differs from that seen previously. Here, the moleculeRefs2 attribute takes the value PARENT

CHILD, which indicates the presence of a side chain. The fragment on line 12 that contains the

molecular subunit corresponding to the side chain is present as a child of the join element that

connects it to the polymer backbone, while the join element is itself a child of the molecule on line

9 where previously the three elements would have been siblings. This format provides a convenient

means to represent branching in a macromolecule, as it permits an arbitrary number of branches

from the same position, and the branching in the XML document directly matches that in the

macromolecule described, creating a comprehensible document.

55

3.2.3 Representing Variability in PML

The examples of polyethylene oxide and polystyrene illustrate how PML may be used to represent a

macromolecule with a precisely defined structure; however, it is rare for the composition of a

polymer to be precisely known. Polymerisation processes can be difficult to control and resultant

samples of polymers are polydisperse, i.e. composed of macromolecules of varying chain length,

while specific mechanisms of polymerisation may lead to variable degrees of branching or for

asymmetric monomers such as propylene to be incorporated in a head-to-tail fashion. This variability

of polymer structure is further demonstrated by the cases of random and statistical copolymers, in

which the positioning of the monomeric units is determined by a stochastic process.

In order to fully support these more complex cases, PML must permit these forms of variability to be

fully described. This support is provided by describing some of the fragment elements in the

document as lists of fragments from which one is to be selected. The usage is demonstrated in

Figure 3-6, which describes a PML representation of a statistical copolymer of ethylene oxide and

propylene oxide.

1 <fragment xmlns='http://www.xml-cml.org/schema'

2 xmlns:g='http://www.xml-cml.org/mols/geom1'>

3 <fragmentList>

4 <fragment id='eo'>

5 <molecule ref='g:ethyleneOxide' />

6 </fragment>

7 <fragment id='po'>

8 <molecule ref='g:propyleneOxide' />

9 </fragment>

10 <fragment id='eE'>

11 <fragment ref='eo' />

12 <join atomRefs2='r2 r1' moleculeRefs2='PREVIOUS NEXT' />

13 <fragment ref='EE' />

14 </fragment>

15 <fragment id='eP'>

16 <fragment ref='eo' />

17 <join atomRefs2='r2 r1' moleculeRefs2='PREVIOUS NEXT' />

18 <fragment ref='PP' />

19 </fragment>

20 <fragment id='EE'>

21 <fragmentList role='markushMixture'>

22 <fragment ref='eo'>

56

23 <scalar dictRef='cml:ratio' dataType='xsd:double'>

24 0.01

25 </scalar>

26 </fragment>

27 <fragment ref='eE'>

28 <scalar dictRef='cml:ratio' dataType='xsd:double'>

29 0.84

30 </scalar>

31 </fragment>

32 <fragment ref='eP'>

33 <scalar dictRef='cml:ratio' dataType='xsd:double'>

34 0.15

35 </scalar>

36 </fragment>

37 </fragmentList>

38 </fragment>

39 <fragment id='pE'>

40 <fragment ref='po' />

41 <join atomRefs2='r2 r1' moleculeRefs2='PREVIOUS NEXT' />

42 <fragment ref='EE' />

43 </fragment>

44 <fragment id='pP'>

45 <fragment ref='po' />

46 <join atomRefs2='r2 r1' moleculeRefs2='PREVIOUS NEXT' />

47 <fragment ref='PP' />

48 </fragment>

49 <fragment id='PP'>

50 <fragmentList role='markushMixture'>

51 <fragment ref='po'>

52 <scalar dictRef='cml:ratio' dataType='xsd:double'>

53 0.01

54 </scalar>

55 </fragment>

56 <fragment ref='pP'>

56 <scalar dictRef='cml:ratio' dataType='xsd:double'>

57 0.84

58 </scalar>

59 </fragment>

60 <fragment ref='pE'>

61 <scalar dictRef='cml:ratio' dataType='xsd:double'>

62 0.15

63 </scalar>

64 </fragment>

65 </fragmentList>

66 </fragment>

67 </fragmentList>

68

69 <fragment id='f0'>

70 <fragment ref='EE' />

71 </fragment>

72 </fragment>

Figure 3-6: PML representation of a statistical copolymer

In the PML document shown in Figure 3-6, a number of the fragments are defined by means of

reference, such as that on line 70. The content of these fragments, such as the monomeric units

57

from which the polymer is constructed on lines 4 and 7, is then defined in the primary fragment list

which is a child of the root element and is defined in the PML document above on line 3. The

fragment elements that define the monomeric units are used in the construction of the eE, eP, pE

and pP fragments on lines 10, 15, 39 and 44 respectively, each of which consists of an ethylene oxide

(e) or propylene oxide (p) unit followed by a list from which to draw the next unit (EE or PP, defined

on lines 20 and 49 respectively). These lists, called “Markush mixtures”, specify that the next unit to

be used is either one of the eE, eP, pE and pP fragments, representing a continuation of the

polymer chain, or a single polyethylene or polypropylene oxide unit, representing a termination

condition. The probabilities with which each of the possible fragments is selected are specified in the

scalar elements that are children of the fragment concerned, such as that on line 23. The primary

fragment is defined on line 69 and points to a single EE element, indicating that the chains start with

an ethylene oxide unit though this could just as easily have been replaced by a further Markush

mixture allowing the initial unit to be either ethylene or propylene oxide.

The capacity afforded by the markushMixture to represent a list of potential fragments allows for a

variety of variability exhibited by polymers to be described in PML. The head-to-head or tail-to-tail

addition of propylene monomers, for example, could have been described in the example above by

the definition of the po fragment as a markushMixture list consisting of a head-first and a tail-first

propylene unit while branched polymers may be described by the inclusion of a branching point in a

markushMixture list that specifies the repeating units of the backbone of a polymer. This flexibility is

key to the representation of complex sets of macromolecules and provides a means to describe the

variability exhibited by Markush structures, as shall be discussed in section 3.3.

58

3.2.4 The Cambridge Polymer Builder

In order to demonstrate the usage of PML, a demo application was developed (76). The Cambridge

Polymer Builder is a frontend application that permits a user to create atomistic CML

macromolecules with 3D-coordinates from a restricted set of pre-generated fragments. The

application runs as a web service and is accessed using a web browser. The front page of the

Cambridge Polymer Builder is shown in Figure 3-7.

Figure 3-7: The front page of the Cambridge Polymer Builder

The front page of the application prompts the user to select a polymer topology from the list of

linear homopolymer, block copolymer, alternating copolymer, random copolymer, comb polymer

and dendrimer. When the user selects one of these topologies, he is presented with a form (such as

59

that illustrated in Figure 3-8) into which he enters the required parameters, i.e. the identities of the

repeat units and end groups to be used, the degrees of polymerisation and the torsion angles to be

used around the bonds formed between repeat units.

Figure 3-8: Designing a polymer

The parameters selected by the user are used to populate a template PML document for the

selected topology. The FragmentTool class from the JUMBO library is then used to construct either

the atomistic CML macromolecule that is described by the PML document or an atomistic CML

macromolecule that corresponds to the description given in the PML document if the input

document defines a variable polymer. This process requires dereferencing the molecule elements

that define the structural subunits of the polymer and combining them together in the manner

60

described in the input document. As the polymer chain is built, each structural fragment is

automatically rotated to align it with the chain and to set the torsion angle about the new bond

equal to that specified by the user, and positioned such that the atoms from either fragment are a

distance apart equal to the sum of their covalent radii. Where appropriate, such as in the building of

a random copolymer, individual structural subunits are selected at random from a markushMixture

to create a single macromolecule that exemplifies the polymer described in the PML document. In

addition, where possible, molecular properties are calculated using the van Krevelen group

contribution method (77). The user is then presented with a page depicting these results, such as

that shown in Figure 3-9, and from which the CML description of the macromolecule can be

downloaded.

Figure 3-9: Results of polymer building

61

3.3 Extension of PML for Markush Structures

When commencing this work, it was thought that Polymer Markup Language would provide a

suitable basis from which to develop a CML-based method for Markush structure representation.

The capacity, using PML, to represent molecular substructures by the fragment element and to

describe, using a markushMixture, a list of the allowed substituents at a given position provides at a

basic level the functionality required to describe Markush structures. As discussed previously,

Barnard’s four classes of variability within Markush structures may be reduced to substituent

variation, which PML is equipped to handle, if the user is willing to fully enumerate the set of

substituents that a patent author claims for a given position. This strategy, however, can lead to

extremely verbose descriptions that are unlikely to be acceptable to a user. The number of mono-

substituted alkane derivatives, and therefore also alkyl radicals, containing n carbon atoms exceeds

500 for n = 10 and 5,000,000 for n = 20 (78), while full enumeration of position variation in PML

obfuscates the author’s intention. Consider, for example, the case of the monochlorinated toluenes

shown in Figure 3-1; this simple Markush structure could be represented in PML as shown in Figure

3-10, in which the substituted benzene ring is defined three times – once each for the ortho-, meta-

and para-substituted motif.

<fragment xmlns='http://www.xml-cml.org/schema'

 xmlns:g='http://www.xml-cml.org/mols/geom1'>

 <fragment id='f0'>

 <fragment ref='methyl' />

 <join atomRefs2='r1 r1' moleculeRefs2='PREVIOUS NEXT' />

 <fragment ref='chlorinatedBenzene' />

 </fragment>

 <fragmentList>

 <fragment id='methyl'>

 <molecule ref='g:ch3' />

 </fragment>

 <fragment id='chlorinatedBenzene'>

 <fragmentList role='markushMixture'>

 <fragment ref='orthoChlorinatedBenzene'>

 <scalar dictRef='cml:ratio' dataType='xsd:double'>

 0.4

 </scalar>

62

 </fragment>

 <fragment ref='metaChlorinatedBenzene'>

 <scalar dictRef='cml:ratio' dataType='xsd:double'>

 0.4

 </scalar>

 </fragment>

 <fragment ref='paraChlorinatedBenzene'>

 <scalar dictRef='cml:ratio' dataType='xsd:double'>

 0.2

 </scalar>

 </fragment>

 </fragmentList>

 </fragment>

 <fragment id='orthoChlorinatedBenzene'>

 <fragment>

 <molecule ref='g:benzene' />

 </fragment>

 <join order='1' moleculeRefs2='PREVIOUS NEXT'

 atomRefs2='r2 r1'>

 </join>

 <fragment>

 <molecule ref='g:cl' />

 </fragment>

 </fragment>

 <fragment id='metaChlorinatedBenzene'>

 <fragment>

 <molecule ref='g:benzene' />

 </fragment>

 <join order='1' moleculeRefs2='PREVIOUS NEXT'

 atomRefs2='r3 r1'>

 </join>

 <fragment>

 <molecule ref='g:cl' />

 </fragment>

 </fragment>

 <fragment id='paraChlorinatedBenzene'>

 <fragment>

 <molecule ref='g:benzene' />

 </fragment>

 <join order='1' moleculeRefs2='PREVIOUS NEXT'

 atomRefs2='r4 r1'>

 </join>

 <fragment>

 <molecule ref='g:cl' />

 </fragment>

 </fragment>

 </fragmentList>

</fragment>

Figure 3-10: PML representation of the monochlorinated toluenes

Instead of mandating full enumeration of acceptable substituents, it is preferable to introduce novel

features into the language that permit a more natural and concise expression of the variability in a

Markush structure. The remainder of this chapter discusses the solutions that were devised to assist

63

in the description of Markush structures and that make up Extended Polymer Markup Language –

EPML.

3.3.1 Frequency Variation

It has already been discussed how PML may be used to describe a specific number of repeat units

using the countExpression attribute, e.g.

<fragment countExpression="*(5)">

 <join order="1" moleculeRefs2="PREVIOUS NEXT"

 atomRefs2="r2 r1">

 </join>

 <fragment>

 …
 </fragment>

</fragment>

In EPML, the countExpression is allowed to specify a range of permitted values using the format;

<fragment countExpression="range(2,5)">

This usage specifies that the fragment in question is permitted to be repeated any number of times

within the specified (inclusive) range, thereby describing frequency variation.

3.3.2 Homology Variation

The phenomenon of homology variation, defined earlier as where “a group represents one unit

chosen from an implied list of possibilities by use of a class name, e.g. ‘R1 is alkyl’ or ‘R1 is a

halogen’” may be viewed as a combination of two separate forms of variation – one in which the

substituent is enumerable as a precise and well-understood list such as “R1 is a halogen”, and those

in which the substituent is defined in terms of a precise or generic structural feature such as “R1 is

64

an alkoxy group” or “R1 is a substituted or unsubstituted heteroaryl ring”. The description of such

features is illustrated in Figure 3-11.

1 <fragment xmlns='http://www.xml-cml.org/schema'

2 xmlns:g='http://www.xml-cml.org/mols/geom1'>

3 <fragment id='f0'>

4 <molecule ref='g:benzene'>

5 <join atomRefs2='r1 r1' moleculeRefs2='PARENT CHILD'>

6 <fragment homology='halogen' />

7 </join>

8 <join atomRefs2='r2 r1' moleculeRefs2='PARENT CHILD'>

9 <fragment template='alkoxy' branched='true'

10 minC='1' maxC='4' />

11 </join>

12 </molecule>

13 </fragment>

14 </fragment>

Figure 3-11: Homology variation in EPML

This example shows a benzene ring (specified on line 4) substituted by a halogen (line 6) and in the

ortho- position by an alkoxy group (lines 9-10) – the R-groups of the g:benzene fragment being

numbered consecutively and contiguously around the ring from 1 to 6. The halogen and alkoxy

substituents are specified using the homology and template attributes respectively, the values of

which define the ids of the list of permitted substituents and CML molecule against which they

should be resolved respectively. The alkoxy group is further specified using the branched, minC and

maxC attributes which respectively define whether or not the carbon chain of the alkoxy group is

permitted to be branched and the minimum and maximum number of carbon atoms in the alkoxy

group, providing support for commonly-used restrictions. The CML molecule to which the alkoxy

template resolves is shown in Figure 3-12.

65

1 <molecule id='alkoxy' xmlns='http://www.xml-cml.org/schema'>

2 <atomArray>

3 <atom id='r1' elementType='R' />

4 <atom id='a1' elementType='O' />

5 <atom id='r2' elementType='Q' />

6 </atomArray>

7 <bondArray>

8 <bond id="r1_a1" atomRefs2="r1 a1" order="1" />

9 <bond id="a1_r2" atomRefs2="a1 r2" order="1" />

10 </bondArray>

11 </molecule>

Figure 3-12: Formal description of the alkoxy template

The CML molecule that defines the alkoxy template contains three atoms – an oxygen atom on line

4, a pseudoatom of type ‘R’ on line 3 that acts as a free valency by which the substituent may be

connected to a parent structure and a pseudoatom of type ‘Q’ on line 5. This new pseudoatom

indicates the presence of a carbon chain of variable length. The usage of such pseudoatoms allows

the description of such generic substituents as alkyl, alkenyl and cycloalkyl groups, while coverage

for more complex structure-based homology variation such as “R1 is a substituted or unsubstituted

heteroaryl ring” is not provided. Support for such terminology in state of the art commercial systems

is patchy, with Markush DARC allowing the usage of 22 specific “superatoms”, each representing a

specific class of substituent such as “aromatic carbocyclic system” and “fused heterocycle”, while

MARPAT adopts a similar system of “generic groups” (79). The correct handling of such terminology

is a highly complex problem, for which Welford et al. (80) propose the usage of a generative

grammar to produce a system capable of recognising, for example, a 2-chloro-pyridin-3-yl

substituent as being a substituted heteroaryl ring, though this work appears not to have been fully

developed. Consequently, there is no available means to fully describe homology variation as it is

used by patent authors, and the facilities provided by EPML represent an acceptable approach for

such an experimental language.

66

3.3.3 Position Variation

Position variation, defined earlier as where “the position to which a substituent is bonded is not

fixed” is represented formally in EPML in much the same way as it is represented graphically. The

mobile substituent is represented in the same as it would be were it to have a fixed position in the

structure, while the join that attaches it to the main structure has the connectivity information

defined in a novel manner as illustrated in Figure 3-13, a representation of the set of

monochlorinated toluenes.

1 <fragment xmlns='http://www.xml-cml.org/schema'

2 xmlns:g='http://www.xml-cml.org/mols/geom1'>

3 <fragment id='f0'>

4 <molecule ref='g:benzene'>

5 <join atomRefs2='r1 r1' moleculeRefs2='PARENT CHILD'>

6 <molecule ref='g:me' />

7 </join>

8 <join atomRef1Array='r2 r3 r4' atomRef2Array='r1'

9 moleculeRefs2='PARENT CHILD'>

10 <molecule ref='g:cl' />

11 </join>

12 </molecule>

13 </fragment>

14 </fragment>

Figure 3-13: Position variation in EPML

As can be seen above, the join that connects the mobile substituent, specified on lines 8-9, does

not carry the atomRefs2 attribute that would normally describe the connectivity between the two

fragments. Instead, this information is specified in the atomRef1Array and the atomRef2Array

attributes, which list the ids of the free valencies the join is permitted to occupy on the

PREVIOUS/PARENT and NEXT/CHILD fragment respectively. If either of these attributes is missing,

then it is assumed that the substituent is permitted to be attached to any of the free valencies on

the appropriate fragment. For example, if the atomRef1Array were missing from the join on line

5 of the EPML document in Figure 3-13, it would be assumed that the chlorine group could be

67

attached to any of the free valencies other than r1, which is occupied by the methyl substituent. This

approach to position variation produces EPML documents that are far more concise than their

explicitly-enumerated PML counterparts, which may be seen by comparing Figure 3-13 to the PML

representation of the same Markush structure given in Figure 3-10.

3.3.4 Position and Count Variation

In addition to position variation, Markush structures sometimes employ position variation that is

repeated a variable number of times, as illustrated in Figure 3-14. This Markush structure is

subsequently described in EPML in Figure 3-15.

Figure 3-14: Markush structure employing simultaneous position and count variation

68

1 <fragment xmlns='http://www.xml-cml.org/schema'

2 xmlns:g='http://www.xml-cml.org/mols/geom1'>

3 <fragment id='f0'>

4 <molecule ref='g:me' />

5 <join atomRefs2='r1 r1' moleculeRefs2='PREVIOUS NEXT' />

6 <fragment ref='benzene'>

7 <join countExpression='range(2,5)' atomRef2Array='r1'

8 moleculeRefs2='PARENT CHILD'>

9 <fragment>

10 <molecule ref='g:cl' />

11 </fragment>

12 </join>

13 </fragment>

14 </fragment>

15 <fragmentList>

16 <fragment id='benzene'>

17 <molecule ref='g:benzene' />

18 </fragment>

19 </fragmentList>

20 </fragment>

Figure 3-15: Simultaneous position and count variation in EPML

The EPML description of the polychlorinated toluene above differs from that of the monochlorinated

toluene in Figure 3-13 in that the chlorine substituent is contained within a fragment element, on

line 9, which is in turn contained within a join, on line 7, that carries a countExpression

attribute. The value of this attribute in the example above specifies a range of between 2 and 5 –

specifying the value of the variable n from Figure 3-14, i.e. the number of times the substitution unit

is repeated.

3.3.5 Inline Connection Tables

The additional features of EPML as compared to PML assist a user in producing concise definitions of

Markush structures, but the usage of structural units that are defined in separate documents is a

slow process if the units have not previously been defined since a document author must then

create atomistic CML representations of the missing units. In order to provide a user with a means to

work around this problem, EPML permits the usage of inline connection tables to define the

69

molecular substructures represented by fragment elements. The format in which these connection

tables are specified is derived from SMILES, and differs from pure SMILES in two regards. Firstly, the

free valencies of the fragment are specified as though they were atoms using the codes “R1”, “R2”,

etc. Secondly, since PML lacks a means by which to cyclise a structure the inline connection tables

are used as a means to incorporate variability in a cyclised unit. Two forms of variation may be

described by an inline connection table – substituent variation and frequency variation. The usage of

these features is illustrated in Figure 3-17, which describes the Markush structure shown in Figure

3-16.

Figure 3-16: Markush structure featuring variable cyclic unit

1 <fragment xmlns='http://www.xml-cml.org/schema'>

2 <fragment id='f0'>

3 <fragment smiles='R1C' />

4 <join atomRefs2='r1 r2' moleculeRefs2='PREVIOUS NEXT' />

5 <fragment smiles='R1c1c{O|N}cc1R2' />

6 <join atomRefs2='r1 r2' moleculeRefs2='PREVIOUS NEXT' />

7 <fragment smiles='R1[C[1-4]]' />

8 </fragment>

9 </fragment>

Figure 3-17: Inline connection tables in EPML

The fragment on line 3 of Figure 3-17, specified by the string “R1C”, represents a methyl group

since “C” represents a carbon atom, “R1” represents a free valency and hydrogen atoms are

assumed to fill unspecified positions in the SMILES language. In the fragment on line 5, substituent

variation is indicated by separating the permitted groups with the pipe character (“|”) and wrapping

the list in braces (“,“ and “-”). Thus, the substring “,O|N-” indicates the presence of either an oxygen

or a nitrogen atom. The full string, “R1c1c,O|N-cc1R2”, therefore represents a 3,4-disubstituted

70

pyrrole or furan, i.e. the ring from Figure 3-16. Finally, the fragment on line 7 uses frequency

variation to define a carbon chain of between one and four units with the inline connection table

“*C*1-4++”, in which the inner square brackets define the permitted range of integers for the

frequency variation, while the text before the inner square brackets define the connection table for

the repeated unit – in this case methylene, defined by the string “C”. While the usage of frequency

variation in an inline connection table in this example could equally have been replaced by a

standard markushMixture, the functionality is useful when describing rings of variable size as an

alternative to enumeration.

3.4 Building Representative Examples of a Markush Structure

As discussed earlier, the FragmentTool provides the functionality to construct atomistic CML

representations of macromolecules described by a PML document. It was desired to create a similar

demonstration application for EPML, and it was decided that rather than attempt to re-implement

much of the functionality of the FragmentTool, this application should instead operate by reducing

an EPML document to a PML document which describes a single chemical structure, and from which

may be produced an atomistic representation using the FragmentTool. This process requires the

removal of all of the additional features introduced into EPML and described in section 3.3, and is

carried out in a number of steps as follows;

1. Those fragment elements that carry a homology attribute, i.e. that describe homology

variation, are selected using XPath. For each such instance, the corresponding

moleculeList is looked up and one of the substituents from this list is selected at random.

The connection table for this substituent is copied from the moleculeList and the working

document is modified by removing the homology attribute and inserting a reference to the

selected substituent.

71

2. Instances of fragments that use inline connection tables are identified by XPath. Those that

employ either substituent or frequency variation are selected from this list and the variation

defined within each of the inline connection tables is fully enumerated to give the full set of

inline connection tables represented by the original. The enumerated list is then used to

create a markushMixture of the fragments represented by the set of enumerated inline

connection tables, and this markushMixture replaces the original fragment in the working

document.

3. Those join elements which carry countExpression attributes, i.e. those used for multiple

position variation as discussed in section 3.3.4, are selected by XPath. The

countExpression attribute is removed from the join, which is subsequently copied in

position a number of times corresponding to that specified by the countExpression

attribute. If the value of this attribute specified a range, the number of times to duplicate

the join is selected at random from those integers specified by the range.

4. Those fragment elements which carry template attributes are identified using XPath. The

connection tables for the templates to which they refer are dereferenced and used to create

an inline connection table specifying a single substructure representative of the restrictions

carried by the fragment in question, i.e. that matches the values of the maxC, minC and

branched attributes. The template attribute is then replaced with this inline connection

table in the working document.

5. Those fragment elements employing inline connection tables, including those that have

been generated during earlier stages of processing, are selected by XPath. For each of these

fragments, the inline connection table is converted to a corresponding atomistic CML

molecule. Since the FragmentTool does not generate 3D co-ordinates, instead requiring

them to be provided as an input, they are generated and added to the CML. The inline

connection tables are then replaced with references to the newly-created molecules.

72

The current implementation generates 3D co-ordinates using the CORINA software (81).

Since CORINA is commercial software, interfacing with the software is achieved by

connecting to a computer in the Unilever Centre on which it is installed. This method does

not scale with the number of machines running the MarkushBuilder but is sufficient for

demonstration purposes. A preferred method would involve using a distributable open-

source solution such as the CDK (82; 83; 84) or OpenBabel but has not been implemented as

part of the current work.

6. The markushMixture elements in the working document are selected using XPath. From

each of the markushMixtures, a single fragment is selected at random. The

markushMixture is then replaced in the working document with this fragment. Though this

step is not necessary to produce a PML document that can be processed by the

FragmentTool, it is necessary in order to produce a PML document that defines one and

only one structure.

7. The working document is searched by iterative descent for join elements. If a join does not

carry an atomRefs2 attribute, i.e. if the join represents position variation, then it is

processed to assign a specific atomRefs2. Where the join carries an atomRef1Array or an

atomRef2Array attribute, i.e. where the allowed attachment points on the

PREVIOUS/PARENT and NEXT/CHILD fragment respectively have been explicitly stated, then

one is selected at random from the list. Where one or both of these lists is missing, a

suitable attachment point is determined by examining the fragment concerned, determining

a full list of the free valencies on that fragment and removing from this list those valencies

that have previously been used by another join. Once this process has been carried out,

one of the attachment points is selected at random and the join undergoing processing is

assigned a specific atomRefs2 attribute.

73

Once these stages of processing have been carried out, the input EPML document has been reduced

to a PML document that describes a single, specific chemical structure. This PML document is then

passed to the FragmentTool in order to generate an atomistic CML representation of the specified

structure.

The results of this process are illustrated below. A simple Markush structure is described in Figure

3-18 and specified in EPML in Figure 3-19. By applying the MarkushBuilder to this document, an

atomistic CML molecule with 3D co-ordinates was produced, which is visualised in Jmol (85) and

illustrated as a 2D structure in Figure 3-20.

Figure 3-18: Example Markush structure

74

1 <fragment xmlns="http://www.xml-cml.org/schema"

2 xmlns:g="http://www.xml-cml.org/mols/geom1">

3 <fragment id='f0'>

4 <fragment ref='benzene'>

5 <join atomRef2Array='r1' moleculeRefs2='PARENT CHILD'>

6 <fragment homology='halogen' />

7 </join>

8 </fragment>

9 <join atomRefs2='r1 r2' moleculeRefs2='PREVIOUS NEXT' />

10 <fragment ref='oxygenOrNitrogen' />

11 <join atomRefs2='r1 r2' moleculeRefs2='PREVIOUS NEXT' />

12 <fragment ref='carbonyl' />

13 <join atomRefs2='r1 r2' moleculeRefs2='PREVIOUS NEXT' />

14 <fragment smiles='R1C1C(R2)C(R3)[C[1-4]]C1'>

15 <join atomRefs2='r1 r1' moleculeRefs2='PARENT CHILD'>

16 <fragment ref='alkoxy' />

17 </join>

18 <join atomRefs2='r3 r1' moleculeRefs2='PARENT CHILD'>

19 <fragment ref='alkoxy' />

20 </join>

21 </fragment>

22 </fragment>

23 <fragmentList>

24 <fragment id='benzene'>

25 <molecule ref='g:benzene' />

26 </fragment>

27 <fragment id='o'>

28 <molecule ref='g:o' />

29 </fragment>

30 <fragment id='n'>

31 <molecule ref='g:nsp2' />

32 </fragment>

33 <fragment id='oxygenOrNitrogen'>

34 <fragmentList role='markushMixture'>

35 <fragment ref='o' />

36 <fragment ref='n' />

37 </fragmentList>

38 </fragment>

39 <fragment id='carbonyl'>

40 <molecule ref='g:carbonyl' />

41 </fragment>

42 <fragment id='alkoxy'>

43 <fragment template='alkoxy' minC='1' maxC='4'

44 branched='true' />

45 </fragment>

46 </fragmentList>

47 </fragment>

Figure 3-19: EPML representation of the example Markush structure

75

Figure 3-20: 3D (left) and 2D (right) views of a randomly-generated example compound

3.5 Substructure Searching of Markush Structures

Markush structures typically represent simultaneously a number of specific chemical structures with

a shared substructure, and may therefore be considered as a superposition of the specific structures

they represent. Such superpositions may be visualised as in Figure 3-21, in which the elements that

are conserved and those that vary across the set of specific compounds are shown in black and red

respectively.

Figure 3-21: Superimposed structure representing the monochlorinated toluenes

76

Such Extended Connection Tables (ECTs) may be used for substructure searching, in which case the

query may be asking one of two questions. If the query structure for the substructure search

represents a complete chemical structure, then a hit signifies that the query structure is one of the

specific compounds represented by the Markush structure defined by the ECT, while if the query

structure is an incomplete chemical structure then a hit signifies that one or more of the underlying

specific structures contains that substructure. Of course, such searching of ECTs must be subject to

certain constraints to ensure that the correct solutions are reached – for example, no specific

structure represented by the ECT above contains more than one chlorine atom and no carbon atom

in the specific structures is pentavalent, in spite of such substructures being superficially present in

the ECT.

The use of ECTs to represent Markush structures has been previously discussed (86) and strategies

for their substructure searching developed. Previous work has described the atom-by-atom

searching (87) of ECTs, as well as the use of bitscreens (88) and reduced chemical graphs (89) as

methods of filtering by which to reduce the computer time required to calculate search results. In

order to demonstrate the possibility of performing substructure searching of Markush structures

encoded in EPML, a system was implemented that first builds ECTs from EPML documents then

employs the relaxation algorithm for atom-by-atom searching as described by von Scholley (87). The

details of this system are subsequently discussed.

3.5.1 Implementing Extended Connection Tables

The implementation of Extended Connection Tables used in the current work was created from

scratch for the purpose. ECTs are represented by the ECT class and modelled as graphs, comprising

of edges (bonds) and nodes (atoms and pseudoatoms). Nodes are represented by the abstract class

Node, of which there are three implementations – AtomNode, TemplateNode and AlkyleneNode.

77

The AtomNode class represents a specific atom, while the AlkyleneNode class represents an

alkylene (e.g. -CH2-, -CH2CH2-, etc.) chain and the TemplateNode class represents the connection

table of a template used to describe homology variation. Edges are represented by the Edge class,

which record the connectivity of the graph, and the order of the bonds which the edges represent.

3.5.1.1 Node

The abstract class Node exists to provide functionality that is required by all types of Node.

Specifically, it keeps track of which edges contain the current node, which other nodes are ligands of

the current node, which ECT the node belongs to, the id of the Node, the markushId of the Node (if

any) and the maximum number of variable edges that may be simultaneously connected to the

Node. This final property is necessary in the case of multiple position variation to enforce a limit on

the number of substituents present at a single position.

3.5.1.2 AtomNode

The AtomNode class is intended to represent an atom of a specific type and is additionally used to

represent the R-groups that indicate free valencies. In addition to the information stored by all

nodes, an AtomNode records the element type of the node.

3.5.1.3 TemplateNode

The TemplateNode class represents a template as used to represent a class of substituents in

homology variation and keeps track of the parameters used to specify the template i.e. the

minimum and maximum number of carbon atoms permitted. The connection table of the template

is stored as an internal ECT of the TemplateNode, and when a TemplateNode is added to an ECT

78

the internal nodes are added to the parent ECT to simplify the representation of the connectivity of

the ECT.

3.5.1.4 AlkyleneNode

The AklyleneNode class represents an alkylene chain as used in homology templates. It holds atom

nodes internally to represent the carbon and hydrogen atoms that comprise the chain and records

the connectivity between the atoms. It stores the ligands of the first carbon in the chain separately

from those of the final carbon in order to facilitate substructure searching.

3.5.1.5 Edge

The Edge class represents a bond between two nodes in the ECT. It keeps track of the order of the

bond, of the nodes that the edge connects and of whether or not the edge is variable, i.e. if it is not

present in all example compounds of the Markush structure represented by the ECT.

3.5.2 Building Extended Connection Tables

The capacity to construct an ECT representing a Markush structure described by an EPML document

is provided by the EpmlParser class. This process is broken down into a number of steps which are

subsequently described;

1. Those fragment elements in the source document that refer to substructures defined

elsewhere in the document are modified to directly include this content. To achieve this, a

copy is made of the referenced content which then is used to replace the reference.

79

2. Those fragment elements in the working document that carry countExpression

attributes are selected by XPath. Those that specify a range, i.e. those that describe

frequency variation, are expanded into a markushMixture in which the substructures

corresponding to each of the permitted values in the range is represented separately.

3. Those fragment elements in the working document that employ inline connection tables

are identified by XPath. Those that employ variation within the inline connection tables are

fully enumerated and a markushMixture is constructed that represents each of the

permitted substructures as a separate inline connection table. This markushMixture then

replaces the original fragment element in the working document.

4. Those fragment elements in the working document that employ inline connection tables

are identified by XPath, including those generated in the previous step. The inline

connection tables are built into CML molecules using the SMILESTool class from JUMBO,

which are then appended as children to the original fragment elements.

5. Those fragment elements in the working document that carry homology attributes are

selected by XPath. For each such fragment, the corresponding CML molecules are loaded

from the homology dictionary and used to create a markushMixture that defines the

permitted substructures, which is then appended to the original fragment element.

6. Those fragment elements in the working document that carry template attributes are

selected by XPath. For each such fragment, the corresponding definitions from the

template dictionary are loaded and these CML molecules are appended as children to the

original fragment elements.

7. Those join elements in the working document that carry countExpression attributes,

i.e. those that describe multiple substitution of a PARENT substructure, are selected by

XPath. For each such join, the countExpression attribute is removed and a

80

markushMixture is created in which each of the permitted counts are represented by a copy

of the parent fragment of the join carrying the specified number of copies of the join.

This markushMixture then replaces the parent fragment of the join to produce an

enumerated list of the allowed substituted fragments. For example, the fragment;

<fragment ref="benzene">

 <join countExpression="range(1,2)">

 <fragment ref="methyl" />

 </join>

</fragment>

 would be converted to;

<fragmentList role='markushMixture'>

 <fragment ref='benzene'>

 <join>

 <fragment ref='methyl'>

 </join>

 </fragment>

 <fragment ref='benzene'>

 <join>

 <fragment ref='methyl'>

 </join>

 <join>

 <fragment ref='methyl'>

 </join>

 </fragment>

</fragmentList>

8. All fragment elements in the working document are selected using XPath. These elements

are assigned unique id attributes, numbered from 0 to n. Molecule elements that are

contained within markushMixtures are assigned a unique markushId attribute of the

format “x_y” where x is the id attribute of the parent fragment of the markushMixture

and y is a unique id number from 0 to n as before. These markushIds are vital to the correct

searching of the ECTs as they are used to keep track of which nodes are not permitted to

appear simultaneously in an example structure.

9. Those fragment elements with a countExpression attribute, i.e. those that indicate a

repeated substructure such as - (CH2)n- are selected by XPath and expanded by copying the

81

content of the fragment the number of times specified by the countExpression and replacing

the original fragment with this enumeration.

10. The molecule elements in the working document are assigned unique id attributes in the

same manner as was previously done for the fragment elements. A fragmentRefs2

attribute is then added to each join element that contains the unique ids of the two

fragment or molecule elements that the join connects to facilitate adding the edges

defined by the join elements when building the ECT.

Once these transformations have been carried out on the working document, it has been

transformed into a format from which an ECT may be constructed.

1. A list is compiled of all molecule elements in the working document that descend from the

primary fragment. Those that contain atomistic descriptions, e.g. those derived from

homology variation, are directly added to this list, while those that contain references to

other CML documents are dereferenced, and the atomistic descriptions are added to the list.

2. The connection tables contained in the list generated in step 1 are added in turn to the ECT.

Each atom from these connection tables is represented by a Node as described previously,

while each bond is represented by an Edge.

3. The edges represented by the join elements in the working document are added to the ECT.

Those join elements that represent edges between two specific atom nodes result in one

Edge in the ECT, while those that connect to a markushMixture or that represent position

variation result in sufficient edges to connect to all members of the markushMixture or all

permitted connection points respectively. Such edges are marked as variable.

82

4. Nodes to which a variable edge is connected have an additional atom node representing a

hydrogen atom added as a ligand to represent the hydrogen atom that occupies the position

if the variable substituent is not attached in that position. The edge to this hydrogen is

similarly marked as variable.

Upon the completion of this process, the EpmlParser has constructed an ECT that represents the

superposition of the explicit structures represented by the Markush structure as described by the

EPML input document. Such an ECT may then be searched to determine if it contains a specific

example structure or substructure using the relaxation algorithm, as described in the next section.

The API of the ECT-related classes also permits a user to construct his own ECTs programmatically,

and convenience methods are also provided in the ECT class to allow a user to construct ECT

representations directly from SMILES strings and from CML fragments and molecules.

3.5.3 The Relaxation Algorithm

The relaxation algorithm is a simple, iterative means by which a target structure may be determined

to contain or not to contain a query structure. The basic method may be summarised as follows;

1. Assign to each atom in the query structure a unique label.

2. Assign to each atom in the target structure a set of the labels containing each of the labels

from the query structure corresponding to each of the query atoms that the target atom

could correspond to in a match between the two structures.

3. Iterate through the atoms of the target structure. For each label on each atom, check that

the ligands of the target atom carry all of the labels carried by the ligands of the query atom

that carries the label in question. If this condition does not hold, remove the label.

83

4. Repeat step 3 until either no labels remain on the target structure or a complete iteration

through the target atoms results in no labels being removed.

If step 4 results in an unlabelled target structure, then the target does not contain the query

structure. If it results in a target structure in which each label from the query structure is carried by

one and only one target atom then the target structure contains the query structure. If the

relaxation procedure results in any other stable state then the target structure may or may not

contain the target structure.

This process is illustrated in Figure 3-22, in which at each step the labels on the atom undergoing

inspection are shown in blue. Initial labelling is carried out by assigning to each target atom all labels

carried by a query atom of the same element type. In the first step of relaxation, the label “4” is

removed from the leftmost carbon as in the query structure the atom labelled “4” neighbours atoms

labelled “5” and “6”, and these labels are not carried by a ligand of the leftmost carbon atom, while

the conditions to retain the labels “2” and “3” are met. The process continues until a situation is

reached in which each label from the query structure occurs once and only once in the target

structure, and a complete iteration through the target atoms results in no labels being removed as

shown, demonstrating that a match has been found.

84

Figure 3-22: Relaxation match of 3-aminopropanoyl chloride

As mentioned previously, the algorithm outlined above is not guaranteed to produce a conclusive

answer. For certain combinations of query and target structures, a stable state can be reached in

which unambiguous mapping between query and target atoms has not been reached, but nor has

the target structure been demonstrated not to be a match to the query. Two such examples are

illustrated in Figure 3-23. In the first case, the searching of the query structure cyclopropane against

the target structure cyclobutane, the initial labelling is as shown in the target structure. The

85

relaxation process removes no labels from the target structure, since the requirement for each label

in the query structure is that it be adjacent to each of the other two and this condition is satisfied for

all labels on the target structure. In the second case, the searching of dimethyl formamide against

itself, the symmetry of the two N-methyl groups results in the relaxation algorithm terminating with

both carrying the labels “4” and “5”, and so without producing an unambiguous assignment. The

implementation of the algorithm used in the current work resolves such situations by selecting a

node that carries more than one label, removing all but one label from the node and continuing the

relaxation process. If no match is found, the process is repeated, retaining a different label until

either a solution is found or it is shown that no match exists.

Figure 3-23: Inconclusive results of relaxation matches

The exact process used to perform relaxation matching of structural queries against ECTs in the

current work is as follows;

1. Used R-groups, i.e. those defined in the source fragments of the EPML document that have

been used to connect a further fragment to the structure are removed from the ECT. Unused

R-groups are retained and later permitted to be matched to hydrogen atoms.

86

2. Unique labels are arbitrarily assigned to the atom nodes that make up the query ECT. No

other types of nodes are permitted to form a part of the query ECT.

3. Each node in the target ECT is labelled against the query ECT. Atom nodes are given the label

of a query node if they are of the same element type or the query node is hydrogen and the

target node is an R-group, and if the target node has as at least as many ligands of each

element type as the query node in question. Alkylene nodes that are ligands of the target

atom node are considered as carbon atoms for this purpose. The length of the carbon chain

embedded within an AlkyleneNode is set to be equal to the number of carbon atoms in

the query structure and each internal carbon atom is labelled with all of the corresponding

labels from the query structure. Each embedded carbon atom is given two ligand hydrogen

atoms which are given all the labels carried by the ligand hydrogens of the query structure’s

carbons.

4. An initial label reduction identifies those nodes in the query structure that carry the only

instance of a certain label. Where found, those nodes are stripped of all other labels, since a

match may only be found in circumstances where that node is carries that label. The process

repeats until no such nodes are found.

5. The nodes of the target ECT are relaxed. In each iteration, a given label is removed from an

atom node in the target structure that carries it unless the node’s ligands carry all of the

labels adjacent to the given label in the query structure and the orders of the edges that

connect the candidate equivalent nodes in the target structure match those in the query

structure. The procedure for the removal of labels from the embedded nodes in an alkylene

node follows a similar method. The internal carbon atom nodes are held in a list in which the

first is considered to be the “leftmost” and the last the “rightmost”, and those nodes

adjacent in the list are considered to be connected. During relaxation, for each internal

carbon atom node sets of adjacent labels are computed in which one label is selected from

87

each of the nodes connected to the current node, the leftmost ligands if the current node is

the first in the internal list and the rightmost ligands for all internal nodes. If none of the

label sets so generated contains the set of adjacent labels from the query structure then the

label in question is removed from the embedded target atom node. Whenever the rightmost

node becomes unlabelled it is removed from the internal list, allowing the alkylene node’s

internal carbon chain to shrink until it is of the correct size to match the query structure or

until it reaches zero length and carries no labels, indicating that the alkylene node is not

involved in any potential match to the query structure. Step 5 repeats until a stable state is

reached.

6. The target ECT is checked to determine whether a premature stable state has been reached.

If so, a multiply labelled node is selected and n copies of the ECT, where n is the number of

labels on the selected node, are created in which the selected node carries only a single

label. These ECTs are returned to step 5 for further processing. If the ECT carries each query

label once and only once, the candidate solution is checked to ensure its validity. It is

checked that the solution does not use nodes derived from more than one member of each

markushMixture using the nodes’ markushIds, each TemplateNode contained in the ECT

checks that its carbon count is permitted and each node is checked to ensure that its

variable edge limit is not exceeded. If these checks are passed, a solution to the search has

been found and is returned; if not, the ECT is discarded and the next ECT is considered.

3.5.4 Examples

To demonstrate the building and searching of ECTs, a number of examples are subsequently

discussed. A simple Markush structure and a corresponding ECT are shown in Figure 3-24. In the ECT,

the halogen atoms (shown in blue) bear markushIds that indicate that not more than one of them

may be used simultaneously when searching, and the variable edges in the ECT – those that connect

88

to the variably positioned methyl group and to the hydrogen atoms added to attachment points of

said methyl group – are shown in red. The alkylene node representing the alkyl chain R is denoted in

the ECT by the symbol “Q” and other nodes are atom nodes of the element type shown.

Figure 3-24: Example Markush structure (left) and corresponding ECT (right)

Examples of searching the ECT shown from Figure 3-24 are subsequently discussed. In each case, the

query structure should not be construed to indicate the presence of any implicit hydrogen atoms

beyond those that make up the methyl and ethyl substituents. When matches are found for the

given query, the matching substructure of the ECT is shown in red. When discussing these examples,

the atoms of the benzene ring are numbered clockwise from the top, starting at 1.

89

Example no. Query Match

1

2

3

In the first example the scaffold of the Markush structure, the benzene ring, is easily identified as

matching the query structure. In the second example, the methyl group in the 4-position of the

query structure is matched to the methyl group with the unspecified locant, while the two hydrogen

atoms in the query structure are matched to those hydrogen atoms automatically added to the ECT

at positions permitted to be connection points for such mobile substituents. Similarly, this mobile

methyl group may be found in the 2-position, as in the third example.

90

Example no. Query Match

4

No match

5

No match

The mobile methyl group may not, however, be found in two positions simultaneously and the

search algorithm does not allow it to be simultaneously labelled for the two search methyl groups in

a result; hence, the query in the fourth example does not produce a hit. Likewise, in the fifth

example, while the carbon from the mobile methyl group may appear in both the 3- and 4- positions,

it may not appear in both simultaneously. In this case a result that matches the query structure

violates the variable edge limit of the mobile carbon, and so no hits are found.

91

Example no. Query Match

6

7

No match

In the sixth example, the ethyl group is correctly matched to the alkylene node while in the seventh

example only one of the halogen atoms is permitted to be used at a time in a search result, as

enforced by the markushIds carried by the halogen atom nodes and so the query produces no hits.

3.6 Conclusions

The work presented in this chapter has demonstrated an outline implementation of a CML-based

system for the representation and manipulation of Markush structures which supports the major

features of Markush structures as they are used in the patent literature. Polymer Markup Language,

an existing CML vocabulary, has been extended to permit the more convenient description of

Markush structures and systems have been developed to enable the creation of example molecules

and substructure searching of the Markush structures.

While the current work has shown how it is possible to produce machine-understandable Markush

structures that are compatible with the semantic web of chemistry, it is in need of further

92

development before it can be said to be a competitor to the currently available commercial systems.

In particular, the implementation of substructure searching provided by the current system does not

have an understanding of aromaticity or of stereochemistry – features which would likely be

required in any production system.

Since the commencement of the current work, ChemAxon have begun to add functionality to their

software, Marvin, to permit the drawing, representation and manipulation of Markush structures

(90) and have further demonstrated the potential for the automatic conversion from the Markush

DARC format to their own. While the Marvin format is loosely based upon CML, it must be

considered essentially to be another proprietary format that is not suitable for the semantic web of

chemistry. It is encouraging, however, to see that the automatic conversion of Markush formats has

been shown to be possible as it allows for a transition from the current situation without the need to

abandon the data that has collected up to the current point.

93

4. Automatic Acquisition of Hyponymic Relations from the

Chemical Literature

When considering a problem, the human thought process makes much use of background

knowledge, whether in the chemical sciences or in everyday life. Chemical Markup Language

provides a means to describe defined chemical concepts such as molecules, reactions and spectra

but does not give the freedom to define the relationships between novel concepts. In the Semantic

Web, this capacity is provided by ontologies – and much effort has been devoted to their

construction. The most basic elements of these formal representations of knowledge are a set of

hierarchical hyponymic relations – descriptions of which concepts form supersets or subsets of

which other concepts which may be considered at the most basic level as dictionaries of terms. This

chapter considers how these dictionaries may be automatically derived, using the published

literature as a source of knowledge, and discusses some of the applications to which the derived

knowledge may be put.

4.1 Hyponymic Relations

Hyponymic (“is-a”) relations exist between two terms where one the hyponym, is a subset of the

other, the hypernym. For example, “vehicle” is a hypernym of “car”, and “Ford Fiesta” is a hyponym

of “car”. Knowledge of such relations forms a key part of the way that we reason and form

deductions. Consider, for example, the following statements;

i. Reactions between carboxylic acids and alcohols that form esters are esterifications.

ii. Ethanol is an alcohol.

iii. Acetic acid is a carboxylic acid.

94

iv. Ethyl acetate is an ester.

It therefore follows that the reaction between acetic acid and ethanol that forms ethyl acetate is an

esterification. In order to facilitate the automation of such, and other, reasoning – the ultimate goal

of the semantic web – it is necessary first to encode the starting axioms in a formal representation

such as an ontology. The creation of a formal knowledge representation is typically a slow process as

manual curators determine and verify the information to be curated, and such work is confined to

fields that the curators consider to be within the scope of their work. This work may be both

quickened and broadened by the automatic acquisition of the hyponymic relations.

4.2 Hearst Patterns

Hearst first proposed the use of lexico-syntactic patterns for the automatic acquisition of hyponymic

relations (91), thereafter known as Hearst Patterns. She described six patterns that could be

employed;

Format Example Pattern Name

HYPER such as HYPO Apolar solvents such as THF and hexane SUCH_AS

such HYPER as HYPO Such bases as NaOEt or LDA SUCH_FOO_AS

HYPO or other HYPER MeCl, EtBr or other organohalides OR_OTHER

HYPO and other HYPER Benzene, ethylene oxide and other carcinogens AND_OTHER

HYPER including HYPO Methyl ketones including acetone INCLUDING

HYPER especially HYPO Grignard reagents, especially methyl magnesium
chloride

ESPECIALLY

Table 4-1: Hearst Patterns and their usage in chemical texts

wherein HYPER and HYPO represent noun phrases that denote the hypernym and hyponym(s)

respectively. Each of these patterns has been assigned a name for ease of reference.

Taking the example for the SUCH_AS pattern, it can be seen that the text communicates the

information that THF and hexane are examples of apolar solvents. This information is readily

95

available to any fluent speaker of the English language, regardless of whether or not they are aware

of what “THF”, “hexane” or an “apolar solvent” are. The application of these six patterns to a large

corpus of text therefore provides a powerful method for the identification of hyponymic relations

between lexical terms, and the approach has been broadly applied, including in the biomedical

sciences (92) – though not previously to the chemical sciences.

Of course, chemical documents contain Hearst Patterns that are not relevant to the chemical field. In

order to limit the domain of hyponymic relations identified by any automated system, it is necessary

to apply some form of filtering. The capacity to separate “chemical” from “non-chemical” words is

provided by the OSCAR3 toolkit, as previously discussed. Indeed, a basic approach to the problem is

implemented within OSCAR3 itself.

4.2.1 OSCAR3 Implementation

The OSCAR3 application of Hearst Patterns employs token-based regular-expression style matching

in the style as employed in the PatternRecogniser (see section 2.2.6.3), and uses as a core

feature the named-entity recognition and the experimental subclass classification provided by

OSCAR3. The SUCH_AS pattern described above, for example, is specified by OSCAR3 as;

 $CM:CLASS<hyper> $MAYBECOMMA $SUCHAS $CMEXACTHYPO

$CM:CLASS refers to a named entity of type CM (Chemical – see section 2.2.6.3) and of subclass

CLASS, while the meanings of $MAYBECOMMA, $SUCHAS and $CMEXACTHYPO are defined

separately as follows;

 $MAYBECOMMA = $(, $) $?

In this definition, the $ symbol before the brackets and the question mark symbol indicate that they

are to be interpreted as in standard regular expressions i.e. the brackets define a character group

96

while the question mark states that the preceding group is optional, while the comma matches a

literal comma. Thus, the $MAYBECOMMA expression matches either one comma or nothing at all.

$CMEXACTHYPO = $($($CM:EXACT<hypo> $)

 $|

 $($($CM:EXACT<hypo> , $) $*

 $CM:EXACT<hypo> $MAYBECOMMA $ANDOR

 $CM:EXACT<hypo> $)

 $)

$ANDOR = $(and $| or $)

The whole expression for $CMEXACTHYPO thus matching either a single named entity of type CM

and subtype EXACT, or a comma-separated list of arbitrary length terminated by “and” or “or” and a

final CM:EXACT, e.g. “methane, ethane, propane, butane and pentane”, or simply “methane”.

$SUCHAS = $(such as $| including $| excluding $|

particularly $| especially $| mainly $| primarily

$| chiefly $| specifically $)

Here we see a number of Hearst Patterns, including the SUCH_AS pattern described above, being

implemented at once – thus widening the scope for hyponymic relation acquisition. A number of

other Hearst Patterns are similarly implemented by OSCAR3, and they are not confined to the field

of hyponymic (“is-a”) relations, but also “has-a”, e.g. “the ester carbonyl” – indicating that a

carbonyl is a part of an ester.

Because the OSCAR3 implementation depends on a token-level match it lacks some of the flexibility

that is afforded by the standard natural language approach of chunking the tokens into phrases and

identifying hypernyms and hyponyms as noun phrases. The hypernym is required to be of type CM

or of a specific subtype of CM, causing useful relations to be ignored – the class CM is intended to

refer to words that have structural or substructural meaning. As a result, hypernyms based on usage,

function or properties, etc. are ignored, for example the relation “bases such as LDA and n-butyl

lithium”. This capability could be added by selecting a number of hypernyms that, while not

97

classified as CM by OSCAR3, are of sufficient chemical importance to be included, but this approach

would not be truly unsupervised, and would therefore miss subtleties in the text e.g. “strong bases

such as LDA and n-butyl lithium” or “5-HT1A antagonists such as Lecozotan or Spiperone”, in which

the crucial function of the drugs is not they are antagonists, but that they are antagonists of the 5-

HT1A receptor.

4.3 Acquiring Hyponymic Relations

In order to address the issues described in the previous section, a new system was developed to

apply OSCAR3’s name recognition capabilities to the problem of the detection of Hearst Patterns in

chemical texts. This system aims to carry out unsupervised detection of molecular classifications,

such as those exemplified in Table 4-1, and is based around ChemicalTagger (described in section

2.2.7) as outlined below;

Figure 4-1: Acquisition and Storage of Hearst Patterns

98

In this system, the text from the EPO patents is passed into the HearstFinder one paragraph at a

time. The HearstFinder then uses ChemicalTagger to analyse the grammar of the input text –

returning a tagged and chunked document. From these documents it is possible to identify sections

of the input text that correspond to a given Hearst Pattern, i.e. the noun phrases that denote

hypernym and hyponym as well as the invariant text characteristic of the Hearst Pattern e.g. “such

as”. By checking that the hyponym phrase consists of a sequence of entities of type CM, it is possible

to narrow the set of identified hyponymic relations to those that define relations between chemical

structures. The set of hyponymic relations derived from this process are then formally encoded into

the Web Ontology Language (OWL) (93). Using appropriate heuristics, these relations are then

trimmed with the intention to remove unreliable or inaccurate assertions. The full process is

subsequently discussed in detail.

4.3.1 HearstFinder

The application of Hearst Patterns to and identification of hyponymic relations within an input text is

handled by the HearstFinder class. The operation of this class is subsequently discussed.

4.3.1.1 Specification of Hearst Patterns

Hearst Patterns to be identified are defined to the HearstFinder as space-separated string

representations of literal and meta-tokens, for example, the SUCH_AS pattern is defined as “$HYPER

such as $HYPO”. The HearstFinder treats “$HYPER” and “$HYPO” as meta-tokens that denote the

location of the noun phrases that define the hypernym and hyponym respectively, while other

tokens in the specification are treated as literal tokens that define the structure of the Hearst

Pattern and must be present in the source text in the same positions relative to the noun phrases as

99

they are in the specification relative to the meta-tokens in order for the source text to be considered

to match the Hearst Pattern. The matching of phrases with meta-tokens is illustrated in Figure 4-2.

This approach offers a greater flexibility than that of the OSCAR3 system since it allows for a user to

easily apply the existing code to novel Hearst Patterns and is not limited to the discovery of pre-

defined or recognisably chemical hypernyms and hyponyms. Indeed, the sections of input text that

are identified by the HearstFinder are not in the first instance restricted to the chemical domain

in any way. The software is therefore potentially reusable in a general context.

4.3.1.2 Matching Hearst Patterns

Initially, the input text is passed to ChemicalTagger for grammatical analysis. The target Hearst

Pattern is specified as described above and passed to the HearstFinder as an argument. Instances

of this pattern are identified by locating instances of the first literal token from the target pattern

within the text and simultaneously advancing through the tokens of the target pattern and source

text. When a literal token is found in the target pattern, this token must be the next token of the

source text; when a metatoken is found in the target pattern the containing phrase is noted and the

pointer that tracks which position in the text is being examined is advanced to the end of this

phrase. If this process can be completed successfully then metatokens in the target pattern that

occur prior to the first literal token are matched by looking backwards in the source text from the

position of the match to the first literal token. For example, the input text “Apolar solvents such as

THF and hexane may be employed” produces the grammar tree shown in Figure 4-2, wherein NP

indicates a noun phrase, VP indicates a verb phrase and PP indicates a prepositional phrase.

100

Figure 4-2: Grammatical structure of a Hearst Pattern

When the SUCH_AS pattern ($HYPER such as $HYPO) is applied to this result, the hypernym and

hyponyms are identified as the immediate parent phrases of the tokens before and after the literal

pattern text (“such as”), i.e. “Apolar solvents” and “THF and hexane” respectively. At this stage, in

order to eliminate non-chemical hyponymic relations e.g. “large cities such as Tokyo and London”,

the content of the hyponym is checked using OSCAR3; each of the tokens making up the text of the

hyponym must either have been tagged as CM by OSCAR3, or must belong to a predefined list of

allowable tokens including articles (“a”, “an” and “the”), appropriate punctuation (comma and

semicolon) and conjunctions (“or” and “and”).

4.3.2 Recording Hyponymic Relations

A hyponymic relation defines one concept to be a subclass of another. Since such relationships

perform a key role in ontologies – formal representations of knowledge – there are existing tools

that provide a means for their storage and manipulation. In the current work, hyponymic relations

are converted to, and stored in, the Web Ontology Language (OWL) (93). The required functionality

for reading, writing and creating OWL is provided by the open-source OWL API library (94), version

3.0.0.

Each extracted hyponymic relation is represented by a SubClassOf axiom in OWL, which denotes that

one class – the subclass – is a subset of another – the superclass. Both hypernyms and hyponyms are

Apolar solvents such as THF and hexane may be employed

NP NP VP

PP

101

represented by OWL classes. Hypernyms are represented by unique classes if the text string

composing the hypernym phrase is novel once it has been lowercased and stripped of leading

determiners and the terminal character ‘s’, as a naïve approach to the problem of pluralisation.

Thus, the hypernyms “Esters”, “some ester” and “an ester” would be considered equivalent and

represented by the same OWL class.

Individual chemical names have already been identified within the hyponym phrase by

ChemicalTagger, and the MOLECULE elements therein are taken to be individual hyponyms. It is not

desirable to create multiple OWL subclasses for a single chemical substance, so non-novel hyponyms

are identified both by string equivalence and by resolution of chemical names to InChIs using the

NameResolver class from OSCAR3. The resulting connection table is converted to InChI using the

InChIGeneratorTool class from JUMBO. If the resulting InChI has been previously seen then the

class representing this structure is used as the subclass for the new axiom. Using this method, the

hyponyms “chloroform” and “trichloromethane” are represented by the same OWL class. Since the

current intent is to derive classifications of chemical compounds from the patent texts, relations for

which it is not possible to resolve the hyponym to a connection table and to an InChI are discarded.

This may occur, for example, in situations where the hyponym is systematic nomenclature that is not

supported by OPSIN, a trivial term that does not occur in OSCAR’s dictionary or a term denoting a

chemical fragment, such as “ethyl”.

The OWL file created by this method contains more information than purely which terms are

hyponyms of which other terms. The OWL classes corresponding to the hyponyms are annotated to

include all the identified synonyms for a structure and the InChI for that structure, as well as the text

of the paragraph(s) from which the hyponymic relation was inferred. Access to the source text is

vital for the identification of sources of error in this procedure, as will be seen later. In addition, the

SubClassOf axioms are annotated with the number of patents from which the relation has been

inferred. Since relations that are asserted by a large number of sources may be considered to be

102

more reliable or more important than those asserted by fewer, this allows for the elimination of

unreliable and unimportant information at a later stage.

4.3.3 Content of the Derived Relations & Sources of Error

The full texts of the patents from the corpus of 667 unique, full-text patent documents (collected as

described in section 5.1.3) were passed through the system. One of these patents, EP1651230, was

found to contain text that caused ChemicalTagger to freeze and so was omitted from the procedure.

The system identified 5624 Hearst Patterns across the remaining 666 patents, with each patent

containing between 0 and 96 individual Hearst Patterns. The distributions of Hearst Patterns across

the corpus and the contributing Hearst Patterns are summarised in Figure 4-3 and Figure 4-4

respectively.

Figure 4-3: Distribution of Hearst Patterns across the patent corpus

0

50

100

150

200

250

300

350

0 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-50 >50

Hearst Patterns

P
a
te

n
t

C
o

u
n

t

103

Figure 4-4: Individual Hearst Pattern frequency across the patent corpus

It is particularly noteworthy in Figure 4-4 that the SUCH_AS pattern is dominant in terms of usage,

comprising around 90% of the Hearst Patterns identified within the source texts.

The OWL file derived from these Hearst Patterns defines 1001 superclasses (i.e. hypernyms), 984

subclasses (i.e. hyponyms) and a further 13 classes denoting terms that appeared as both hypernyms

and hyponyms such as “pyridine” – being both a specific compound, C5H5N, and the class of

compounds that contain a pyridine ring. Each superclass (including those that were also subclasses)

had between 1 and 35 subclasses, collectively defining a total of 2738 unique hyponymic relations.

The derived hyponymic relations contain a number of sets of superclasses in which one is a superset

of the others e.g. “base” and “strong base” or “solvent” and “chlorinated solvent”. In such cases, the

superclasses are formally related only in that they may share some or all subclasses. In the chemical

field it is dangerous to make the assumption that a class that fits the pattern adjective-noun is a

subset of the corresponding class noun, since while a chlorinated solvent is a solvent, a chlorinated

hydrocarbon is not a hydrocarbon. Consequently, the system implemented here makes no such

assumptions in order to avoid introducing such errors.

89.8% SUCH_AS

4.5% AND_OTHER

1.4% ESPECIALLY

2.1% INCLUDING

2.0% OR_OTHER

0.2% SUCH_FOO_AS

104

Of course, automated systems make mistakes and so the hyponymic relations derived from the

source texts are not perfectly reliable. It was not feasible to manually examine and validate a

knowledge base of this size and so no metrics are available for the raw performance of the system

on the full set of input texts, though a validation was carried out on a subset of the input text and is

discussed in section 4.3.5.

The full set of derived hyponymic relations includes molecular classifications that may be considered

common and generic (e.g. “polar aprotic solvent” and “strong base”), those that define common

structural classes (e.g. “alcohol” and “amino acid”), those that define specific classes likely to be

relevant to only a small subset of the patent documents (e.g. “antibiotic” and “antipsychotic drug”)

and those that are entirely meaningless and have been included as a result of a mistaken parse of

the input text such as those shown in Table 4-2.

Hypernym Source text

abbreviated word In Table 2, DHP-Cz represents 3,6-dihydroxyphenyl-9-decyl-carbazole, and
other abbreviated words are the same as described in Table 1.

maybe used A wide range of reducing agents maybe used, such as sodium borohydride,
formaldehyde, formic acid, sodium formate, hydrazine hydrochloride,
hydroxylamine, and hypophosphorous acid.

Table 4-2: False hypernyms and their source texts

Further, and potentially more serious, false assertions are contained where the input text lists

examples of two or more molecular classes at once. For example, for the input text;

“Compounds of formula I wherein R8 is NRcRd and R9 is hydrogen may be prepared

by treatment of the appropriate precursor containing the C31-C32 unsaturation with

HNRcRd or HCl; HNRcRd in an appropriate protic or aprotic solvents such as

methanol, ethanol, benzene, toluene, dimethylformamide, dioxane, water and the like.”

105

ChemicalTagger identifies the noun phrase preceding “such as” as “aprotic solvents”, resulting in the

misclassification of methanol, ethanol and water as aprotic solvents. Linguistic constructions of this

form are problematic to the system as it is only possible to identify which of the molecular classes

the hyponyms belong to by the application of the domain-specific knowledge that we seek to

identify from the source texts.

4.3.4 Trimming the Relations

In order to produce a knowledge base of manageable size and of higher quality, it was necessary to

remove a number of classes and associated axioms. The full OWL file derived from the previous

process was therefore trimmed based on a requirement that all axioms should have been derived

from a minimum of three separate patent documents. Following the removal of axioms in this way,

orphaned classes, i.e. those that had no remaining superclasses or subclasses, were also deleted. In

this way, it was hoped that many of the mistaken classifications would be eliminated since it would

be less common for a mistake to be repeated than for a correct hyponymic relation to be specified

across multiple documents. It was further hypothesised that this removal of invalid axioms could be

improved by increasing the number of input documents and the minimum source threshold, though

this was not tested.

Following the trimming of the derived relations in this way, the resultant OWL file defined 133

superclasses and 330 subclasses. Each superclass had between 1 and 24 subclasses, collectively

defining a total 516 hyponymic relations.

These 516 hyponymic relations were subjected to manual inspection and verification. Since the

purpose of this exercise was to assess the validity of the hyponymic relations extracted from the

source patents, hypernyms were judged to be acceptable if the extracted term was a grammatically

and semantically valid description of a class of chemical structures while hyponymic relations were

106

judged to be acceptable if the molecule generated from the hyponym term could be correctly

described as a member of the class in question. The validity of hyponymic relations was only

assessed where the hypernym concerned had already been judged to be acceptable. The results of

this process are summarised in Table 4-3.

Task Acceptable Not acceptable Total % acceptable

Hypernym
verification

113 20 133 85.0%

Hyponymic
relation

verification

459 28 487 94.3%

Table 4-3: Verification of trimmed hyponymic relations

Of the retained hypernyms, 85% were judged to be acceptable according to the preceding criteria.

Of the 20 hypernyms judged not to have been acceptable, 5 were found to have been included due

to the incorrect interpretation of the term “methyl” as denoting the chemical structure of methane,

allowing such hypernyms as “radical” and “group” to enter the molecular structure classification.

One unacceptable hypernym, “dien” was included as a result of typos where “diene” was intended.

One hypernym, “feedstock”, was judged to be unacceptable as the term is a description of a bulk

material as opposed to of specific chemical compounds. The remaining 13 unacceptable hypernyms

were generated as a result of incorrect grammatical parsing by ChemicalTagger. In 10 of these cases,

ChemicalTagger included too much text in the hypernym while in 3 cases too little text was included.

Examples of these cases are illustrated in Table 4-4.

107

Hypernym Source text

Can be formed from a variety of
phospholipids

Liposomes can be formed from a variety of phospholipids
such as cholesterol, stearylamine or phosphatidylcholines.

Are typically diluted with an inert
carrier

Such compositions are typically diluted with an inert carrier,
such as water, before application.

Agent …for example, sweetening agents such as fructose,
aspartame or saccharin…

Inhibitor …adenosine diphosphate (ADP) inhibitors such as
clopidogrel…

Table 4-4: Unacceptable hypernyms and sample source texts

When examining the hyponyms of those molecular classes considered acceptable, a high proportion

– 94% – were found to be valid examples of the hypernym concerned. The interpretation of six of

the hypernyms – “non-toxic pharmaceutically acceptable inert carrier”, “suitable solvent”, “suitable

base”, “pharmaceutically acceptable solvent”, “appropriate solvent” and “low molecular weight

aliphatic alcohol” – was found to involve a degree of subjectivity. In these cases the acceptability of

the hyponyms was adjudicated without reference to the subjective qualification – thus, hyponyms of

“suitable solvent” were considered acceptable if they were solvents, etc. This high success rate

suggests that the technique offers a very powerful means by which to identify and formalise

chemical classifications.

4.3.5 HearstFinder Validation

In order to quantify the performance of the HearstFinder, an annotation task was undertaken to

permit the comparison of different humans’ opinions of what constituted a chemical Hearst Pattern

with each other and with the performance of the machine. Annotation guidelines were written, and

are attached in Appendix A. The goal of the task was to derive performance metrics within a defined

scope. Since, on average, around 8.5 Hearst Patterns were curated from each patent, it was not

feasible to verify against manually annotated sections of patent text selected randomly and without

108

limits. Instead, it was decided to focus the task on the SUCH_AS pattern, which provided 90% of the

curated hyponymic relations, and to select the corpus from among those paragraphs that contained

the string “such as”. Since the HearstFinder implementation requires the inclusion of the

invariant text of a Hearst Pattern in the input text in order to return any results, this filtering of the

corpus paragraphs served only to remove a large proportion of paragraphs that would be of no

interest to a manual annotator and could not affect the performance metrics. The limitation of the

task to the SUCH_AS pattern allowed the filtering to produce a corpus in which the relevant content

was highly enriched, and the exclusion of the other patterns – which collectively contributed only

10% of the total curated relations – was considered an acceptable trade-off.

The annotation guidelines are intended to cause the annotators to behave in the way that

HearstFinder is intended to operate. The annotator is free to identify the hypernym according to

his or her judgement of what is correct, while hyponyms are required to be terms that have

structural meaning – though not artificially limited solely to those classed as CM by the OSCAR3

annotation guidelines. The annotated patterns thereby produced consist of those that fit the form

that the HearstFinder is intended to identify, while the manually annotated hypernyms and

hyponyms allow for the validation of those that the system automatically annotates against what a

human considers to be the correct term.

The corpus for this exercise was assembled by randomly selecting 300 paragraphs of text that

contained the phrase “such as” from the set of unique, full-text patent documents assembled as

described in section 5.1.3. A further, non-overlapping, set of 30 paragraphs selected by the same

method were used in advance of the full annotation task to ensure that the annotators understood

and could implement the annotation guidelines. Three annotators were used for the task; the

present author, an academic with many years’ experience of the chemical domain and a summer

109

student who had completed two years’ undergraduate study of chemistry1. Each annotator’s results

were compared to those of the other annotators and to those of the machine.

Human annotation of the corpus was carried out using a customised version of the OSCAR3

ScrapBook functionality. The OSCAR3 ScrapBook allows a user to manually annotate the OSCAR3

named entities within a sample text using a web browser, by selecting the text to be annotated and

clicking the button associated with the desired named entity class. By replacing the OSCAR3 named

entities with the named entities “pattern” “hyper” and “hypo”, a tool for annotating the Hearst

Patterns within the corpus was created. This tool is shown is Figure 4-5, while the XML annotations

produced thereby is shown in Figure 4-6.

1
 In the presentation of the results, “annotator A” was the current author, “annotator B” was the summer

student Shaoming Chen and “annotator C” was the academic Peter Murray-Rust. All three sets of annotations
are available for inspection on the attached disk.

110

Figure 4-5: The customised OSCAR3 ScrapBook

111

<P>

 <snippet id="s1" fileno="p0">

 The inorganic substance includes hydrochlorides of

 <ne type="pattern">

 <ne type="hyper">metals</ne>

 such as

 <ne type="hypo">potassium</ne>

 ,

 <ne type="hypo">sodium</ne>

 ,

 <ne type="hypo">magnesium</ne>

 ,

 <ne type="hypo">iron</ne>

 ,

 <ne type="hypo">manganese</ne>

 ,

 <ne type="hypo">cobalt</ne>

 ,

 <ne type="hypo">zinc</ne>

 </ne>

 and the like, sulfates of the above-described metals, and

phosphates of the above-described metals. More

specifically, potassium chloride, sodium chloride,

magnesium sulfate, ferrous sulfate, manganese sulfate,

cobalt chloride, calcium chloride, zinc sulfate, potassium

phosphate, sodium phosphate and the like.

 </snippet>

</P>

Figure 4-6: Annotated Hearst Pattern as produced by the OSCAR3 ScrapBook

The comparison of the results produced by the different annotators with one another and with the

machine was carried out automatically using software built specifically for the purpose. Before two

annotations can be compared, the corresponding annotations from the two sets undergoing the

comparison must first be identified. This was achieved by numbering the instances of the phrase

“such as” in the input texts sequentially from 0 to n, then identifying the pattern annotation, i.e. the

ne element of type pattern which contained each instance of the phrase “such as”, if any. Each

instance of the phrase “such as” may have been included in an annotation by both annotators, not

included in an annotation by both annotators or included in an annotation by one annotator and not

the other. Where both annotators applied an annotation, the annotations were compared on a

number of criteria;

 Did the annotators apply the pattern annotation to the same section of the text?

112

 Did the annotators apply the hypernym annotation to the same section of text?

 How many hyponym annotations were applied by both annotators, and how many were

applied by one annotator and not the other?

To answer the first two questions above, the raw text content of the appropriate annotations were

stripped of all whitespace – to eliminate errors where one annotator had mistakenly included a

space at the beginning or end of a word, and errors potentially introduced by the handling of

whitespace in XML by the various software components involved in the execution of the task –

before being compared to one another. Where the whitespace-stripped strings were equivalent it

was judged that the annotators had annotated the same text and vice versa. To answer the third

question, the sections of text to which the hyponym annotations had been applied were subjected

to the same process of whitespace removal, then the sets of hyponyms annotated by each annotator

were compared and the number occurring in both sets and the numbers occurring in one and not

the other were calculated.

The comparison of the performance of the human annotators with that of the machine proceeded

according to the same criteria but using a slightly different method. Since the machine does not

create XML annotations of the form produced by the OSCAR3 ScrapBook, instead holding in memory

references to the appropriate sections of a ChemicalTagger output document, it was necessary to

store the value of n – the record of which instance of the phrase “such as” is the subject of the

annotation – in memory as the Hearst Pattern was identified. This allowed the Hearst Patterns

recognised by the machine to be aligned with those annotated by the human annotators, then the

two were compared as previously.

During the analysis of the annotations, it was discovered that on a number of occasions the human

annotators had produced annotations of the Hearst patterns in which the hypernym was not

113

marked. Such annotations were discounted from the annotation comparison procedure and the

resultant metrics.

Annotator B C M Metric

A

269 45.1% 229 38.4% 133 22.3% Annotated By Both Annotators

234 39.2% 267 44.7% 289 48.4% Skipped By Both Annotators

88 14.7% 84 14.1% 174 29.1% Skipped By One Annotator

6 17 1 Missing Hypernym

219 81.4% 183 79.9% 58 43.6% Matching Patterns

248 92.2% 206 90.0% 61 45.9% Matching Hypernyms

713 533 336 Matching Hyponyms

71 9.1% 190 26.3% 17 4.8% Mismatched Hyponyms 1

68 8.7% 184 25.7% 45 11.8% Mismatched Hyponyms 2

B

 248 41.5% 143 24.0% Annotated By Both Annotators

 228 38.2% 236 39.5% Skipped By Both Annotators

 100 16.8% 218 36.5% Skipped By One Annotator

 21 0 Missing Hypernym

 197 79.4% 59 41.3% Matching Patterns

 216 87.1% 64 44.8% Matching Hypernyms

 542 327 Matching Hyponyms

 171 24.0% 40 10.9% Mismatched Hyponyms 1

 174 24.3% 69 17.4% Mismatched Hyponyms 2

C

 125 20.9% Annotated By Both Annotators

 288 48.2% Skipped By Both Annotators

 176 29.5% Skipped By One Annotator

 8 Missing Hypernym

 53 42.4% Matching Patterns

 57 45.6% Matching Hypernyms

 243 Matching Hyponyms

 84 25.7% Mismatched Hyponyms 1

 106 30.4% Mismatched Hyponyms 2

Table 4-5: Results of the HearstFinder validation exercise

The results of the HearstFinder validation exercise are presented in Table 4-5, wherein the

human annotators are labelled A, B and C and the machine annotator is labelled M. The metrics are

calculated as follows;

 Annotated By Both Annotators – the instances of the phrase “such as” that formed part of

an annotation in both annotation sets.

114

 Skipped By Both Annotators – the instances of the phrase “such as” that formed part of an

annotation in neither annotation sets.

 Skipped By One Annotator – the instances of the phrase “such as” that formed part of an

annotation in one annotation set and not the other.

 Missing Hypernym – the occasions on which a matching pair of Hearst pattern annotations

were not compared as a result of one or both annotators failing to annotate the hypernym.

 Matching Patterns – the occasions on which the two annotators applied the pattern

annotation to a whitespace-stripped equivalent section of text.

 Matching Hypernyms – the occasions on which the two annotators applied the hyper

annotation to a whitespace-stripped equivalent section of text.

 Matching Hyponyms – the occasions on which the two annotators applied the hypo

annotation to a whitespace-stripped equivalent section of text.

 Mismatched Hyponyms 1 – the occasions on which the first annotator applied the hypo

annotation to a section of text which was not matched by the second annotator.

 Mismatched Hyponyms 2 – the occasions on which the second annotator applied the hypo

annotation to a section of text which was not matched by the first annotator.

These metrics are presented as raw numbers and, where appropriate as percentages. For the

metrics concerned with whether or not both annotators annotated a Hearst pattern, the

percentages are calculated as a proportion of the total number of instances of the phrase “such as”

in the corpus. For the pattern and hypernym metrics, the percentages are calculated as a proportion

of the total number of Hearst patterns for which the comparison procedure took place, i.e. those

115

which were annotated by both annotators. For the mismatched hyponym metrics, the percentages

are calculated as a proportion of the total number of hyponyms annotated by the annotator in

question.

From Table 4-5, it can be seen from the inter-annotator agreement scores that the humans’

interpretation and implementation of the annotation guidelines were not uniform; these scores set

a baseline by which the performance of the machine may be judged. The machine performance is

comparable to the inter-annotator agreement in terms of the “skipped by both annotators” metric,

while the machine exhibits a higher rate, at around 30%, than the human annotators, at around

15%, in terms of the “skipped by one annotator” metric. This suggests that the machine has a

tendency not to annotate Hearst patterns where the guidelines suggest that they should be

annotated. This observation is to be expected as a consequence of the conservative strategy

implemented by the HearstFinder. Notably, the requirement that the noun phrase that follows

the key phrase “such as” be composed of terms identified as CM by OSCAR3 eliminates those Hearst

patterns that contain complex hyponyms involving generic adjectives such as “higher alcohols”.

OSCAR3 does not recognise the word “higher” in this context and consequently the entire Hearst

pattern is discounted, while a human annotator does not make this mistake.

The machine also scores significantly worse than the inter-annotator agreement in terms of the

precise matching of the pattern and hyper annotations. The failure of the machine to correctly

identify the hypernym can be attributed to one of two causes; the noun phrase that precedes the

key phrase “such as” having been incorrectly recognised by ChemicalTagger, or the noun phrase

having been correctly identified but not corresponding precisely with what the human annotator

considered to be the correct hyponym. The annotation guidelines instruct the human annotators to

discount from the hypernym adjectives that do not form a part of the structural class concerned, as

in “suitable solvent”, and the correct interpretation of this instruction requires an understanding of

the English language of the chemical domain that the machine does not possess. Consequently it is

116

difficult to devise a system that is not prone to the second source of error, while the development of

ChemicalTagger to eliminate the first source of error was beyond the scope of the current work.

The metrics for the rates of disagreement between the machine and the human annotators present

a mixed picture. The inter-annotator agreement scores for mismatched hyponyms are significantly

higher for the A-C comparison (26% and 26%) and the B-C comparison (24% and 24%) than for A-B

(9% and 9%), and the score for the C-M (26% and 30%) comparison is significantly higher than for A-

M (5% and 12%) and B-M (11% and 17%). These results are suggestive of a discrepancy in the

implementation of the annotation guidelines between annotator C and annotators A and B. The

scores for the comparisons A-M and B-M are similar to those of the comparison A-B, while the score

for the comparison C-M are similar to those for the comparisons A-C and B-C, suggesting that the

machine’s performance in this regard is comparable to that of the humans. It should be

remembered that these metrics are computed based solely on the Hearst patterns which have been

annotated by both annotators, so although the rate at which the machine includes incorrect

hyponyms may be comparable to the humans, the rate at which it excludes correct hyponyms is

much higher – as evidenced by the much higher rates at which a human and the machine disagree

over whether to annotate a Hearst pattern (29%, 37% and 30%) compared to the rates at which two

humans disagree on the issue (15%, 14% and 17%). This conservatism is considered to be entirely

acceptable, even desirable, as it assists in the production of the reliable set of relations, as seen in

section 4.3.4.

4.4 Uses of Derived Data

To demonstrate the utility of the system described in this chapter, the derived relations were put to

several different uses. These use cases are subsequently discussed.

117

4.4.1 Automatic Classification of Structural & Non-Structural Classes

In the set of derived relations, the hypernyms correspond to the names of classes of chemical

compounds. Such classes may be based on structural features, e.g. esters, or on non-structural

features, e.g. base. Since the compounds that form a structural class must, by definition, share

structural features while those that form non-structural classes need not, it should be the case that

these classes should be differentiable by considering the chemical similarity of their members.

In order to investigate this hypothesis, the set of relations produced as described in section 4.3.4

was further trimmed by removing superclasses that had fewer than six subclasses and the orphaned

subclasses this process produced. The chemical similarity of each of the remaining 28 chemical

classes was calculated by using the Chemistry Development Kit (CDK) version 1.0.1 to calculate

fingerprints for each of the class members and the mean pairwise Tanimoto coefficient (MPT) for the

class2. The class names were distributed to each of five manual annotators, each of whom held at

least an undergraduate degree in chemistry. Each annotator selected for each class an appropriate

label selected from the following;

 Structural – the name of the class indicates that all members contain a specific substructure

e.g. ketone or methyl ester.

 Functional – the name of the class indicates that all members share a common function,

usage, property or other non-structural feature e.g. antibiotic or surfactant.

 Semi-structural – the name of the class indicates something about the structure or

composition of the members, but not that that they share a specific substructure e.g.

isomers of C6H10O or bicyclic systems.

The annotators carried out this task by being presented with a list of the hypernyms as they were

curated from the original patent texts, the order of which was randomised between the annotators,

2
 The CDK fingerprinter operates in a similar manner to Daylight fingerprints, by generating a comprehensive

set of paths through a given connection table as opposed to by comparison to a pre-specified set of fragments.
Consequently, the results are not biased by decisions made by the CDK authors regarding which fragments are
appropriate for inclusion.

118

along with a short set of instructions. An example set of instructions and class names is included in

Appendix B.

The results of this process are presented in Table 4-6, in which the chemical classes are sorted in

ascending order of their mean pairwise Tanimoto (MPT) scores. Each chemical class has been

assigned a label of structural, semi-structural or functional according to the consensus of the manual

annotators and the classes are coloured green (structural), yellow (semi-structural) and red

(functional) accordingly.

Manual Annotator Votes

Hypernym MPT

Structural
Semi-

structural
Functional

base 0.145

5

inert solvent 0.147

5

solvent 0.159

5

organic solvent 0.195

1 4

halogenated hydrocarbon 0.236 1 4
 mineral and carboxylic acid 0.244 3 2
 organic acid 0.256 1 3 1

hydrocarbon 0.264 1 4
 amine 0.279 5

 tertiary amine 0.288 5
 halogenated α-olefin 0.288 4 1

 aromatic ether compound 0.336 5
 cyclic olefin 0.411 4 1

 diolefin 0.431 4 1
 suitable solvent 0.448

5

trihydrocarbon-substituted phosphine 0.467 4 1
 halogenated styrene 0.499 4 1
 alkylamine 0.508 5

 olefin 0.511 4 1
 dihydrocarbon-substituted phosphine 0.527 4 1
 alcohol 0.534 5

 aliphatic unsaturated ether compound 0.546 5
 α-olefin 0.569 4 1

 aliphatic monoether compound 0.587 5
 monohydrocarbon-substituted

phosphine 0.590 4 1
 alkylstyrene 0.594 5

 ether compound 0.684 4 1
 straight monoolefin 0.702 5

Table 4-6: Classification of structural & non-structural classes

119

It can be seen from Table 4-6 that in 13 cases the manual annotators agreed unanimously on a label

and on a further 13 occasions they agreed by a 4-1 margin. Of the remaining two cases, the class

“mineral and carboxylic acid” likely indicates a union of two separate classes – “mineral acid” and

“carboxylic acid” – and it is unsurprising if this caused some confusion among the annotators with

regards to how to proceed – while one further class, “organic acid”, was voted semi-structural by a

3-1-1 margin.

It can be seen from Table 4-6 that ordering the classes by their MPT results in a perfect separation of

the structural, semi-structural and functional classes with the exception of the classes “mineral and

carboxylic acid” and “suitable solvent”. The first of these classes, as previously discussed, represents

a union of two classes and was the subject of disagreement among the annotators over its nature.

The second, “suitable solvent”, was unanimously voted as a functional class but has a MPT score that

places it firmly among the structural classes, indicating that the process outlined in this section does

not work in all cases.

The ability to automatically determine if a molecular class is structural or non-structural does not

have an immediate application within the current work, but it is thought that it may prove useful in

the future in several ways. Firstly, it may prove a useful pre-screen to identify structural classes for a

system that attempts to automatically determine the functional groups that define them, e.g. esters

are those compounds that contain the substructure CC(O)OC. Secondly, it may assist in the

development of a system for automatic categorisation of reactions in the sense that a reaction that

operates on one member of a structural class may be reasonably expected to work on other

members of the class, while this is not the case for non-structural classes. It was not attempted to

implement the systems described here as part of the current work, and due to the relatively low

number of molecular classes examined here further work is warranted to demonstrate and validate

the performance of the current methodology before attempting to build a production system.

120

4.4.2 Detection of Useful Relationships

It was hypothesised that the hyponymic relations identified by the application of Hearst Patterns to

chemical documents may be of use for the supervised or unsupervised creation or enrichment of

formal knowledge bases. In order to test this hypothesis, the set of trimmed molecular classifications

identified as acceptable in section 4.3.4 were compared to the ChEBI Ontology (47; 48).

The domain of ChEBI and that of the patent corpus do not perfectly overlap. The patents cover a

broad area of chemistry, while the species present in the ChEBI Ontology are described as those that

are “used to intervene in the processes of living organisms (either on purpose, as for drugs, or by

accident, as for chemicals in the environment)” (95). Consequently, many of the automatically

acquired relations are irrelevant to ChEBI and would not be expected to be present therein. The

comparison was therefore restricted to fields relevant to ChEBI. Those selected were solvents, bases

and the various classes of drugs exemplified in the molecular classifications. During this work, two

questions were addressed for each of the automatically identified hyponymic relations – was the

chemical species represented by the hyponym present in the ChEBI Ontology and, if so, was the

containing hyponymic relation defined?

The first question was addressed by searching for the chemical substance concerned both by

chemical names as used in the original patents, by other common names of the substance known to

the author and by the generated InChIs attached to the hyponym classes. Searching was performed

using the web interface available at http://www.ebi.ac.uk/chebi/init.do. The second question was

answered by considering whether the chemical substance was classified directly or indirectly (i.e. via

one or more intermediate classifications, as in Figure 4-7) as belonging to a lexically or semantically

equivalent classification. The results of these investigations are presented in Table 4-7, Table 4-8 and

Table 4-9.

http://www.ebi.ac.uk/chebi/init.do

121

Figure 4-7: Indirect ChEBI classification of acetone as a solvent

Chemical name Structure present in ChEBI? Hyponymic relation present in
ChEBI?

Methanol Yes Yes

Ethanol Yes Yes

DMSO Yes Yes

Water Yes Yes

Acetone Yes Yes

Benzene Yes Yes

Toluene Yes Yes

Glyme Yes Yes

1,2-dichloroethane Yes Yes

Chloroform Yes No

Xylene3 Yes No

Dioxane Yes No

NMP Yes No

Anisol Yes No

DMF Yes No

THF Yes No

Acetonitrile Yes No

Pyridine Yes No

DCM Yes No

Table 4-7: Comparison of solvent hyponyms with ChEBI

It can be seen from Table 4-7 that a number of common solvents, notably DMF, THF, DCM and

acetonitrile, are included in the ChEBI Ontology but are not defined therein as being solvents. This is

not due to solvents being considered irrelevant to ChEBI since a number of solvents are present and

3
 The name “xylene” may refer to ortho-, meta- or para-xylene. All three were present in the ChEBI Ontology

and none was recorded as being a solvent

Solvent

Aprotic solvent

Polar aprotic solvent

Acetone

122

defined as such and the ontology defines the solvent classes “polar solvent”, “non-polar solvent”,

“protic solvent” and “aprotic solvent” among others. It is surprising that of the 19 solvents identified,

10 were not defined as such in ChEBI in spite of the presence of suitable superclasses.

Chemical name Structure present in ChEBI? Hyponymic relation present in
ChEBI?

Sodium hydroxide Yes Yes4

Potassium hydroxide Yes Yes5

Triethylamine Yes No

Pyridine Yes No

n-BuLi Yes No

Imidazole Yes No

Potassium carbonate No N/A

Sodium hydride No N/A

N,N-diisopropyl-N-ethylamine No N/A

DMAP No N/A

Table 4-8: Comparison of base hyponyms with ChEBI

Table 4-8 demonstrates that the formal definition of bases in ChEBI is poor. Indeed, a manual search

indicates that the “metallic base” class to which sodium and potassium hydroxide belong is the only

class of bases defined.

4
 Recorded in ChEBI as a “metallic base”

5
 Recorded in ChEBI as a “metallic base”

123

Drug class Chemical name Structure present in
ChEBI?

Hyponymic relation
present in ChEBI?

Biguanide Metformin Yes Yes

Cholesterol
absorption inhibitor

Ezetimibe Yes Yes6

Anti-estrogen Tamoxifen Yes Yes7

 Toremifene Yes Yes8

 Raloxifene Yes Yes9

H+, K+ ATPase
inhibitor

Omeprazole Yes No

 Lansaprazole Yes Yes10

Antibiotic Tetracycline Yes Yes

 Metronidazole Yes No11

 Amoxicillin Yes Yes

Tricyclic12 Amitriptyline Yes Yes

 Imipramine Yes Yes

 Doxepin Yes Yes

Antipsychotic drug Thoridazine Yes Yes

 Haloperidol Yes Yes

Psychostimulant Methylphenidate Yes No

Diuretic Amiloride Yes No

 Furosemide Yes Yes

Table 4-9: Comparison of drug hyponyms with ChEBI

It should be expected that the drugs included in the molecular classifications should all be present in

the ChEBI Ontology, since in order for a hyponymic relation and therefore its hyponym to be

included, the hyponym must be resolvable to a connection table by OSCAR3 – which uses ChEBI as a

source of linked trivial names and associated structures. It might also therefore be expected that the

6
 Recorded in ChEBI as a “anticholesteremic drug”

7
 Recorded in ChEBI as an “estrogen receptor antagonist”

8
 Recorded in ChEBI as an “estrogen antagonist”

9
 Recorded in ChEBI as an “estrogen receptor modulator”

10
 Recorded in ChEBI as a “proton pump inhibitor”

11
 Recorded in ChEBI as a “antitrichomonal drug”

12
 A common abbreviation of “tricyclic antidepressant”, of which class the three examples are recorded as

members in ChEBI

124

drug classifications deduced from the literature would similarly be formally encoded into ChEBI,

though this is not the case for 4 of the 18 drugs present in the corrected set of molecular

classifications.

This observation, as well as the high proportion of identified solvents and bases that were not

present in or defined as such in ChEBI suggest that the technology developed for the automatic

acquisition of hyponymic relations is likely to be of use in the creation of such formal classifications

of chemical substances. Though it is likely that a human curator would not want to enable fully-

automatic deposition of hyponymic relations due to justifiable concerns about accuracy, such a

system may act as a highly useful tool to identify both common molecular classes and examples

thereof.

4.4.3 Application to Data Searching

The automatic generation of dictionaries of common molecular classes provides a means of support

for data searching in that it permits the formulation of queries such as “show me reactions that use

a strong base in a chlorinated solvent” without the need for the user to define the terms “strong

base” or “chlorinated solvent”. The combination of the hyponymic relations derived in the current

work with data derived from other sources is made possible by the use of the web standard OWL for

their formal descriptions. This work has been carried out by Dr Lezan Hawizy and is discussed in

section 6.2.

4.5 Conclusions

The work in this section has demonstrated the implementation of a system capable of the automatic

detection of molecular classes based on their specification in the literature that operates with a high

125

degree of accuracy by combining established methods with novel technology. It has further

discussed ways in which the information produced may be of use to the human curators of the ChEBI

ontology and to the broader community. The techniques used in this process are ones that scale

acceptably with the available volume of literature and it is believed that they will be of value in the

future.

126

5. High-Throughput Abstraction of Chemical Reactions – PatentEye

This chapter describes the implementation of a novel framework – tentatively named PatentEye –

for the high-throughput and automatic abstraction of chemical reactions. As discussed in the

introduction to the current work, the liberation of scientific data and its conversion to machine-

understandable forms holds great promise. A key part of the chemical sciences are the reactions

that chemists perform and report in great number, and the goal of the creation of PatentEye was to

demonstrate the potential to create an automated system capable of extracting reactions from the

literature, creating machine-understandable representations using Chemical Markup Language

(CML) and sharing them as open data. To increase the reliability of the extracted syntheses,

PatentEye attempts to validate the identified product molecules. This is achieved by comparison of a

candidate product molecule with any accompanying structure diagram using the package OSRA (see

section 2.2.8) for image interpretation and with any accompanying NMR and mass spectra, using the

OSCAR3 data recognition functionality (see section 2.2.6.5). The identified NMR spectra are

considered to be valuable data in their own right and are extracted and retained for use in later

works.

The implemented system is automated to the degree that it is capable of operating with minimal

user interaction, and consequently the PatentEye workflow consists of a number of stages of

processing. First, chemical patents are identified within the online archive of the European Patent

Office (EPO) and are downloaded. The XML documents supplied by the EPO are then semantically

enhanced so as to delimit sections and subsections of the text and to introduce additional metadata

such as SMILES strings representing the content of structure diagrams and OSCAR3 data markup to

describe identified spectra. Finally, reactions are extracted from these semantically enhanced

documents using ChemicalTagger (see section 2.2.7) and are converted to CML. The working of each

of these steps is described in this chapter.

127

5.1 Downloading Patents

As discussed in section 2.1.3, the patents published by the European Patent Office were selected for

the current work. In order to simplify the acquisition of a suitably large corpus of documents from

which to work, as well as to facilitate future increases in the scale of PatentEye’s operation, software

was written to automate the process of identification and downloading of the patent files. The

operation of this software is subsequently discussed.

5.1.1 EPO Web Interface

The European Patent Office (EPO) publishes patent documents through the European Publication

Server, hosted at https://data.epo.org/publication-server/. This platform is designed for a human,

interacting with it using a web browser. A user performs a search by entering his search parameters

– a patent ID, a date range within which to search and a list of document kinds (see Table 5-1) to

search for – into an HTML form, and upon submission an HTTP POST request to

https://data.epo.org/publication-server/search is executed, specifying the required parameters. The

server responds by redirecting the browser to https://data.epo.org/publication-server/result-list

using the HTTP 302 status code, and the page at this address uses Asynchronous Java and XML

(AJAX) to retrieve a table of results for the search, an example of which is shown in Figure 5-1.

Figure 5-1: Search results for EP 1777210

https://data.epo.org/publication-server/
https://data.epo.org/publication-server/search
https://data.epo.org/publication-server/result-list

128

This table comprises a list of the available documents related to the specified patent. The documents

are each assigned a “kind code”, which classifies the contents of the documents according to the

definitions shown in Table 5-1.

Kind code Definition

A1 European patent application published with European search report

A2 European patent application published without European search report

A3 Separate publication of the European search report

A8 Corrected title page of an A document, i.e. A1 or A2 document

A9 Complete reprint of an A document, i.e. A1, A2 or A3 document

B1 European patent specification (granted patent)

B2 New European patent specification (amended specification)

B3 European patent specification (after limitation procedure)

B8 Corrected title page of a B document, i.e. B1 or B2 document

B9 Complete reprint of a B document, i.e. B1 or B2 document

Table 5-1: Definitions of EPO kind codes, taken from EPO website (96)

The search results table also provides links to the XML, PDF and ZIP files for the document, if these

are available. Not all file types are available for all patent documents – if the patent is published

under the Patent Cooperation Treaty (PCT), for example, then the PDF link is replaced by a PCT link

and a full-text XML version is unavailable.

5.1.2 Automated Downloading of EPO patents

In order to download documents using the web interface described previously, it is first necessary to

determine an appropriate patent ID number. A user may already know the ID of the patent in which

he is interested if, for example, it has been cited by another document or if it has been returned in

the hit list of a patent searching tool. The European Publication Server, in addition to hosting the

search interface, also publishes a series of weekly patent index files (97). Each of these files lists the

patent documents published by the EPO in a certain week and provides further information such as

the language in which the document is written and the International Patent Classification (IPC) codes

129

which have been assigned to the document. The IPC is a subject-based hierarchical classification

scheme for patent documents, e.g. chemistry and metallurgy are assigned the code “C”, organic

chemistry is assigned the code “C07”, acyclic or carbocyclic compounds are assigned the code

“C07D” etc. These index files thereby provide the means for an automated system such as

PatentEye to identify chemical patents, or indeed those related to any other field. PatentEye

identifies patents to download as those that are written in English and that have been assigned one

or more of the IPC codes listed in Table 5-2.

IPC Code Description

C07B General methods of organic chemistry; apparatus therefor

C07C Acyclic or carbocyclic compounds

C07D Heterocyclic compounds

C07F Acyclic, carbocyclic or heterocyclic compounds containing elements other than carbon,
hydrogen, halogen, oxygen, nitrogen, sulfur, selenium or tellurium

Table 5-2: Relevant IPC codes

The implementation of this process in PatentEye is provided by the EpoCrawler class. Once the list

of chemical patent IDs has been derived from a patent index file, the IDs are passed to the

PatentGrabber class, which uses the web crawler developed for the CrystalEye project (13) and

interacts with the patent-searching web interface described above. The search request is submitted,

and then the table of results is retrieved by replicating the AJAX request. This table is formatted in

XHTML, allowing the PatentGrabber to identify which kinds of documents are available for the

specified patent by reading the individual table rows. For the documents of kind A1, A2, A9 and B1 –

each of which contains the full text of a patent – the URLs from which the ZIPs may be downloaded

are identified and passed to the web crawler for download.

130

5.1.3 Formation of the Patent Corpus

The EpoCrawler was used to download the zipped form of the chemical patents from the EPO

website for the ten weeks dated from May 6th 2009 to July 8th 2009. To prevent duplication of

patents within the corpus, files were then deleted such that only one document remained within the

corpus for each patent ID. The order of priority used to determine which document to retain was A9

> A1 > A2 > B1. In total, the patent corpus comprises 690 documents from across the ten weeks, and

the number of ZIP files originally downloaded and the number of unique patents from which they

are drawn are shown in Figure 5-2.

Figure 5-2: Variation of downloaded and unique patents in the corpus

Of these 690 zips, it was found that 23 did not contain the XML version of the patent under the

expected file name. Further work that uses the patent corpus is therefore based on a reduced

corpus of 667 unique, full-text patent documents where the XML files are used as input.

0

20

40

60

80

100

120

2
0

0
9
-0

5
-0

6

2
0

0
9
-0

5
-1

3

2
0

0
9
-0

5
-2

0

2
0

0
9
-0

5
-2

7

2
0

0
9
-0

6
-0

3

2
0

0
9
-0

6
-1

0

2
0

0
9
-0

6
-1

7

2
0

0
9
-0

6
-2

4

2
0

0
9
-0

7
-0

1

2
0

0
9
-0

7
-0

8

downloaded zips

unique patents

131

5.2 Document Enhancement

As discussed previously, in section 2.1.3.1, the different sections of the XML-formatted patent

documents are not clearly defined. The content of the description element is relatively flat – that

is to say, the heading and p (paragraph) children are siblings of one another, such as in the

following;

<description>

 <p>...</p>

 <heading>Heading 1</heading>

 <p>...</p>

 <p>...</p>

 <heading>Heading 1.1</heading>

 <p>...</p>

 <heading>Heading 1.2</heading>

 <p>...</p>

 <heading>Heading 2</heading>

 <p>...</p>

 <p>...</p>

 </description>

To a human reader, it is a simple task to realise that the headings 1.1 and 1.2 are subsections of

Heading 1, and that the each of the paragraphs belongs to a section of the document that begins

with the preceding heading. Since this is not made explicit in the structure of the XML, however, it is

not trivially obvious to a machine that the document should be read in such a way. For this reason it

is desirable to deflatten the XML – to rewrite the document such that as much of the implicit

structure is made explicit as possible. This rewritten document is then saved to disk in order to

prevent unnecessary repetition of the task.

A number of other semantic enhancements are performed on the patent documents at this stage.

These tasks include the application of OSCAR3 data recognition to identify spectral data within the

text, the application of OSRA to add SMILES representations of the chemical structure images

contained within the documents, the recognition and annotation of references in the text to other

sections of the document, e.g. “the reaction was performed as in example 12” and the identification

132

and labelling of the paragraphs in the text that form part of an experimental section. The theory and

application of these steps are subsequently discussed.

5.2.1 Paragraph Deflattening

In this step, the description element of the patent document is checked for paragraph children.

Any p elements that are found are detached from the document and re-attached as a child of the

heading element that most recently precedes them. Any p elements that occur before the first

heading child of the description element are ignored by this process. For example, the example

of XML in the preceding section would be reformatted as follows;

<description>

 <p>...</p>

 <heading>Heading 1

 <p>...</p>

 <p>...</p>

</heading>

 <heading>Heading 1.1

 <p>...</p>

</heading>

 <heading>Heading 1.2

 <p>...</p>

</heading>

 <heading>Heading 2

 <p>...</p>

 <p>...</p>

</heading>

 </description>

Before this reformatting, the heading element was acting as an annotation on the heading text.

While it can still be inferred that the text inside a heading element and preceding the first p

element is the heading text, the reformatting process has destroyed the explicit declaration and

created mixed content. To remove the requirement to infer the heading title, the heading text is

removed from the document and made into a title attribute on the heading element, to form a

document of the following form;

133

<description>

 <p>...</p>

 <heading title='Heading 1'>

 <p>...</p>

 <p>...</p>

 </heading>

 <heading title='Heading 1.1'>

 <p>...</p>

 </heading>

 <heading title='Heading 1.2'>

 <p>...</p>

 </heading>

 <heading title='Heading 2'>

 <p>...</p>

 <p>...</p>

 </heading>

</description>

5.2.2 Document Segmentation

As previously discussed, the EPO do not attempt to explicitly demarcate in their XML the existence of

sections of a patent document. Headings in the document are denoted by use of the heading tag,

but otherwise the reader is left to infer for themselves where subheadings occur and to which

headings they belong. This lack of formal structure in the document is a barrier to the automated

processing of the patent documents as it prevents a machine from making context-specific decisions

about how to behave. At this stage in the semantic enrichment process, an attempt is made to

formalise the document’s implicit structure.

5.2.2.1 Primary Sections

The EPO’s instruction document, “How to get a European Patent – Guide for Applicants” (98), states;

 In the description you must:

(a) Specify the technical field to which the invention relates. You may do this for

example by reproducing the first ("prior art") portion of the independent claims in

full or in substance or by simply referring to it.

(b) Indicate the background art of which you are aware, to the extent that it is useful

for understanding the invention, preferably citing source documents reflecting such

134

art. This applies in particular to the background art corresponding to the prior art

portion of the independent claims. Source document citations must be sufficiently

complete to be verifiable: patent specifications by country and number; books by

author, title, publisher, edition, place and year of publication and page numbers;

periodicals by title, year, issue and page numbers.

(c) Disclose the invention as claimed.

(d) The disclosure must indicate the technical problem that the invention is designed

to solve (even if it does not state it expressly) and describe the solution.

(e) To elucidate the nature of the solution according to the independent claims you

can repeat or refer to the characterising portion of the independent claims (see

example) or reproduce the substance of the features of the solution according to

the relevant claims.

(f) At this point in the description you need only give details of embodiments of the

invention according to the dependent claims if you do not do so when describing

ways of performing the claimed invention or describing what the drawings show.

(g) You should state any advantageous effects your invention has compared with the

prior art, but without making disparaging remarks about any specific previous

product or process.

(h) Briefly describe what is illustrated in any drawings, making sure you give their

numbers.

(i) Describe in detail at least one way of carrying out the claimed invention, typically

using examples and referring to any drawings and the reference signs used in

them.

(j) Indicate how the invention is susceptible of industrial application within the

meaning of Article 57.

Each of these six points defines a topic that must be addressed in the patent. Consequently,

European patents tend to follow a regular structure – primary sections of the documents are

commonly headed according to the areas mandated in the instructions using relatively standardised

terms. As a result, these heading titles may be matched using regular expressions. The regular

expressions used for matching the most common section titles are given in Table 5-3. Each of these

section titles corresponds to one of the areas mandated by the guide for applicants, with the

exception of the final entry – while a summary of the invention is not mandated by the EPO it is a

very common feature, and one for which the terminology is sufficiently consistent that it can be

matched by regular expressions.

135

Section Title Regular Expression

Field (.*\\s+)?(technical\\s+)?field(\\b.*)?

Prior Art (.*\\s+)?(prior|background|related)(\\b.*(art(s)?|invention)(\\b.*)?)?

Disclosure of
Invention

(.*\\s+)?(detailed
description|(disclosure|description)\\b.*\\s+invention)\\b.*

Description of
Drawings

(.*\\s+)?description of (.*\\s+)?drawing(s)?(\\b.*)?

Mode of
Carrying Out

(.*\\s+)?modes?(\\s+.*carry.+(\\s+.*)?)?

Industrial
Applicability

industrial applicability

Summary of
Invention

(.*\\s+)?summary(\\s+.*invention(\\b.*)?)?

 Table 5-3: Regular expressions for identifying primary section headings

These regular expressions are used to identify the primary sections of the patent description. Once

this has occurred, the structure of the descendant elements of the patent’s description element

is modified with the intent that the only child elements of the description should be the

identified primary section headings. Non-primary headings that are found after a primary heading

are detached from the document and reattached as a child element of the preceding primary

heading, leaving those that occur before the first identified primary heading in place. In this manner,

the flat structure of the XML provided by the EPO is converted into a tree that reflects the implicit

structure of the document.

In addition to this alteration of the XML structure, the names of the primary heading elements are

normalised to enable their trivial location within the document during later work. Each of the

primary headings has a separate keyword to which the element name is changed, for example the

disclosure of invention headings are renamed “disclosureOfInvention”, while the summary of

invention headings are renamed “summaryOfInvention”. Similarly, the remaining heading elements

within the description that match the regular expression “(.*\\b)?example(:|\\-)?(\\s+.*)?” are

renamed “example” in the same manner as the primary section headings.

136

Though the PatentEye functionality implemented as part of the current work does not ultimately

make use of the primary section headings, the ability to identify the primary sections is thought to

be of sufficient potential use to future applications that it has been retained within the current

codebase. Since the functionality was not used in the current work, the accuracy of the regular

expressions at recognising variations in the wording of the primary section headings by individual

authors was not assessed.

5.2.2.2 Identification of Consecutive Headings

Very often, a document contains a set of headings that are intended to form a series of consecutive

headings. Most notably in the field of patents, it is clearly apparent that, if a document contains the

headings “example 1”, “example 2” and “example 3” that these headings form a series and that, in

general, other headings that occur during such a series are in fact subheadings of the those headings

that form the series. This phenomenon provides a useful means by which a machine may identify

the implicit structure within the document, and by re-ordering the semantics of the document it is

possible to make this structure explicit. This procedure is implemented as part of the current work

and is subsequently discussed.

Recognisable Consecutive Headings

Two formats of consecutive headings were identified for this work: those where the heading text is

invariant save for an incrementing index e.g. “example 1”, “example 2”, etc. and those in which the

headings do not necessarily share any text, but the sequential nature of the headings is identifiable

from the presence of the incrementing token at the beginning of the headings, e.g. “A.

Introduction”, “B. Methods”, etc. It was also noted that in headings describing example compounds

the name of the compound it is common to include the name of the compound, e.g. “Step 2:

137

Preparation of methyl 5,8-dihydroxy-1,6-naphthyridine-7-carboxylate”, and that this should not be

allowed to prevent the formation of lists of consecutive headings.

In order to recognise these sets of consecutive headings, a representation is first generated of the

title text of each of the headings in which the incrementable tokens and chemical names have been

normalised. Firstly, chemical names are identified by passing the title text to OSCAR3 for named

entity recognition and by replacing instances of chemical names with the string “$CM”.

Subsequently, incrementable tokens are identified by matching against the regular expression;

 (\\d+[a-z]?(?!-)\\b|^[A-Z](?!-)\\b)

This regular expression matches two types of incrementables. Firstly, it may match a number

optionally followed by a single letter (e.g. “7” or “12b”) followed by a word boundary and not a dash

(to avoid matching pieces of chemical nomenclature such as in “2-methyl”). Secondly, it may match

a single uppercase character at the beginning of a string that is, again, followed by a word boundary

but not a dash (“N-methyl”). The substrings that are matched by this regular expression are replaced

with the string “$IN”. Representations created in this way may then be compared by simple string

equivalence to determine if the headings for which they were generated are of a common format. If

so, and if the incrementing tokens are consecutive, then the headings may constitute consecutive

headings.

The application of this procedure needs to be carefully applied in order to correctly identify lists of

consecutive headings. Consider the following list of headings;

 Example 1
 Step 1
 Step 2
 Example 2
 Step 1
 Step 2
 Step 3

138

It should be clear to the reader that these headings describe two examples, each of which is broken

down into a number of steps. The first example has two subheadings while the second has three.

The heading “Step 2” in “Example 1” has no subsequent heading in its consecutive heading list, and

it is important not to identify “Step 3” in “Example 2” as such. This is achieved by dividing the list of

headings in the document into smaller lists after each identification of consecutive headings, using

the headings in the consecutive heading list as the splitting points. This procedure is illustrated in

Figure 5-3.

Example 1 -> Example $IN -> Example $IN -> Example $IN
 Step 1 -> Step $IN -> Step $IN -> Step $IN
 Method -> Method -> Method -> Method

Characterisation -> Characterisation -> Characterisation -> Characterisation
 Step 2 -> Step $IN -> Step $IN -> Step $IN
 Method -> Method -> Method -> Method

Characterisation -> Characterisation -> Characterisation -> Characterisation
 Example 2 -> Example $IN -> Example $IN -> Example $IN
 Step 1 -> Step $IN -> Step $IN -> Step $IN
 Method -> Method -> Method -> Method

Characterisation -> Characterisation -> Characterisation -> Characterisation
 Step 2 -> Step $IN -> Step $IN -> Step $IN
 Method -> Method -> Method -> Method

Characterisation -> Characterisation -> Characterisation -> Characterisation
 Step 3 -> Step $IN -> Step $IN -> Step $IN

Example 3 -> Example $IN -> Example $IN -> Example $IN

Figure 5-3: Identification of and Document Restructuring Using Consecutive Headings

In the first step, the title text of each of the headings is normalised by replacement of chemical

names and incrementable elements, as previously discussed. The first heading, “Example 1”, is then

identified as being part of a consecutive heading list with “Example 2” and so the list of headings is

divided into two, shown in blue and green, using these headings as the splitting points. Now, when it

comes to find the headings that follow the blue “Step 1” heading, it is impossible to include any of

the subheadings of “Example 2”, as these headings are no longer contained in the heading list. This

results in the correct identification of lists of step headings, as shown in the example above.

139

Once the lists of consecutive headings have been created, the document is restructured accordingly.

Firstly, a check is carried out to ensure that the headings in each list are siblings, i.e. that they share

a common parent element. If this is found not to be the case, the process aborts by throwing an

UnrecognisedStructureException. Otherwise, the document restructuring proceeds by

iterating through the list of all headings that are siblings of those in the list. Once the first heading in

the list is reached, subsequent headings that are not also members of the list are detached from the

document and reattached as children of the preceding member. This process is terminated upon

reaching the final member of the list, with the result that the subheadings of this heading are not

affected. This omission is accepted as a consequence of the fact that there is not another method

available to determine its subheadings.

5.2.3 Data Annotation

PatentEye takes advantage of the previously-developed and previously-described functionality for

the recognition and annotation of experimental data that exists within OSCAR3. To enable the usage

of this functionality, software was developed to support the application of OSCAR3 data annotations

to an original source XML document and improvements were made to the performance of the

OSCAR3 data recognition. This work is subsequently described.

5.2.3.1 Development of Annotation Framework

OSCAR3 is used to annotate reports of spectral data within the patent documents. OSCAR3,

however, does not directly allow for the annotation of arbitrary XML documents. Instead, the patent

documents must first be converted to SciXML, as described previously, before annotation is

140

performed. This produces an annotated SciXML document, but the process of format conversion has

destroyed much of the valuable markup that is included in the patent XML files.

To work around this problem, software was written to identify the sections of text in the original

document that correspond to the sections annotated by OSCAR3 in its SciXML documents in order to

allow the annotations to be added to the original document. It is hoped that this process will be

made redundant by the addition of the capability to annotate arbitrary XML documents in a future

version of the OSCAR software.

The process of creating and transferring OSCAR3’s data annotations is illustrated in Figure 5-4.

Figure 5-4: Software architecture for the application of OSCAR3 data annotations to patent XML documents

The DataAnnotator class operates on a single paragraph of text, held in memory as a

nu.xom.Element. The text content of the paragraph is handed to OSCAR3 to create a SciXML

document, and this document is used by the DataParser class in OSCAR3 to produce a set of inline

annotations. A user-modifiable subset of the inline annotations, by default comprising those

indicating the presence of NMR, mass spectrometry, high-resolution mass spectrometry and IR

spectroscopy, are then identified. The DataAligner class then locates the equivalent,

unannotated, sections in the XML source of the input paragraph. This process does not proceed by

141

simple substring matching, since the process of conversion to SciXML has normalised whitespace

and removed markup from the source. Consider the example of the following input paragraph;

<p>

The compound was characterised as follows; MS <i>m/z</i>

189(M⁺). This confirms the experimental product as

the desired product.

</p>

In the SciXML document on which OSCAR3 works, the i and sup tags will have been removed, and

so they will be absent from the annotation produced by OSCAR3. The source XML of the input

paragraph and the annotation, however, both share the text “MS m/z 189(M+)”. The DataAligner

class, where possible, identifies the substring of the source XML that contains the text value of the

annotation and, where present, XML tags from a predetermined set that correspond to style markup

(such as in the example above) or surplus whitespace. The data annotation that has been created by

OSCAR3 may then be copied into the input paragraph by replacing the section of source XML

matched by the DataAligner with the source XML for the annotation. If this process cannot

complete successfully, the DataAnnotator throws a FailedInlineException to indicate

failure.

It is important to realise that the process described as above cannot be guaranteed to produce well-

formed XML. Consider the following input paragraph;

<p>

¹H NMR (400MHz): δ 1.20 (2H, s), 2.34 (1H, t,

J=2.3Hz), 3.78 (2H, d, J=2.3Hz).

</p>

In this case, the substring identified as a match by the DataAligner will include the closing </sup>

tag but not the opening <sup> tag. When this substring is replaced by the source XML for the

annotation, this will result in the presence of an unbalanced opening tag. As a result, before the

source XML produced by the method outlined above can be built to produce a paragraph suitable

142

for insertion into the original document, it is necessary to identify and remove any such unbalanced

tags. This process is handled by the DataAnnotator.

5.2.3.2 Measurement of OSCAR3 Performance

 In order to test the performance of OSCAR3’s DataParser on the EPO patents, a corpus of

paragraphs was constructed from those patents that had successfully passed through the paragraph

deflattening and document segmentation phases of the semantic enrichment procedure. These

paragraphs were selected at random from those that were descendants of an example element,

with each paragraph having an equal probability of selection. It was decided to limit the domain in

this way in order to enrich the proportion of paragraphs containing experimental data and thereby

reduce the time required to produce an annotated corpus of appropriate size. Of the paragraphs

selected in this way, 1400 were divided into two sets of 700 each – one for development of the

OSCAR3 regular expressions and one for validation of the development process. These paragraphs

were manually examined, and sections of experimental text within the corpora were annotated

according to the guidelines in Appendix C. The manual annotation of the documents was intended to

show the position of the spectral data within the text and the type of spectrum present, but not to

fully identify the components of the spectra e.g. peaks, shifts, etc. As a result, the annotated

paragraphs were of the form;

143

<p id="p0166" num="0166" patent="EP 1343782B1.xml">

Intermediate Example 17 (7 g, .037 mol) and 10% Pd/C (.7g)

in a concentrated methanol solution were shaken under

approximately 40 psi of H ₂ in appropriate

pressure vessel using a Parr Hydrogenator. When the reaction

was judged to be complete based upon the consumption of the

nitrobenzimidazole, it was diluted with EtOAc and filtered

through Celite and silica gel, which was washed with a

mixture of EtOAc and MeOH and concentrated. The product was

carried on without purification.

<spectrum type='hnmr'>

1H NMR (300 MHz, d₆ DMSO) δ 7.11 (d, J = 8.38

Hz, 1H), 6.69 (d, J = 1.51 Hz, 1H), 6.53 (dd, J = 8.38,

1.51 Hz, 1H), 4.65 (s, 2H), 3.62 (s, 3H), 2.43 (s, 3H)

</spectrum>

 .

</p>

Accuracy of the OSCAR3 data annotations is assessed by the OscarValidator class. Each manually

annotated paragraph is read into memory as a XOM Element and an un-annotated copy made by

removing the spectrum tags and rebuilding the XML as a XOM Element. This un-annotated

paragraph is then passed to a DataAnnotator to produce an automatically-annotated paragraph

that can be compared against the original manually-annotated copy. This comparison is performed

by string comparison of the text of the annotations in the manually and automatically annotated

versions of the paragraph and by comparing the values of the type attribute of the annotation. If an

annotation of the same type with the same text is found in both the automatic and manually

annotated paragraphs, a true positive (TP) is recorded. If an annotation from the manually-

annotated paragraph is not matched in this way in the automatically-annotated paragraph, a false

negative is recorded, and if an annotation from the automatically-annotated paragraph is not

matched by one in the manually-annotated paragraph, a false positive is recorded. Validation of the

version of the DataParser contained in the OSCAR3 α5 release (99), the version that existed prior

to the commencement of this work, using the development paragraphs produced the results shown

in Table 5-4, where precision measures the proportion of identified reagents that were correctly

identified by the machine and recall measures the proportion of reagents specified in the text that

were correctly identified by the machine. The two measures are defined as follows;

144

Spectrum type # in corpus TP FP FN Precision Recall

MassSpec 227 104 51 123 67.1% 45.8%

HNMR 206 97 21 109 82.2% 47.1%

CNMR 12 6 2 6 75.0% 50.0%

IR 10 0 0 10 0.0%

HRMS 5 0 0 5 0.0%

Table 5-4: Performance of OSCAR3 α5 on the development corpus

The low rate of occurrence of CNMR, IR and HRMS data make it difficult to draw conclusions from

the performance of the data annotation, but the rates of recall for the MassSpec and HNMR data are

disappointingly low compared to previously published values (100). This is due in part to the origin of

the data recognition as part of the Experimental Data Checker application. The purpose of this

application was to highlight mistakes made by authors in preparing their manuscripts to RSC

requirements. It is desirable in that context to fail to identify data sections that do not conform to

the style guidelines of the journal concerned in order to highlight the author’s mistake, but in the

context of the current task it is appropriate to loosen this strict requirement in order to increase

rates of recall.

FPTP

TP

Precision

FNTP

TP

Recall

145

5.2.3.3 Development of OSCAR3 Data Recognition

By manual comparison of the human and OSCAR3 annotations, a number of classes of common

errors were identified. These errors are subsequently discussed. Illustrative examples are taken from

the corpus of paragraphs that were examined during the development process.

Unspecified NMR Type

 OSCAR3 recognises both 1H and 13C NMR and distinguishes between the two by requiring the

presence of the literal string “1H” or “13C” respectively near the beginning of the text to be

matched. Many of the reported NMR from the patents omitted this declaration, instead taking the

form “NMR(CDCl3): δ 0.88(d, J = 6.6 Hz, 6H)…”. A trained chemist will easily infer that this as a 1H

NMR since the integral is specified as “6H”, however this form was not matched by any of the

OSCAR3 regexes and it therefore went unannotated. This problem was fixed by the creation of a

new type of spectrum to be annotated – the unknownNmr. A spectrum is annotated as

unknownNmr only if the isotope under examination is not identified, and no attempt is made to

infer it from the text. Furthermore, it was noticed that some NMR spectra specify simply the

element rather than the isotope under investigation, and were not being matched by the regular

expressions. This problem was resolved by making the “1” and “13” preceding “H” and “C”,

respectively, optional.

Inclusion of “ppm”

This problem occurred when the author appended “ppm” to the end of a spectrum, e.g. “13C-NMR

(CDCl3): 12.02 (CH3), 23.64 (2C), 32.28 (2C), 38.81 (2C), 49.64, 54.09 (CH), 211.83 (C=O) ppm”. In

146

these cases, OSCAR3 would annotate the spectrum as far as the final peak but omit to include the

“ppm” in the annotation. This problem was trivially fixed by allowing the inclusion of this final token.

Negative Shifts

While uncommon, negative values of NMR shift are entirely valid, but were not accepted as such by

OSCAR3. Upon examination, this was discovered to be part of a wider bug in the data regexes – both

the character “+” and “-” were intended to be allowed before numbers to indicate sign. In regular

expressions, however, the hyphen is a metacharacter when it occurs within a character class and

must therefore be escaped to give a literal hyphen in these circumstances. In a number of occasions

throughout the data regexes unintentional unescaped hyphens were used inside character classes,

and where identified this problem was resolved.

Word Boundaries around the ‘Delta’ Character

It was noted that OSCAR3 was failing to annotate NMR spectra which contained the substring “δ:”,

e.g. “1H-NMR (CDCl3) δ: 2.34 (3H, s), 2.66 (3H, s), 8.12 (1H, s)”. The top-level regular expression that

captures a 1H NMR spectrum in OSCAR3 α5 is as follows;

147

1 <node type="spectrum" id="hnmr" value="hnmr">

2 <regexp parsegroup="0">

3 <insert idref="nmrDelta" />?

4 \b

5 <insert idref="hNmr.Prolog"/>

6 (?: \W* for\s+\w+ (?: (![\(\);]).)*?)?

7 <insert idref="nmrMethod"/>?

8 (\W+(<insert idref="nmrDelta"/>|H)+\b)?

9 [\s:=]+?

10 (?: \W*ppm\W*?)?

11 (?: peaks\s+at\s+)?

12 (?:\s*<insert idref="nmrDelta"/>\s+)?

13 <insert idref="nmrPeakBlock"/>

14 </regexp>

15 <child type="quantity" id="hnmrSolvent"/>

16 <child type="quantity" id="hnmrStandard"/>

17 <child type="quantity" id="hnmrFrequency"/>

18 <child type="quantity" id="hnmrTemperature"/>

19 <child type="peaks" id="hnmr"/>

20 </node>

As can be seen above, the NMR Delta is matched in one (or more, if necessary) of three places – on

lines 3, 8 and 12. Following the first two of these is non-optional word boundary (“\b”). A word

boundary in regular expressions is a zero-length match that can be made at the transition between a

word character and a non-word character, a word character being any one of the lower case letters

a-z, the upper case letters A-Z, the digits 0-9 and the underscore, “_”. The NMR Delta is subsequently

defined as;

 <def id="nmrDelta" type="const">(?:d|đ|δ|ä)</def>

When the NMR Delta is represented by the character “d” it is a word character, and when it is

represented by the character “δ”, or other it is not. Thus, the NMR Delta is followed by a word

boundary if the next character is a non-word character if the NMR Delta is a “d” and vice versa

otherwise. The NMR Delta is rarely immediately followed by a word character, thus the literal delta,

δ, is generally only matched on line 12 of the preceding regular expression. This is problematic

where the delta is followed by one of the characters “=” and “:”, since these are only matched on

line 9, i.e. before the literal delta can be matched. This problem was resolved by removing the

148

requirement on line 8 for the NMR Delta to be followed by a word boundary, allowing for the

character “δ” to be matched at this point.

Typos

It was observed that a number of the manually annotated spectra were not recognised by OSCAR3

simply because they contained typos. Missing commas in lists of peaks, missing close brackets

following a peak assignment and inappropriately positioned spaces, e.g. in the middle of a number

were observed, along with less frequent typos, and caused OSCAR3 to fail to annotate the spectrum

correctly. Frequently, these mistakes would also cause OSCAR3 to incorrectly annotate a subsection

of the full spectrum, producing a false positive in addition to the false negative. For example;

False negative: 1H-NMR(CDCl3,TMS) δ(ppm):2.55(3H,s),6.75-6.85(1H,m),7 .03(2H,d,J=8.4Hz),7.1-
7.2(1H,m),7.32(2H,d,J=8.4Hz)

False positive: 1H-NMR(CDCl3,TMS) δ(ppm):2.55(3H,s),6.75-6.85(1H,m),7

The errors produced by the missing separators in peak lists were simple to resolve, by making the

presence of the separators in these lists optional. To produce regular expressions that thoroughly

compensate for typos that authors may make would be inadvisable, however, since this would

require the creation of regular expressions that can ignore much of the common structure that

reports of spectra share – and that the strategy of regular expression matching exploits.

Consequently, it would result in a far higher rate of false positives – increasing the recall of the

system at the cost of precision.

Mass Spectrometry Peak Inversion

The format expected by OSCAR3 α5 for reports of mass spectra is as follows;

149

 m/z: 597 (M + H)+

That is to say, the fragment mass should precede the assignment (if present). A number of spectra

found in this analysis, however, exhibited an inversion of this format, i.e. the assignment preceded

the mass of the fragment, e.g. “MS: MH+ = 445.2” or “ESIMS (M+H)+ = 624”. This problem was solved

by the creation of regular expressions to match this alternative template.

Mass Spectrometry Partial Annotation

It was found that frequently the OSCAR3 annotation would exclude part of the manual annotation.

For example;

 Manual annotation: MS (ESI) m/z 467.5 [M+1]+

 Automatic annotation: m/z 467.5 [M+1]+

 Manual annotation: ESI-MSm/z: 455(M + H) +

 Automatic annotation: m/z: 455(M + H)+

In these cases it was common that the part of the spectrum which to be omitted from the

annotation, as in the examples above, was a description of the method by which the spectrum was

measured. However, in such cases the peak(s) and assignment(s) were included in the annotation.

For this reason, the correction of these errors was not attempted as the annotation obtained by

OSCAR3, while technically incorrect according to the method of measurement chosen, was of

sufficient accuracy for the practical purposes of this thesis.

150

Mass Spectrometry Assignments

When a mass spectrum is reported, it is common that the reported mass is not that of the molecule

for which the spectrum is being recorded. As in the examples above, it is common to report instead

the mass of the most intense peak in the spectrum and to assign to this mass a chemical species, e.g.

“288*M+Na+” or “385 (M+1)”. In these cases, if the data identified in the source document is to be

put to good use, it is necessary to capture this assignment in a machine-understandable way such

that the reported mass becomes meaningful. This process was not supported in OSCAR3 in advance

of the current work – consider the inline annotations produced by OSCAR3 α5 for the spectrum “MS

m/z 362 (M+1)”;

 <spectrum type="massSpec">

 MS m/z

 <peaks type="..">

 <peak>

 <quantity type="mass">

 <value>

 <point>362</point>

 </value>

 </quantity>

 (M+

 <quantity type="intensity">

 <value>

 <point>1</point>

 </value>

 </quantity>

)

 </peak>

 </peaks>

</spectrum>

While the assignment has been included in the spectrum annotation, it has not itself been

specifically annotated. In advance of this work, the data regexes in OSCAR3 allowed virtually any

bracketed text to follow the numerical value in a mass spec peak, and did not attempt to identify

assignments in mass spectra. This has caused the numerical value, 1, in the assignment “M+1” to be

interpreted as being the intensity of the given peak within the spectrum. Clearly, this is both

mistaken and unhelpful for a client programmer who wishes to extract and work with the spectral

data. To address this issue, an additional child of the peak node was created – the

151

massSpecAssignment. This required the creation of regular expressions to match specifically the

forms of assignment that are used rather than accept generic text contained within brackets. For

example, assignments of the form “*M-H++” are matched by the regular expression;

 (?:

 [\(\{\[]

 M (?!\s) [\+<insert idref="HYPHENCHARACTERS"/>]*

 (?:

 (?x-i:<insert idref="ELEMENTS"/>\d*)* | \d+

)

 [\)\}\]]

 [\+<insert idref="HYPHENCHARACTERS"/>]

)

 (?!\w)

As a result of this work, OSCAR3 now produces the following annotations for the previous example,

“MS m/z 362 (M+1)”;

<spectrum type="massSpec">

 MS m/z

 <peaks type="..">

 <peak>

 <quantity type="mass">

 <value>

 <point>362</point>

 </value>

 </quantity>

 <quantity type="assignment">(M+1)</quantity>

 </peak>

 </peaks>

</spectrum>

With OSCAR3 now producing output in this format, it is possible for a machine to trivially identify

that the peak at a mass of 362 has been given the assignment “M+1”, just as it was for a trained

chemist to identify this information from the original text. This additional information can be used to

predict the expected mass of the compound for which the spectrum was measured, as described in

section 5.3.2.5.

152

5.2.3.4 Measurement of Improved OSCAR3 Performance

Once the work described in the previous section was completed, the analysis described previously

was re-performed using the upgraded regular expressions. Results are also presented for the

analysis of the validation corpus, using both the original and the updated regular expressions. For

the purposes of comparison, the results of the analysis on the development corpus using the original

regular expressions are reproduced;

Spectrum type # in corpus TP FP FN Precision Recall

MassSpec 227 104 51 123 67.1% 45.8%

HNMR 206 97 21 109 82.2% 47.1%

CNMR 12 6 2 6 75.0% 50.0%

IR 10 0 0 10 0.0%

HRMS 5 0 0 5 0.0%

Table 5-5: Performance of OSCAR3 α5 on the development corpus

Spectrum type # in corpus TP FP FN Precision Recall

MassSpec 227 146 67 81 68.5% 64.3%

HNMR 206 175 16 31 91.6% 85.0%

CNMR 12 10 2 2 83.3% 83.3%

IR 10 0 0 10 0.0%

HRMS 5 0 3 5 0.0% 0.0%

Table 5-6: Performance of the improved OSCAR3 on the development corpus

153

Spectrum type # in corpus TP FP FN Precision Recall

MassSpec 199 80 55 119 59.3% 40.2%

HNMR 202 103 16 99 86.6% 51.0%

CNMR 24 12 2 12 85.7% 50.0%

IR 8 0 0 8 0.0%

HRMS 14 6 7 8 46.2% 42.9%

Table 5-7: Performance of OSCAR3 α5 on the validation corpus

Spectrum type # in corpus TP FP FN Precision Recall

MassSpec 199 122 53 77 69.7% 61.3%

HNMR 202 179 40 23 81.7% 88.6%

CNMR 24 22 4 2 84.6% 91.7%

IR 8 0 0 8 0.0%

HRMS 14 6 7 8 46.2% 42.9%

UnknownNMR - - 3 -

Table 5-8: Performance of the improved OSCAR3 on the validation corpus

The manually-annotated corpus does not, of course, contain any spectra of type ‘unknownNmr’. A

strict application of the previous procedure therefore produces false positives wherever OSCAR3

annotates as such. The metrics produced in this way are misleading – if OSCAR3 annotates an NMR

spectrum that fails to identify the isotope under investigation and if the correct text is annotated

then it has correctly performed its function. As a result, the results given above have been computed

allowing for a manually-annotated HNMR or CNMR spectrum to be matched by an automatically-

annotated unknownNmr.

154

In the results given above, it can be seen that the performance of OSCAR3 on this task has been

significantly improved by the work described previously. The recall on previously unseen data has

been significantly improved (88.6% up from 51.0% for HNMR, 61.3% up from 40.2% for Mass Spec),

while the precision has been only marginally affected (69.7% up from 59.3% for Mass Spec, 81.7%

down from 86.6% for HNMR). These modifications have greatly increased the potential for using

OSCAR3 as a means for large-scale automated collection of spectral data from the literature.

5.2.4 Experimental Paragraph Classification

While it is common for the experimental sections, i.e. those that describe the process and results of

a chemical reaction, of a patent to occur as examples of the invention, it is not necessarily the case

that the method of identifying document sections described in section 5.2.2.1 will result in their

occurrence as part of an example element in the semantically enhanced patent documents. As a

result, the semantic enhancement at this point has done nothing to identify the presence or location

of some or all of the experimental sections in a number of documents. To address this concern the

sections of the text, as contained by opening and closing heading tags, are classified as being either

experimental or non-experimental by use of a naïve Bayesian classifier. This classification allows for a

greater proportion of the experimental sections within the patent corpus to be recognised as such

and treated appropriately during the later stages of the workflow.

5.2.4.1 Classifier Implementation

The implementation of the naïve Bayesian classifier used here is supplied by the

BayesianClassifer class in the third-party Java library Classifier4J (101), version 0.6. The API

provided by BayesianClassifier allows for the binary classification of text strings, i.e. belonging

155

or not belonging to a given class. This class is determined by the client programmer and is taught to

the Bayesian classifier by the provision of a number of examples of matches and non-matches. Once

the training process is complete, the classifier will predict the likelihood of a previously unseen

strings belonging to the class.

5.2.4.2 Training and Validation

A corpus was assembled by selecting 800 p elements (i.e. paragraphs, in the most part) from those

patents that had successfully passed through the paragraph deflattening and document

segmentation phases of the semantic enrichment procedure, using a random process in which each

paragraph had an equal chance of selection. These paragraphs were given file names numbering

them sequentially from para000 to para799, and were manually inspected and determined to be

experimental, non-experimental or empty according to the following criteria;

 The paragraph is empty if it has no text content. Such empty paragraphs generally occur in

the patent documents as containers for images.

 The paragraph is experimental if;

o It is an account of a reaction or a part of a reaction, including by way of reference to

another section of text e.g. “The reaction was carried out as in example 12”.

o It is a report of spectral or other characterisation data.

o It is some combination of the above.

 The paragraph is non-experimental if it is not empty or experimental.

The manually-classified paragraphs may be summarised as follows;

156

Class Frequency of
Occurrence

Empty 117

Experimental 238

Non-experimental 445

In order to produce experimental and non-experimental sets of equal size, non-experimental

paragraphs after the 238th were ignored for the remainder of this work. The first 119 (50% of the full

set) experimental and non-experimental paragraphs were then used to train the Bayesian classifier

before it was asked to predict probabilities of the remaining experimental and non-experimental

paragraphs belonging to the experimental class. The predicted likelihoods may be summarised as

follows;

Experimental Non-experimental

Predicted likelihood Frequency Predicted likelihood Frequency

0.99 115 0.01 102

0.98 ≥ p > 0.95 1 0.01 < p ≤ 0.06 3

0.05 ≥ p > 0 4 0.06 < p < 0.5 2

 0.99 12

Thus, when classifying paragraphs as experimental if p < 0.5 and non-experimental if p > 0.5, the

experimental paragraphs were correctly classified at a rate of 96.6% and the non-experimental

paragraphs at a rate of 89.9%. These rates were deemed high enough to continue into production.

157

5.2.4.3 Integration into Workflow

The naïve Bayesian classifier is integrated into the PatentEye code through the

ParagraphClassifier class. This class handles the loading from disk of the training data

described in the previous section as well as the training of the BayesianClassifer and

delegating calls to classify sections of text to the underlying implementation.

Heading elements in the patent documents are identified by use of the XPath “//heading”. If a

heading has text content, the text content is passed to the ParagraphClassifier for a prediction

to be made. If the predicted likelihood is greater than 0.5, the section is classified as being

experimental, and this is noted in the XML by the addition of a classifier4j attribute with the

value “experimental”. Otherwise, the opposite is recorded by setting the value of the

classifier4j attribute to “nonExperimental”.

5.2.5 Image Analysis

As previously discussed, the XML documents supplied by the EPO frequently employ images to

communicate chemical information, including Markush structures, reaction schemes and

illustrations of single chemical structures. These images contain important information in the

context of understanding the content of the document, but this information is unavailable to a

machine. It is desirable for PatentEye to identify the compounds represented in structural diagrams

where possible so that they may be used to confirm or to query the identity of the example

compounds of the patent. The images are supplied in TIF format, and are embedded in the XML

document as follows;

158

<p id="p0473" num="0473">

 <chemistry id="chem0413" num="0413">

 <img id="ib0413" file="imgb0413.tif" wi="87" he="48"

 img-content="chem" img-format="tif" orientation="portrait"

 inline="no" />

 </chemistry>

 Diisobutylaluminium hydride (7mL, 1 M in tetrahydrofuran , 7mmol)

 was added to a cooled (-10°C) solution of the ester from preparation

 184 (1.2g, 2.7mmol) in tetrahydrofuran (25mL), and the reaction

 stirred for an hour at -10°C, followed by 1Hour at 0°C. Tlc analysis

 showed starting material remaining, so additional

 diisobutylaluminium hydride (5.4mL, 1 M in tetrahydrofuran, 5.4mmol)

 was added and the reaction stirred at 10°C for 10 minutes.

</p>

Figure 5-5: Embedded images in the patent XML. The text has been shortened for the sake of brevity

Figure 5-6: EP1620437B1 Image 413

In this case, the image is a chemical structure diagram for the product of the reaction. The

information contained within such images may be crucial in correctly identifying the product of a

reaction. Mention is made in the DTD for the EPO patents that chemistry elements may at some

point in the future support the inclusion of CML, but for the moment to facilitate the usage of this

information it is necessary to first convert them into a machine-understandable format. As

previously discussed, this problem has been previously addressed and applications for this purpose

have been developed. The generation of connection tables for the images embedded within the

159

patents is achieved by interfacing with the application OSRA (65; 66; 67), and this process is

subsequently discussed.

5.2.5.1 Technical Aspects

OSRA version 1.2.2 was used for the current work, which was the most recent version at the time

that the work commenced. OSRA is implemented in C++ and is distributed as a pre-compiled

executable for the Windows environment. It operates as a command line facility, and using default

parameters the command “osra <filename>” instructs the program to process the specified files and

print at the command line a series of line-separated SMILES strings for the chemical structures found

within it. The output produced by OSRA is then added to the patent XML as an attribute on the img

element. For example, the enhancement produces, for the example from Figure 5-5, the following

output;

<p id="p0473" num="0473">

 <chemistry id="chem0413" num="0413">

 <img id="ib0413" file="imgb0413.tif" wi="87" he="48"

 img-content="chem" img-format="tif" orientation="portrait"

 inline="no"

osraResult=" OCc1nn(CCOCC(F)(F)F)c2c(Nc3cccc(C)n3)nc(Cl)nc12"/>
 </chemistry>

 Diisobutylaluminium hydride (7mL, 1 M in tetrahydrofuran , 7mmol)

 was added to a cooled (-10°C) solution of the ester from preparation

 184 (1.2g, 2.7mmol) in tetrahydrofuran (25mL), and the reaction

 stirred for an hour at -10°C, followed by 1Hour at 0°C. Tlc analysis

 showed starting material remaining, so additional

 diisobutylaluminium hydride (5.4mL, 1 M in tetrahydrofuran, 5.4mmol)

 was added and the reaction stirred at 10°C for 10 minutes.

</p>

Where OSRA identified the presence of more than one structure in an image, it returns a set of line-

separated SMILES strings. So that they may be embedded into the XML document, this set of SMILES

strings are concatenated into a single pipe (“|”) separated string that can be used as the value for a

single osraResult attribute. While it is possible to produce a single, valid SMILES string that

represents two or more disconnected molecular structures by using the dot character (“.”), e.g.

160

“CC(=O)O.CCO” to represent acetic acid and ethanol, the dot-separated molecular graphs can be

reconnected by using ring closures, e.g. “C1CCCCC1” represents cyclohexane and “C1CC.CC1”

represents hexane. In order to prevent the possibility of malformed SMILES output from OSRA

effecting bond formation between disconnected structures, it was decided to use the pipe character,

which does not occur in the SMILES vocabulary, to denote separated structures.

Since OSRA is not implemented in Java, the PatentEye application interacts with it by using the

capacity provided by the Java system libraries to execute arbitrary applications, wait for their

termination and read into memory any output produced. The generation of connection tables from

image files using OSRA is a time-consuming operation, as discussed in section 5.2.5.3, and so the

results that are generated by OSRA are immediately cached and written to disk such that the task

need not be repeated. In order to reduce the amount of time taken to parse the images for a given

patent, only a subset of the images present in a patent undergoes the image analysis procedure. This

subset is composed of those images that are selected by the XPaths

“//example//chemistry/img” and

“//heading[@classifier4j=‘experimental’]//chemistry/img”, i.e. those that are

embedded in img tags that are children of a chemistry element that in turn is a descendant of an

example element or a heading, the content of which has been classified as experimental. This

selection is performed for a practical reason – only the images in these positions will be used later to

corroborate a candidate product for a reaction, and so to analyse other images would be to waste

computing resources.

OSRA is claimed to support the TIF format, but it was discovered that an apparent bug in OSRA

version 1.2.2 prevents the direct interpretation of TIF files. To work around this, the application

ImageMagick (102) is first used to convert the TIF images into the PNG format, which OSRA accepts

as input. ImageMagick is executed using the same procedure for calling external applications as

described previously for OSRA.

161

5.2.5.2 OSRA Performance

It was desired to validate the performance of OSRA in the context of this work. To produce a corpus

reflective of the task in question the complete set of images contained within experimental sections

of the ten-week corpus of semantically enhanced patents were identified using the XPaths given

above, and from these 14697 images a subset of 300 were randomly selected. The TIF files for these

images were extracted from their parent ZIP files, numbered sequentially and manually inspected.

These images were found to conform to one of a number of different types, by far the most

common of which was of a single chemical structure diagram. The set of 300 images was used to

create a corpus of 200 images of single chemical structures by selecting, in ascending order, the first

200 such images. The types of images contained in the range image0 to image271 – image271 being

the 200th single chemical structure image – are summarised in Figure 5-7.

Figure 5-7: Types of images present in experimental sections

73.5% Single Chemical

Structure

11.0% Multiple Chemical

Structures

9.6% Chemical Reaction

2.2% Chemical Fragment

1.5% Markush Structure

1.1% Generic Reaction

0.7% No Chemical

Structure

0.4% Biochemical

162

The chemical structures contained within the set of 200 single chemical structure images were

manually converted to SMILES strings, chiefly by redrawing the structure with ChemDraw 12.0 (35)

and exporting the structure as SMILES or by manual conversion in the case of simple structures,

which were recorded in an index of the corpus. OSRA was used to analyse each of the 200 single

chemical structure images, and the results of this analysis was appended to the index.

Previous authors in the field have suggested subjective metrics of success such as less than 30

seconds of human editing being required to correct errors in the structure (61), while Filippov and

Nicklaus propose measuring success by calculating a similarity metric between the machine-

produced structure and the correct structure. Such measures are of limited utility in the present

work; manual correction of structures or determination of correct structures cannot be

implemented within a fully automated workflow. What is desired of the image analysis process is the

correct identification of the product molecules of chemical syntheses, and while a high similarity

between a structure believed to be the product (the “candidate product”) and a structure produced

by OSRA may be indicative that the image analysis has made a minor error and the candidate

product should be accepted, it may equally indicate that the image analysis is correct and the

candidate product should be rejected. As a result, there is no threshold of similarity below the two

structures being identical at which the structure derived from the image analysis becomes “good

enough”.

The manually-generated and OSRA-generated SMILES strings for each image were thus used to

generate InChIs using JUMBO. The performance of OSRA was measured by comparing these InChIs

by string equivalence; where the two InChIs were identical, it was counted as OSRA having correctly

deduced the chemical structure contained within the image and considered a match. Where the

InChIs differed it was considered a non-match. As discussed in section 2.2.3.2, InChIs are composed

of layers that describe the molecule in increasing levels of detail, and so the two were examined

163

side-by-side to determine the level of agreement, i.e. the highest layer of the InChIs at which the two

disagreed. In a number of cases, it was not possible to generate an InChI from the SMILES string

produced by OSRA. The causes of these problems were also examined and determined to be

primarily that the SMILES string contained the wildcard character, *, which is valid SMILES but is not

supported by JUMBO or by InChI. In a further two cases the SMILES string returned by OSRA was

found not to be valid, suggesting a bug within the OSRA program itself.

 The results from this work were as follows;

Result Frequency %

Match 68 34.0

Non-match 79 39.5

Unbuildable SMILES (containing wildcard) 51 25.5

Invalid SMILES 2 1.0

Table 5-9: OSRA performance

Cause Frequency %

Differing Hydrogen Count 12 15.2

Differing Molecular Formula (excluding H
count)

57 72.2

Differing Regioisomers 4 5.1

Differing Stereochemistry 5 6.3

Differing Charges 1 1.3

Table 5-10: Causes of InChI disagreement

164

The rate at which the OSRA-produced structure and the manually-produced structure is, at 34%,

significantly lower than that reported for OSRA 1.1.0 by Filippov and Nicklaus (103), in which the rate

was reported as 26 matches out of 42 (61.9%) structures and 107 matches out of 215 (50.0%)

structures on two data sets. Such rates will of course be highly dependent upon the images that

form the test corpus, and the images supplied by the EPO are of highly variable quality. Many of the

images that form the test corpus used in this work are severely pixelated, indistinct or contain

background noise; some are only barely legible to a human skilled in the art. Examples from the

single chemical image corpus are subsequently illustrated, along with the resultant structures

produced by OSRA. All input images are the work of the European Patent Office and the original

patent authors.

Figure 5-8: Input image (left) and correctly interpreted structure (right)

165

Figure 5-9: Input image (top) and correctly interpreted structure (bottom)

Figure 5-8 and Figure 5-9 show examples of images from the test corpus that were correctly

interpreted by OSRA. Note that in Figure 5-9 the wedge bond to fluorine was correctly interpreted

even though it is not immediately noticeable to the human eye.

Figure 5-10: Input image (left) and correctly interpreted structure

In Figure 5-10 we see that although the image contains a mistake – the missing hydrogen atoms in

the amine substituent – OSRA has correctly identified the structure in the image.

166

Figure 5-11: Input image (top) and incorrectly interpreted structure (bottom)

Figure 5-11 shows an example of OSRA producing buildable but incorrect output. The label for the

fluorine atom has been missed, giving a methyl substituent on the benzene ring instead of the

correct fluorine substituent. Furthermore, the chlorine substituent has been misrecognised as a

hydroxyl group, presumably due to the letters “C” and “l” overlapping slightly to be recognised as an

“O”, and the hydrogen being added automatically as in Figure 5-10. The analysis of the causes of

structural disagreements such as these, presented in Table 5-10, suggest that when these errors

occur they are major errors, with 15.2% being due to discrepancies in the hydrogen count of the

molecules, and a further 72.2% being due to other discrepancies in the molecular formula, such as in

Figure 5-11.

167

Figure 5-12: Input image (top) and unbuildable result (bottom)

In Figure 5-12, the input image is of extremely low quality. Consequently, the output produced by

OSRA comprises three disconnected subsections of the molecule and it is difficult to identify which

sections of the output structures correspond to which sections of the input structure. The presence

of the wildcard character, “*”, in the structure generated by the image analysis is generally

indicative that OSRA has not correctly identified the full chemical structure and is returning a partial

result. Consequently, it is evident that the result returned by OSRA is not a correct representation of

the structure contained in the image and may be safely disregarded in any workflow.

168

Figure 5-13: Input image (top) and unbuildable result (bottom)

Figure 5-13 shows a further example in which OSRA returns a partial interpretation of the input

image. In this case, the structure produced by OSRA is entirely correct apart aside from the missing

bromine atom. In such cases it is possible to determine that a candidate product subsumes the

partial structure defined by the OSRA result, and thus that the structure determined by the image

analysis agrees with the candidate structure to the fullest extent possible. It was not, however,

attempted to implement this process within the current work.

5.2.5.3 Computational Expense

The analysis of the illustrative images was the most computationally expensive part of the PatentEye

workflow, but was still capable of running on a standard desktop PC (Pentium 4, 3.40 GHz). The time

taken to compute a SMILES string from an input image on this platform varied from 890 milliseconds

to 12,026,543 milliseconds – over three hours. The variation in time required for this task is

illustrated in Figure 5-14.

169

Figure 5-14: Runtime required for image analysis

To produce a legible graph, Figure 5-14 ignores the 216 images for which the required runtime

exceeded 100 seconds. The graph of the remaining 9271 (97.7% of the total) images that were

processable in under 100 seconds show a roughly linear increase in required runtime over the

fastest 80-90% before the required runtime begins to increase markedly. The fastest 80% of the

images may be processed in less than around 32 seconds each, while the fastest 90% may be

processed in less than around 42 seconds each. This shows that the existing software tools and

standard hardware may compute the bulk of the information that is to be gained from the images

within reasonable periods of time.

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70 80 90

Images processable in time t (%)

T
im

e
 (

m
s

)

170

5.2.6 Back Reference Annotation

By the nature of a chemical patent document, the examples of the invention frequently consist of

the syntheses of a number of related compounds. The methods of synthesis of these compounds are

frequently the same, producing differing products by varying one or more of the reactants.

Figure 5-15: Analogous reactions from EP1326865

This phenomenon is illustrated in Figure 5-15. The second reaction is described in the patent

document as follows;

“The title compound was prepared using the procedure described in Example 2, Step 2

replacing 2,5 dichlorobenzylamine with 1(R,S) aminoindane.”

The patent author has saved himself from the need to repeat the description of procedure,

conditions and reagents that has already been included for the first reaction. Authors also

frequently refer to a reactant as being “the ester from step 3”, or similar, instead of by name. For

a machine reading the document, these constructions create a problem – the information

necessary to understand a reaction is not present in the description of that reaction, instead

being present elsewhere in the document. A human reader will recognise the intent of the Back

Reference to the earlier section of the document and will understand that he should refer back

171

to obtain the information that has been omitted from the immediate section – indeed, this is

what happened during the process of the drawing of Figure 5-15 – but for a machine this process

is not so trivial.

In order to facilitate the same process to be performed automatically, the document is searched

for text strings that may be such references to previous sections. These Back References, where

found, are annotated in the semantically enhanced documents with a link back to the referenced

section so that the machine will later be able to look up the relevant information when

attempting to process the reactions described in the patent. The process of Back Reference

annotation is subsequently discussed.

5.2.6.1 Hierarchical Indexing of Reaction Headings

The document to be annotated is passed to the BackReferenceAnnotator class, which is

intended to identify and annotate potential back references in the input document. Before any

annotation can be carried out, the BackReferenceAnnotator must first identify the terms to be

annotated. This is achieved by locating the example headings in the document using XPath and

tokenising the title text of the headings on whitespace. Subheadings, i.e. heading or example

elements that are children of the previously indexed example element, are similarly indexed and

are recorded in the index of headings as children of their parent heading. For example, the following

document structure would be indexed as shown;

172

 <example id="h0005" title="EXAMPLE 1">

 <heading id="h0006"

title="N-(3,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-

carboxamide">

 <p id="p0135" num="0135">...</p>

 </heading>

 <heading id="h0007"

title="Step 1: Preparation of 3-{[Methoxycarbonylmethyl-(toluene-

4-sulfonyl)-amino]-methyl}-pyridine-2-carboxylic acid isopropyl

ester">

 <p id="p0136" num="0136">...</p>

 </heading>

 <heading id="h0008"

title="Step 2: Preparation of methyl 8-hydroxy-1,6-naphthyridine-

7-carboxylate">

 <p id="p0137" num="0137">...</p>

 </heading>

 <heading id="h0009"

title="Step 3: Preparation of N-(3,5-dichlorobenzyl)-8-hydroxy-

1,6-naphthyridine-7-carboxamide">

 <p id="p0138" num="0138">...</p>

 </heading>

</example>

“EXAMPLE”, “1”

“N-(3,5-dichlorobenzyl)-8-hydroxy-

1,6-naphthyridine-7-carboxamide”

“Step”, “1:”, “Preparation”, “of”,

“3-{[Methoxycarbonylmethyl-(toluene-4-sulfonyl)

-amino]-methyl}-pyridine-2-carboxylic”,

“acid”, “isopropyl”, “ester”

“Step”, “3:”, “Preparation”, “of”,

“N-(3,5-dichlorobenzyl)-8-hydroxy-

1,6-naphthyridine-7-carboxamide”

“Step”, “2:”, “Preparation”, “of”, “methyl”,

“8-hydroxy-1,6-naphthyridine-7-carboxylate”

Figure 5-16: Indexed and Tokenised Headings

Figure 5-16 shows the index generated from the preceding XML. Note that the structure of the XML

has been preserved in the index, with one example heading containing four child headings. For each

of the indexed headings, the tokens generated by tokenising the title text on whitespace are shown

173

within quotation marks. The index generated in this way is subsequently used to annotate

references to these sections of text in the patent text.

5.2.6.2 Text Annotation

Paragraphs that are contained by example headings or by headings that have been classified as

experimental by the ParagraphClassifier are identified within the patent document using

XPath. The text content of these paragraphs is tokenised on whitespace, as was the text of the

headings, and then the token sets are compared to identify common tokens between the two.

Common tokens in this case are identified by allowing for differences in case and for the punctuation

at the end of the tokens to differ, such that the heading for “EXAMPLE 1” in the previous example

would find a match within the string “Example 1, Step 2”. To avoid the annotation of common

strings such as “1” or “the” that do not indicate the presence of a Back Reference, matches must be

of two or more consecutive tokens from the heading.

In the previous example paragraph text, “Example 1, Step 2”, it is clear that the reference is not to

the whole of example 1, but specifically to the second step of that example. This is identified by the

BackReferenceAnnotator by allowing the child headings of a parent heading to attempt to

continue matching from the position in the paragraph token set where parent heading stopped

matching.

Once this process of identifying the paragraph text that matches the indexed headings is complete,

the match is checked to see if it is a Compound Reference – a specific type of Back Reference that

indicates the use of a previously defined chemical e.g. “the product of example 3”. This is achieved

by checking if the text that precedes the matched text itself matches the regular expression;

 the (.*?) (from|of|(synthesi[sz]ed|produced) in)$

174

Furthermore, the text matched by the capture group (.*?) can either be the word “product” or a

single entity of type CM as annotated by OSCAR3. The preceding text is therefore required to be of

the form “the aldehyde from” or “the product synthesised in”, with the anchor character “$”

requiring that the matching text occurs at the end of the string. If the preceding text matches this

regex then both matches are annotated as a single Compound Reference, otherwise the text

matched to the example headings is annotated as a Back Reference.

Compound References are sometimes used by patent authors with a local rather than global scope –

that is to say, the compound referred to by a certain phrase will not be the same as the compound

referred to by the same phrase in another part of the document. This is observed, for example, in

the phrase “the product of step 1” – it is assumed and inferred that this refers to the first step of the

current reaction. For this reason, the BackReferenceAnnotator also annotates Compound

References by identifying sections of text that match to headings that are siblings of the parent

heading of the paragraph containing the text. This is illustrated in Figure 5-17, where the colour

coding indicates the section of the document for which each paragraph is annotated.

Example 1

Step 1

Step 2

“The product of

step 1 is added to…”

Example 2

Step 1

Step 2

“The product of

step 1 is added to…”

Figure 5-17: Local annotation of sub-headings

175

The XML produced by this process is of the following form;

<p id="p0141" num="0141">

Triphosgene (0.556g, 1.87 mmol) was added over 20 mins to a

solution of <compoundRef targetId="h0012">the acid from step

1.</compoundRef> (0.89g, 4.68 mmol) and diisopropylethylamine 3.26

ml, 18.7 mmol) in DMF (22 ml) at 0°C.

</p>

<p id="p0143" num="0143">

 The title compound was prepared using the procedure described in

 <backReference targetId="h0013">Example 2, Step 2</backReference>

 replacing 2,5 dichlorobenzylamine with 1(R,S) aminoindane.

</p>

In each of these cases, the value of the targetId attribute on the reference annotation is equal to

the value of the id attribute on the heading element to which the reference points, introducing into

the document a means by which a machine may easily resolve the reference.

5.3 Extraction of Reactions

Chemical patents are a rich source of chemical reactions due to the requirement for a patent

claimant to detail examples of the invention. The reactions published in this way are routinely

manually indexed and added to databases such as CASREACT (4). A project at the Chemical Abstracts

Service (CAS) in the 1980’s aimed to produce a system capable of automating or partially automating

the indexing process by application of Natural Language Processing (NLP) technologies (104; 105;

106). These works claimed to “satisfactorily” process 36 out of 40 synthetic paragraphs from the

Journal of Organic Chemistry (104) and to produce “usable results” for 80-90% for simple synthesis

paragraphs and 60-70% for complex paragraphs (106), where complex paragraphs are defined as

describing general procedures, instances of general procedures, analogous syntheses and parallel

syntheses. The size of the corpus used to produce this second set of results was not given, nor in

176

either case was the procedure used for corpus creation. Accordingly, it is not possible to regard this

area as a solved problem.

The work at CAS produced a system capable of summarising a reaction by identifying its product,

yield and component reaction steps. Discrete steps in the reaction were identified by the occurrence

of verbs in the text, with each verb indicating an event and mapped to one of eight types of events;

COMBINE, REACT, PREPARE, WORKUP, RESULT, TITLE, MISC and UNKNOWN. Within these events,

further information such as chemicals, their amounts and roles, and reaction conditions were

identified. Chemical syntheses were thereby extracted from the text as a sequence of the identified

events.

The era in which this technology was developed was very different. As a division of the American

Chemical Society, CAS was in the privileged position of having access to a large body of published

work in an electronic format. The situation today is different – the ubiquity of electronic publication

and explosion of the scale of publication has granted such access far more widely, though publishers

may very well supply the works subject to restrictive terms of use. The EPO patents, however, are

subject to no such restrictions and so the time for a re-examination of the subject of automated

extraction of chemical reactions has come.

5.3.1 Conventional Format of Experimental Sections

In order to devise a system for automated extraction from reported syntheses, it is important to first

consider the nature and common structure of such text. Fortunately, the reporting of chemical

syntheses is highly stylised. By convention, chemists report syntheses using the past tense and the

agentless passive voice. Consider the following;

177

Step 1: Preparation of 5-iodo-8-(1-phenyl-methanoyloxy)-[1,6]naphthyridine-7-carboxylic acid
methyl ester

To a solution of 8-hydroxy-5-iodo-[1,6]naphthyridine-7-carboxylic acid methyl ester (9.41 g,
28.5 mmol, from Example 112 Step 1) and cesium carbonate (13.9 g, 42.8 mmol) in dry DMF
(250 ml), was added benzoic anhydride (9.67g, 42.8 mmol) and the solution stirred at room
temperature for 4 hours. The solvent was removed under reduced pressure and the residue
was partitioned between saturated aq. ammonium chloride and extracted into CHCl3. The
combined organic extracts were washed with brine, dried over Na2SO4, filtered and and the
solvent was evaporated in vacuo. The residue was purified by flash chromatography (40%
EtOAc/Hexane gradient elution switching to 1% MeOH/CHCl3) to provide the desired product
was a yellow solid.
1
H NMR (CDCl3, 400MHz) 9.11 (1H, d, J=4.21Hz), 8.48 (1H, d, J=8.51 Hz), 8.32 (2H, d,

J=8.33 Hz), 7.75-7.67 (2H,m), 7.56 (2H, t, J=7.69 Hz), and 3.93 (3H, s) ppm.

Figure 5-18: EP1326865 - Example 79, Step 1

Such descriptions of syntheses may be conceptually divided into three parts – the primary reaction,

in which the target compound is completely or substantially produced; the work-up, in which the

reaction is quenched and neutralised, solvents are removed, the product purified and suchlike; and

the characterisation, in which spectral data is afforded to demonstrate that the product of the

reaction is that intended. In the description of the primary reaction, reactants (“a substance that is

consumed during the course of a reaction” (107)) are detailed by giving a name or other reference

(e.g. “ketone 12b” or “the compound from step 2”) together with the quantity used, generally state

by mass and by molar amount. Solvents are typically detailed by giving a name and the volume used.

In the description of the work-up these quantities are commonly omitted, as in Figure 5-18. The

identity of the product of the synthesis may be specified in one of two typical ways; in the heading of

the section, as in Figure 5-18, or by statement at the end of the description of the work-up, e.g. “to

yield 1,6-naphthyridine-8-carboxylic acid”.

5.3.2 Implementation of Automatic Reaction Extraction

A system for the automated extraction of reaction information from the EPO patents is

implemented. While this system is implemented in such a way as to integrate directly with the

178

enhanced patents produced by the process discussed in section 5.2, the methods and software

employed are generic and could be reused to produce a system suitable for alternative inputs. The

operation of the system is summarised in Figure 5-19.

Figure 5-19: Abstracting reactions from patent text

The enhanced patent XML documents are read into memory, and the headings that have been

classed as experimental by the ParagraphClassifier as well as those converted into example

elements are identified by means of XPath. The sections of the document either contained within

the heading or example element or, if the heading has sub-headings, each subheading individually,

are passed into the ExperimentParser class. Identities and amounts of reagents are identified

either by passing the text to ChemicalTagger, or by analogy with a previous reaction if a back

reference is present. The DataAnnotator class in OSCAR3 is used to identify spectral data, and NMR

spectra are converted to CML using a converter from JUMBOConverters (45). The product of the

reaction is identified by using OSCAR3 to identify chemical names in the heading title. The product

identity is then validated by comparison with the results of the OSRA analysis of any image present

179

(see section 5.2.5), and with any 1H NMR or mass spectrum that is reported. The results of these

processes are combined into a CML Reaction which is saved to disk and retained in memory in order

that further reactions which refer back to this reaction may be resolved. This process is subsequently

discussed in greater depth.

5.3.2.1 Identification of Products

In order to identify the product of a reaction, the title text of the document section under

examination is passed to OSCAR3 for named entity annotation. If OSCAR3 does not identify a single

named entity of type CM in the title text, then the process of reaction extraction fails and the

ExperimentParser throws a RuntimeException. If a single CM is found in the title text, then

the name is resolved to a CML Molecule, which is added to the productList of the CML Reaction.

5.3.2.2 Attachment of Spectral Data

As discussed in section 5.2.3, the most common spectra types found in the patent corpus were 1H

NMR, 13C NMR and mass spectra. The reports of mass spectra generally report only the mass of the

molecular ion, optionally plus or minus a defined offset, and so provide a useful source of

information for validating a candidate product molecule but little information worth preserving – it

is, after all, a simple task to calculate a molecular mass and the patents do not report fragmentation

patterns. The NMR spectra, however, in addition to providing a means by which the product

molecule may be verified are themselves data of potential importance and are worth preserving for

future re-use. The format in which they are preserved in the enhanced patent XML documents, using

inline annotation to identify features within the original patent text, is ideal in that context as it

retains the original document text. It does not, however, enable trivial machine interpretation of the

spectrum since it is not valid CML and tools do not exist for its easy manipulation. The OSCAR

180

annotated spectrum is therefore converted into a CML Spectrum by use of the

OSCAR2CMLSpectConverter class in the JUMBOConverters library. This converter was created

specifically for this task and was largely written by Peter Murray-Rust with some contribution from

the present author. It does not attempt to perform any further text-mining on its input, instead

relying entirely on the OSCAR3 annotations to fully identify features of interest such as peaks,

integrals, multiplicities and coupling constants. Example output from this converter is given in Figure

5-20.

181

<spectrum xmlns="http://www.xml-cml.org/schema" type="hnmr">

 <parameterList>

 <parameter dictRef="cmlx:solvent">

 <molecule>

 <name>CDCl3</name>

 </molecule>

 </parameter>

 <parameter dictRef="cmlx:frequency">

 <scalar dataType="xsd:double" units="unit:mhz">

 400.0

 </scalar>

 </parameter>

 </parameterList>

 <peakList>

 <peak xValue="9.18" integral="1.0" yUnits="unit:hydrogen"

 peakMultiplicity="cmlx:doubletdoublet">

 <peakStructure type="coupling" value="1.6" units="unit:hz" />

 <peakStructure type="coupling" value="4.2" units="unit:hz" />

 </peak>

 <peak xValue="8.53" integral="1.0" yUnits="unit:hydrogen"

 peakMultiplicity="cmlx:doubletdoublet">

 <peakStructure type="coupling" value="1.6" units="unit:hz" />

 <peakStructure type="coupling" value="8.5" units="unit:hz" />

 </peak>

 <peak xValue="8.26" integral="1.0" yUnits="unit:hydrogen"

 peakMultiplicity="cmlx:multiplet" />

 <peak xValue="7.72" integral="1.0" yUnits="unit:hydrogen"

 peakMultiplicity="cmlx:doubletdoublet">

 <peakStructure type="coupling" value="4.2" units="unit:hz" />

 <peakStructure type="coupling" value="8.5" units="unit:hz" />

 </peak>

 <peak xMin="6.84" xMax="7.04" integral="3.0"

 yUnits="unit:hydrogen" peakMultiplicity="cmlx:multiplet" />

 <peak xValue="4.72" integral="2.0" yUnits="unit:hydrogen"

 peakMultiplicity="cmlx:doublet">

 <peakStructure type="coupling" value="6.2" units="unit:hz" />

 </peak>

 <peak xValue="3.97" integral="3.0" yUnits="unit:hydrogen"

 peakMultiplicity="cmlx:singlet" />

 <peak xValue="3.89" integral="3.0" yUnits="unit:hydrogen"

 peakMultiplicity="cmlx:singlet" />

 </peakList>

</spectrum>

Figure 5-20: Example NMR spectrum in CML

5.3.2.3 Identification of Reagents

As previously discussed, reagents used during the primary reaction section of a chemical synthesis

are, by convention, reported along with the quantity used. Such lexical patterns are easily identified

using ChemicalTagger – the output format is as follows;

182

 <MOLECULE>

 <OSCAR-CM>4-(dimethylamino)-benzenethiol</OSCAR-CM>

 <QUANTITY>

 <_-LRB->(</_-LRB->

 <MASS>

 <CD>.147</CD>

 <NN-MASS>g</NN-MASS>

 </MASS>

 <COMMA>,</COMMA>

 <AMOUNT>

 <CD>.96</CD>

 <NN-AMOUNT>mmol</NN-AMOUNT>

 </AMOUNT>

 <_-RRB->)</_-RRB->

 </QUANTITY>

 </MOLECULE>

Figure 5-21: Sample ChemicalTagger markup of a reactant

The quantities of a MOLECULE may be a MASS, AMOUNT or VOLUME. These elements occur either as a

child of a QUANTITY element, as seen above, or of a MIXTURE element if further text content is

present, e.g. “4-(dimethylamino)-benzenethiol (.147g, .96mmol, prepared in step 2)”;

 <MOLECULE>

 <OSCAR-CM>4-(dimethylamino)-benzenethiol</OSCAR-CM>

 <MIXTURE>

 <_-LRB->(</_-LRB->

 <MASS>

 <CD>147</CD>

 <NN-MASS>g</NN-MASS>

 </MASS>

 <COMMA>,</COMMA>

 <AMOUNT>

 <CD>96</CD>

 <NN-AMOUNT>mmol</NN-AMOUNT>

 </AMOUNT>

 <COMMA>,</COMMA>

 <VB-SYNTHESIZE>prepared</VB-SYNTHESIZE>

 <IN-IN>in</IN-IN>

 <NN>step</NN>

 <CD>2</CD>

 <_-RRB->)</_-RRB->

 </MIXTURE>

 </MOLECULE>

Figure 5-22: ChemicalTagger output for mixed content

183

It is presumed that any MOLECULE that occurs in the synthesis text and has a MASS, QUANTITY or

VOLUME is a reagent. CML representations including connection tables are generated for reagents

identified in this way by using the NameResolver class of OSCAR3 – which was modified in order to

create the capacity to access its functionality from external applications. A solvent is then

distinguished by one of two criteria – that it is a member of a list of known solvents, or that the

quantity quoted for the MOLECULE is given only as a volume. In order to avoid the necessity of

creating a large dictionary of synonyms for common solvents, e.g. “DCM”, “dichloromethane” or

“methylene chloride”, the check against the list of known solvents is performed by generating from

connection table an InChI using the InChIGeneratorTool class in JUMBO and checking this InChI

against a known list.

The reagents identified in this way are then used to populate the ReactantList and

SpectatorList children of the CML Reaction. For example, the lists in Figure 5-23 are generated

for the following example;

Into a round bottom flask fitted with a gas inlet, condenser and a magnetic stirring bar was
placed methyl 8-(benzoyloxy)-5-bromo-1,6-naphthyridine-7-carboxylate (.4 g, 1.03 mmol), 2,3-
dimethoxybenzylamine (.432 g, .38 mL, 2.58 mmol) and 10 mL toluene: This mixture was
refluxed for 18 hours, after which the reaction was cooled and the solvent removed in vacuo.
The resulting residue was triturated with diethyl ether and filtered to yield 5-bromo-N-(2,3-
dimethoxybenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide as a light yellow solid.

184

<reactantList xmlns="http://www.xml-cml.org/schema">

 <reactant>

 <molecule id="m1"

title="methyl 8-(benzoyloxy)-5-bromo-1,6-naphthyridine-7-

carboxylate">

 <identifier convention="iupac:inchi">

InChI=1/C17H11BrN2O4/c1-23-17(22)13-14(24-16(21)10-6-3-

2-4-7-10)12-11(15(18)20-13)8-5-9-19-12/h2-9H,1H3

 </identifier>

 <atomArray>

 ...

 </atomArray>

 <bondArray>

 ...

 </bondArray>

 </molecule>

 <amount units="cml:g">0.4</amount>

 <amount units="cml:mmol">1.03</amount>

 </reactant>

 <reactant>

 <molecule id="m1" title="2,3-dimethoxybenzylamine">

 <identifier convention="iupac:inchi">

InChI=1/C9H13NO2/c1-11-8-5-3-4-7(6-10)9(8)12-2/h3-

5H,6,10H2,1-2H3

 </identifier>

 <atomArray>

 ...

 </atomArray>

 <bondArray>

 ...

 </bondArray>

 </molecule>

 <amount units="cml:g">0.432</amount>

 <amount units="cml:mmol">2.58</amount>

 <amount units="cml:mL">0.38</amount>

 </reactant>

 </reactantList>

 <spectatorList>

 <spectator role="solvent" hasOnlyVolume="true">

 <molecule xmlns:cmlx="http://www.xml-cml.org/schema/cmlx"

 cmlx:explicitHydrogens="true" title="toluene">

 <atomArray>

 ...

 </atomArray>

 <bondArray>

 ...

 </bondArray>

 </molecule>

 <amount units="cml:mL">10.0</amount>

 </spectator>

 </spectatorList>

Figure 5-23: Automatically generated reactantList and spectatorList. For the sake of brevity, atom and bond
elements have been removed

185

It can be seen that, using the techniques discussed above, the software has correctly identified the

reactants (methyl 8-(benzoyloxy)-5-bromo-1,6-naphthyridine-7-carboxylate and 2,3-

dimethoxybenzylamine), the solvent (toluene), and the quantities of each that were used.

This approach, however, is only applicable to syntheses that are described in a straightforward

manner, i.e. those that directly identify the reagents employed and do so using interpretable

nomenclature. Those that require the addition of information from other sections of the document

by use of the previously discussed back reference require alternative techniques to be employed.

These references, where identified, have by this stage in the workflow been annotated (see section

5.2.6). The treatment of reactions that are described by analogy to another synthesis is an involved

process that is described in full later, while syntheses that use compound references are resolved by

direct text substitution of the reference text with the name of the compound to which the reference

refers prior to running ChemicalTagger over the text. For the example;

Triphosgene (0.556g, 1.87 mmol) was added over 20 mins to a

solution of

<compoundRef targetId="h0012">

 the acid from step 1.

</compoundRef>

(0.89g, 4.68 mmol) and diisopropylethylamine (3.26 ml, 18.7

mmol) in DMF (22 ml) at 0°C.

The identity of “the acid from step 1” is determined by examining the referenced section of

document. It is assumed that such references refer to the product of the referenced reaction rather

than to any other compound involved. It would be preferable, in cases such as the above where the

referenced compound could indeed be some compound other than the product, for the appropriate

compound to be selected from the list of those compounds involved in the reaction in order to

ensure that this assumption is correct. The product of the referenced reaction is determined in the

same manner as described previously, by passing the title text of the heading to which the

compoundRef element points to OSCAR3 in order to identify the name of the target compound. This

186

compound name is then added to the subject text in place of the compound reference, which for the

above example yields;

Triphosgene (0.556g, 1.87 mmol) was added over 20 mins to a

solution of 8-hydroxy-1,6-naphthyridine-7-carboxylic acid

(0.89g, 4.68 mmol) and diisopropylethylamine (3.26 ml, 18.7

mmol) in DMF (22 ml) at 0°C.

Which is a format from which the reagents may be correctly identified using the previously

described method.

5.3.2.4 Resolution of Analogous Reactions

The method for identifying reagents described in section 5.3.2.3 is, of course, dependent upon the

patent author directly describing the synthesis, as opposed to defining it by analogy to a previous

reaction. The patent EP1326865 contains a number of reactions of the form;

This reaction is fully described once; in Example 2, Step 2 in which RNH2 is 2,5-dichlorobenzylamine.

Subsequent analogous reactions may be described in such a manner as;

The title compound was prepared using the procedure described in Example 2, Step 2

replacing 2,5 dichlorobenzylamine with 1(R,S) aminoindane.

or;

The title compound was prepared using the procedure described in Example 2, Step 2 from 8-

hydroxy-1,6-naphthyridine-7-carboxylic acid and 1(R,S) aminoindane.

187

The first of these formulations explicitly instructs the reader which of the reagents from the

reference reaction is to be replaced, while the second does not. Examples of the first formulation

could be dealt with to an acceptable degree of success by matching phrases of the form

“replacing/substituting/replacement of/substitution of X for/with Y” etc. (where X and Y are

chemical names) and modifying the CML Reaction produced from the source reaction accordingly.

This approach, however, would not be helpful in the resolution of examples of the second

formulation. Since the text does not inform the reader which of the reagents was replaced by the

aminoindane, it is necessary to apply a degree of chemical knowledge in order for it to be

determined. The algorithm implemented to resolve this problem is similar to the mental process

that a chemist might use.

First, consider the reagents employed and product produced in the reference reaction. A trained

chemist, even without applying any knowledge of the reactivities of the species involved, will be

trivially able to identify that a coupling has occurred between the carboxylic acid and the amine. This

assertion may be made based on the high degree of common substructure between the two

reagents and the product, and is illustrated in Figure 5-24.

188

Figure 5-24: Identification of key reactants

The analogous reaction tells us that the product, in this case N-[(1R,S)-2,3-dihydro-1H-inden-1-yl]-8-

hydroxy-1,6-naphthyridine-7-carboxamide, is prepared “from 8-hydroxy-1,6-naphthyridine-7-

carboxylic acid and 1(R,S) aminoindane”. We thus know that the carboxylic acid and the

aminoindane are employed in the analogous reaction, and by considering which of the reagents

share a significant substructure with the product, we observe the following;

189

Figure 5-25: Significant substructures in the analogous reaction

The product of the reference reaction is composed of substructures derived from the

dichlorobenzylamine and the carboxylic acid, while that of the product of the analogous reaction is

composed of substructures derived from the aminoindane and the carboxylic acid. It may therefore

be concluded, since the dichlorobenzylamine played a role in the reference reaction that it does not

in the analogous reaction, that the dichlorobenzylamine is not used as a reagent in the analogous

reaction.

This procedure is implemented as follows;

 First, the reference reaction is analysed by the ReactionMapper class. The CML Reaction

that was generated for the reference reaction states the product of the reaction and the

reagents from which it is synthesised. For each of the reagents in turn, the maximum

190

common substructure with the product molecule is calculated using the Chemicx library

(108), employing a bond-directed search and disregarding hydrogen atoms. From these is

determined the smallest set of reagents which between them map to all of the non-

hydrogen atoms of the product molecule. This replicates the mental procedure illustrated in

Figure 5-24.

 Chemicals named in the description of the analogous reaction are identified by OSCAR3.

These names are resolved to connection tables using OSCAR3’s NameResolver class and, if

necessary, converted to CML. These CML Molecules, along with the ReactionMapper from

the previous step and the CML Molecule for the new product of the analogous reaction

(determined as in section 5.3.2.1), are passed to the ModifiedReactionMapper class. This

class creates a new ReactionMapper for the new reaction and provides the additional

functionality to resolve the analogous reaction while delegating previously implemented

functions to its new ReactionMapper. Each of the reagents identified as being part of the

smallest complete mapping set in the previous step has their maximum common

substructure with the new product molecule determined as before, as do each of the

molecules mentioned in the reaction description of the analogous reaction. The smallest

complete mapping set for the analogous reaction may then be determined as before. It is

then possible to identify the replaced reagents as being those that were members of the

first smallest complete mapping set but not of the second.

A CML Reaction for the analogous reaction is then compiled. The CML Reaction for the reference

reaction is copied and updated to reflect the differences between the two reactions. The product

molecule of the original reaction is replaced with the new product molecule, while the new reagent

molecules that are mentioned in the description of the analogous reaction and contained within the

191

smallest complete mapping set are added to the reactantList and those identified as not

occurring in the analogous reaction by the ModifiedReactionMapper are removed.

This method of resolving analogous reactions is suitable for application to both reaction descriptions

that make explicit statements of a reagent to be replaced and to those that rely on the reader to be

able to infer this information. When a reagent that is already present in the smallest complete

mapping set for the reference reaction is again mentioned in the description of the analogous

reaction, such as the carboxylic acid in the previous examples, it will be duplicated and passed to the

ModifiedReactionMapper as though it were a novel reagent. Since only one of the instances of

the molecule is required in the ModifiedReactionMapper’s smallest complete mapping set,

however, it can be guaranteed that only one of the copies of the molecule will occur in the CML

Reaction produced for the analogous reaction.

5.3.2.5 Automated Verification of Product

Of course, it cannot be guaranteed that the connection table generated for the product molecule is

correct. There are several potential sources of error – the name used in the heading in the original

patent document may have been incorrect, the wrong heading may have been associated with the

experimental section being processed, OSCAR3 may have misidentified a chemical name e.g. it may

have annotated only “ethanoic acid” in the string “ethanoic acid methyl ester” or the connection

table may have been incorrectly generated from the chemical name. As a result, it is desirable to be

able to automatically verify the product in some way. This can be achieved by comparing the

determined product to the extracted spectral data and, if present, any accompanying chemical

images. The process of acquiring these sources of information must also be regarded as potentially

inaccurate, and so it is not possible to definitively confirm or refute any candidate product.

192

Nonetheless, these checks provide potentially useful information regarding the validity of the

assigned product and of the assigned spectral data.

Checking Against 1H-NMR

Given the 1H NMR spectrum of an unknown compound, it is possible for one skilled in the art to

discount certain candidate structures. Most trivially, the proton count in the candidate structure

should agree with total integral of the NMR spectrum. Each unique chemical environment in the

candidate structure should give rise to a distinct peak in the NMR spectrum and it should be possible

to assign for each of the chemical environments a peak that is in the correct region of the NMR

spectrum. The peak multiplicities should be explained by potential couplings in the candidate

molecule, and protons that couple to one another should share coupling constants.

The application of these rules is subject to a large amount of subtlety, however. While each chemical

environment should give rise to an individual peak, these peaks can overlap and be indistinguishable

from one another, most notably in the case of aromatic protons. The determination of unique

chemical environments is complicated by the need to consider three dimensional effects, as

illustrated in Figure 5-26. Here, a plane of symmetry defined by R, Ha and the carbon atom that

connects them exists through the molecule. Thus the protons Hb are equivalent with one another

but not with their geminal protons Hc, which sit on the other face of the ring, made inequivalent by

the group R.

Figure 5-26: Proton environments in a non-trivial system

193

As a result of these effects, it is not possible to compute chemical environments based solely on the

2D connectivity of a molecule and confidently assert that this will equal the number of peaks

reported in the molecule’s NMR spectrum. Whether there are more or fewer peaks in the NMR

spectrum than predicted, the candidate molecule may be correct. Conversely, if the prediction

matches the observation the candidate molecule may still be incorrect. The resolution of this

problem falls outside of the scope of this project, and so the checking of structures against 1H NMR

spectra is limited to the first method mentioned – ensuring that that the proton count of the

molecule agrees with the total integral of the spectrum. The result of this check is recorded in

automatically generated CML Reaction by adding a matchesHnmr attribute to the product

molecule, with a value of true or false as appropriate.

Checking Against Mass Spectrum

As described in section 5.2.3.3, the regular expressions used by OSCAR3 to annotate mass spectra

were developed in order to facilitate the specific annotation of peak assignments. Coupled with the

reported mass, this provides the information required to check the candidate product against the

reported mass spectrum. In this context, assignments are given as an offset from the molecular ion,

e.g. “M+1” or “M–H”. The functionality to parse the assignment text and calculate the mass offset it

implies is implemented in the MassSpecAssignment class, which supports both the numeric offset

and formula offsets illustrated above. Regular expression matching determines the type of offset

employed, or lack of an offset, e.g. “m/z: 271 (M+)”. Where a formula offset is used, the mass of the

corresponding molecular fragment is determined using the CMLFormula class in CMLXOM.

The reported mass is annotated as a numeric value by OSCAR3, and so once the mass offset has

been determined it may be trivially added or subtracted from the mass of the reported peak to

calculate an expected mass for the candidate product molecule. This mass is not necessarily the

same as the average molecular mass of the product, since in mass spectrometry it is the individual

194

masses of the isotopomers that is measured. The discrepancy between the two would be of critical

importance when considering, for example, any chlorine-containing product, and so it is necessary

instead to be able to determine the masses of the isotopomers of a given molecule. This

functionality was not previously available in JUMBO, and so was implemented and added to the

MoleculeTool class for this purpose.

The result of comparing the calculated mass of the reported molecular ion with the calculated mass

of the most abundant isotopomer is recorded by adding a matchesMassSpec attribute to the

product molecule in the automatically produced CML Reaction, with a value of true or false as

appropriate.

Checking Against Embedded Images

When the experimental section includes a chemical image it is possible to compare the connection

table of the candidate product with the results from the OSRA analysis of that image, which by this

stage in the workflow have been appended to the patent document XML (see section 5.2.5). If a

chemical image is found within the source experimental section, the recorded SMILES strings for the

image are built into CML Molecules which are then used to generate InChIs, using the SMILESTool

and InChIGeneratorTool classes from JUMBO respectively. An InChI for the candidate product

molecule is similarly generated, and the InChIs are subsequently compared.

Since the image included in the experimental section may be a reaction diagram it is possible for

OSRA to have identified more than one molecule. Since the analysis of the often low-quality images

is an error prone procedure, it is possible that the structures identified in the image may not contain

the correct product. As previously discussed, when OSRA fails to correctly deduce a connection table

from a drawn structure, it frequently reports a result containing the wildcard character, “*”. This

character is not recognised by JUMBO’s SMILESTool, causing it to throw an Exception. As a

195

result, the following rules are applied when checking the candidate product against embedded

images;

1. If the InChI generated for the candidate product matches one generated for the structures

identified by OSRA, the product is considered to match the image.

2. If all of the structures identified by OSRA can be built into InChIs and the InChI for the

candidate product does not match one of these, the product is considered not to match the

image.

3. If some or all of the structures identified by OSRA cannot be built into InChIs and the InChI

for the candidate product is not matched by one of those generated from the chemical

image, no conclusion is drawn.

If a conclusion is drawn from this process, it is recorded in the CML Reaction by the addition of a

matchesImage attribute on the product CML Molecule, with a value of true or false as appropriate.

If no conclusion is drawn, or if the source experimental section does not contain a chemical image,

the CML Reaction is not modified.

5.3.3 Reaction Extraction Performance

As previously described, the inputs to the reaction extraction procedure are those sections of the

semantically enhanced patent documents that are expected to describe experimental procedures.

XPath is used to select the appropriate headings from the patent, and the section of the document

that is subjected to the analysis is this heading along with all of its descendant nodes. A successful

analysis of the experimental section results in a CML Reaction, as discussed in section 5.3.2.

It is not the case, however, that the input of each and every one of the sections of the document

that are used as an input will successfully result in a CML Reaction. The reaction extraction

196

procedure may fail to generate a CML Reaction for a number of reasons. These causes were assessed

by monitoring the results of the procedure when run on the 26287 input sections selected from the

set of semantically enhance patent documents. From these input sections, 4444 CML reactions were

successfully extracted, representing around 17% of the total input. The major causes of failure are

subsequently discussed;

 No text-containing paragraph children – it is expected that text should be contained inside p

elements; if the input section does not contain recognisable text and does not, therefore,

describe an experimental procedure in a manner that the system is designed to handle then

it does not attempt to produce a CML Reaction. This situation arises where the restructuring

of the patent document XML has not correctly organised the complete description of an

experimental procedure into a single section of the semantically enhanced XML document,

and was observed on 2595 occasions – around 10% of the reaction extraction attempts.

 Too many paragraph children – if the input section has more than one text-containing

paragraph child, then the system does not attempt to process it. This strategy is employed

since a situation where one heading has multiple paragraph children may describe a single-

step synthesis split across the paragraphs or may describe a multi-step synthesis where each

paragraph describes a different reaction. In this second scenario, the techniques currently

used to abstract the reaction would be inappropriate and so in the absence of an available

method to distinguish between the two cases, it is impossible to determine how to proceed.

Recent developments in the ChemicalTagger project that classify the role of each phrase in

an experimental description, for example to produce “dissolve”, “heat” and “yield” phrases,

may provide a means by which the paragraphs may be determined to describe either a

single or multiple synthesis though this has not been implemented within the current work.

This situation was observed on 2747 occasions, or around 10% of the total.

197

 No product identified – the system attempts to determine the product by using OSCAR3 to

recognise a single chemical name in the heading of the experimental section. If this process

cannot be successfully completed, whether because the author has not named a single

chemical compound in the heading or because OSCAR3 has failed to correctly identify the

chemical name therein, the process aborts. This situation was observed on 5236 occasions,

or around 20% of the total.

 No reagents identified – if the system fails to identify any reagents in the source text, i.e. if

there are no chemical names with associated amounts as recognised by ChemicalTagger,

then no CML Reaction is produced. This situation may occur if the input describes an

analogous reaction in which the backreference has not been annotated, if the patent author

described the amounts of reactants in a format which is not supported by ChemicalTagger or

if the input text does not describe a reaction and therefore does not describe amounts of

chemicals. This situation was observed on 2562 occasions, or around 10% of the total.

Further to the causes examined and discussed above, the failure to resolve backreferenced reactions

caused a significant number of failures. These failures occurred primarily because the reference

reaction had not been successfully extracted, because the extracted reference reaction failed to

correctly identify and resolve to a structure all of the reagents required for the resolution procedure

to succeed, or because the maximum common substructure searching element of the resolution

procedure timed out. Though these errors were not automatically categorised, they are believed to

have occurred for around 30% of the inputs.

198

5.4 Conclusions

The work in this chapter has demonstrated the potential to create a system that downloads and

processes the chemical literature and extracts machine-understandable data from it without the

need for user interaction. The resulting CML reactions are further described in the next chapter.

Much of the software that comprises PatentEye is likely to be of use to related projects in the future.

Though the code is not currently modularised, it has already seen reuse as part of the Green Chain

Reaction (109) – a distributed experiment to answer the question “are chemical reactions in the

literature getting greener?” The Green Chain Reaction reused the PatentEye code for the

identification, downloading and semantic enhancement of chemical patents and demonstrated the

value of the work described in this chapter – as well as suggesting areas in which the PatentEye code

and some of the libraries upon which it depends would benefit from refactoring. Since the

community is unlikely to adopt software tools that are not both robust and usable, this exercise has

proved valuable and it is hoped that the points raised will be addressed in the future.

199

6. Results

The previous chapter described the means by which it was possible to accomplish high-throughput

extraction of reactions from the patent literature. This chapter discusses the analysis of these

extracted reactions to assess the performance of the PatentEye system (section 6.1) and briefly

discusses the work of Dr Lezan Hawizy to enable the reuse of the results of the current work by

third-parties (section 6.2).

6.1 Quality of Extracted Reactions

To assess the accuracy of the semantified reactions, the output of the reaction extraction process

was manually examined and compared with the source text. Each CML reaction was assessed on a

number of criteria to determine the performance of the different modules of the reaction

extractions system. These criteria included the accuracy of identified products, reagents and spectra,

and the performance of the systems for automated product verification was tested by comparing

the results of the automated verification with those of the manual verification. The methods

employed for this process and the results obtained are subsequently discussed.

6.1.1 Corpus Formation

Since the manual inspection of each and every reaction extracted from the patent texts was not a

feasible task, a subset was selected to serve as a corpus from which to derive performance metrics.

From the 4444 reactions successfully extracted from the 667 unique, full-text patent documents, 100

reactions were selected at random. This reaction corpus was then used in the subsequently

described validation procedures.

200

During the manual inspection of the reaction corpus, it was discovered that two of the 100 CML

Reactions were derived from multi-step syntheses that were described within a single paragraph.

Since these cases did not reflect the kind of input for which the current software was designed, as

discussed in section 5.3.3, they were excluded from the analysis process. A further two CML

Reactions in the reaction corpus were found to have been derived from examples of their respective

inventions that did not describe chemical syntheses – instead describing assays. These CML

Reactions were similarly excluded from the analysis process; consequently, the process is based

upon a reduced corpus of 96 CML Reactions.

6.1.2 Product Validation

The source from which the reaction was extracted was examined to determine whether the

chemical name identified in the heading text by OSCAR3 and from which the product CML molecule

was generated agreed with that stated in the heading text. Since the name to structure conversion

process is not a perfect procedure, this is no guarantee that the attached connection table is also

correct. However, the development of OPSIN was not a part of the current work and is reported to

operate at an extremely high rate of performance (110) and so it was not considered necessary to

measure the accuracy of this process. Each extracted reaction is required by the extraction process

to contain one and only one product molecule and so the product validation for each reaction was

recorded as a simple boolean.

The manual inspection of the reaction corpus showed that the correct product was identified on 88

of the 96 occasions, a success rate of around 92%. It was further noted that on each of the 8

occasions on which the correct product was not identified, the term identified as the product name

could not be successfully resolved to a connection table, suggesting a means by which the errors

may be automatically removed. Generally, the cause of the failure to identify the correct product

201

was due to the product of the reaction being named in the accompanying text, and hence not being

present in the section heading of the source; instead, a term from the heading was falsely identified

as a chemical name, which allowed for the creation of a CML Reaction from the source.

The high rate of successful product identification suggests that the current techniques are sufficient

to extract high-quality data from the literature in this regard. Those errors in product identification

that exist at the present time may be largely eliminated in the future by the application of NLP

techniques to permit the identification of products from the reaction description text.

6.1.3 Reagent Validation

The sources from which the reaction corpus was extracted were examined, and for each the

reagents employed and the amounts thereof were identified. These were then compared with those

automatically extracted; instances where the same chemical name and amount were both manually

identified and automatically extracted were counted as true positives, where the automatically

extracted reagent list contained an instance that was not matched by both chemical name and

amount in those manually identified a false positive was counted, and where a reagent was

manually identified that was not automatically extracted, a false negative was counted.

This work required the formalisation of the concept of a reagent to a sufficient degree that any

subjectivity in determining what did and did not constitute a reagent could as far as possible be

minimised. The IUPAC definition, “a test substance that is added to a system in order to bring about

a reaction or to see whether a reaction occurs” (107), does not match the common usage of the

term which further includes the chemical species involved in a reaction, i.e. reactants, solvents,

catalysts, etc. It is this wider definition that fits the goal of the current work – to automatically

determine how a reaction is carried out.

202

It was observed when considering this task that the chemical literature frequently underspecifies the

work-up stage of a reaction. That is to say, the reagents employed may be stated without reference

to their amounts, such as in;

“The reaction mixture was stirred at 25 °C for 4 days and then diluted with ethyl

acetate. The mixture was then washed with a dilute aqueous hydrochloric acid

solution. At this time, methanol was added to the organic layer. A precipitate formed

and was removed by filtration. The organics were further washed with a saturated

aqueous sodium chloride solution, dried over magnesium sulfate, filtered, and

concentrated in vacuo. The resulting solid was triturated with diethyl ether. The solid

was collected by filtration and washed again with diethyl ether to afford…” (111)

While the work-up is an undeniably important phase of a reaction, the techniques used in the

current work are reliant on the specification of amounts in order to identify reagents. This technique

is well-suited to identification of primary reagents but not those used in work-up, and so in order to

produce a metric that indicates the performance of the software in the role for which it was

designed it was decided to entirely omit reagents mentioned in the work-up phase, and inert

atmospheres under which reactions were performed, from the current analysis.

The manual inspection of the reaction corpus identified 249 true positives, 71 false positives and 139

false negatives – the system having a precision of around 78% and recall of around 64%. When

considering these results, it should be remembered that the requirement for an identified reagent to

be considered a true positive – that not only the chemical name but also the amounts employed in

the reaction be identical to those described in the source text – is a rigorous standard. It was

commonly the case during the analysis that the system identified the correct chemical name as a

reagent but failed to correctly add one or more amounts, creating both a false positive and a false

negative. These situations occurred where one or more of the amounts in the source text were not

recognised by the regular grammar employed by ChemicalTagger for amount recognition.

Frequently these situations were caused by the patent author employing a structure that may be

203

considered incorrect, e.g. “triphenylphosphine (3.08g., 11.78 mmol)” or “1-Phenylpiperazine (16.2 g,

0.10 mole)”. The non-standard full stop indicating the abbreviation of “grams” in the first example

and the failure to contract the unit “mole” to its standard symbol “mol” in the second result in the

failure to recognise and convert these amounts to CML. The data gathered in the current exercise

permit the improvement of the ChemicalTagger grammar to recognise a greater variety of the

reporting formats used by authors and thereby improve the precision and recall for the identification

of reagents as measured by the current methods.

These improvements, however, are not sufficient on their own to produce a system that operates at

the level of a human operator. The current system requires further development before the data it

produces are of sufficient quality to be considered reliable by the community at large.

6.1.4 Spectra Validation

The extracted reactions contain, where identified and successfully converted to CML, the 13C and 1H

NMR spectra of the products. In the patents used for this work, 1H NMR spectra are far more

common than 13C (see section 5.2.3.4) – indeed, the manually examined subset of the reaction

corpus was found to contain only two 13C NMR spectra. Consequently, only the validity of the

attached 1H NMR spectra in the reaction corpus was considered. Where these spectra were present,

the content was compared to the reported spectra in the original sources. In order to be considered

correct, the attached spectra were required to fully describe the original spectra in terms of the

shifts, integrals, multiplicities and coupling constants of each peak – any deviation from what was

reported in the original text resulted in the attached spectrum being judged to be incorrect.

The manual inspection identified 25 occasions on which the 1H NMR spectrum attached to a product

molecule precisely replicated the information presented in the source text and 8 occasions on which

it did not, i.e. a success rate of around 76%. The primary causes of the inclusion of incorrect 1H NMR

204

spectra were the failure to fully convert peak metadata, e.g. multiplicities, as identified by OSCAR3

to CML and the conversion to CML spectra of sections of input text that did not indicate 1H NMR

spectra, i.e. false positives in the data recognition procedure. The first of these issues indicates a bug

in JUMBOConverters that could be relatively trivially identified and fixed while it is expected that the

second issue should produce 1H NMR that could be automatically distinguished from a genuine NMR

spectrum in a majority of cases, since false positives will rarely contain expected peak metadata such

as integrals and multiplicities. This was not, however, attempted in the current work since the

identified sample was so small as to be statistically meaningless.

Though the 1H NMR spectra validation is based on a small set of data, it is believed that the spectra

identified by PatentEye are of nearly sufficient quality that they constitute a resource of value to the

community.

6.1.5 Automated Verification Validation

For each extracted reaction in the corpus, the results of the automated product verification, as

described in 5.3.2.5, were compared with those of the manual product validation. For each of the

methods of automated product verification – comparison of the product structure with chemical

images, with its mass spectrum and with its 1H NMR – the automated verification was judged to be

correct where the automated and manual verifications were in agreement and judged to be

incorrect where they were not. The results of this examination of the reaction corpus are

subsequently discussed.

205

6.1.5.1 1H-NMR Verification

As discussed in section 5.3.2.5, the verification of products using their 1H NMR spectra is performed

by matching the proton count of the candidate product molecule to the total integral of their

respective 1H NMR spectrum. Of the 33 products in the reaction corpus with attached 1H NMR

spectra, 23 (70%) were considered to have matched the product molecule while 10 (30%) were not.

In all of the 33 cases, the product was manually judged to have been identified correctly.

The 10 cases in which the extracted 1H NMR spectrum was judged not to match the candidate

product molecule were examined to determine the cause. In one of these cases, the spectrum had

been derived from a false positive in the OSCAR3 data recognition process. In the remaining nine

cases, the total integral of the recorded spectrum was less than would be expected for the candidate

product molecule. This is generally presumed to have been a consequence of the method by which

the spectrum was acquired rather than indicative of an incorrect spectrum or mistaken product. The

nine candidate product molecules and the solvents in which the spectra were reported to have been

acquired are shown in Table 6-1.

Candidate Product Solvent

CDCl3

CDCl3

206

CDCl3

DMSO-d6

DMSO-d6

D20

207

CD3OD

CD3OD

CD3OD

Table 6-1: Candidate product molecules for which the
1
H NMR was considered a non-match, with likely

missing hydrogen atoms indicated in red

For each of the candidate product molecules in Table 6-1, the n most acidic protons, where n is the

difference between the proton count of the candidate product molecule and the total integral of the

1H NMR spectrum, are shown in red. It is supposed that in each case, those protons were either

dissociated or exchanged with acidic deuterons from the solvent and so were not reflected in the

observed spectrum. This demonstrates the fragility of the chosen method for validation of products

208

via their 1H NMR spectra, and so it is recommended that in the future a more advanced method of

structure-spectrum comparison be employed.

6.1.5.2 Mass Spectrum Verification

Of the 24 products in the reaction corpus for which automated verification against a mass spectrum

was attempted, 18 (75%) were considered to have matched the candidate product molecule while 6

(25%) were not. In all of the 24 cases, the product was manually judged to have been identified

correctly. The cases in which the reported mass spectrum was judged not to be a match to the

candidate product molecule represent a combination of cases in which the OSCAR3 methodology

was insufficient to deal with the reported mass spectrum, e.g. “m/z: 594.9 (M+H-HCl)” and “MS m/z

471, 473 (M+1, M+3)” and those in which the reported spectrum and assignment is apparently

wrong, e.g. for the case of 2-fluoro-4-(4-fluoro-benzyloxy)-nitrobenzene (where the mass of the

most commoner isotopomer is 265.1), the spectrum was reported as “MS: m/e = 265.1 (M++H)”.

6.1.5.3 Image Verification

Of the 26 products in the reaction corpus for which automated verification against an attached

image was attempted, 8 (31%) were considered to have matched the candidate product molecule

while 18 (69%) were not. In all of the 26 cases, the product was manually judged to have been

identified correctly. That the automated verification of candidate product molecules against

attached images is highly error-prone should not be surprising, since the performance of the

chemical image recognition package employed in the current work has previously been shown to

perform poorly on a corpus of images taken from EPO patents (see section 5.2.5.2).

209

6.1.5.4 Conclusions

Given the high accuracy (92%) of the PatentEye system in terms of correctly identifying the product

of a chemical reaction compared to the accuracy of the implemented systems of automated product

verification, it may be considered that this verification process is at best unnecessary and should be

discontinued in future versions of the PatentEye system. However, since the NMR spectra reported

in the literature are themselves data that are likely to be of interest and of use to the community, it

is desirable to continue to collect and to validate these. The current, naïve, system of validation has

been shown to be insufficient for the purpose and so a more capable method must be developed for

the future. It is envisioned that such a system would operate in two parts; a “sanity check” would

identify those spectra that are clearly in error and included as a result of a false positive in the

OSCAR3 data recognition, e.g. those that occur in the middle of a chemical name, before a

chemically intelligent system ensures that the extracted spectrum could feasibly correspond to the

candidate product molecule under the specified conditions. Such a system would be capable of fully-

automatic production of high volumes of reliable data to be distributed to the community.

6.2 Enabling Reuse of the Extracted Data

This thesis began by discussing the need for machine-understandable and open data. The work

described up to this point has shown how it is possible to extract machine-understandable data from

the chemical literature, but the issue of how this data may be disseminated in a way that supports

the semantic web of chemistry has not been addressed. Of course, the XML files produced as part of

the current work could hosted on a webserver from where they could be downloaded by interested

members of the community. This approach, however, neglects to provide interoperability between

the data produced by PatentEye and that produced by any other source. In this scenario, drawing

210

together data from different sources is a problem that would need to be solved and re-solved by any

number of different users.

The issue of how best to produce linked data is addressed by the Resource Description Framework

(RDF) (112), a web-standard technology for the encoding of knowledge. In RDF, statements about

resources (concepts) are made using the subject-predicate-object format, e.g. “Marlon Brando

starred in The Godfather”, in which the subject is “Marlon Brando”, the predicate is “starred in” and

the object is “The Godfather”. Resources, such as “Marlon Brando” and “The Godfather” are defined

by Uniform Resource Indicators (URIs), allowing other authors of RDF to make further statements

about the same resources such as “Marlon Brando married Anna Kashfi” or “Al Pacino starred in The

Godfather” and for the knowledge represented by the statements to be automatically combined –

provided that the authors use the same URIs to define the same resources. Using RDF for the

communication of chemical knowledge has the additional advantage that a host of tools for its usage

exist, such as the open-source framework Sesame (113) and the query language SPARQL (114).

This conversion of the information extracted from the chemical literature to RDF has been addressed

by Dr Lezan Hawizy, with the creation of the PatentEye Repository (115). In the RDF files upon which

the PatentEye Repository is based, the reactions extracted from the literature in section 5.3 are

combined with the molecular classifications derived in section 4.3. Each instance of each chemical

from the reactions is represented by a separate resource. Each of these resources links to a resource

that defines the molecule concerned, thus allowing the different instances of the same chemical

from across the literature to be drawn together and to be combined with data from other sources.

The URIs for the resources used to define the molecules are provided by the Chemical RDF project

hosted by OpenMolecules (116) and are of the form http://rdf.openmolecules.net/?XXX where XXX

is the InChI of the molecule concerned. Some example RDF from the PatentEye Repository is shown

in Figure 6-1, and the structure of this data is illustrated in Figure 6-2.

211

<rdf:Description rdf:about="http://www.patenteye.com/#ep01778686b1">

 <j.0:hasReaction

 rdf:resource="http://www.patenteye.com/#ep01778686b1-h0023" />

 <rdf:type rdf:resource="http://www.patenteye.com/#Patent" />

</rdf:Description>

<rdf:Description

 rdf:about="http://www.patenteye.com/#ep01778686b1-h0023">

 <rdf:type rdf:resource="http://www.patenteye.com/#Reaction" />

 <j.0:hasMolecule rdf:resource=

"http://www.patenteye.com/#ep01778686b1h0023isopropylalcohol2

00" />

</rdf:Description>

<rdf:Description rdf:about=

"http://www.patenteye.com/#ep01778686b1h0023isopropylalcohol200">

 <j.0:hasCompound rdf:resource=

"http://rdf.openmolecules.net/?inchi=1/c3h8o/c1-3(2)4/h3-

4h,1-2h3" />

 <j.0:hasTitle rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string">

 isopropyl alcohol

 </j.0:hasTitle>

 <j.0:hasAmount rdf:resource=

"http://www.xml-cml.org/schema#mg_d0660b66763f4dd1" />

 <rdf:type rdf:resource="http://www.patenteye.com/#spectator" />

</rdf:Description>

<rdf:Description rdf:about=

"http://rdf.openmolecules.net/?inchi=1/c3h8o/c1-3(2)4/h3-4h,1-

2h3">

 <j.0:hasName rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string">

 Isopropanol

 </j.0:hasName>

 <j.0:hasInChI rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string">

 InChI=1/C3H8O/c1-3(2)4/h3-4H,1-2H3

 </j.0:hasInChI>

 <rdfs:subClassOf rdf:resource=

"http://www.patenteye.com/#ClassName=EPO01015" />

</rdf:Description>

<rdf:Description rdf:about=

"http://www.patenteye.com/#ClassName=EPO01015">

 <j.0:hasName rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string">

 low molecular weight aliphatic alcohol

 </j.0:hasName>

</rdf:Description>

<rdf:Description rdf:about=

"http://www.xml-cml.org/schema#mg_d0660b66763f4dd1">

 <j.0:hasValue rdf:datatype=

"http://www.w3.org/2001/XMLSchema#float">

 72.20

 </j.0:hasValue>

 <rdf:type rdf:resource="http://www.xml-cml.org/schema#mg" />

</rdf:Description>

Figure 6-1: Sample RDF from the PatentEye Repository

212

ep01778686b1

ep01778686b1-h0023

ep01778686b1h0023

isopropylalcohol200

http://rdf.openmolecules.net/?inchi=

1/c3h8o/c1-3(2)4/h3-4h,1-2h3

72.20 (mg)

low molecular weight

aliphatic alcohol

http://www.patenteye.com/

#ClassName=EPO01015 mg_d0660b66763f4dd1

isopropyl alcohol

hasReaction

hasMolecule

hasCompound

hasTitle

hasAmount

hasName

hasValue
subClassOf

Figure 6-2: Diagrammatic illustration of PatentEye Repository RDF

The examples shown in Figure 6-1 have been heavily trimmed and selected to exemplify the primary

features of the PatentEye Repository RDF. This data format will, in the future, allow external parties

to access and to interact with the information produced by PatentEye and to incorporate their own

data in a highly automated fashion – removing the need for much of the data entry that is currently

required when combining datasets. This functionality is predicated upon the usage of the InChI, and

the OpenMolecules URIs, to define the chemical species. InChIs lack the ability to represent complex

organometallics and polymers (33), for example, and so this technique will not currently be

appropriate in all cases but for the majority of small molecules it is likely to be successful.

213

7. Conclusions

This work has demonstrated how existing and novel technology can be combined to produce

machine-understandable chemical information that could be used in support of the semantic web

for chemistry and, in particular, how this information can be automatically liberated from existing

digital documents. Given the restrictions that surround copyrighted documents, this work was

directed towards the patent literature.

Chapter 1 gave an introduction to the problem to be addressed in this thesis, while chapter 2

discussed the existing technologies that were used in the current work and the potential sources of

documents that could be used.

Chapter 3 described the extension of Chemical Markup Language to describe Markush structures.

Markush structures are of crucial importance to chemical patents, and there currently exists no open

standard for describing them. The work in this thesis has demonstrated the creation of semantics, in

the form of Extended Polymer Markup Language (EPML), that allow for the description of much of

the variability employed in the patent literature, and has demonstrated functioning software for the

exemplification and substructure searching of these EPML descriptions. The software and the

semantics developed as part of the current work require further refinement before they are

published for the community to use, but represent an important proof of concept and initial

demonstration of technologies.

Chapter 4 described the implementation of a system for the automatic acquisition of hyponymic

relations from the literature. Hyponymic relations form a key part of ontologies – formal

representations of knowledge – which play an important role in the Semantic Web. The current

manual curation of chemical ontologies such as ChEBI is a time consuming procedure and the

creation of a technology that allows semi-automatic curation holds great potential. The system has

214

been validated by extracting relations from a small patent set, and shown both to operate at a high

rate of performance and to discover relations that do not currently form a part of the ChEBI

ontology. The technology is consequently recommended for adoption by the community, and

current collaboration between the Unilever Centre and the European Bioinformatics Institute is

moving in this direction.

Chapters 5 and 6 described the development, implementation and validation of PatentEye – a

system for the automatic extraction of chemical reactions from the literature. The extracted data

describes the primary products, with attached NMR spectra where possible, and lists the reagents

used in the syntheses. The reactions extracted by this method have been manually validated and it is

shown that, while the system produces encouraging results, further work is required if there is to be

a high level of confidence that the extracted data fully describes the reported reactions. The

problem of automatic extraction of chemical reactions is highly non-trivial, and it is unlikely that any

system will ever be infallible, but recent developments in the ChemicalTagger tool that assign roles

(e.g. “add”, “heat”, “wash”) to reaction phrases will enable the assignment of roles to chemical

entities detected in an experimental write-up. In turn, this will enable a means to extract not just the

components of the reaction but the method too – the recipe as well as the ingredients – in addition

to a more reliable means to identify the reagents than at present.

Once an acceptably reliable means of reaction extraction has been implemented, the potential scale

on which data can be rapidly extracted from the literature is immense. The current work extracted

4444 reactions from EPO publications covering a period of 10 weeks. With further development

increasing the rate of recall from the literature, and the inclusion of patents published by the USPTO

and the WIPO, the scale on which PatentEye extracts reactions could easily reach 100,000

reactions/year, while the open access literature offers a further opportunity to increase the scale on

which PatentEye operates. Based on the sample of reactions analysed in section 6.1.4, around a

third of these might be expected to contain NMR spectra. With the available archive of digitised

215

patent documents dating back many years, such a collection would immediately dwarf the open

NMR database NMRShiftDB (117; 118; 119), which contains around 44000 spectra as of October

2010 and would be of great use to organic chemistry students and researchers as well as to creators

of NMR prediction and structure elucidation software.

The reactions derived by this system would provide an excellent overview of the types of chemistry

being performed on a small scale in industry. This would allow for the answering of questions that

are fascinating on an intellectual and organisational level, such as “how long after a novel method is

published is it adopted by industry?” and “what differences exist in the synthetic methods used, by

company and by country?” as well as permit the immediate determination of all synthetic routes for

a given transformation and the identification of compatible and, by omission to imply incompatible,

functional groups in the reactant. For example, the data would be expected to show that ketones

may be reduced to alcohols both by LiAlH4 and NaBH4 and that their reaction with NaBH4 is

compatible with the presence of an ester group but that the reaction with LiAlH4 is not. Again, such

information is likely to prove useful to organic chemistry students and researchers, and the provision

of the data in an open, linked and re-usable form as described in section 6.2 will be of great use to

other informatics specialists in the short term and to automated researchers in the longer term.

The software developed during the current work is also likely to prove useful to the community. As

discussed in section 5.4, the PatentEye software has already seen use as part of the Green Chain

Reaction project. It is hoped that in the future, opportunities will arise to further develop, refine and

modularise the software used in the current work so that it may be released under an open licence

for the community to reuse freely where appropriate.

216

8. Bibliography

1. CAS Database Content at a Glance. [Online] [Cited: 10 August 2010.]

http://www.cas.org/expertise/cascontent/ataglance/index.html.

2. CAS Databases - CAPlus, Journal and Patent References. [Online] [Cited: 3 November 2010.]

http://www.cas.org/expertise/cascontent/caplus/index.html.

3. CAS REGISTRY - The gold standard for substance information. [Online] [Cited: 3 November 2010.]

http://www.cas.org/expertise/cascontent/registry/index.html.

4. CAS Databases - CASREACT, Chemical Reactions. [Online] [Cited: 3 November 2010.]

http://www.cas.org/expertise/cascontent/casreact.html.

5. The Semantic Web. T. Berners-Lee, J. Hendler, O. Lassila. 17 May 2001, Scientific American.

6. The Automation of Science. R. D. King, J. Rowland, S. G. Oliver, M. Young, W. Aubrey, E. Byrne,

M. Liakata, M. Markham, P. Pir, L. N. Soldatova, A. Sparkes, K. E. Whelan, A. Clare. 2009, Science,

Vol. 324, pp. 85-89.

7. Mining chemical structural information from the drug literature. D. L. Banville 2006, Drug

Discovery Today, Vol. 11, Issue 1, pp. 35-42.

8. The Next Big Thing: From Hypermedia to Datuments. P. Murray-Rust, H. S. Rzepa. 2004, Journal of

Digital Information, Vol. 5, Issue 1.

9. Chemistry Add-in for Word. [Online] [Cited: 4 November 2010.] http://research.microsoft.com/en-

us/projects/chem4word/.

10. Computers learn chemistry. R. van Noorden. 2007, Chemistry World. Vol. 4, Issue 2, pp. 10.

11. Project Prospect. [Online] [Cited: 4 November 2010.]

http://www.rsc.org/Publishing/Journals/ProjectProspect/.

12. Semantic enrichment of journal articles using chemical named entity recognition. C. R. Batchelor,

P. T. Corbett. 2007. Proceedings of the ACL 2007 Demo and Poster Sessions, Stroudsburg, PA, USA.

pp. 45-48.

13. CrystalEye. [Online] [Cited: 1 September 2010.] http://wwmm.ch.cam.ac.uk/crystaleye/.

14. ChemicalTagger. [Online] [Cited: 4 November 2010.] http://bitbucket.org/lh359/chemicaltagger.

15. OSCAR. [Online] [Cited: 4 November 2010.] http://sourceforge.net/projects/oscar3-chem/.

16. XOM. [Online] [Cited: 4 November 2010.] http://www.xom.nu/.

17. Chemical Markup Language. [Online] [Cited: 4 November 2010.]

http://sourceforge.net/projects/cml/.

217

18. CHIC – Converting Hamburgers Into Cows. J. A. Townsend, J. Downing, P. Murray-Rust. 2009.

Fifth IEEE International Conference on e-Science, Oxford, UK. pp 337-343.

19. DSpace@Cambridge. [Online] [Cited: 12 October 2010.] http://www.dspace.cam.ac.uk/.

20. EThOS - Electronic Theses Online Service. [Online] [Cited: 12 October 2010.] http://ethos.bl.uk/.

21. USPTO.gov. [Online] [Cited: 13 August 2010.]

http://www.uspto.gov/web/offices/pac/mpep/documents/0600_608_01_v.htm.

22. Terms and Conditions of Use for the EPO Website. [Online] [Cited: 13 August 2010.]

http://www.epo.org/etc/termsofuse.html#Copyright.

23. EPO - European publication server. [Online] [Cited: 24 February 2011.]

https://data.epo.org/publication-server.

24. EBD Data Information. [Online] [Cited: 24 February 2011.]

http://docs.epoline.org/ebd/xmlinfo.htm.

25. PATENTSCOPE: Search International Patent Applications. [Online] [Cited: 12 October 2010.]

http://www.wipo.int/pctdb/en/.

26. USPTO Bulk Downloads: Patent Grant Full Text. [Online] [Cited: 13 August 2010.]

http://www.google.com/googlebooks/uspto-patents-grants-text.html.

27. XML Path Language (XPath) 2.0. [Online] [Cited: 6 November 2010.]

http://www.w3.org/TR/xpath20/.

28. Open Babel. [Online] [Cited: 9 August 2010.] http://openbabel.org/wiki/Main_Page.

29. SMILES, a chemical language and information system. 1. Introduction to methodology and

encoding rules. D. Weininger. 1988, J. Chem. Inf. Comput. Sci., Vol. 28, pp. 31-36.

30. SMILES. 2. Algorithm for generation of unique SMILES notation. D. Weininger, A. Weininger, J. L.

Weininger. 1989, J. Chem. Inf. Comput. Sci., Vol. 29, pp. 97-101.

31. InChI Technical Manual. S. E. Stein, S. R. Heller, D. V. Tchekhovskoi. [Online] [Cited: 10 August

2010.] http://www.oci.uzh.ch/edu/lectures/material/DBC/LinNot/InChI_TechMan.pdf.

32. The IUPAC International Chemical Identifier. A. McNaught. 2006, Chemistry International. Vol.

November-December, pp. 12-14.

33. Unofficial InChI FAQ. [Online] [Cited: 2 November 2010.]

http://wwmm.ch.cam.ac.uk/inchifaq/#What%20Can%20InChI%20Currently%20Not%20Represent?.

34. On a System of Indexing Chemical Literature; Adopted by the Classification Division of the U.S.

Patent Office. E. A. Hill, 1900, J. Am. Chem. Soc., Vol. 22, Issue 8, pp. 478-494.

35. CambridgeSoft Desktop Software - ChemDraw. [Online] [Cited: 4 November 2010.]

http://www.cambridgesoft.com/software/ChemDraw/.

218

36. JNI-InChI. [Online] [Cited: 4 November 2010.] http://jni-inchi.sourceforge.net/.

37. Chemical Markup, XML, and the Worldwide Web. 1. Basic Principles. P. Murray-Rust, H. S. Rzepa.

1999, J. Chem. Inf. Comput. Sci., Vol. 39, pp. 928-942.

38. Chemical Markup, XML, and the World-Wide Web. 2. Information Objects and the CMLDOM. P.

Murray-Rust, H. S. Rzepa. 2001, J. Chem. Inf. Comput. Sci., Vol. 41, pp. 1113-1123.

39. Chemical Markup, XML, and the World-Wide Web. 3. Towards a Signed Semantic Chemical Web

of Trust. G. V. Gkoutos, P. Murray-Rust, H. S. Rzepa, M. Wright. 2001, J. Chem. Inf. Comput. Sci.,

Vol. 41, pp. 1124-1130.

40. Chemical Markup, XML, and the Worldwide Web. 4. CML Schema. P. Murray-Rust, H. S. Rzepa.

2003, J. Chem. Inf. Comput. Sci., Vol. 43, pp. 757-772.

41. Chemical Markup, XML, and the World Wide Web. 5. Applications of Chemical Metadata in RSS

Aggregators. P. Murray-Rust, H. S. Rzepa, M. J. Williamson, E. L. Willighagen. 2004, J. Chem. Inf.

Comput. Sci., Vol. 44, pp. 462-469.

42. Chemical Markup, XML, and the World Wide Web. 6. CMLReact, an XML Vocabulary for Chemical

Reactions. G. L. Holliday, P. Murray-Rust, H. S. Rzepa. 2006, J. Chem. Inf. Comput. Sci., Vol. 46, pp.

145-157.

43. Chemical Markup, XML, and the World Wide Web. 7. CMLSpect, an XML Vocabulary for Spectral

Data. S. Kuhn, T. Helmus, R. J. Lancashire, P. Murray-Rust, H. S. Rzepa, C. Steinbeck, E. L.

Willighagen. 2007, J. Chem. Inf. Comput. Sci., Vol. 47, pp. 2015-2034.

44. CML Sourceforge Repository. [Online] [Cited: 2 September 2010.]

http://cml.svn.sourceforge.net/viewvc/cml/.

45. JUMBOConverters. [Online] [Cited: 24 February 2011.] http://bitbucket.org/wwmm/jumbo-

converters.

46. High-Throughput Identification of Chemistry in Life Science Texts. P. Corbett, P. Murray-Rust.

2006. Computational Life Sciences II, Cambridge, UK. pp. 107-118.

47. ChEBI: a database and ontology for chemical entities of biological interest. K. Degtyarenko, P. de

Matos, M. Ennis, J. Hastings, M. Zbinden, A. McNaught, R. Alcantara, M. Darsow, M. Guedj, M.

Ashburner. 2008, Nucleic Acids Research, Vol. 36, pp. 345-350.

48. Chemical Entities of Biological Interest: an update. P. de Matos, R. Alcantara, A. Dekker, M.

Ennis, J. Hastings, K. Haug, I. Spiteri, S. Turner, C. Steinbeck. 2009, Nucleic Acids Research, Vol. 38,

pp. 249-254.

49. Ontology Detail: Physico-chemical methods and properties. K. Degtyarenko. [Online] [Cited: 4

November 2010.] http://obofoundry.org/cgi-bin/detail.cgi?id=fix.

50. Ontology Detail: Physico-chemical process. K. Degtyarenko. [Online] [Cited: 4 November 2010.]

http://www.obofoundry.org/cgi-bin/detail.cgi?id=rex.

219

51. Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. 2000, Nature

Genet, Vol. 25, pp. 25-29.

52. Annotation of Chemical Named Entities. P. Corbett, C. Batchelor, S. Teufel. 2007. BioNLP:

Biological, translational and clinical language processing, Prague, CZ. pp. 57-64.

53. Pyridines, pyridine and pyridine rings: disambiguating chemical named entities. P. Corbett, C.

Batchelor, A. Copestake. 2008. LREC Workshop, Marrakech, MA. pp. 43-50.

54. Cascaded classifiers for confidence-based chemical named entity recognition. P. Corbett, A.

Copestake. 2008, BMC Bioinformatics, Vol. 9.

55. OpenNLP Maxent. [Online] [Cited: 14 October 2010.] http://maxent.sourceforge.net/.

56. Experimental data checker: better information for organic chemists. S. E. Adams, J. M. Goodman,

R. J. Kidd, A. D. McNaught, P. Murray-Rust, F. R. Norton, J. A. Townsend, C. A. Waudby. 2004, Org.

Biomol. Chem., Vol. 2, pp. 3067-3070.

57. Chemical documents: machine understanding and automated information extraction. J. A.

Townsend, S. E. Adams, C. A. Waudby, V. K. de Souza, J. M. Goodman, P. Murray-Rust. 2004, Org.

Biomol. Chem., Vol. 2, pp. 3294-3300.

58. ANTLR: ANother Tool for Language Recognition. [Online] [Cited: 14 October 2010.]

http://www.antlr.org/about.html.

59. OpenNLP. [Online] [Cited: 14 October 2010.] http://opennlp.sourceforge.net/.

60. Building a Large Annotated Corpus of English: The Penn Treebank. M. P. Marcus, M. A.

Marcinkiewicz, B. Santorini. 2, 1993, Computational Linguistics, Vol. 12, pp. 313-330.

61. Kekulé: OCR - Optical Chemical (Structure) Recognition. J. R. Balmuth, J. R. McDaniel. 1992, J.

Chem. Inf. Comput. Sci., Vol. 32, pp. 373-378.

62. Chemical Literature Data Extraction: The CLiDE Project. P. Ibison, M. Jacquot, F. Kam, A. G.

Neville, R. W. Simpson, C. Tonnelier, T. Venczel, A. P. Johnson. 1992, J. Chem. Inf. Comput. Sci., Vol.

33, pp. 338-344.

63. Recent Advances in the CLiDE Project: Logical Layout Analysis of Chemical Documents. A. Simon,

A. P. Johnson. 1997, J. Chem. Inf. Comput. Sci., Vol. 37, pp. 109-116.

64. CLiDE Pro: The Latest Generation of CLiDE, a Tool for Optical Chemical Structure Recognition. A.

T. Valko, A. P. Johnson. 2009, J. Chem. Inf. Model., Vol. 49, pp. 780-787.

65. Optical Structure Recognition Software To Recover Chemical Information: OSRA, An Open Source

Solution. I. V. Filippov, M. C. Nicklaus. 2009, J. Chem. Inf. Model., Vol. 49, pp. 740-743.

66. Extracting Chemical Structure Information: Optical Structure Recognition Application. I. V.

Filippov, M. C. Nicklaus. 2009. Eighth IAPR International Workshop on Graphics Recognition, La

Rochelle, FR. Session 4, pp. 3-12.

220

67. Improvements in Optical Structure Recognition Application. I. V. Filippov, M. C. Nicklaus, J.

Kinney. 2010. Document Analysis Systems Workshop, Boston, MA, US.

68. Automated extraction of chemical structure information from digital raster images. P. Jungkap,

R. Gus, S. Kerby, N. Mandee, L. Naesung, S. Kazuhiro. 2009, Chemistry Central Journal, Vol. 3.

69. Towards in-house searching of Markush structures from patents. J. M. Barnard, P. M. Wright.

2009, World Patent Information, Vol. 31, pp. 97-103.

70. The Chemical Abstracts Service Generic Chemical (Markush) Structure Storage and Retrieval

Capability. 1. Basic Concepts. W. Fisanick. 1990, J. Chem. Inf. Comput. Sci., Vol. 30, pp. 145-154.

71. The Chemical Abstracts Service Generic Chemical (Markush) Structure Storage and Retrieval

Capability. 2. The MARPAT File. T. Ebe, K. A. Sanderson, P. S. Wilson. 1991, J. Chem. Inf. Comput.

Sci., Vol. 31, pp. 31-36.

72. Computer Storage and Retrieval of Generic Structures in Chemical Patents. 1. Introduction and

General Strategy. M. F. Lynch, J. M. Barnard, S. M. Welford. 1981, J. Chem. Inf. Comput. Sci., Vol.

21, pp. 148-150.

73. Computer Storage and Retrieval of Generic Structures in Chemical Patents. 2. GENSAL, a Formal

Language for the Description of Generic Chemical Structures. J. M. Barnard, M. F. Lynch, S. M.

Welford. 1981, J. Chem. Inf. Comput. Sci., Vol. 21, pp. 151-161.

74. Computer representation and manipulation of combinatorial libraries. J. M. Barnard, G. M.

Downs. 1997, Perspectives in Drug Discovery and Design, Vol. 7/8, pp. 13-30.

75. Chemical Markup, XML and the World-Wide Web. 8. Polymer Markup Language. N. Adams, J.

Winter, P. Murray-Rust, H. S. Rzepa. 2008, J. Chem. Inf. Model., Vol. 48, pp. 2118-2128.

76. Polymer Builder. [Online] [Cited: 28 October 2010.] http://wwmm-svc.ch.cam.ac.uk/polydemo/.

77. Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and

Prediction from Additive Group Contributions. D. W. van Krevelen. 1997. 3rd Revised edition, Elsevier

Science Ltd.

78. The Number of Structurally Isomeric Alcohols of the Methanol Series. H. R. Henze, C. M. Blair.

1931, J. Am. Chem. Soc., Vol. 53, Issue 8, pp. 3042-3046.

79. A Comparison of Different Approaches to Markush Structure Handling. J. M. Barnard. 1991, J.

Chem. Inf. Comput. Sci., Vol. 31, pp. 64-68.

80. Computer Storage and Retrieval of Generic Chemical Structures in Patents. 3. Chemical

Grammars and Their Role in the Manipulation of Chemical Structures. S. M. Welford, M. F. Lynch, J.

M. Barnard. 1981, J. Chem. Inf. Comput. Sci., Vol. 21, pp. 161-168.

81. CORINA - Fast Generation of High-Quality 3D Molecular Models. [Online] [Cited: 4 November

2010.] http://www.molecular-networks.com/products/corina.

221

82. Recent Developments of the Chemistry Development Kit (CDK) - An Open-Source Java Library for

Chemo- and Bioinformatics. C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, E. L. Willighagen.

2006, Curr. Pharm. Des., Vol. 12, Issue 17, pp. 2111-2120.

83. The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo- and

Bioinformatics. C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttman, E. Willighagen. 2003, J.

Chem. Inf. Comput. Sci., Vol. 43, pp. 493-500.

84. Sourceforge.net: CDK. [Online] [Cited: 4 November 2010.]

http://sourceforge.net/apps/mediawiki/cdk/index.php?title=Main_Page.

85. Jmol: an open-source Java viewer for chemical structures in 3D. [Online] [Cited: 4 November

2010.] http://www.jmol.org/.

86. Computer Storage and Retrieval of Generic Structures in Chemical Patents. 4. An Extended

Connection Table Representation for Generic Structures. J. M. Barnard, M. F. Lynch, S. M. Welford.

1982, J. Chem. Inf. Comput. Sci., Vol. 22, pp. 16-164.

87. A Relaxation Algorithm for Generic Chemical Structure Screening. A. von Scholley. 1983, J. Chem.

Inf. Comput. Sci., Vol. 24, pp. 245-241.

88. Computer Storage and Retrieval of Generic Structures in Chemical Patents. 5. Algorithmic

Generation of Fragment Descriptors for Generic Structure Screening. S. M. Welford, M. F. Lynch, J.

M. Barnard. 1983, J. Chem. Inf. Comput. Sci., Vol. 24, pp. 57-66.

89. Computer Storage and Retrieval of Generic Structures in Chemical Patents. 8. Reduced Chemical

Graphs and Their Application in Generic Chemical Structure Retrieval. V. J. Gillet, G. M. Downs, A.

Ling, M. F. Lynch, P. Venkataram, J. V. Wood. 1987, J. Chem. Inf. Comput. Sci., Vol. 27, pp. 126-137.

90. Marvin: History of Changes. [Online] [Cited: 8 October 2010.]

http://www.chemaxon.com/marvin/help/developer/changes.html.

91. Automatic Acquisition of Hyponyms from Large Text Corpora. M. A. Hearst. 1992. 14th

Conference on Computational Linguistics, Nantes, FR. pp 539-545.

92. Facts from text: can text mining help to scale-up high-quality manual curation of gene products

with ontologies? R. Winnenburg, T. Wachter, C. Pike, A. Doms, M. Schroeder. 2008, Briefings in

Bioinformatics, Vol. 9, Issue 6, pp. 466-478.

93. OWL Web Ontology Language Overview. [Online] [Cited: 1 November 2010.]

http://www.w3.org/TR/owl-features/.

94. OWL API. [Online] [Cited: 24 February 2011.] http://owlapi.sourceforge.net/.

95. ChEBI FAQ. [Online] [Cited: 13 November 2010.] http://www.ebi.ac.uk/chebi/faqForward.do#2.

96. EPO - Basic definitions. [Online] [Cited: 24 February 2011.] http://www.epo.org/patents/patent-

information/european-patent-documents/basic-definitions.html.

222

97. European Publication Server Data Coverage. [Online] [Cited: 1 November 2010.]

https://data.epo.org/publication-server/data-coverage.

98. Guide for Applicants. [Online] [Cited: 24 February 2011.] http://www.epo.org/patents/Grant-

procedure/Filing-an-application/European-applications/Guide-for-applicants.html.

99. Download OSCAR3 from SourceForge.net. [Online] [Cited: 5 November 2010.]

http://sourceforge.net/projects/oscar3-chem/files/oscar3-chem/alpha5/oscar3-a5.zip/download.

100. Chemical documents: machine understanding and automated information extraction. J. A.

Townsend, S. E. Adams, C. A. Waudby, V. K. de Souza, J. M. Goodman, P. Murray-Rust. 2004, Org.

Biomol. Chem., Vol. 2, pp. 3294-3300.

101. Classifier4J. [Online] [Cited: 24 February 2011.] http://classifier4j.sourceforge.net/.

102. ImageMagick: Convert, Edit and Compose Images. [Online] [Cited: 5 November 2010.]

http://www.imagemagick.org/.

103. Optical Structure Recognition Software To Recover Chemical Information: OSRA, An Open Source

Solution. I. V. Filippov, M. C. Nicklaus. 2009, J. Chem. Inf. Model., Vol. 49, pp. 740-743.

104. Extraction of Chemical Reaction Information from Primary Journal Text Using Computational

Linguistics Techniques. 1. Lexical and Syntantic Phases. E. M. Zamora, P. E. Blower Jr. 1984. J. Chem.

Inf. Comput. Sci., Vol. 24, pp. 176-181.

105. Extraction of Chemical Reaction Information from Primary Journal Text Using Computational

Linguistics Techniques. 2. Semantic Phase. E. M. Zamora, P. E. Blower Jr. 1984. J. Chem. Inf. Comput.

Sci., Vol. 24, pp. 181-188.

106. Extraction of Chemical Reaction Information from Primary Journal Text. C. S. Ai, P. E. Blower Jr,

R. H. Ledwith. 1990. J. Chem. Inf. Comput. Sci., Vol. 30, pp. 163-169.

107. IUPAC Compendium of Chemical Terminology (the "Gold Book") A. D. Wilkinson, A. McNaught.

1997. 2nd edition, Blackwell Scientific Publications.

108. chemicx.com [Online] [Cited: 5 November 2010.] http://www.chemicx.com/.

109. Green Chain Reaction - Science Online London 2010. [Online] [Cited: 27 October 2010.]

http://scienceonlinelondon.wikidot.com/topics:green-chain-reaction.

110. Chemical Name to Structure: OPSIN, an Open Source Solution. D. M. Lowe, P. T. Corbett, P.

Murray-Rust, R. C. Glen. J. Chem. Inf. Model. Manuscript accepted.

111. Amide Substituted Xanthine Derivatives With Gluconeogenesis Modulating Activity. EP 1515972.

P. W. Dunten, L. H. Foley, N. J. S. Huby, S. L. Pietranico-Cole. 2003.

112. RDF/XML Syntax Specification (Revised). [Online] [Cited: 1 November 2010.]

http://www.w3.org/TR/REC-rdf-syntax/.

113. OpenRDF.org. [Online] [Cited: 1 November 2010.] http://www.openrdf.org/.

223

114. SPARQL Query Language for RDF. [Online] [Cited: 1 November 2010.]

http://www.w3.org/TR/rdf-sparql-query/.

115. PatentEye Repository. [Online] [Cited: 29 October 2010.] http://bitbucket.org/lh359/patenteye.

116. OpenMolecules.net. [Online] [Cited: 1 November 2010.] http://openmolecules.net/.

117. NMRShiftDB - open nmr on the web. [Online] [Cited: 1 November 2010.]

http://www.ebi.ac.uk/nmrshiftdb.

118. NMRShiftDB - Constructing a Free Chemical Information System with Open-Source Components.

C. Steinbeck, S. Krause, S. Kuhn. 2003, J. Chem. Inf. Comput. Sci., Vol. 43, pp. 1733-1739.

119. NMRShiftDB - compound identification and structure elucidation support though a free

community-built web database. C. Steinbeck, S. Kuhn. 2004, Phytochemistry, Vol. 65, pp. 2711-2717.

224

Appendix A

Hyponymic Relations

Hyponymic (“is-a”) relations exist between two terms where one, the hyponym, is a subset of the

other, the hypernym. For example, “vehicle” is a hypernym of “car”, and “Ford Fiesta” is a hyponym

of “car”. Hypernyms and hyponyms may take the form of single words or of phrases, as shall be seen

later. This task aims to quantify the performance of a system for the automatic acquisition of such

relations based on Hearst Patterns.

Hearst Patterns

Hearst first proposed the use of lexico-syntactic patterns for the automatic acquisition of hyponymic

relations, thereafter known as Hearst Patterns. She described six patterns that could be employed;

Format Example Pattern Name

HYPER such as HYPO Apolar solvents such as THF and hexane SUCH_AS

such HYPER as HYPO Such bases as NaOEt or LDA SUCH_FOO_AS

HYPO or other HYPER MeCl, EtBr or other organohalides OR_OTHER

HYPO and other HYPER Benzene, ethylene oxide and other carcinogens AND_OTHER

HYPER including HYPO Methyl ketones including acetone INCLUDING

HYPER especially HYPO Grignard reagents, especially methyl magnesium
chloride

ESPECIALLY

wherein HYPER indicates the hypernym, indicated in bold and HYPO the hyponym(s), indicated in

italics.

Each of these patterns has been assigned a name for ease of reference. In the example for the

SUCH_AS pattern, the text communicates the information that THF and hexane are examples of

apolar solvents. This information is readily available to a fluent speaker of the English language,

regardless of whether or not they are aware of what “THF”, “hexane” or an “apolar solvent” are.

The Task

 This task focuses solely on the SUCH_AS pattern. You will be presented with a series of

paragraphs, each containing one or more instances of the phrase “such as”. You should read

each paragraph and identify the Hearst Pattern(s). For each Hearst Pattern you should

identify the hypernym and the hyponym(s). You should use your own judgement to

determine where in the text the pattern and the hypernym and hyponym(s) begin and end,

based on the guidelines that follow and using your background knowledge or other sources

to ensure that the hyponymic relations you find are correct. Thus, in the case of “esters of

225

unsaturated carboxylic acids such as maleic acid”, the hypernym is “unsaturated carboxylic

acids”, not “esters of unsaturated carboxylic acids”.

 A Hearst Pattern must be composed of a single hypernym, the phrase “such as”, a single

hyponym or a list of hyponyms, optionally including leading determiners (e.g. “a”, “the”,

“some”, “any”), and nothing else. You should not annotate a leading determiner as part of a

hyponym unless you consider it vital to the meaning of the hyponym term. Thus, for

example, you should annotate “stable carbocations such as the tertiary carbocation”.

 Where more than one hyponym is found the list must be continuous. Whitespace,

punctuation and conjunctions (“and” and “or”) are allowed to separate the list, other words

are not. Thus, “polar solvents such as, for example, DMSO” should not be annotated. Where

this extra text occurs inside a list of hyponyms, e.g. “polar solvents such as DMSO, THF – the

most commonly used solvent – and acetone”, you should annotate the hyponyms that occur

prior to the extra text and the Hearst Pattern as far as the end of the last annotated

hyponym.

 We are looking specifically for Hearst Patterns that inform us about the chemical domain.

You should only include patterns in which all of the hyponyms are terms that have structural

meaning, such as chemical structures, structural features or structural classes. Hyponyms

thus need not correspond to specific chemicals, so for example may include “methyl group”

and “beta-lactams” as well as specific molecules. Specific molecules may be identified by, for

example, trivial names, systematic names, semi-systematic names, abbreviations such as

“DMAP” or formulae such as “C3H8” or “MeCOCH2Cl”.

 Hypernyms should therefore denote classes of chemical structures, structural features or

structural classes. Hypernyms may themselves be structural classes (e.g. “beta-lactams”),

but may also be based on function (e.g. “5-HT antagonists”), usage (e.g. “solvents”),

properties (e.g. “visible-light absorbing molecules”) or something far more ephemeral (e.g.

“interesting functional groups”). These examples should be considered illustrative rather

than restrictive.

 Hypernyms may include adjectives where the adjective forms a part of the hypernym, e.g. in

“…using a non-polar solvent such as cyclohexane”, but not in “…by dissolution in

cyclohexane or an alternative solvent such as benzene”.

 Where suitable patterns are found, annotate the entire text of the pattern by using “click-

and-drag” to select the appropriate text within the OSCAR scrapbook and clicking the

“pattern” button. Then annotate the hypernym and the individual hyponyms similarly by

using the “hyper” and “hypo” buttons respectively.

 All annotations must begin and end at word boundaries.

 It is not necessarily the case that all Hearst Patterns may be annotated in this way. Consider,

for example, “metal oxides such as potassium and calcium oxide”. “Potassium and calcium

oxide” describes the hyponyms, but potassium is not a metal oxide, and “potassium oxide”

cannot be annotated as the words do not occur together. In this case you should annotate

“metal oxide” as the hypernym, and “calcium oxide” as the only hyponym. This point should

be applied where the final word significantly modifies the meaning of the non-final items in

the list and not to cases such as “alkoxide anions such as methoxide and ethoxide anions”.

 If the phrasing used in the text makes understanding the meaning of a Hearst Pattern

impossible, you should not annotate anything.

226

 Hearst patterns may use a hypernym denoting multiple classes, e.g. “polar or non-polar

solvents such as DMSO or hexane”. In this case, annotate the hypernym as “polar or non-

polar solvents” and the hyponyms as normal.

 If there are nested Hearst Patterns, e.g. “…antibiotics such as beta-lactams such as

amoxicillin…” then copy the source file as many times as necessary and annotate the

patterns separately.

 If there is a typo present in a hypernym or hyponym, you should treat the word as though

the typo were not there. If there is a typo in the phrase “such as” you should not annotate

the Hearst Pattern.

227

Appendix B

The table on the following page contains a list of classes of molecules derived from the application of

Hearst Patterns to chemical texts. In this task, each class should be assigned one and only one of the

following labels;

 Structural – the name of the class indicates that all members contain a specific substructure

e.g. ketone or methyl ester.

 Functional – the name of the class indicates that all members share a common function,

usage, property or other non-structural feature e.g. antibiotic or surfactant.

 Semi-structural – the name of the class indicates something about the structure or

composition of the members, but not that that they share a specific substructure e.g.

isomers of C6H10O or bicyclic systems.

Having decided which of the labels fits the class name best, tick the appropriate box. In making your

decision you may use your background knowledge and any reference sources you consider

appropriate but you must not confer with anyone.

228

Class name Structural Functional Semi-structural
olefin

straight monoolefin

amine

inert solvent

ether compound

mineral and carboxylic acid

alkylamine

suitable solvent

trihydrocarbon-substituted phosphine

aromatic ether compound

halogenated styrene

hydrocarbon

organic solvent

halogenated α-olefin

organic acid

monohydrocarbon-substituted phosphine

diolefin

Base

α-olefin

solvent

alkylstyrene

alcohol

dihydrocarbon-substituted phosphine

cyclic olefin

tertiary amine

halogenated hydrocarbon

aliphatic monoether compound

aliphatic unsaturated ether compound

229

Appendix C

1. Annotate textual reports of spectral data. Do not annotate spectra that are reported in

image form. Include spectra found within tables where it is possible to produce well-formed

XML and where they should be annotated according to these guidelines.

2. Spectra should be annotated such that each spectrum tag contains one and only one

spectrum.

3. Annotate spectra that are reported in a regular format, e.g. “1H NMR: 2.30 (s, 2H), 2.45 (d,

1H, J=2.8Hz”. Do not include spectra reported in natural language e.g. “1H NMR found to be

identical as for previous example”.

4. Spectra containing typos should be annotated as though the typo were not present.

5. Do not include leading or trailing whitespace or punctuation.

6. Annotate only text corresponding to spectra produced from 1H NMR (HNMR), 13C NMR

(CNMR), Mass Spectrometry (MassSpec), High-Resolution Mass Spectrometry (HRMS) and

Infra-Red Spectroscopy (IR).

230

Appendix D

Supporting information is contained on the attached disk. This information comprises;

 /code/markush - the implementation of EPML tools as described in chapter 3

 /code/markush/examples - example EPML describing different types of variation

 /code/markush/fragments - CML fragments describing assorted key units

 /code/markush/markushStructures - example markush structures encoded in EPML

 /code/markush/polyinfo - PML descriptions of polymers from the PoLyInfo database and
their associate CML fragments and atomisitic CML descriptions

 /code/markush/src - the source code for the implementation

 /code/markush/test - test code that really should have been in src/test/java

 /code/markush/testResources - test files that really should have been in src/test/resources

 /code/patentanalysis - the implementations of Hearst Patterns for relation extraction, and of
reaction extraction described in chapters 4 and 5&6 respectively

 /code/patentanalysis/classifier - the experimental sections, sorted according to their status
as "experimental", "non-experimental" and "empty" used for model training and validation,
as described in section 5.2.4

 /code/patentanalysis/downloadsNoDuplicates - the ten weeks' worth of EPO patent
downloads from which duplicated documents have been removed, as described in section
5.1.3

 /code/patentanalysis/osra - the OSRA executable and supporting libraries used for image
recognition

 /code/patentanalysis/osraCache - the cache of OSRA results generated during the work

 /code/patentanalysis/src - the source code for the implementation

 /code/patentanalysis/testResources - test files that really should have been in
src/test/resources

 /data - data sets produced during the work

 /data/chemImageCorpus - the corpus of chemical images used to measure the accuracy of
OSRA in section 5.2.5, produced by random selection from the files in
/data/processedPatents

 /data/dataAnnotations - the corpus of experimental paragraphs annotated for experimental
data as described in section 5.2.3.2, produced by random selection from the files in
/data/processedPatents

 /data/finalReactions - the resulting CML reactions from reaction mining the patent corpus,
and the reasons for failure as discussed in section 5.3.3, by executing ReactionExtractor on
the files in /data/processedPatents

 /data/hearstAnnotations - the sets of annotations produced by the three annotators as
discussed in section 4.3.5

 /data/processedPatents - the set of semantically enhanced patents produced from the set of
unique, full text documents as described in section 5.2, produced by executing
ProcessPatents on the files in /code/patentanalysis/downloadsNoDuplicates

 /data/reactionCorpus - the set of automatically extracted reactions used to validate the
performance of PatentEye in section 6.1 (produced by random selection from the files in

231

/data/finalReactions), and an index file containing the manually-determined tp, fp and fn
scores per patent

 /data/generatedRelations - the OWL files containing the sets of relations used in chapter 4

 /data/generatedRelations/structureOntology.owl - the full set of relations extracted from
the patents, generated by running StructureOntologyCreator on the patents contained in
/code/patentanalysis/downloadsNoDuplicates as described in section 4.3

 /data/generatedRelations/trimmedBySourceCount.owl - the set of relations produced by
trimming the relations to those asserted in 3 separate source documents, as described in
section 4.3.4, by executing TrimStructureOntology on structureOntology.owl

 /data/generatedRelations/trimmedBySubclasses.owl - the set of relations produced by
further trimming the relations to only include those that refer to classes with at least six
example structures, as described in section 4.4.1, by executing TrimStructureOntology on
structureOntology.owl

232

Appendix E

The following comprises a list of the major software components written solely by the current

author as part of the current work. Much of the code is available on the attached disk.

 The MarkushBuilder component for producing example structures corresponding to

Markush structures encoded in EPML, as described in section 3.4.

 The software for compiling and searching Extended Connection Tables corresponding to

Markush structures encoded in EPML, as described in section 3.5.

 The HearstFinder component for identifying chemical Hearst Patterns in text using

ChemicalTagger, as described in section 4.3.1

 The EPOCrawler component for automatically downloading chemical patents from the

European Patent Office (EPO) website, as described in section 5.1.2.

 The EPOProcessor component for the semantic enhancement of EPO patent documents,

as described in section 5.2.

 The ExperimentParser component for the automatic extraction and semantic description

of chemical syntheses from plain text, as described in section 5.3.

